

Norm-trace-lifted codes over binary fields

Gretchen L. Matthews
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061 USA
Email: gmatthews@vt.edu

Aidan W. Murphy
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061 USA
Email: awmurphy@vt.edu

Abstract—In this paper, we introduce norm-trace-lifted codes over binary fields, which are codes with locality and high availability based on the norm-trace curve over the field \mathbb{F}_{2^r} . While they are inspired by Hermitian-lifted codes, norm-trace-lifted codes are easier to define and provide some potential advantages in terms of locality, meaning the number of symbols required to recover another, or alphabet size.

I. INTRODUCTION

Codes with locality allow for the recovery of any codeword symbol utilizing only a few other symbols. They have been studied extensively in the literature [5], [12], [13], [14], [15] including utilizing Reed-Solomon and other codes from curves [2], [9]. The availability of such a code is the number of disjoint sets of coordinates that support this recovery. Hence, codes with high availability can recover a missing symbol in many different ways which means the stored information is more resilient against erasures.

Hermitian-lifted codes [10] were defined to yield high-availability codes for local recovery using the Hermitian curve. In this paper, we introduce the norm-trace-lifted codes, adapting the construction to the family of norm-trace curves given by

$$\mathcal{X}_{2,r} : x^{2^r-1} = y^{2^{r-1}} + y^{2^{r-2}} + \cdots + y^4 + y^2 + y$$

over \mathbb{F}_{2^r} , i.e., $N_{\mathbb{F}_{2^r}/\mathbb{F}_2}(x) = Tr_{\mathbb{F}_{2^r}/\mathbb{F}_2}(y)$, meaning the norm of x is the trace of y where both the norm and the trace are taken relative to the extension $\mathbb{F}_{2^r}/\mathbb{F}_2$. Codes from norm-trace curves were first studied by Geil [6]. The norm-trace-lifted code construction yields evaluation codes defined by functions which are easier to determine than for the Hermitian-lifted codes, due to number of intersection points of the norm-trace curve with non-horizontal lines in the projective space \mathbb{P}^2 .

Recall that a code $C \subseteq \mathbb{F}_q^n$ has locality r if for each codeword coordinate i , there exists a set R_i of other

The work of the first author is supported in part by NSF under Grant DMS-1855136 and in part by the Commonwealth Cyber Initiative.

coordinates such that for all $c \in C$, $c_i = \varphi(c|_{R_i})$ for some function $\varphi : \mathbb{F}_q^r \rightarrow \mathbb{F}_q$ and $|R_i| = r$. The set R_i (resp., $R_i \cup \{i\}$) is called a recovery set (resp., repair group) for i . If each coordinate i has t disjoint recovery sets, then the code is said to have availability t .

For the norm-trace-lifted codes, the repair groups are the sets of points of intersection between the curve and non-horizontal lines. The functions employed are those that restrict to low degree polynomials on the non-horizontal lines. Monomials which satisfy this property are called good monomials. For the Hermitian-lifted codes, characterizing the good monomials is a challenging problem which remains open. With the norm-trace-lifted codes considered here, the larger numbers of points of intersection alleviates this difficulty. In all, employing the norm-trace curve yields rates that are asymptotically better than those of the Hermitian-lifted codes, and one may choose whether to focus on smaller locality or maintaining availability. Alternate constructions for locally recoverable codes from norm-trace curves exist in [1] and [3], but each have distinct parameters from the codes constructed here. Lastly, the codes considered in this paper are not an extension of lifted Reed-Solomon codes [4], [7], [8] which utilize multivariate polynomials in such a way that restricting them to lines produces Reed-Solomon codewords. Rather, they are a new construction entirely in which one seeks to identify all functions on a curve that restrict to low degree polynomials on a lines. The difference between “lifted curve codes” and “curve-lifted codes” is expanded on in [10].

This paper is organized as follows. Intersection numbers are determined in Section II. They are applied to define the norm-trace-lifted codes in Section III. Examples and comparisons with other codes are given in Section IV, followed by a conclusion in Section V.

II. INTERSECTION NUMBERS

In this section, we consider how lines of the form $L_{\alpha,\beta}(t) := \{(t, \alpha t + \beta) : t \in \mathbb{F}_{2^r}^2\}$ intersect the curve

$\mathcal{X}_{2,r}$. Throughout, we will assume that $\alpha \neq 0$, meaning we do not consider horizontal lines. The set of lines of interest is

$$\mathbb{L} := \{L_{\alpha,\beta} : \alpha \in \mathbb{F}_{2^r} \setminus \{0\}, \beta \in \mathbb{F}_{2^r}\}.$$

Note that $\mathcal{X}_{2,r}$ has $2^{2r-1} + 1$ \mathbb{F}_{2^r} -rational points, a single point at infinity denoted P_∞ , and genus $(2^{r-1} - 1)^2$ [11].

For $f \in \mathbb{F}_{2^r}[x, y]$ and $g \in \mathbb{F}_{2^r}[t]$ and a line $L_{\alpha,\beta} \in \mathbb{L}$: $\mathbb{F}_{2^r}[t] \rightarrow \mathbb{F}_{2^r}^2$, we say that $f \circ L_{\alpha,\beta}$ agrees with g on $\mathcal{X}_{2,r}$, and write

$$f \circ L_{\alpha,\beta} \equiv g,$$

if $f(L_{\alpha,\beta}(t)) = g(t)$ for all $t \in \mathbb{F}_{2^r}$ with $L_{\alpha,\beta}(t) \in \mathcal{X}_{2,r}$.

Given $\alpha, \beta \in \mathbb{F}_{2^r}$, it will be useful to consider the polynomial

$$p_{\alpha,\beta}(t) := t^{2^{r-1}} + \alpha^{2^{r-1}} t^{2^{r-1}} + \cdots + \alpha t + \text{Tr}_{\mathbb{F}_{2^r}/\mathbb{F}_2}(\beta).$$

Lemma 1. Consider the norm-trace curve $\mathcal{X}_{2,r}$ over \mathbb{F}_{2^r} with $r \geq 2$. The intersection between a line $L_{\alpha,\beta} \in \mathbb{L}$ and $\mathcal{X}_{2,r}$ has cardinality of $2^{r-1} - 1$ or $2^{r-1} + 1$; that is,

$$|L_{\alpha,\beta} \cap \mathcal{X}_{2,r}| = 2^{r-1} \pm 1.$$

Proof. Notice that points in the intersection $L_{\alpha,\beta} \cap \mathcal{X}_{2,r}$ correspond to values t that satisfy the equation

$$t^{2^{r-1}} = (\alpha t + \beta)^{2^{r-1}} + \cdots + (\alpha t + \beta)^2 + (\alpha t + \beta).$$

Expanding the terms on the right with Freshman's Dream gives

$$p_{\alpha,\beta}(t) = 0. \quad (1)$$

To determine $|L_{\alpha,\beta} \cap \mathcal{X}_{2,r}|$, we wish to find the degree of $d(t) = \text{gcd}(p_{\alpha,\beta}(t), t^{2^r} - t)$, as the number of points of intersection is exactly the degree of $d(t)$, since $t^{2^r} - t$ is separable over \mathbb{F}_{q^r} . Because $\text{Tr}_{\mathbb{F}_{2^r}/\mathbb{F}_2}(\beta) \in \{0, 1\}$, we consider two cases as follows.

Case 1: Suppose $\text{Tr}_{\mathbb{F}_{2^r}/\mathbb{F}_2}(\beta) = 0$. Applying the Euclidean algorithm yields

$$\text{gcd}(p_{\alpha,\beta}(t), t^{2^r} - t) = \alpha^{2^{r-1}} t^{2^{r-1}+1} + \cdots + \alpha t^2 + t.$$

See that the degree of this polynomial is $2^{r-1} + 1$.

Case 2: Suppose $\text{Tr}_{\mathbb{F}_{2^r}/\mathbb{F}_2}(\beta) = 1$. We again apply the Euclidean algorithm to obtain

$$\text{gcd}(p_{\alpha,\beta}(t), t^{2^r} - t) = \alpha^{2^{r-1}} t^{2^{r-1}-1} + \cdots + \alpha.$$

See that the degree of this polynomial is $2^{r-1} - 1$. We conclude that the number of points in the intersection $L_{\alpha,\beta} \cap \mathcal{X}_{2,r}$ is $2^{r-1} \pm 1$. \blacksquare

In the next section, we will define codes for which certain points on the lines $L_{\alpha,\beta} \in \mathbb{L}$ will act as repair groups for a coordinate. Lemma 1 guarantees at least $2^{r-1} - 1$ available points, giving rise to codes with locality $2^{r-1} - 2$.

III. CODES WITH LOCALITY FROM THE NORM-TRACE CURVE

In this section, we introduce the norm-trace-lifted codes. Polynomials of bounded degree are crucial to the code construction; the set of polynomials in an indeterminate t of degree at most k with coefficients in \mathbb{F}_{2^r} is denoted $\mathbb{F}_{2^r}[t]_{\leq k}$. We will use standard notation from coding theory. An $[n, k]$ code C over a finite field \mathbb{F} is an \mathbb{F} -subspace of \mathbb{F}^n with $\dim_{\mathbb{F}} C = k$. The rate of C is $\frac{k}{n}$.

Definition 1. The norm-trace-lifted code \mathcal{C} is the evaluation code

$$\mathcal{C} := \{(f(x, y))_{(x, y) \in \mathcal{X}_{2,r}} : f \in \mathcal{F}\} \subseteq \mathbb{F}_{2^r}^{2^{2r-1}}$$

where

$$\mathcal{F} := \left\{ f \in \mathbb{F}_{2^r}[x, y] : \begin{array}{l} \exists g \in \mathbb{F}_{2^r}[t]_{\leq 2^{r-1}-3} \text{ with} \\ f \circ L_{\alpha,\beta} \equiv g \ \forall L_{\alpha,\beta} \in \mathbb{L}, \end{array} \right\}.$$

Hence, the norm-trace-lifted code is the image of \mathcal{F} under the evaluation map

$$\begin{aligned} ev : \quad \mathbb{F}_{2^r}^{2^{2r-1}}[x, y] &\longrightarrow \mathbb{F}_{2^r}^n \\ f &\longmapsto (f(x, y))_{(x, y) \in \mathcal{X}_{2,r}}. \end{aligned}$$

It is immediate that \mathcal{C} has length $n = 2^{2r-1}$.

For \mathcal{C} , the intersection of a line and the curve is essentially a Reed-Solomon code, because on that set, we are considering low-degree univariate polynomials. In this way, the repair of information would be Reed-Solomon in nature. Also, as each point lies on many lines, recovery may use any of a number of Reed-Solomon codes, one for each line the point lies on.

Next, we consider the rate of \mathcal{C} . We will show the rate of these norm-trace-lifted codes is asymptotically nonzero. To do so, we only need to count the number of monomials $M_{ab} := x^a y^b$ which have $a + b$ less than the desired locality of $2^{r-1} - 2$.

Lemma 2. The set of vectors

$$\left\{ (M_{a,b}(x, y))_{(x, y) \in \mathcal{X}_{q,r}} : \begin{array}{l} 0 \leq a \leq q^{r-1} - 1, \\ 0 \leq b \leq q^r - 1 \end{array} \right\}$$

in $\mathbb{F}_{q^r}^{q^{2r-1}}$ is linearly independent.

Proof. Let $\mathcal{L}(mP_\infty)$ denote the Riemann-Roch space associated with the divisor mP_∞ , where P_∞ is the point at infinity on the norm-trace curve. We draw inspiration from [10]. The kernel of the evaluation map

$$\begin{aligned} ev : \quad \mathcal{L}(mP_\infty) &\rightarrow \mathbb{F}_{q^r}^n \\ f &\mapsto (f(P_1), \dots, f(P_{q^r})). \end{aligned}$$

of the q^r affine points of the norm-trace curve $\mathcal{X}_{q,r}$ is generated by

$$\begin{aligned} x^{\frac{q^r-1}{q-1}} - y^{q^{r-1}} - \cdots - y^q - y, \\ x^{q^r} - x, \text{ and } y^{q^r} - y. \end{aligned}$$

Under monomial orderings with $x^{\frac{q^r-1}{q-1}} < y^{q^{r-1}}$, $\{x^{\frac{q^r-1}{q-1}} - y^{q^{r-1}} - \cdots - y^q - y, x^{q^r} - x\}$ is a Gröbner basis for the kernel of the evaluation map, and so the evaluations of $M_{a,b}$ cannot contain any element from the kernel of the evaluation map. Thus, the evaluations of $M_{a,b}$ are linearly independent. \blacksquare

A key difference between this work and that of Hermitian-lifted codes [10] centers on the rate of the codes. There, monomials $x^a y^b$ with $a + b < q$ are among those evaluated to produce codewords. However, the number of such monomials alone is $\frac{q(q+1)}{2}$, giving lower bounds on code rates that are asymptotically zero. Hence, some monomials with $a + b > q$ needed to be counted to guarantee that the rate was asymptotically bounded away from zero. However, as we will see, for binary norm-trace-lifted codes, this is not necessary: more monomials fall naturally within the specifications to produce codewords.

For a polynomial $g(t) \in \mathbb{F}_{2^r}[t]$, define $\hat{g}_{\alpha,\beta}(t)$ to be the remainder resulting from dividing $g(t)$ by $p_{\alpha,\beta}(t)$, and define

$$\deg_{\alpha,\beta}(g) := \deg(\hat{g}_{\alpha,\beta}).$$

Notice that $\deg_{\alpha,\beta}(g) \leq 2^{r-1} - 2$ for all $g \in \mathbb{F}_{2^r}[t]$. With the above definition, we note that $M_{a,b} \in \mathcal{F}$ provided

$$\deg_{\alpha,\beta}(M_{a,b} \circ L_{\alpha,\beta}) < 2^{r-1} - 2,$$

motivating the next definition.

Definition 2. A monomial $M_{a,b}(x, y)$ is said to be *good* if for all lines $L_{\alpha,\beta} \in \mathbb{L}$,

$$\deg_{\alpha,\beta}(M_{a,b} \circ L_{\alpha,\beta}) < 2^{r-1} - 2.$$

Note that if $M_{a,b}$ is good, then $M_{a,b} \in \mathcal{F}$. Hence, we wish to find a large set of good monomials due to Lemma 2. The definitions above provide the exact rate in the following lemma.

Theorem 3. *The norm-trace-lifted code \mathcal{C} over \mathbb{F}_{2^r} is an $[2^{2r-1}, (0.25 - \varepsilon_r) \cdot 2^{2r-1}, \geq 2^r]$ code with locality $2^{r-1} - 2$ and availability $2^r - 1$. Moreover, the rate of the associated norm-trace-lifted code is asymptotically 0.25*

Proof. First, note that the locality of \mathcal{C} follows from Lemma 1. Since each line in \mathbb{L} intersects the curve $\mathcal{X}_{2,r}$

in exactly $2^{r-1} - 1$ or $2^{r-1} + 1$ distinct affine points, the locality is $(2^{r-1} - 1) - 1 = 2^{r-1} - 2$. Indeed, fix an \mathbb{F}_{2^r} -rational point P on $\mathcal{X}_{2,r}$ and a line $L_{\alpha,\beta} \in \mathbb{L}$ through P . Then for $f \in \mathcal{F}$, $f(x, y)|_{L_{\alpha,\beta}} = g(t) \in \mathbb{F}_{2^r}[t]_{\leq 2^{r-1}-3}$. Since $|L_{\alpha,\beta} \cap \mathcal{X}_{2,r} \setminus \{P\}| \geq 2^{r-1} - 2$, $f(P)$ may be determined by these $2^{r-1} - 2$ interpolation points.

The availability may be found by determining the number of lines that pass through a given point which intersect the curve in at least $2^{r-1} - 1$ points; since this describes all lines in the space, we simply count the number of lines through any given point. If we fix a particular point, and a particular slope α , then the other parameter of the line β is determined. Similarly, if β is fixed for a point, then α is determined. So, we only consider the number of possible α for a point; this is then simply $2^r - 1$.

To determine the dimension of \mathcal{C} , note that the number of monomials M_{ab} with $a + b < 2^{r-1} - 2$ is

$$\frac{(2^{r-1} - 2)(2^{r-1} - 1)}{2} = 2^{2r-3} - 2^{r-1} - 2^{r-2} + 1.$$

Since the number of points on $\mathcal{X}_{2,r}$ is 2^{2r-1} , the norm-trace-lifted code has rate at least

$$\frac{2^{2r-3} - 2^{r-1} - 2^{r-2} + 1}{2^{2r-1}} = \frac{1}{4} - \varepsilon_r$$

where $\varepsilon_r := \frac{1}{2^r} + \frac{1}{2^{r+1}} - \frac{1}{2^{2r-1}}$. Since $\varepsilon_r \rightarrow 0$ as $r \rightarrow \infty$, the rate approaches $\frac{1}{4}$ as $r \rightarrow \infty$.

Next, we show that there are no good monomials $M_{a,b}$ with $a + b \geq 2^{r-1} - 2$. Recall that $0 \leq a \leq 2^r$ and $0 \leq b \leq 2^{r-1}$. To show that such a monomial $M_{a,b}$ is not good, we must find some line L_{α^*, β^*} such that $\deg_{\alpha^*, \beta^*}(M_{a,b} \circ L_{\alpha^*, \beta^*}) \geq 2^{r-1} - 2$.

We consider the following cases to show this fact. In each case, we consider the specific line $L_{1,0}(t) = (t, t)$; because of the particular line considered, $(M_{a,b} \circ L_{1,0})(t) = t^{a+b}$.

Case 1: Let $2^{r-1} - 2 < a + b < 2^r - 1$. Then, because the degree of $p_{1,0}(t)$ is $2^r - 1$, we have

$$\deg_{\alpha,\beta}(M_{a,b} \circ L_{1,0}) = \deg_{\alpha,\beta}(t^{a+b}) = a + b > 2^{r-1} - 2.$$

Thus, the monomial $M_{a,b}$ is not good.

Case 2: Let $2^r - 1 \leq a + b \leq 2^r + 2^{r-1}$. Then, extending the previous case,

$$\deg_{\alpha,\beta}(M_{a,b} \circ L_{1,0}) = \deg_{\alpha,\beta}(t^{a+b}) \geq 2^{r-1} > 2^{r-1} - 2.$$

This is because $t^{2^r-1} = t^{2^{r-1}} + \cdots + t$, so again $M_{a,b}$ is not good.

Since in each of the cases above, $\deg_{\alpha,\beta}(M_{a,b} \circ L_{1,0}) > 2^{r-1} - 2$, there are no good monomials with $a + b \geq 2^{r-1} - 2$, so the rate of the code is $0.25 - \varepsilon_r$.

Now we show a lower bound on the minimum distance. We utilize the same counting argument given in [10]. If $c \in \mathcal{C}$ is a codeword with a nonzero symbol in the i^{th} position, then this symbol corresponds to a function f_c which is nonzero on that point. The position i has $2^r - 1$ disjoint recovery sets as we showed above, each of which has at least one corresponding nonzero symbol in c . So, any nonzero codeword must have nonzero entries in at least 2^r positions. \blacksquare

Next, we compare the norm-trace-lifted codes with close relatives, including one-point norm-trace codes and Hermitian-lifted codes. In addition, examples of norm-trace-lifted codes are provided.

First, we consider one-point norm-trace codes. Recall that

$$\mathcal{L}(mP_\infty) = \left\langle x^a y^b : \begin{array}{l} a, b \in \mathbb{Z}^+, \\ a2^{r-1} + b(2^r - 1) \leq m \end{array} \right\rangle$$

and the one-point norm-trace code is

$$C(D, mP_\infty) = \{(f(P_1), \dots, f(P_n)) : f \in \mathcal{L}(mP_\infty)\}.$$

We claim that

$$\mathcal{L}((2^{2r-2} - 3 \cdot 2^{r-1}) P_\infty) \subseteq \mathcal{F}$$

so that

$$C(D, mP_\infty) \subseteq \mathcal{C}.$$

Let $\hat{m} = 2^{2r-2} - 3 \cdot 2^{r-1}$; we wish to show that this gives $a + b \leq 2^{r-1} - 3$, so $x^a y^b \in \mathcal{F}$. If $a2^{r-1} + b(2^r - 1) \leq 2^{2r-2} - 3 \cdot 2^{r-1}$, then

$$\begin{aligned} a + b &\leq a + 2b - \frac{b}{2^{r-1}} = \frac{a2^{r-1} + b2^r - b}{2^{r-1}} \\ &\leq \left\lfloor \frac{2^{2r-2} - 3 \cdot 2^{r-1}}{2^{r-1}} \right\rfloor = \lfloor 2^{r-1} - 3 \rfloor = 2^{r-1} - 3. \end{aligned}$$

Therefore, since $\hat{m} \leq 2^{2r-2} - 3 \cdot 2^{r-1}$, all monomials $x^a y^b \in \mathcal{L}(\hat{m}P_\infty)$ are in the set \mathcal{F} .

Next, we confirm that $C(D, \hat{m}P_\infty) \subsetneq \mathcal{C}$. The monomial $y^{2^{r-1}-3} \in \mathcal{F}$, since $a + b < 2^{r-1} - 2$. However, $M_{a,b} \in \mathcal{L}(\hat{m}P_\infty)$ would need to satisfy $a2^{r-1} + b(2^r - 1) \leq \hat{m}$. Then, if we consider $a = 0$, the largest that b could be for a monomial y^b would be $\left\lfloor \frac{2^{2r-2}-3 \cdot 2^{r-1}}{2^{r-1}} \right\rfloor \leq 2^{r-2} - 2$, because $\hat{m} \leq 2^{2r-2} - 3 \cdot 2^{r-1}$. With this, it is clear that the monomial $y^{2^{r-1}-3}$ could not be in $\mathcal{L}(\hat{m}P_\infty)$, because for $y^b \in \mathcal{L}(\hat{m}P_\infty)$ we have shown $b \leq 2^{r-2} - 2 < 2^{r-1} - 3$ for $r > 2$. Thus, the sets of evaluation polynomials for the two codes are different. This difference is highlighted in Figure 2.

We also claim that the rate of one-point norm-trace codes with $\hat{m} \leq 2^{2r-2} - 3 \cdot 2^{r-1}$ defined over

\mathbb{F}_{2^r} is asymptotically 0.125. To find the dimension of $C(D, \hat{m}P_\infty)$, we must count all pairs (a, b) with a and b nonnegative, and $a2^{r-1} + b(2^r - 1) \leq 2^{2r-2} - 3 \cdot 2^{r-1}$. So, we wish to find integer solutions within the triangle formed by $(0, 0)$, $(2^{r-1} - 2, 0)$, and $(0, 2^{r-2} - 1)$ (this will yield an overestimate of the dimension). By Pick's theorem, we have that for a plane polygon with integer vertices,

$$A = i + \frac{b}{2} - 1$$

where A is the area of the figure, i the number of interior integer points, b the number of boundary integer points. We will use this to determine $i + b$.

First, by counting, the number of boundary points is

$$(2^{r-1} - 2) + (2^{r-2} - 1) + 2^{r-2} - 3 = 2^r - 6.$$

The area of the figure is just the area of a triangle, so

$$A = \frac{1}{2} (2^{r-2} - 1) (2^{r-1} - 2) = 2^{2r-4} - 2^{r-1} + 1.$$

With these two above calculations of A and b , we find the number of interior points to be $i = 2^{2r-4} - 2^r + 5$, so the dimension is upper bounded by $i + b = 2^{2r-4} - 1$. Finally, the rate of the code is asymptotically

$$\frac{2^{2r-4} - 1}{2^{2r-1}} = \frac{1}{2^3} - \frac{1}{2^{2r-1}} \rightarrow \frac{1}{8} \text{ as } r \rightarrow \infty.$$

In the Hermitian case, the good monomials with $a + b$ less than the locality q were exactly those which formed the basis for the one-point Hermitian codes. It was then those good monomials with $a + b \geq q$ which caused the rate of the lifted codes to be nonzero asymptotically.

This is in contrast with the binary norm-trace-lifted codes, where the good monomials with $a + b < 2^{r-1} - 2$ are the only monomials present. This can be seen in Figure 2. This triangular shape is slightly different from what is observed in the Hermitian-lifted case in two key ways. For Hermitian-lifted codes, the monomials with $a + b$ greater than the locality are necessary to achieve the given rate results.

The figures in this section represent monomials $x^a y^b$, where a is on the horizontal axis and b is on the vertical axis.

IV. EXAMPLES AND CODE COMPARISONS

In this section, we consider examples and comparisons with Hermitian-lifted codes and one-point codes from norm-trace curves.

Example 1. Figures 1 and 2 reveal the differences in the functions that define codewords when compared with

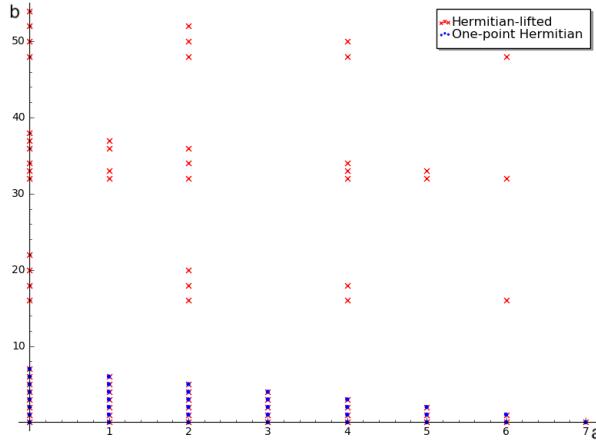


Fig. 1. Monomials $x^a y^b$ evaluated for one-point Hermitian code compared with HLC when $q = 8$ (over \mathbb{F}_{64}).

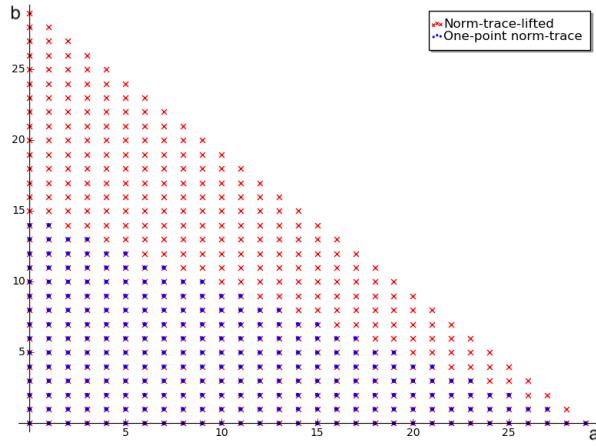


Fig. 2. Monomials $x^a y^b$ evaluated for one-point norm-trace code compared with NTLC when $r = 6$ (over \mathbb{F}_{64}).

their one-point code counterparts. Additional monomials may define codewords in the Hermitian-lifted codes.

Example 2. Figure 3 shows why the rates for the norm-trace-lifted codes are better than for Hermitian-lifted codes. Table I compares the Hermitian-lifted codes with the norm-trace-lifted codes based on their localities.

Example 3. Consider the case when $r = 6$ shown in Table II. Values for the dimensions and rates of the Hermitian-lifted codes may be found in [10].

V. CONCLUSION

In this paper, we introduce norm-trace-lifted codes over binary fields, which are codes with locality and

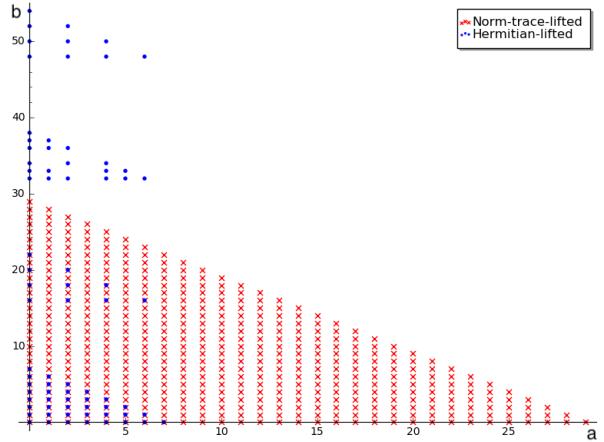


Fig. 3. Monomials $x^a y^b$ evaluated for HLC compared with NTLC when $q = 8$ and $r = 6$ respectively (over \mathbb{F}_{64}).

TABLE I
LIFTED CODE COMPARISONS, GENERAL

	HLC	NTLC
Locality	2^{r-1}	$2^{r-1} - 2$
Alphabet Size	2^{2r-2}	2^r
Availability	$2^{2r-2} - 1$	$2^r - 1$
Length	2^{3r-3}	2^{2r-1}
Dimension	$\geq 0.007 \cdot 2^{3r-3}$	$(0.25 - \varepsilon_r) \cdot 2^{2r-1}$
Rate	≥ 0.007	$0.25 - \varepsilon_r$
Min. Dist.	$d \geq 2^{2r-2}$	$d \geq 2^r$

TABLE II
ONE-POINT CODES VERSUS LIFTED CODES OVER \mathbb{F}_{64}

$(r = 6)$	Norm-trace code	HLC	NTLC
Field size	64	64	64
Locality	30	8	30
Availability	63	63	63
Length	2048	512	2048
Dimension	240	75	465
Rate	~ 0.117	~ 0.146	~ 0.227

high availability based on the norm-trace curve over the field \mathbb{F}_{2^r} . They are easier to construct than the Hermitian-lifted codes; indeed the functions that define the codewords are explicit and simple to describe. Moreover, the norm-trace-lifted codes compare favorably with Hermitian-lifted codes in that they are higher rate and smaller locality over a smaller alphabet, though this comes with less availability. In addition, they provide higher rate with identical locality and availability when compared with one-point codes on the norm-trace curve.

REFERENCES

[1] Edoardo Ballico and Chiara Marcolla. Higher Hamming weights for locally recoverable codes on algebraic curves. *Finite Fields*

Appl., 40(C):61–72, July 2016.

- [2] Alexander Barg, Itzhak Tamo, and Serge Vladut. Locally recoverable codes on algebraic curves. *IEEE Transactions on Information Theory*, 63(8):4928–4939, 2017.
- [3] Daniele Bartoli, Maria Montanucci, and Luciane Quoos. Locally recoverable codes from automorphism groups of function fields of genus $g \geq 1$. *IEEE Transactions on Information Theory*, 66(11):6799–6808, 2020.
- [4] Eli Ben-Sasson, Ariel Gabizon, Yohay Kaplan, Swastik Kopparty, and Shubangi Saraf. A new family of locally correctable codes based on degree-lifted algebraic geometry codes. In *Proceedings of the forty-fifth annual ACM symposium on Theory of Computing*, pages 833–842, 2013.
- [5] S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality via partially lifted codes. *CoRR*, abs/1704.08627, 2017.
- [6] Olav Geil. On codes from norm-trace curves. *Finite Fields and their Applications*, 9(3):351 – 371, 2003.
- [7] Alan Guo. High-rate locally correctable codes via lifting. *IEEE Transactions on Information Theory*, 62(12):6672–6682, 2015.
- [8] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In *Proceedings of the 4th conference on Innovations in Theoretical Computer Science*, pages 529–540, 2013.
- [9] Kathryn Haymaker, Beth Malmkog, and Gretchen L. Matthews. Locally recoverable codes with availability $t \geq 2$ from fiber products of curves. *Advances in Mathematics of Communications*, 12(2):317, 2018.
- [10] Hiram H López, Beth Malmkog, Gretchen L Matthews, Fernando Piñero-González, and Mary Wootters. Hermitian-lifted codes. *Designs, Codes and Cryptography*, 89(3):497–515, 2021.
- [11] Carlos Munuera, Guilherme C Tizzio, and Fernando Torres. Two-point codes on norm-trace curves. In *Coding Theory and Applications*, pages 128–136. Springer, 2008.
- [12] Ankit Singh Rawat, Dimitris S Papailiopoulos, Alexandros G Dimakis, and Sriram Vishwanath. Locality and availability in distributed storage. In *2014 IEEE International Symposium on Information Theory*, pages 681–685. IEEE, 2014.
- [13] Itzhak Tamo and Alexander Barg. Bounds on locally recoverable codes with multiple recovering sets. In *2014 IEEE International Symposium on Information Theory*, pages 691–695. IEEE, 2014.
- [14] Itzhak Tamo, Alexander Barg, and Alexey Frolov. Bounds on the parameters of locally recoverable codes. *IEEE Transactions on Information Theory*, 62(6):3070–3083, 2016.
- [15] Anyu Wang and Zhifang Zhang. Repair locality with multiple erasure tolerance. *IEEE Transactions on Information Theory*, 60(11):6979–6987, 2014.