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ABSTRACT

We propose a method called integrated diffusion for combining
multimodal data, gathered via different sensors on the same
system, to create a integrated data diffusion operator. As real
world data suffers from both local and global noise, we intro-
duce mechanisms to optimally calculate a diffusion operator
that reflects the combined information in data by maintaining
low frequency eigenvectors of each modality both globally
and locally. We show the utility of this integrated operator
in denoising and visualizing multimodal toy data as well as
multi-omic data generated from blood cells, measuring both
gene expression and chromatin accessibility. Our approach bet-
ter visualizes the geometry of the integrated data and captures
known cross-modality associations. More generally, integrated
diffusion is broadly applicable to multimodal datasets gener-
ated by noisy sensors collected in a variety of fields.

Index Terms— manifold learning, data diffusion, multi-
modal data, dimensionality reduction, data denoising

1. INTRODUCTION

Technological advances have allowed for multimodal instru-
ments to provide information on the same system in parallel.
Now, computational approaches must also incorporate the
maximum amount of information from all modalities in or-
der to perform a wide variety of downstream tasks, such as
integrated visualization, denoising, and cross-modality cor-
relations between features. In the past, solutions have been
based on the assumption that naive concatenations of features
obtained from unique measurements, or a subset of selected
features, can offer viable solutions [1, 2]. Other neural network
based approaches have been proposed as well; for instance,
domain transfer autoencoders and cycle GANs [3]. However
these approaches are sensitive to the scale of and noise present
in each feature space. This problem is particularly present
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in high throughput biomedical data, such a single cell RNA-
sequencing and single cell ATAC-sequencing, which have
entirely different scales and suffer from differing degrees of
noise and sparsity. In order to address these concerns, we turn
to the framework of data diffusion that was developed by [4].

According to the data diffusion framework, we can learn
the intrinsic space of the data by powering a Markov transition
matrix to a power ¢, which implicitly calculates a ¢-step ran-
dom walk on the data graph. This process accumulates proba-
bilities in paths that traverse through relatively dense regions
of the data and diminish in sparse outlier regions, inherently
denoising the matrix towards predominant axes of variation
represented by the low frequency eigenvectors as shown by
[5]. In [4], the powered diffusion operator is eigendecomposed
to uncover intrinsic data dimensions. Since that seminal work,
the Markov matrix, also known as a data diffusion operator,
has been shown to be useful in many data processing tasks [6],
including denoising [5] and dimensionality reduction [7].

Here, we define an integrated diffusion operator for multi-
ple data modalities. First, we emphasize dominant directions at
a local level in each modality by using a multiscale spectral de-
noising method to denoise each data modality before modality
specific diffuion operator calculation. These diffusion proba-
bilities are then integrated by taking several steps in the data
graph from one modality, and several steps on the data graph
defined by the other modality. The number of steps is carefully
chosen based on spectral entropy of each modality. Both of
these steps help address modality specific sources of noise
both at the local and global levels (Fig. 1). Empirically we
show that our method yields more accurate visualizations and
more faithful denoising on both datasets where ground truth is
known and in exploratory biomedical datasets, as compared
to a variety of alternative methods for combining multimodal
data.

2. BACKGROUND

2.1. Manifold learning via data diffusion

Intuitively, while measurement strategies often produce high
dimensional observations, their intrinsic dimensionality, or
number of degrees of freedom, is relatively low. In [4], diffu-
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Fig. 1. Workflow of integrated diffusion. We denoise each
modality to local low frequency eigenvectors with multiscale
spectral denoising. Next, we calculate and compare the intrin-
sic dimensionality of each dataset via spectral entropy ratio to
determine the ideal number of ¢-steps to place in each modality
in an alternating random walk. The resulting diffusion operator
can help denoise and visualize data.

sion maps were proposed as a robust way to capture intrinsic
manifold geometry in dataset by eigendecomposing diffusion
operators. Using ¢-step random walks that aggregate local
affinity, nonlinear relations are revealed in data, which allows
their embedding in low dimensions. These local affinities are
commonly constructed using a Gaussian kernel

i — |2

K(z;,z;) = exp <—
€

> s Lj=1.,N (D
where K is an N x N Gram matrix whose (4, j) entry is de-
noted by K(x;, z;) to emphasize the dependency on X, based
on bandwidth parameter ¢ that controls local neighborhood
sizes. A diffusion operator is defined as the row-stochastic

P =D 'K, (2)

where D is diagonal matrix: D(z;, z;) = >, K(z;, ;).

The matrix P, or diffusion operator, defines single-step
transition probabilities for a time-homogeneous diffusion pro-
cess, or a Markovian random walk, over the data. The eigen-
vectors of P, denoted ® = ¢g, ¢1, ..., d,, represent fre-
quency harmonics over the graph based on equivalence to
eigenvectors of a normalized graph Laplacian. The eigenval-
ues A = \q, Ao, A; ... A, directly indicate frequencies, as they
are related to the eigenvectors.

The eigenvectors of the diffusion operator are equivalent
to those of the normalized graph Laplacian L = I — P =
D 'L, = D7Y(D — K), where I is the identity matrix, D
is the degree matrix, K is the kernel affinity, L,, is the unnor-
malized graph Laplacian. Graph Laplacian eigenvectors have
been shown to be equivalent to graph frequency harmonics [8].
Thus, signal loadings on to diffusion eigenvectors create a
graph Fourier transform defined as ®7 f for a graph signal f.

Signals can be filtered using the graph Fourier transform
by altering their loading coefficients on to eigenvectors of the
graph Laplacian. Thus, a graph filter can be defined as

h(f) = ®h(A)RT f 3)

using a slight abuse of notation with A being a diagonal matrix
of eigenvalues. Here, h rescales the eigenvalues to modulate
frequency components of f. In [4], powers P? of the diffusion
operator, for ¢ > 0, not only simulate ¢ step random walks
over the data, but can also be seen as soft low-pass graph
filters h(\;,t) = AL, which diminish higher frequency noise
components more rapidly than lower frequency informative
components. In [5], such filters were used on biological data to
denoise single cell RNA sequencing measurements by simply
applying the powered diffusion operator (or diffusion filter) to
the data as

X =PxX, 4)

thus avoiding eigendecomposition.

2.2. Alternating diffusion

Recently, alternating diffusion has been proposed to combine
diffusion operators created from multimodal data [9]. Intu-
itively, this generalizes the random walk to “hop” between dif-
ferent metric spaces by taking a matrix product of the Markov
transition matrices

P(l‘i,l‘j) = PIPJ (5)

Finally, the resultant alternating diffusion operator P is pow-
ered to stimulate “hopping” across modalities. While this
approach is able to construct a joint diffusion operator, it is
sensitive to local and global noise found in each dataset creat-
ing a joint manifold that represents not only modality specific
sources of information, but also noise.

3. METHOD

3.1. Problem formulation and approach

Let X C RPx and Y C RPY be two datasets generated by
measuring the same system with two sets of sensors in different
metric spaces. Each of these datasets contains nonoverlapping
features with different scales, and is subject to differing de-
grees of noise. Here, we propose an approach for generating
an integrated diffusion operator that selects information from
both modalities at multiple scales. Our approach is based on
the idea that frequency components of the diffusion opera-
tor can be low-pass filtered using particular powers of this
operators. By using multiple scales, we perform both local
and global denoising of the data modalities to a degree where
highly relevant information is retained in the joint integrated
operator. This integrated diffusion operator can then be used
to visualize and denoise both datasets (Fig. 1).

3.2. Neighborhood reconstruction via multiscale spectral
denoising

Specific areas of each modality’s data manifold can contain
different amounts of noise that may obscure structure in joint
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Fig. 2. Generation of multimodal data from ground truth MNIST and artificial tree data as well as visualization comparisons. A)
Gaussian noise is added to the entire MNIST datasets to simulate global noise as visualized by PHATE [7]. B) Gaussian noise is
added to branches of the artificial tree dataset to simulate local noise as visualized by PHATE. C) Classification accuracy for
predicting MNIST digits from integrated embeddings created by a variety of techniques with increasing differences in global
noise. D) DeMAP correlations between ground truth tree distances with integrated embedding distances created by a variety of

techniques with increasing differences in local noise.

embeddings. Therefore, we translate the global denoising idea
from [5] to local regions and multiple scales by creating and
applying hierarchical sets of diffusion operators as described
in Alg. 3.2. This recursive approach calculates increasingly
local diffusion operators and denoises the original modality-
specific data at multiple scales. At each scale, the original
input data, represented in by X (see Alg. 3.2), is averaged
with the denoised data X. Each scale of the hierarchy con-
tributes half as much correction as the previous scale, with the
overall effect summing to one. We apply this modality specific
local denoising approach to correct all data modalities before
integrating them. It should be noted that the filter we use from
Eq. 4 can be replaced with a more general filter, i.e., any filter
that takes the form of Eq. 3.

3.3. Global denoising via spectral entropy

In addition to correcting for varying local noise within a sin-
gle modality, it is crucial to only maintain the most globally
important eigenvectors in each data modality. While [5] did
globally denoise by taking the diffusion operator powers P?,
the methodology used there for tuning ¢ essentially required
manual trial and error. Such tuning is crucial here as a small
t could incorporate significant modality specific noise, while
a high ¢ could improperly diminish the effect of informative

Algorithm 1 Multiscale Graph Denoising MGD (X, ¢, 7, ¢)

Input: dataset X, local denoising timestep ¢, a minimum
cluster size 7, and number of clusters c.
Output: an approximate and locally dataset X.
if | X| < 7 then
Return X
end if
Compute diffusion operator P as described by equations 1
and 2
X = P'X as described in equation 4
Cy,Cs,...,C. = SpectralCluster(P)

Return (X + (J;_, MGD(X[C.], t,7,¢))/2

eigenvectors. Therefore, we propose to select ¢ for each data
modality separately by using spectral entropy to evaluate how
much information it encodes in the diffusion operator for each
candidate value of £. We can then methodically tune ¢ to be a
scale where the information loss stabilizes, with the reasoning
that signals are harder to remove than the noise.

Spectral entropy is defined as the Shannon entropy of nor-
malized eigenvalues, i.e.,

S(Pt) ==Y ¢ilog(v), 6)
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which in this context quantifies the spread of information
throughout the eigenspectrum of the diffusion operator. We
reason that innumerable noise dimensions will quickly drop
off while informative dimensions are harder to remove. Hence,
we choose the elbow of this curve to find an inflection point k&
in the spectral entropy S(p) as can be seen in Fig. 4C.

3.4. Fusion of operators

While the spectral entropy heuristic is used to compute ¢ for
each modality independently, it cannot directly be used to
tune timescales across modalities to combine their diffusion
operators together. Since noise may be inherently present in
the system being measured, and therefore be present in both
datasets, the integrated operator must again be used by taking
its powers to a given time scale. Powering directly by tq, t2
and tintegrated Would lead to an oversmoothing effect that
would eliminate information from the low frequency eigen-
vectors in the final computed manifold, effectively collapsing
independent informative data points together. To alleviate this
concern, we raise each modalities diffusion operator to the
lowest possible multiple of the ideal view-specific t. This
means we can write our integrated diffusion operator, J, to
reflect the differing levels of global information between views
as

J=P'Py (7)

where t; and t2 are integer values obtained from the reduced
ratio as described above, and P; and P, are modality specific
diffusion operators. This integrated diffusion operator can be
applied directly to one of the data modalities as a low pass
denoising diffusion filter as done in Eq. 4 or can be powered
and embedded using the methods of [4] or [7].

4. EXPERIMENTAL RESULTS

In the following experiments we evaluate the ability of inte-
grated diffusion to visualize and denoise high-dimensional
multimodal data. We first simulate global noise using the
MNIST handwritten digits dataset. We generate multiple
modalities of MNIST handwritten digits by adding Gaussian
noise to the images, where each pixel value p, = p; + N(v),
where v changes based on the level of noise. To showcase
the ability of our method to handle modalities with significant
differences in global noise, we add a fixed amount of Gaussian
noise to simulate one data modality and increasing amount of
Gaussian noise to simulate the second data modality (Fig. 2A).
Next, we generate multiple modalities of high dimensional
artificial trees with varying amounts of local noise to specific
branches. Similar to our MNIST multimodal datasets, we add a
small amount of fixed noise to each tree before adding increas-
ing amounts of noise to differing branches (Fig. 2B). Finally,
we apply our integrated diffusion approach to real world single
cell biological data from RNA-sequencing (gene expression)
and ATAC-sequencing (chromatin accessibility). With these
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Fig. 3. A) Denoising of MNIST data with alternating (mid-
dle row) and integrated (bottom row) diffusion operators. B)
MNIST denoised pixel classification accuracy with differing
diffusion-based multimodal denoising strategies. As above,
data was generated by adding differing amounts of random
gaussian noise to MNIST pixels.

datasets, we compare integrated diffusion to other multimodal
learning approaches on visualization and denoising tasks.

4.1. Visualization

To quantify the differences in visualizations produced from
differing multimodal integration strategies, we compared the
first 20 diffusion map components computed from diffusion
operator constructions based off of multimodal feature con-
catenation, distance addition, affinity addition, affinity mul-
tiplication and alternating diffusion, to integrated diffusion.
We also performed ablation studies, comparing these tech-
niques to various diffusion operators: alternating diffusion
with local correction and alternating diffusion with modality
specific powering of diffusion operators via spectral entropy
ratio. We also compared to non-diffusion based embeddings
produced by cycle GANs, autoencoders and domain transfer
autoencoders. For our MNIST comparisons, we train a KINN-
classifier to predict MNIST digit of origin from the embedding
trained from each technique. For our tree comparisons, with
branches with differing amounts of local noise, we try to de-
termine how successful our embeddings are using DeMAP
(Denoised Manifold-Affinity Preservation) proposed in [7].
DeMAP computes geodesic distance between all data points
in a noiseless dataset and correlates it with distance between
these data points in an embedding. This method tries to deter-
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mine if the embedding accurately maintains ground truth point
to point distances in compressed space.

All strategies performed comparably when both modali-
ties had a similar degree of local and global noise. As the
difference in global noise increased in our MNIST embed-
ding classification task, strategies that powered the diffusion
operators to account for global noise outperformed strategies
that did not (Fig. 2C). When embedding trees with varying
degrees of local branch specific noise, methods that perform lo-
cal correction with multiscale spectral denoising significantly
outperformed methods that did not (Fig. 2D).

4.2. Denoising

Previous work in diffusion filters has shown that low pass fil-
tering can correct many types of noise present in real world
datasets, allowing for downstream analysis [5]. Here, we com-
pare several methods for data denoising with our integrated
diffusion approach. As done previously, we created multi-
modal MNIST data by adding differing amounts of global
noise. After computing the integrated diffusion operator with
each of these comparison methods, we filter the noisier MNIST
modality as done previously [5] and as can be seen in Fig. 3A.
To get quantitative results, we train a kKNN-classifier on the de-
noised pixel values to determine how well each operator is able
to predict the digit (Fig. 3). As shown in Fig. 3B, across all
denoising comparisons, classification accuracy on increasingly
noisy MNIST digits were best recovered by integrated diffu-
sion followed by alternating diffusion with modality specific
view powering, both methods account for global information
within each noisy modality.

5. BIOLOGICAL APPLICATIONS

New methods allow for the measurement of tens to hundreds
of thousands of features in single cells, allowing for unprece-
dented insight into biological and cell type specific processes.
Until recently, only a single modality could be measured in
each cell, be it expression of genes through RNA sequencing
or the accessibility of chromatin regions through ATAC se-
quencing. Now novel techniques allow for the measurement
of different modalities at single-cell resolution. Increasingly
commonly, individual cells are measured with a combination
of chromatin accessibility and RNA expression [10, 11]. This
new type of data is powerful, as it not only allows for the
study of each modality independently, but also allows for the
discovery of regulatory mechanisms between modalities. Cur-
rently, no computational techniques are capable of modelling
and predicting these dynamics as there are no strategies that
integrate different modalities of data to jointly visualize and
denoise multimodal single-cell data.

We apply integrated diffusion to multimodal single cell
data of 11,909 blood cells, visualizing the integrated manifold
and uncovering key cross modalities interactions. Visualizing

each modality, gene expression and chromatin accessibility,
independently reveals similar overall structure, but different
resolutions. Chromatin accessibility data, when compared to
gene expression data, is incredibly sparse and generally con-
sidered to be far more noisy. When computing the spectral
entropy of each modality, we can clearly see that the chromatin
accessibility diffusion operator has a far fewer informative di-
mensions than the gene expression operator. The alternating
diffusion approach, which does not account for modality spe-
cific sources of noise creates an embedding that blends the
distinct structure of gene expression data with the less infor-
mative structure of chromatin accessibility data. Integrated
diffusion, however, appears to better resolve differences in
information across datasets, producing a visualization that con-
tains sharper borders between populations and displays clear
structure when visualized with PHATE (Fig. 4A-B).

A major issue in single cell data is sparsity, which makes it
very difficult to measure and model cross modality interactions.
Theoretically, if a gene is expressed, then the chromatin encod-
ing that gene must be accessible. With this understanding of
the data, we try to recover these known associations between
gene expression and chromatin accessibility (Fig. 4D). Due to
sparsity, there is no association as computed by mutual infor-
mation between these variables without denoising with Eq. 4.
There are several strategies to recover these cross modality
interactions: denoising each modality with modality-specific
diffusion operators, denoising with a single alternating diffu-
sion operator or denoising with a single integrated diffusion
operator. Using the integrated diffusion operator appears to
best recover known gene expression and chromatin accessi-
bility associations as shown in genes CD19, CD14 and CD4
(Fig. 4D). We then computed these associations across all
genes with each of our denoising strategies. Across 18,659
genes, integrated diffusion recovered significantly more infor-
mation between a gene’s accessibility and its expression than
alternating diffusion and modality-specific diffusion (Fig. 4E).

6. CONCLUSION

We introduce the integrated diffusion operator for learning an
integrated data geometry as described by multiple data mea-
surement modalities applied to a single system. We show its
improvement over more naive methods on synthetic and bio-
logical datasets. We apply our method in biomedical setting to
a multiomic dataset, where we generated rich integrated mani-
folds and recover cross modality gene-chromatin associations.
Our flexible framework is extendable to multiple modalities
and we expect it will allow for successful integration and anal-
ysis of massive datasets in a wide variety of fields.
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