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Abstract

Despite the increasingly successful application of neural networks to many problems in the geosciences, their
complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and
does not allow scientists to gain physical insights about the problem at hand. Many different methods have been
introduced in the emerging field of eXplainable Artificial Intelligence (XAI), which aims at attributing the network’s
prediction to specific features in the input domain. XAI methods are usually assessed by using benchmark datasets
(such as MNIST or ImageNet for image classification). However, an objective, theoretically derived ground truth for
the attribution is lacking for most of these datasets, making the assessment of XAl in many cases subjective. Also,
benchmark datasets specifically designed for problems in geosciences are rare. Here, we provide a framework, based
on the use of additively separable functions, to generate attribution benchmark datasets for regression problems for
which the ground truth of the attribution is known a priori. We generate a large benchmark dataset and train a fully
connected network to learn the underlying function that was used for simulation. We then compare estimated
heatmaps from different XAl methods to the ground truth in order to identify examples where specific XAl methods
perform well or poorly. We believe that attribution benchmarks as the ones introduced herein are of great importance
for further application of neural networks in the geosciences, and for more objective assessment and accurate
implementation of XAI methods, which will increase model trust and assist in discovering new science.

Impact Statement

The fidelity of methods of eXplainable Artificial Intelligence (XAI) is difficult to assess and often done subjectively,
since there is no ground truth about how the explanation should look. Here, we introduce a general approach to
create synthetic problems, where the ground truth of the explanation is a priori known, thus, allowing for objective
XAI assessment. We generate a synthetic climate prediction problem, and we test popular XAl methods in
explaining the predictions of a dense neural network. It is shown that systematic strengths and weaknesses can
be easily identified, which have been overlooked in other applications. Our work highlights the importance of
introducing objectivity in the assessment of XAl to increase model trust and assist in discovering new science.

This research article was awarded Open Data and Open Materials badges for transparent practices. See the Data Availability Statement for
details.
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1. Introduction

Within the last decade, neural networks (NNs; LeCun et al., 2015) have seen tremendous application in
the field of geosciences (Lary et al., 2016; Karpatne et al., 2018; Shen, 2018; Barnes etal.,2019; Bergen
etal.,2019; Hametal.,2019; Reichstein etal., 2019; Rolnick et al., 2019; Sitet al., 2020), owing in part
to their impressive performance in capturing nonlinear system behavior (LeCun et al., 2015), and the
increasing availability of observational and simulated data (Overpeck etal., 2011; Agapiou, 2017; Guo,
2017; Reinsel et al., 2018). However, due to their complex structure, NNs are difficult to interpret (the
so-called “black box” model). This limits their reliability and applicability since scientists cannot verify
when a prediction is successful for the right reasons (i.e., they cannot test against “clever Hans”
prediction models; Lapuschkin et al., 2019) or improve the design of a model that is performing poorly
(see e.g., Ebert-Uphoff and Hilburn, 2020). Also, when applying NNs to new problems, the interpret-
ability problem does not allow scientists to gain physical insights about the connections between the
input variables and the prediction, and generally about the problem at hand. To address the interpret-
ability problem, many different methods have been developed in recent years (Zeiler and Fergus, 2013;
Bach et al., 2015; Springenberg et al., 2015; Shrikumar et al., 2016, 2017; Kindermans et al., 2017a;
Montavon et al., 2017; Smilkov et al., 2017; Sundararajan et al., 2017; Ancona et al., 2019) in the
emerging field of post hoc eXplainable Artificial Intelligence (XAI; Buhrmester et al., 2019; Tjoa and
Guan, 2019; Das and Rad, 2020). These methods aim at a post hoc explanation of the prediction of a NN
by determining its attribution or sensitivity to specific features in the input domain (usually referred to
as attribution heatmaps or saliency maps), thus highlighting relationships that may be interpreted
physically, and making the “black box” more transparent (McGovern et al., 2019). Given that physical
understanding is highly desirable to accompany any successful model in the geosciences, XAl methods
are expected to be a real game-changer for further application of NN in this field (Barnes et al., 2020;
Toms et al., 2020).

Despite their high potential, many X Al methods have been shown to not honor desirable properties
(e.g., “completeness” or “implementation invariance”; see Sundararajan et al., 2017), and in general,
face nontrivial limitations for specific problem setups (Kindermans et al., 2017b; Ancona et al., 2018;
Rudin, 2019; Dombrowski et al., 2020). Thus, thorough investigation and assessment of XAl methods
are of vital importance to be reliably applied in new scientific problems. So far, the assessment of the
outputs of different XAI methods in geoscientific research (and in computer science) has been mainly
based on applying these methods to benchmark problems, where the scientist is expected to know what
the heatmaps should look like, thus being able to judge the performance of the XAI method in question.
Examples of benchmark problems for the geosciences include the classification of El Nifio or La Nifia
years or seasonal prediction of regional hydroclimate (Ham et al., 2019; Toms et al., 2020). In computer
science, commonly used benchmark datasets for image classification problems include MNIST or
ImageNet among others (LeCun et al., 1998; Russakovsky et al., 2015). A second way to assess the
output of an XAl method is through deletion/insertion techniques (Samek et al., 2017; Petsiuk et al.,
2018; Qi et al., 2020), where highlighted features are deleted from the full image (or added to a gray
image). If the XAI method has highlighted important features for the prediction, then the performance
of the network is expected to decrease (improve) as these features are being deleted (added).

Although the above are good ways to gain insight about the performance of different XAI methods,
in both cases, a ground truth of attribution is lacking, limiting the degree to which one can objectively
assess their fidelity. When using standard benchmark datasets, the scientist typically assesses the XAl
methods based on visual inspection of the results and their prior knowledge and understanding of the
problem at hand. However, the human perception of an explanation is subjective and can often be
biased. Thus, human perception alone is not a solid criterion for assessing trustworthiness. For example,
although it might make sense to a human that an XAI method highlights the ears or the nose of a cat for
an image successfully classified as “cat,” it is not proof that these are the features the network actually
based its decision on. The relative importance of these (and other) features to the prediction is always
task- and/or dataset-dependent, and since no ground truth of attribution is provided, the scientist can
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only subjectively (but not objectively) assess the performance of the XAl methods. Similarly, when
using the deletion (or the insertion) technique, although the scientist can assess which XAI method
highlights more important features relatively to other XAI methods (i.e., this would be the method that
corresponds to the most abrupt drop in performance as the highlighted features are being deleted), there
is no proof that these features are indeed the most important ones; it could be the case that even the best
performing XAI method corresponds to a much less abrupt performance drop than the most abrupt
possible. The lack of objectivity in the assessment of XAl as described above involves high risks of
cherry-picking specific samples/methods and reinforcing individual biases; Leavitt and Morcos (2020).
Moreover, we note that benchmark datasets that refer to regression problems are very rare, which is
problematic, since many geoscientific applications are better approached as regression rather than
classification problems.

Given the above and with the aim of a more falsifiable X Al research (Leavitt and Morcos, 2020), in this
paper we provide, for the first time, a framework to generate nonlinear benchmark datasets for geoscien-
tific problems and beyond, where the importance of each input feature to the prediction is objectively
derivable and known a priori. This a priori known attribution for each sample can be used as ground truth
for evaluating different XAI methods and identifying examples where they perform well or poorly. We
refer to such synthetic datasets as “attribution benchmark datasets,” to distinguish from benchmarks
where no ground truth of the attribution is available. Our framework is outlined here for regression
problems (but can be extended into classification problems too), where the input is a 2D field (i.e., a
single-channel image); commonly found in geoscientific applications (e.g., DelSole and Banerjee, 2017,
Ham et al., 2019; Toms et al., 2020; Stevens et al., 2021).

We describe our synthetic framework and generate an attribution benchmark in Section 2. Next, we
train a fully connected NN on the synthetic dataset and apply different XAl methods to explain it
(Section 3). We compare the estimated heatmaps with the ground truth in order to thoroughly and
objectively assess the performance of the XAl methods considered here (Section 4). In Section 5, we state
our conclusions.

2. A Nonlinear Attribution Benchmark Dataset

Let us consider the illustrative problem of predicting regional climate from global 2D fields of sea surface
temperature (SST; see e.g., DelSole and Banerjee, 2017; Stevens et al., 2021). The general idea of this
paper is summarized in Figure 1. We start by generating N realizations of an input random vector X € R¢
(e.g., N synthetic samples of a vectorized 2D SST field). We use a nonlinear function F : RY — R, which
represents the physical system of our problem setting (e.g., the climate system), to map each realization x,,
into a scalar y,, and generate the output random variable Y (e.g., regional climatic variable). We then train
a fully connected NN to approximate the underlying function F and compare the XAl heatmaps estimated
by different XAI methods with the ground truth of attribution derived from F in order to thoroughly and
objectively assess their performance.

In this section, we describe how to generate synthetic datasets of the input X and the output Y.
Although here we present results for a climate prediction setting for illustration, our framework is generic
and applicable to a large number of problem settings in the geosciences and beyond. Regarding the
adopted network architecture, we note that a fully connected NN is explored here as a first step and to
illustrate our framework since this type of architecture has been used in many recent climate-XAl studies
(e.g., Barnes etal., 2019, 2020; Toms et al., 2020), but many other network architectures could be used as
well (e.g., convolutional networks; see Mamalakis et al., 2022).

2.1. Input variables

We start by randomly generating N = 10° independent realizations of an input vector X € R¢. Although
arbitrary, the distributional choice of the input is decided with the aim of being a reasonable proxy of
the independent variable of the physical problem of interest. Here, the input series represent monthly
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Step 1: Generate N samples of X € R? from a MVN Step 3: Pretend function F is not known and
train a NN using inputs x,, and outputs y,

Step 4: Use XAl methods to explain the NN
and compare with the ground truth from F

Yo = F(xp) I ~ ' .<_ . F: ground truth

Known F: R? - R

Step 2: Use a known function F that maps
each vector x,, into a scalar y, .
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Figure 1. Schematic overview of the general idea of the paper for a climate prediction setting. In step
1 (Section 2), we generate N independent realizations of a random vector X€R® from a multivariate
Normal Distribution. In step 2 (also Section 2), we generate a response Y €R to the synthetic input X,
using a known nonlinear function F. In step 3 (Section 3), we train a fully connected NN using the
synthetic data X and Y to approximate the function F. The NN learns a function F. Lastly, in step

4 (Section 4), we compare the XAl heatmaps estimated from different XAI methods to the ground truth,
which represents the function F and has been objectively derived for any sample n=1,2,...,N.

global fields of SST anomalies (deviations from the seasonal cycle) ata 10° x 10° resolution (fields of
d =458 variables; see step 1 in Figure 1). We generate the SST anomaly fields from a multivariate
Normal Distribution MVN(0,X), where X is the covariance matrix and represents the dependence
between SST anomalies in different grid points (or pixels in image classification settings) around the
globe (spatial dependence). The matrix X is set equal to the sample correlation matrix that is estimated
from monthly SST observations.! If a user wants to eliminate spatial dependence, then a good choice
might be X = 621,, where o2 is the variance and I, is the identity matrix. We note that we decided to
generate a large amount of data N = 10 (much larger than what is usually available in reality), so that
we can achieve a near perfect NN prediction accuracy, and make sure that the trained network (labeled
as F) approximates very closely the underlying function F. Only under this condition, is it fair to use
the derived ground truth of attribution as a benchmark for the XAI methods. Yet, we highlight that
discrepancies between the two shall always exist to a certain degree due to F not being identical to F.

2.2. Synthetic response based on additively separable functions
We next create a nonlinear response Y € R to the synthetic input X € R? (see step 2 in Figure 1), using a real
function F : RY — R. For any sample n= 1,2, ..., N, the response of our system y, to the input x,, is given
as y, = F(x,) or after dropping the index n for simplicity and relating the random variables instead of the
samples, ¥ = F(X).

Theoretically, the function F can be any function the user is interested to benchmark an NN against.
However, in order for the final synthetic dataset to be useful as an attribution benchmark for XAI methods,

"' SST monthly fields are freely available online at: https:/psl.noaa.gov/data/gridded/data.cobe2.html.
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Schematic of the local piece-wise linear
function (K = 5) for point i
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Figure 2. Schematic representation and actual examples of local piece-wise linear functions C;, for K =5.

function F needs to: (a) have such a form so that the attribution of each of the responses Y to the input
variables is objectively derivable, and (b) be nonlinear, as is the case in the majority of applications in
geoscience.

The simplest form for F so that the above two conditions are honored is when F' is an additively
separable function, that is there exist local functions C;, with i=1,2,...,d, so that:

FX)=F(X1,X2,...,X4) =C1(X1) + Co(X2) + - -+ Ca(Xy), 1)

where, X; is the random variable at grid point i. Under this setting, the response Y is the sum of local
responses at grid points #, and although the local functions C; may be independent from each other, one
can also apply functional dependence by enforcing neighboring C; to behave similarly, when the physical
problem of interest requires it (see next subsection). Moreover, as long as the local functions C; are
nonlinear, so is the response Y, which satisfies our aim. Most importantly, with F being an additively
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separable function, and considering a zero baseline, the contribution of each of the variables X; to the
response y, for any sample n, is by definition equal to the value of the corresponding local function, that is,
R;;‘je = C;(x;,,). This satisfies the basic desirable property that any response can be objectively attributed to
the input.

Of course, this simple form of ' comes with the pitfall that it may not be exactly representative of
some more complex physical problems. However, for this study we are not trying to capture all possible
functional forms of F, but rather, provide a sample form of F that honors the two desirable properties for
benchmarking XAI methods and is complex enough to be considered representative of climate
prediction settings (see discussion in the following section). We also note that by changing the form
oflocal functions C; (and the dimension d), one can create theoretically infinite different forms of F and
of attribution benchmarks to test XAI methods against. Next, we define the local functions C; that we
use in this study.

2.3. Local functions

The simplest form of the local functions is linear, that is, C;(X;) =f£,X;. In this case, the response Y falls
back to a traditional linear regression response, which is not necessarily very interesting (there is no need
to train a NN to describe a linear system), and it is certainly not representative of the majority of
geoscience applications. More interesting responses to benchmark a NN or XAl methods against are
responses where the local functions have a nonlinear form, for example, C;(X;)= sin (ﬁiXmL ﬂ?), or
C,‘(Xi) =ﬁiX,»2.

In this study, to avoid prescribing the form of nonlinearity, we defined the local functions to be piece-
wise linear (PWL) functions, with number of break points K, and with the condition C;(0) =0, for any
grid point i=1,2,...,d. Our inspiration for using PWL functions is the use of ReLU (a PWL function
with K = 1) as the activation function in NN architectures: indeed, a PWL response can describe highly
nonlinear behavior of any form as the value of K increases. Regarding the suitability of this choice to
represent climate data, the condition C;(0) =0 leads to a reasonable condition for climate applications,
thaty|, _, =F(0) =0, that is, if the SST is equal to the climatological average, then the response Y is also
equal to the climatological average. Moreover, the use of PWL functions allows us to model asymmetric
responses of the synthetic system to the local inputs, which is frequently met in real climate prediction
settings. For example, it is well established in the climate literature that the response of the extratropical
hydroclimate to the El Nifio-Southern Oscillation (ENSO) is not linear, and the effect of El Nifio and La
Nifia events on the extratropics is not symmetric (Zhang et al., 2014; Feng et al., 2017). Lastly, we have
used composite analysis and found that the generated Y series exhibit an ENSO-like dependence
regarding extreme samples, with the highest 10% of y values corresponding to a La Nifa-like pattern
and the lowest 10% of y values corresponding to an El Nifio-like pattern (not shown). This provides
more evidence that our generated dataset honors both the spatial patterns of observed SSTs in the
synthetic input (due to the use of the observed spatial correlation in the generation process) and the
importance of ENSO variability for extreme events as manifested in the relation between the synthetic
input and output. So, in this study, we will generate the Y series using PWL local functions, but we note
that the benchmarking of XAI methods can also be performed using other types of additively separable
responses.

A schematic example of a local PWL function C;, for K =5 that is used herein, is presented in Figure 2.
For each grid point i, the break points /;, k=1,2,...,K are obtained as the empirical quantiles of the
synthetic series of X; that correspond to probability levels chosen randomly from a uniform distribution
(also, note that we enforce that the point x=0 is always a break point). The corresponding slopes

B2, ..., BT are chosen randomly by generating K -+ 1 realizations from a MVN(0, X), where X is again
estimated from SST observations and is used to enforce spatial dependence in the local functions. In
Figure 2, the map of /&° (the slope for X, € (I5,00)) is shown for all grid points in the globe, and the local
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functions C; for three points A, B, and C are also presented. First, the spatial coherence of the slopes ﬂ? is
evident, with positive slopes over, for example, most of the northern Pacific and the Indian Ocean and
negative slopes over, for example, the eastern tropical Pacific. Second, the local functions at the
neighboring points A and B are very similar to each other, consistent with the functional spatial
dependence that we have specified. Lastly, the local function at point C very closely approximates a
linear function. Indeed, in the way that the slopes ﬁ} , ﬂf, ey ﬁf *1 are randomly chosen, it is possible that
the local functions at some grid points end up being approximately linear. However, based on Monte Carlo
simulations, we have established that the higher the value of K, the more unlikely it is to obtain
approximately linear local functions (not shown).

Before moving forward, we wish to again highlight that although the total response Y is nonlinear and
potentially very complex, the contributions of the input variables to the response are known and equal to
the corresponding local functions (for a zero baseline), simply because the function F is an additively
separable function.

3. Neural Network Architecture and XAI Methods

So far, we generated N = 10° independent realizations of an input vector X € R? (with d =458) and of an
output scalar response Y €R, using an additively separable function F, with PWL local functions and
K =5. Next, we train a fully connected NN to learn the function F (see step 3 in Figure 1), using the first
900,000 samples for training and the last 100,000 samples for testing. Apart from assessing the prediction
performance, the testing samples will also be used to assess the performance of different post hoc, local
XAI methods that have been commonly used in the literature and that are defined below.

3.1. Neural network

To approximate the function F, we used a fully connected NN (with ReLU activation functions), with six
hidden layers, each one containing 512,256, 128, 64, 32, and 16 neurons, respectively. The output layer of
our network contains a single neuron, which acts as the network’s prediction and uses a “linear” activation
function (also known as “identity” or “no activation”). We used the mean squared error as our loss
function for training, and given that our synthetic input follows a multivariate normal distribution with
zero mean vector and unit variances, we did not need to apply any standardization/preprocessing of
the data.

We do not argue that this is the optimum architecture to approach the problem since this is not the focus
of our study. Instead, what is important is to achieve high enough performance, so that the benchmarking
of XAl methods is as objective and fair as possible. The coefficient of determination of the NN prediction
in the testing sample was slightly higher than R> = 99%, which suggests that the NN can explain 99% of
the variance in Y. As a benchmark to the NN, we also trained a linear regression model. The performance
of the linear model was much poorer, with R? = 65% for the testing data.

3.2. XAI methods

For our analysis, we consider local, post hoc XAI methods that have commonly been used in the field of
geoscience (e.g., Barnes et al., 2019, 2020; McGovern et al., 2019; Ebert-Uphoff and Hilburn, 2020;
Toms et al., 2020).

1. Gradient: This method is among the simplest (conceptually) and very commonly used methods to
explain an NN prediction. In this method, one calculates the partial derivative of the network’s

output with respect to each of the input variables X;, at the specific sample » in question:
oF
Rin= d—X,|X' =Xin> @)
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where F is the function learned by the NN, as an approximation to the function F. This method estimates
the sensitivity of the network’s output to the input variable X;. The motivation for using the Gradient
method is that if changing the value, x; ,, of a grid point in a given input sample is shown to cause a large
difference in the NN output value, then that grid point might be important for the prediction.
Furthermore, calculation of the Gradient is very convenient, as it is readily available in any neural
network training environment, contributing to the method’s popularity. However, as we will see in
Section 4, the sensitivity of the prediction of the network to the input is conceptually different from its
attribution.

2. Smooth gradient: This sensitivity method was introduced by Smilkov et al. (2017) and is very
similar to the method Gradient, except that it aims to obtain a more robust estimation of the local
partial derivative by averaging the gradients over a perturbed number of inputs with added noise:

1 = OoF
Rin= Z;E’XFMMW’ ®

where m is the number of perturbations, and e;,; comes from a Normal Distribution.

3. Input x Gradient: As is evident from its name, in this method (Shrikumar et al., 2016, 2017) one
multiplies the local gradient with the input itself:

oF

Rip=Xin X —|x,=1,, - “)
in in oX; Xi=Xin

In contrast to the previous two, this method quantifies the attribution of the output to the input.

Attribution methods aim to quantify the marginal contribution of each feature to the output value

(a different objective of explanation from sensitivity). The Input x Gradient method is used in the

majority of XAl studies due to its conceptual simplicity.

4. Integrated gradients: This method (Sundararajan et al., 2017) is also an attribution method similar
to the Input x Gradient method, but aims to account for the fact that in nonlinear problems the
derivative is not constant, and thus, the product of the local derivative with the input might not be a
good approximation of the input’s contribution. This method considers a reference (baseline)
vector X (e.g., for which the network’s output is 0, i.e., F (x) =0), and the attribution is equal to the
product of the distance of the input from the reference point with the average of the gradients at
points along the straightline path from the reference point to the input:

LN oF
Rip = (xin —Xi) X ZE‘:()—XI Xy =St (v —5)° )
Jj=
where m is the number of steps in the Riemann approximation.

Next, we consider different implementation rules of the attribution method Layer-wise Relevance
Propagation (LRP; Bach etal.,2015; Samek et al., 2016). In the LRP method, one sequentially propagates
the prediction F(x,) back to neurons of lower layers, obtaining the intermediate contributions to the
prediction for all neurons until the input layer is reached and the attribution of the prediction to the input
R, is calculated.

5. LRP;: In the first LRP rule we consider, the back propagation is performed as follows:

o _ Zij p(1+1)
RY=D TR ©)
j .]
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where R](-IH) is the contribution of the neuron j at the upper layer (/4 1), and REI) is the contribution of the

neuron i at the lower layer (/). The propagation is based on the ratio of the localized preactivations zj; = wjjx;
during the prediction phase and their respective aggregation z; =) _ zjj + b;. Because this rule might lead to
unbounded contributions as z; approaches zero (Bach et al., 2015), additional advancements have been
proposed.

6. LRP,p: In this rule (Bach et al., 2015), positive and negative preactivations z; are considered
separately, so that the denominators are always nonzero:

Z..+ Zi~
RO =3 (a2 g2 ) @

7 j g

where

N { Zij;zi; >0 a { 0
it = 7 =
! 0 ! Zij32ij <0

In our study, we use the commonly used rule with a=1 and =0, which considers only positive
preactivations (Bach et al., 2015).

7. Deep Taylor Decomposition: For each neuron j at an upper layer (/4 1), this method (Montavon
et al., 2017) computes a rootpoint ¥} close to the input x;, for which the neuron’s contribution is

0, and uses the difference (x,-—fcf) to estimate the contribution of the lower-layer neurons

recursively. The contribution redistribution is performed as follows:

(1+1)
OR:
0 7
R =
! ; 0x,~
(I+1

where R; ) is the contribution of the neuron Jj atthe upper layer (I+ 1), and Rl(-l) is the contribution of the

neuron i at the lower layer (/). It has been shown in Samek et al. (2016) and Montavon et al. (2017) that for
NNs with ReLU activations, Deep Taylor leads to similar results to the LRP,, _ | 4 - ¢ rule.

wei X (=), (8)

i

8. Occlusion-1: This method (Ancona et al., 2018) estimates the attribution of the output to each of the
input features i as the difference between the network’s prediction when the feature i is included in
the input and when it is set to zero:

Ri,= F(xn) — I:"(x,, |xi,=0). )

4. Results

In this section, we compare the XAl heatmaps estimated by the considered XAI methods to the ground
truth of attribution for F (see step 4 in Figure 1). The correlation coefficient (see also Ancona etal., 2018;
Adebayo et al., 2020) of the estimated heatmap and the ground truth will serve as our metric to assess the
performance of the explanation. We highlight however that a perfect agreement between the two
(a correlation of 1) shall not be attainable due to F being only a close approximation (i.e., not identical)
to F. We first present results for specific samples in the testing set, to get a qualitative insight on the XAI
performance, and then we present more quantitative summary statistics of the performance across all
samples from the testing set.

4.1. Hlustrative comparisons

In Figure 3, we present the ground truth of attribution for F' and the estimated heatmaps from the
considered XAI methods (each heatmap is standardized by the corresponding maximum absolute value
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within the map). This sample corresponds to a response y, =0.0660, while the NN predicts 0.0802.
Based on the ground truth, features that contributed positively to the response y, occur mainly over the
eastern tropical and southern Pacific Ocean, and the southeastern Indian Ocean. Features with negative
contribution occur over the Atlantic Ocean and mainly in the tropics.

Based on the method Gradient, the explanation of the NN prediction is not in agreement at all with the
ground truth. In the eastern tropical and southern Pacific Ocean, the method returns negative values
instead of positive, and over the tropical Atlantic, positive values (instead of negative) are highlighted.
The pattern correlation is very small on the order of —0.08, consistent with the above observations. As
theoretically expected, this result indicates that the sensitivity of the output to the input is not the same
(neither numerically nor conceptually) as the attribution of the output to the input (see Anconaetal., 2019;
Mamalakis et al., 2022). The method Smooth Gradient performs similarly to the method Gradient, with a
correlation coefficient on the order of —0.10.

Methods Input x Gradient and Integrated Gradients perform very similarly, both capturing the
ground truth very closely. Indeed, both methods capture the positive patterns over eastern Pacific and
the southeastern Indian Oceans, and the negative patterns over the Atlantic Ocean. The pattern
correlation with the ground truth for both methods is on the order of 0.8, indicating the very high
agreement.

Our results confirm the arguments in Samek et al. (2016) and Montavon et al. (2017), that the Deep
Taylor leads to similar results with the LRP, — | 4 — o. Both methods return only nonnegative
contributions which is not consistent with the ground truth. The inability of the latter methods to
distinguish between positive and negative signs can be explained by consideringﬁquation (7) and
setting a =1, =0toretrieve the LRP, _ 1 4 — ¢ rule. By also noticing that the ratio - 4_is by definition a

positive number, one can conclude that the contribution of any neuron in the lower layer R( ) may only
be 0 or have the same sign as the contribution of the neuron in the upper layer R( D ,and thus, the sign
of'the NN prediction is maintained and recursively propagated back to the input layer. Because the NN
prediction is positive in Figure 3, it is expected that LRP, — 1, 4 = ¢ (and Deep Taylor) returns
nonnegative contributions (see also remarks by Kohlbrenner et al., 2020). What is not so intuitive is
the fact that the LRP,, _ | 4 - ¢ seems to highlight many important features, independent of the sign of
their contribution (compare with ground truth). Given that, by construction of Equation (7),
LRP, — | s = o considers only positive preactivations (Bach et al., 2015), one might assume that it
will only highlight the features that positively contribute to the prediction. However, the results in
Figure 3 show that the method highlights the entire Atlantic Ocean with a positive contribution. This is
problematic, since the ground truth heatmap clearly indicates that this region is contributing nega-
tively to the response y, in this example. The issue of LRP,_; sz - o in highlighting features
independent of whether they are contributing positively or negatively to the prediction has been very
recently shown in other applications of XAl as well (Kohlbrenner et al., 2020). Interestingly though,
we have established that this issue is not present when one applies the LRP,— ;- ¢ to explain a linear
model (not shown). In this case, the LRP,_; s - ¢ returns only the features with positive contribution.
This seems to suggest that the issue of mixing positive and negative contributions depends on the
complexity of the model that is being explained, and is more likely to occur as the model complexity
increases. Finally, we note that to account for the fact that Deep Taylor and LRP,_ 4—( do not
distinguish between the sign of the attribution, we present their correlation with the absolute ground
truth. Both methods correlate on the order of 0.58, which is lower than methods Input x Gradient and
Integrated Gradients.

When using the LRP, and Occlusion-1, the attribution heatmaps very closely capture the ground
truth, and they both exhibit a very high pattern correlation on the order of 0.82. The results are very
similar to those of the methods Input x Gradient and Integrated Gradients, making these four methods
the best performing ones for this example. The similarity of these four methods is consistent with the
discussion in Anconcaetal. (2018) and is based on the fact that all four methods can be mathematically
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represented as an element-wise product of the input and a modified gradient term (see Table 1 in
Anconcaetal., 2018). In fact, under specific conditions (i.e., specific network characteristics), some of
these methods become exactly equivalent to each other. For example, the methods Input x Gradient
and LRP, are equivalent in cases of NNs with ReLU activation functions, as in our study. We note that
when using other activation functions (like Sigmoid or Softplus), LRP, has empirically been shown to
fail and diverge from the other methods (Anconca et al., 2018).

Similar remarks with those based on Figure 3 can be made based on Figure 4, which presents the
ground truth and the estimated attributions for another example, where the response is negative and equal
to y, =—0.1474. The prediction of the NN for this example is —0.1383. First, methods Gradient and
Smooth Gradient significantly differ from the ground truth again, with correlations on the order of 0.03
and 0.07, respectively. Methods Input x Gradient, Integrated Gradients, LRP, and Occlusion-1 are the
best performing ones, all of which strongly correlate with the ground truth (correlation coefficients on the
order of 0.8-0.85). The method Deep Taylor does not return any attributions since is defined for only
positive predictions (Montavon et al., 2017), a fact that limits its application to classification problems or
regression problems with positive predictand variables only. Lastly, in accordance with the remarks from
Figure 3, the attributions from LRP, _ ; - ¢ are all nonpositive, since the NN prediction for this example
is negative. Also, it is again evident that LRP, _ | 4_ ¢ highlights many important features independent of
the sign of their true contribution and not only the ones that are positively contributing to the prediction. In
general, one should be cautious when using this rule, keeping always in mind that, (a) it propagates the
sign of the prediction back to the contributions of the input layer and (b) it is likely to mix positive and
negative contributions.

4.2. Quantitative summarizing statistics

In Figure 5, we present histograms of the correlation coefficients between different XAl methods and
the ground truth for all 100,000 testing samples. In this way one can inspect the performance of each
of the XAl methods based on all testing samples and verify the specific remarks that were highlighted
above.

First, in panel Figure 5a, we present results from the same XAl method (i.e., Input x Gradient) but
applied to the two different models, the NN and the linear regression model. Thus, any difference
in the performance comes solely from how well the corresponding models have captured the true
underlying function F. The NN more closely approximates the function F' since the pattern correl-
ations are systematically higher than the ones for the linear model, consistent with the much
better prediction performance of the NN. The average pattern correlation between the attribution
of the NN and the ground truth is on the order of 0.8, whereas for the linear model it is on the order
of 0.55.

Second, in panel Figure 5b, we present results for all XAl methods except for LRP, as applied to the
NN. Methods Gradient and Smooth Gradient exhibit almost 0 average correlation with the ground truth,
while methods Input x Gradient, Integrated Gradients and Occlusion-1 perform equally well, exhibiting
an average correlation with the ground truth around 0.8.

Last, in panel Figure 5c, we present results for LRP. The LRP, rule is seen to be the best performing
with very similar performance to the Input x Gradient, Integrated Gradients and Occlusion-1
(as theoretically expected for this model setting; see Ancona et al., 2018). The corresponding average
correlation coefficient is on the order of 0.8. Regarding the LRP,, _ | 5 - o rule, we present two curves.
The first curve (black curve in Figure 5¢) corresponds to correlation with the ground truth after we
have set all the negative contributions in the ground truth to 0. The second curve (blue curve)
corresponds to correlation with the absolute value of the ground truth. For both curves we multiply
the correlation value with —1 when the NN prediction was negative, to account for the fact that the
prediction’s sign is propagated back to the attributions. Our results show that when correlating with
the absolute ground truth (blue curve), the correlations are systematically higher than when
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Figure 5. Summary of the performance of different XAI methods. Histograms of the correlation
coefficients between different XAI heatmaps and the ground truth of attribution for 100,000 testing
samples. a) Results of Input x Gradient for the linear model and the network. b-c) Results of XAI methods
when applied to the network.

correlating with then nonnegative ground truth (black curve). This result verifies that the issue of
LRP, - 1 4 = o mixing positive and negative attributions occurs for all the testing samples, further
highlighting the need to be cautious when using this rule. Also note that LRP, — | 4 - ¢ correlates
systematically less strongly with the ground truth than LRP... This suggests that LRP, _ | 4 - o doesnot
estimate the magnitude of the attribution as effectively, most likely because it completely neglects the
negative preactivations z;~ of the forward pass through the network (see Equation (7)).
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5. Conclusions and Future Work

The potential for NNs to successfully tackle complex problems in geoscience has become quite evident in
recent years. An important requirement for further application of NNs in geoscience is their robust
explanaibility, and newly developed X Al methods show very promising results for this task. However, the
assessment of XAl methods often requires the scientist to know what the attribution should look like and is
often subjective. Also, applicable attribution benchmark datasets are rarely available, especially for
regression problems.

Here, we introduce a new framework to generate synthetic attribution benchmarks to test XAl
methods. In our proposed framework, the ground truth of the attribution of the synthetic output to the
synthetic input is objectively derivable for any sample. This framework is based on the use of additively
separable functions, where the response ¥ €R to the input X €R is the sum of local responses. The local
responses may have any functional form, while spatial functional dependence can also be enforced.
Independent of how complex the local functions might be, the true attribution is always derivable. As an
example, we create 10° samples using local PWL functions and utilize a fully connected NN to learn the
underlying function. Based on the true attribution, we then quantitatively assess the performance of
various common XAI methods.

In general, our results suggest that methods Gradient and Smooth Gradient may be suitable for
estimating the sensitivity of the output to the input that may offer great insights about the network, but
this is not equivalent to the attribution. We also reveal some potential issues in deriving the attribution
when using the LRP, _ | 4 — ¢ tule. For the specific setup used here, the methods Input x Gradient,
Integrated Gradients, Occlusion-1, and the LRP, rule all very closely capture the true function F and are
the best performing XAl methods considered here; we note that the latter methods might not be equally
effective for other problem setups (e.g., setups where there are interactions between the features) and/or
other network architectures.

In summary, in this study we demonstrated the benefits of attribution benchmarks for the identification
of possible systematic pitfalls of XAI, and introduced a framework to create such benchmarks with
emphasis on geoscience. Clearly, this is only the beginning of a larger research effort. In the future, we
plan to extend this work to assess a larger range of XAl methods, using different deep learning models
(convolutional NNs, recurrent NN, etc.) and to derive other forms of nonlinear local functions encoun-
tered more frequently in the geosciences (e.g., based on ordinary differential equations). We believe that a
common use and engagement of such attribution benchmarks by the geoscientific community can lead to
amore cautious and accurate application of XAI methods to physical problems. Such efforts will increase
model trust and facilitate scientific discovery.
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