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Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems.

In the original ‘“black widow”, the 8-hour orbital period eclipsing pulsar PSR J1959+2048



(PSR B1957+20), high energy emission originating from the pulsar? is irradiating and may
eventually destroy® a low-mass companion. These systems are not only physical laboratories
that reveal the dramatic result of exposing a close companion star to the relativistic energy
output of a pulsar, but are also believed to harbour some of the most massive neutron stars?,
allowing for robust tests of the neutron star equation of state. Here, we report observations of
ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow
candidate whose optical flux varies by a factor of more than 10. ZTF J1406+1222 pushes the
boundaries of evolutionary models®2, falling below the 80 minute minimum orbital period of
hydrogen-rich systems. The wide tertiary companion is a rare low metallicity cool subdwarf
star, and the system has a Galactic halo orbit consistent with passing near the Galactic center,

making it a probe of formation channels, neutron star kick physics®’, and binary evolution.

Using photometry from the Zwicky Transient Facility®! (ZTF), we searched for short timescale
periodic flux variations in 20 million objects that were underluminous relative to the main sequence
(Methods) as part of an ongoing campaign to identify short orbital period binary systems®. During
this search, we identified ZTF J1406+1222, an object which exhibits strong quasi-sinusoidal variability
on a period of 62 minutes and a larger amplitude of variability in the ZTF g-band than in the ZTF

r- or i-bands.

Figure 1 illustrates a high cadence light curve of ZTF J1406+41222 obtained with the quintuple-beam
high speed photometer HIPERCAM? on the 10.4-m Gran Telescopio Canarias (GTC) on La

Palma. This light curve exhibits a high amplitude and strongly colour-dependent modulation,



brightening by more than a factor of 13 in the us-band (A\ee, = 3526 A). Given the large amplitude,
the most plausible physical explanation of its origin is the irradiation of an object by an unseen
companion in a 62-minute orbital period binary system: the flux modulation reflects the stark
contrast between the “day” and “night” sides of the irradiated object. Known black widow binaries
with identified optical counterparts exhibit this type of strong optical variability, which has been
used as a tool to identify several systems near known gamma-ray sources'® 4. Light curve models,
as seen in Figure 2, exclude the possibility of a thermal white dwarf irradiator, as a hot white
dwarf would itself outshine the companion, diluting the overall amplitude and resulting in a light
curve much like that of the double white dwarf binary ZTF J1539+5027'. Based on the observed
temperature of the heated face of the irradiated object (Methods), we can constrain the heating
luminosity, Ly to the range (1.16 < Ly < 1.37) x 103 ergs™! (Methods), a value typical of
spider binaries>®, of which black widows are one sub-class. The modulation peaks earlier at longer
wavelengths, suggestive of an asymmetric temperature distribution on the surface of the irradiated
object. Such colour-dependent phase shifts in the flux maxima are not seen in irradiated binaries
containing white dwarfs, but have been observed in spider binaries, such as PSR J1959+2048 and
PSR J2215+5135"7, though the effect is much more pronounced in ZTF J1406+1222, with the
zs-band flux peaking approximately 10% of an orbital phase earlier than the far ultraviolet Swift
UVW?2 flux (Methods). The source is not detected in the ultraviolet for over half of its orbit, with
a 3-o limit of > 22.9 magap in the Swift UVW2 filter in an exposure centered on the fainter half
of the orbit, further excluding the presence of a hot white dwarf as the irradiating object, which

would otherwise have dominated the far ultraviolet flux throughout the orbit.



We obtained phase-resolved spectroscopic observations of the system using the Low Resolution
Imaging Spectrometer (LRIS)'® on the 10-m W. M. Keck I Telescope on Mauna Kea. These
observations, illustrated in Figure 3, reveal a dramatic transition which occurs on the 62-minute
period of the variable. The spectrum is dominated by a red continuum during the faintest phases
of the orbital cycle, and then transitions to exhibiting narrow hydrogen emission lines. As the
object reaches maximum brightness, a blue continuum with prominent hydrogen absorption lines
dominates the flux, but only for ~ 20% of the orbit, before fading back to the faint red continuum.
We interpret the appearance of these hydrogen absorption lines as originating from the irradiated
dayside of the companion. The high energy radiation which heats the companion in black widow
systems penetrates deep enough into the photosphere to produce absorption lines as the reprocessed
energy makes its way back to the surface'’; this is in stark contrast to systems where the radiation
originates from a white dwarf, which is primarily emitted in the ultraviolet, and reprocessed near
the surface of the photosphere on the irradiated companion, resulting in an optically thin spectrum
dominated by emission lines. The optically thick absorption lines which dominate the spectrum at

peak flux are a clear signature of the high-energy irradiation seen in spider binaries.

Deep Ha imaging revealed no detectable nebular structure around the object (Methods), and
the weak hydrogen emission lines are variable in both intensity and wavelength on the 62-minute
period, suggesting that they are not nebular lines as the ones seen in PSR J1959+2048, which are
thought to originate primarily from the shocked interstellar medium near the system?®’, a large scale
structure which extends far beyond the binary. We measured the Doppler shifts of these emission
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lines and extracted a significant signal, with a semi-amplitude of 112 £ 15kms™", confirming



the 62-minute orbital period of the system. As seen in the trailed spectra shown in Figure 4,
the lines shift bluewards after the time of minimum light, suggesting that they do not originate
from the surface of the irradiated object, but rather from an intra-binary shock located between
the pulsar and the companion, or in a wind being driven off the irradiated object by the intense
pulsar irradiation, forming a cometary tail like that observed in the black widow binary PSR
J1311-3430". The excess luminosity from this feature is likely responsible for the excess flux

seen just after minimum brightness in the light curve, as seen in Figure 1.

We did not detect the source in archival data obtained by the Fermi Gamma-ray Telescope?!,
in X-ray observations obtained with the Neil Gehrels Swift observatory?? and the Nuclear Spectroscopic
Telescope Array (NuSTAR)?, nor did we detect the source in radio observations obtained with
the 70-m DSS-14 and 34-m DSS-13 antennae at Goldstone Observatory (Methods). Given our
estimated distance of 1140 pc (Methods), the X-ray sensitivity threshold achieved would have

failed to detect several known black widow binaries with similar properties.

In the red portion of the spectrum (Methods) we identified absorption lines characteristic of
a rare class of stars known as cool subdwarfs, which are low metallicity, late type stars. Using
archival Pan-STARRS1 and SDSS images, Gaia eDR3 and the HIPERCAM observations, we
confirmed that these originate from a common proper motion wide companion to the inner black
widow in a hierarchical triple stellar system (Methods), and its spectroscopic properties are consistent
with a late K type cool subdwarf (sdK) (Methods). Given the observed angular separation of

0.5555 £ 0.0045 arcsec between the Gaia eDR3 J2016.0 positions of the components and the best



distance estimate of 1140 pc, we derive a projected separation of 600 AU between the components,
which corresponds to an orbital period of approximately 12,000 yr, and an estimated projected

orbital velocity of just ~ 1.5 kms™! for the sdK.

A kinematic analysis of ZTF J1406+1222 (Methods) reveals that it is consistent with being a
halo object. Hence, its large proper motion of 74.486 4= 1.769 mas yr—! likely reflects this nature,
rather than being an indicator of a neutron star natal kick?*. This implies that the system is several
billion years old, and thus that the neutron star formed long ago (as its massive progenitor star
would have evolved on a timescale of tens of millions of years). It is unlikely that the system could
have experienced a significant kick in its current configuration, as it would have easily unbound the
tertiary with its estimated orbital velocity of just ~ 1.5 kms~!. One intriguing possibility implied
by the presence of the wide companion is that the Kozai-Lidov? mechanism may have played a

role in the evolution of the inner black widow?°.

The formation mechanism of ZTF J1406+1222 is an enigma. One plausible origin is that
ZTF J1406+1222 was ejected from a globular cluster from a dynamical interaction between two
binaries, similar to the formation scenario proposed for PSR J 1024-0719°2. Otherwise, if the
system originated in the Galactic field, the neutron star must have formed from a low-kick mechanism
such as accretion induced collapse (AIC)?® (Methods). Although the uncertainties in astrometry
and on the age of the system are too large to confidently trace ZTF J1406+1222 to a specific
globular cluster, we can determine that it follows an orbit in the Galactic halo which plunges

towards the center of the Galaxy, and is consistent with passing less than a fifty parsecs from



the Galactic Center (Methods). It is thought that globular clusters interacting with the Galactic
center can be disrupted, and that the gamma-ray excess near the Galactic center originates from
millisecond pulsars left behind by these disrupted clusters®. The average density of a globular
cluster is on the order of 10> — —10° M, pc~3, much lower than the average density of matter
within the triple ZTF J1406+1222 (~ 10® M pc~?), meaning that an interaction with the center
of the Galaxy which disrupted the globular cluster would likely not unbind ZTF J1406+1222,
allowing it to instead be ejected in its current state. This suggests that ZTF J1406+1222 could have
originated from a millisecond pulsar rich globular cluster which was disrupted near the Galactic

center.

The hierarchical triple nature and short orbital period of ZTF J1406+1222 distinguish it
from any known spider binary, challenging formation models of these systems. Uniquely among
spider binaries, ZTF J1406+1222 was identified using only optical photons, a novel method of
discovering binaries hosting neutron stars solely on the basis of their strongly irradiated companions,
thus potentially eliminating strong selection effects in previous work, which identified them primarily

on the basis of their emission at radio, X-ray, or gamma-ray wavelengths.
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Figure 1: Lightcurve of ZTF J1406+1222 a) The five-band (us, gs, 7s, %5, 2s) HIPERCAM light
curve of ZTF J1406+1222. The plotted flux has been normalized relative to the flux level at
minimum light in each filter, and the error bars are 1o uncertainties.. ZTF J1406+1222 appears to
vary significantly more at shorter wavelengths. However, this colour dependence is exaggerated
because the tertiary component of the system contributes more in the long wavelength passbands,
diluting the apparent amplitude of the signal at longer wavelengths. Because of the contribution
of the tertiary component in all optical passbands, the observed degree of brightening, which
is already more than a factor of 13 in wus, 1s but a lower bound to the true amplitude of the
flux modulation. b) More detailed plots of the HIPERCAM light curve in each band, with the
normalized flux plotted such that the full structure of the variability in each passband is apparent.
The vertical dashed black lines indicate the approximate peak flux in g, illustrating that the flux at
longer wavelengths peaks sooner than at short wavelengths.
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Figure 2: Model fit of the ZTF J1406+1222 lightcurve Two model fits to the HIPERCAM
us-band light curve, represented as purple diamonds with error bars representing 1o uncertainties.
In the model fits, the distance was fixed at 1140 pc. The solid black curve illustrates the best
fit using a 14 km blackbody emitter meant to represent a neutron star, whereas the dashed black
curve represents the best model fit using a 2000 km blackbody representing a white dwarf as the
compact object, which is smaller than the most compact white dwarf known’. The model using a
2000 km blackbody irradiator is unable to reproduce the large amplitude of the light curve because
in order to sufficiently increase the amplitude of the irradiation modulation in a system with the
observed luminosity at an estimated distance of 1140 pc, the white dwarf temperature must be
large (> 80,000 K), and in this situation the white dwarf significantly outshines the nightside of
the irradiated companion in us-band, diluting the overall amplitude of variability.
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Figure 3: Optical spectroscopy of ZTF J1406+1222 a) The hydrogen n = 5 — 2 transition
(Hv) in three phase-resolved spectra of ZTF J1406+1222 obtained with LRIS on the Keck I
telescope. The top spectrum with the largest flux originates from an optically thick phase in which
a blue continuum containing hydrogen absorption lines and an appreciable Balmer decrement
manifest. In the intermediate flux phase, narrow Balmer emission lines appear, but the continuum
is dominated by the tertiary sdK component. In the faintest phase, neither the hydrogen emission
nor absorption is visible. b) A collage of eleven 5-minute exposures obtained with LRIS on the
Keck (approximately one orbital cycle). Note that the hydrogen absorption lines are visible for
approximately four spectra (about 20 minutes, or 1/3 of the 62-minute orbit). The hydrogen
emission lines are visible for seven spectra (35 minutes, or over half the orbit), one of which
overlaps with a phase that also contains hydrogen absorption. In the bottom spectra near the
time of minimum light, no signatures of the hydrogen lines are present, and the only prominent
feature remaining is a metal absorption line at ~ 5200 A, which is visible throughout the orbit and
originates from the sdK tertiary component.
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Figure 4: ZTF J1406+1222’s trailed spectra The trailed LRIS spectra of ZTF J1406+1222
illustrating the variations in brightness of a sum of the hydrogen lines over the course of an
orbit (with red representing absorption, and blue emission), projected onto velocity space on the
y-axis. The orbital phase has been referenced to the time of maximum light in the HIPERCAM
us lightcurve (which corresponds to phase 0.5). The blue central features are the hydrogen
emission lines visible in the spectrum, while the red broader lines which appear near phase 0.5
are the absorption lines associated with the irradiated companion. A velocity modulation on the
62-minute period is clearly apparent in the emission lines, with an estimated semi-amplitude of
112 4 15km s, confirming that this is the orbital period. The solid black line is the best sine fit
to the emission-line velocities, which are associated likely associated with the intrabinary shock in
the system, or a wind driven off of the companion. The dashed black lines indicate the expected
radial velocity variation of the irradiated star in the binary, assuming ~ 30-degree and ~ 90-degree
inclinations and a 0.05 M, object orbiting a 1.4 M. unseen companion.



Table 1: Table of parameters

RA (BW) 211.7340580 4 1.22 x 1075 deg (Epoch J2016.0, Equinox J2000)
Dec (BW) 12.37872188 4+ 9.48 x 107" deg (Epoch J2016.0, Equinox J2000)
PM RA —73.824 + 1.135mas (Epoch J2016.0, Equinox J2000)
PM Dec —9.912 + 1.137mas (Epoch J2016.0, Equinox J2000)
D 1140 + 200 pc
Y 67+ 30kms~!
Taayside 10462 + 150 K
Thightside < 6500 K
Plrradiated > 10gcem ™3
Rirradiated > 0.03 R,

Ly (1.13 < Ly < 1.79) x 103 ergs™!
Ly < 2.9 x10% ergs™! (at 1140 pc)
To(in ug) 59344.053345 4+ 0.000039 BMJDrpgp
P, 3720.09213 £ 0.00021 s
RA (sdK) 211.7342086 % 2.27 x 107% deg (Epoch J2016.0, Equinox J2000)
Dec (sdK) 12.37860287 4= 2.66 x 10~ deg (Epoch J2016.0, Equinox J2000)
Py(sdK) > 10000 yr (at 1140 pc)
Teg (sdK) 4020 + 70K
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Methods

Discovery and confirmation We searched a sample of objects selected as being potentially under-luminous
relative to the main sequence using Gaia Data Release 2 (DR2) astrometry. The selection is
described by

Gmean + 5 X [log(o + Oerr) — 2] > 5 x (BP — RP) + 8, (1)

where G yean is the mean Gaia G apparent magnitude and (BP — RP) is the colour, both from Gaia
DR2. This selection yielded a total of 22,912,186 candidate objects, which we then cross-matched
with data from the Zwicky Transient Facility®'*. We searched for periodic signals in all objects
which had more than 50 combined epochs in their g and 7 light curves using the conditional
entropy algorithm® and selected candidates whose minimum conditional entropy fell more than
20 standard deviations below the mean entropy of the power spectrum. We searched frequencies
ranging from 720 > f > ﬁ cycle day !, where the baseline is the time elapsed between the
first and last epochs in each light curve in days. This selection yielded 25,025 high significance
candidate objects, whose phase-folded light curves were visually inspected (investigation of many
of these candidates is ongoing). ZTF J1406+1222 immediately captured our attention due to the
stark difference in modulation amplitude between its ZTF g, ZTF r and ZTF ¢ light curves. In
particular, it exhibited a larger amplitude at blue wavelengths, as seen in Extended Data Figure
1. This is unexpected for white dwarf binaries with irradiated companions at such short orbital
periods, as they host cool late type stars, which preferentially reprocess radiation at longer wavelengths.

We thus immediately suspected that ZTF J1406+1222 could be a black widow in which the

companion was so heavily irradiated that its inner face had heated sufficiently to preferentially
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reprocess radiation in bluer wavelengths. However, we later discovered that this difference in
amplitude as a function of wavelength is primarily due to the presence of the tertiary sdK companion

which was diluting the apparent amplitude at redder wavelengths.

Using the high-speed imager CHIMERA* on the 200-inch Hale telescope at Palomar Observatory
on the nights of July 15 and 21 2020, we obtained the ¢, »/, and i’ light curves illustrated in
Extended Data Figure 1, confirming the 62-minute period modulation of over a factor of 5 in
¢’ and smaller amplitudes in 7’ and i’. We reduced these data using a custom pipeline which
performed aperture photometry on the source and a nearby reference star in each frame using a

dynamic full-width-half-max.

We also used the Wafer Scale Imager at Prime (WASP) to obtain a 1200-s an Ha filter (\g =
6570 A, AX = 100 A) and an additional 1200-s exposure in an off-band filter (Ao = 6651 A, A\ =
107 A) to check for the presence of a nebula around the object. We bias subtracted and flat fielded
these observations with a custom pipeline. We then subtracted the normalized off-band exposure
from the normalized Ha exposure and found no discernible extended emission in the resulting

image.

Data using the three channel imager ULTRACAM?’ on the 3.5-m New Technology Telescope
at LaSilla, taken in u, g and ¢ filters, were used to confirm that the amplitude of the light curve
modulation increased substantially in the u filter relative to what we had observed previously in

redder filters.

After confirming the extreme amplitude of modulation in the u filter, we obtained two
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Extended Data Figure 1: CHIMERA and ZTF lightcurve of ZTF J1406+1222 a) The
CHIMERA light curve of ZTF J1406+1222. Like the HIPERCAM light curve illustrated in
Figure 1, the variability is much more pronounced at shorter wavelengths. This light curve
was used to confirm the signal observed in the ZTF light curve, prompting further follow-up
of the target. b) The ZTF light curve of ZTF J1406+1222. The object appears more variable
in the shorter wavelength passbands, but is brighter overall at longer wavelengths, primarily
due to the contribution of the sdK tertiary component, and thus the true fractional variability is

underestimated in redder passbands. All the error bars illustrated represent 1o flux uncertainties.
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hours of data using the quintuple beam high speed photometer HIPERCAM? on the 10.4-m Gran

Telescopio Canarias and used these data for our light curve modelling.

HIiPERCAM light curve analysis Modelling the HIPERCAM light curve of ZTF J1406+1222
is challenging for three reasons: 1. We lack kinematic constraints and thus the binary mass ratio
and the scale of the semi-major axis are not constrained; 2. the two modelling codes we used,
LCURVE?* and ICARUS®, lack the physics needed to fully describe the behaviour we see in
the light curve, in particular, contributions from the wind near minimum flux and the phase shift
seen at maximum; and 3. the cool subdwarf companion contributes some amount of light in each
band and its assumed spectral energy distribution greatly impacts the amplitude of the modulation,
especially in the redder filters. We introduce a correction for this contribution in our ICARUS

model.

Despite these limitations, we can still make useful constraints on the nature of the system
using light curve models by investigating simple limiting cases. As discussed in the section on
distance estimates, we know the distance to the system must be D < 2kpc based on its large
proper motion, we are able to precisely measure its apparent magnitude at peak and minimum at
wavelengths ranging from the ultraviolet to near infrared, we know that there is little extinction
along the line of sight, and thus we can estimate the peak luminosity of the system as a function
of wavelength and also get an upper limit on the minimum luminosity of the irradiated object (the
wind contributes near minimum flux, so the true depth of the minimum is unknown). We also
know the orbital period of the system with a high degree of precision and can therefore assume a

total system mass and estimate the scale of its semi-major axis.
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We developed a model based on the HIPERCAM wug-band light curve due to the minimal
contamination from the sdK companion at these wavelengths and high signal-to-noise ratio. We
used LCURVE to model the light curve and performed nested sampling using the PyMultiNest
41,42

package. For this model, we ignored the third light contribution due to the subdwarf, which is

small in the u band.

The purpose of our LCURVE model was to explore whether a model using a neutron star
and/or a white dwarf irradiator could acceptably fit the data. Due to the clear contribution of the
wind near flux minimum, we adjusted the weights of all but the most restrictive point near the
minimum to 0 (even this point likely has some wind contribution). We fixed the orbital period at
P = 3720.09213 s ,based on the ZTF light curve, and the mass ratio at ¢ = 0.0357 (assuming
a mass of 0.05 My for the irradiated object and 1.4 M, for the compact object). We adopted
limb-darkening coefficients for a model atmosphere of a 10 000 K main sequence star (we use this
value to reflect the temperature of the irradiated surface) with a surface gravity log(g) = 5.5 dex
(cgs units). The mass ratio was fixed because we found that when allowed to vary freely, the
solution strongly favoured irradiated objects of arbitrarily high mass in order to increase the radius
of the irradiated object without filling its Roche lobe. We then directly fit the us-band flux level
of the light curve by introducing the distance as a parameter in the model (extinction is negligible
along this line of sight, with a reddening of E(g — r) < 0.02 within a distance of 6 kpc*). We
constructed two models using the method described here, with the radius of the compact object
responsible for emitting the irradiating flux fixed to 14 km or 2000 km, respectively. We found

that the latter model was not even remotely able to fit the data, as seen by the fit presented in
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Figure 2. As a check, we allowed the distance to vary within the 2000 km model and observed
that LCURVE was able to converge to an acceptable solution for an object approximately 6.6 kpc
away by increasing the nightside temperature of the irradiated object to significantly outshine
the extremely hot 2000 km irradiator even at flux minimum. The model is not able to achieve
this at smaller distances, as making the irradiated object’s night side this bright increases the
overall luminosity of the system too much to be consistent with the observed apparent magnitude.
Increasing the assumed mass of the neutron star in the model above 1.4 Mg results in a larger

binary semi-major axis, and increases the total required heating flux radiated by the neutron star.

These simplified LCURVE models were meant to test the possibility of a white dwarf compact
object. However, LCURVE treats the objects in the system as simple black bodies and neglects
atmospheric corrections such as the attenuation in flux seen in the ug band relative to a simple
blackbody due to the Balmer ionization. Therefore, to construct the most realistic model possible
now that we had ruled out the possibility of a white dwarf solution, we turned to the ICARUS light

curve modelling code.

Before constructing the ICARUS model, we corrected for the contribution of the sdK component.
The flux-weighted position vector in the HIPERCAM images of the combined black widow plus

sdK star can be written as

_ fbwrbw + fsdrsd
fbw + fsd

2)

The flux of the sdK, fy, is constant, and although the positions of the two stars move due to
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telescope guiding errors, there should be a fixed offset s between them, i.e.

I'sg =Thw +S. (3)

We cannot measure the individual fluxes because of the blending, and instead measure the total

f=Tfaa+ fow- “4)

Using these relations to substitute for f,,, and ryy, the position of the centroid can be written as

P = oy + 5. 5)

f

The position vector of the black widow in this expression is still subject to guiding errors, so we

reference the position with respect to the comparison stars to remove the variability:

Ar = Arbw —+ (fsd S)(l/f) s (6)

where now Ary,, is now a constant difference relative to the comparison star. This equation shows
that the centroid position of the blended image varies linearly with the inverse of the flux, 1/f. If
the measurements are made along a line parallel to s, then a plot of position versus 1/ f has gradient
fsas. We know s = 0.5555 arcsec from Gaia, hence the contribution of the sdK to the flux, f.q,
results. This has to be applied to the data for each filter, and the resultant corrected lightcurves are

plotted in Extended Data Figure 2.

In ICARUS, we fixed the mass ratio ¢ = 0.0357 (again assuming a mass of 0.05 M, for
the irradiated object and 1.4 M, for the compact object), the orbital period P = 3720.09213 s

and the distance d = 1140 pc. ICARUS is designed to fit multi-band light curves simultaneously.
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However, because of the significant wavelength dependent phase shifts in the data, [CARUS was
unable to converge to an acceptable solution by simply fitting the light curves without correcting
for these shifts. We arbitrarily shifted the light curves to have all other maxima at the us-band peak
flux phase and performed a series of ICARUS fits. In order to account for the wind contribution,
we experimented with not including data near the minimum flux in the fit. We found that because
of the extraordinarily high signal-to-noise ratio of the HIPERCAM data, Markov-chain Monte
Carlo IMCMC) fits of models which accounted for only data between phases 0.4 — 0.6 (where 0.5
is the flux maximum), vs 0.3 — 0.7, vs all of the data converged to radically different solutions,
with orbital inclinations in the 35 — 90 deg range. In fact, without any constrains, there were even
good fits achieved for inclinations as low as 14 degrees, but these solutions were unphysical, as they
required a mass ratio in which the irradiated object was far more massive than the accretor, and that
the system be at a great distance, as the solutions were trying to force the radius of the irradiated
object to be as large as possible. Because the ICARUS model does not account for physics such
as flux from the intrabinary shock (which may have an asymmetric offset from the line between
the pulsar and the companion), the wind being driven off of the companion or the possibility of
atmospheric transport on the surface of the irradiated object, rather than derive parameters from
these models, we choose not to report these parameter estimates. A future detection of the pulsar,
which would provide a precisely measured time of superior conjunction and an estimate of its radial
velocity, may provide enough additional constraints for a more sophisticated modelling of the
system and avoid simply over-fitting the data. Our ICARUS and LCURVE models both generally

preferred solutions in which the irradiated object was underfilling its Roche lobe (with a < 0.5
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filling factor); however, the inferred filling factor was sensitive to which portion of the data was
modelled, and thus is poorly constrained. An example ICARUS model fit is illustrated in Extended

Data Figure 3.

However, in addition to unambiguously ruling out the possibility of a white dwarf irradiator,
the light curve also allows us to estimate the amount of radiation the neutron star is emitting, F.
This is because the peak temperature of the irradiated companion, Ty,y, can be estimated from the

apparent magnitudes at peak flux, and this temperature is directly related to the amount of incident

radiation per unit area by the follow expression:

n

Ly ~ 4m20(T§ay — T‘ﬁght) , (7)

where Ly is the heating luminosity, o is the Stefan-Boltzmann constant, 7}, is the nightside
temperature of the companion and a is the semi-major axis of the binary system. The heating
luminosity and the spin down luminosity are related by an efficiency factor, Ly = 77E. Although
we do not know the total mass of the system, M, and therefore must assume one to estimate the
semi-major axis, a only varies as M%/ % and is much more sensitive to the orbital period, which we
know quite precisely. We consider a range of semi-major axis values, assuming 1.45 < My <
2.05My. We estimate Tg,, by fitting the spectral energy distribution (SED) at the orbital phase
of maximum flux in the Swift UVOT light curve, and our best fit model is illustrated in Extended
Data Figure 4. This gives a warmer estimate than if we simply take the peak flux for each filter,
since redder filters peak earlier than blue filters. The companion, given the short orbital period,
must be degenerate or near degenerate, and its atmosphere is clearly dominated by hydrogen lines.
Thus, in order to fit the SED of the dayside of the object, we used hydrogen rich low-mass white
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dwarf atmospheric models****, which yielded an estimated temperature of Ty, = 10462 + 150 K.
To obtain the most conservative estimate of 7\,;e1,¢, we constructed an ICARUS model in which we
fix T4y to 10462 £ 150 K and fix the inclination to 90 deg. This requires the light curve model to
pick the largest possible value of Ty,;g1 in order to minimize the amplitude of variability to match
the data. In this limiting case, find T ~ 6500 K. Using these boundaries and assuming a
semi-major axis corresponding to a total system mass of 1.45 < Mt < 2.05 M, we conclude that
Ly is approximately in the range of (1.13 < Ly < 1.79) x 103 ergs™!, a value typical of spider

binaries.

Spectroscopic analysis The spectroscopic data were obtained with LRIS using the 600/4000
grism with 2x2 binning on the blue arm and the 400/8500 grating with 2x1 binning on the red arm,
on the nights of July 18 2020 UTC and Jan 10 2021 UTC. One the night of June 5 2021, we used
the 600/3400 grism with 2x2 binning on the blue arm and the 600/7500 grating with 2x2 binning
on the red arm. On this last night, we adjusted the position angle of the slit to —79.42 degrees
East of North in order to capture both sources and were also able to take advantage of a newly
upgraded detector on the red arm. Thus, we base much of our spectroscopic analysis on this data
set, which is superior to the other nights, though our radial velocity measurements made use of all

three nights of data. We reduced all the spectroscopic data using the LPIPE pipeline*.

Black widow radial velocity analysis In order to measure radial velocity variations, we used a
custom code which simultaneously fit six Lorentzian profiles plus a quadratic polynomial to the full
spectrum, with the Lorentzians fitting the hydrogen lines at 4861.35, 4340.46, 4101.74, 3970.07,

3889.05 and 3835.40 A.
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Extended Data Figure 2: Swift UVOT and corrected HIPERCAM lightcurve of ZTF
J1406+1222 The HIPERCAM and Swift UVOT light curves on a magnitude scale after correcting

for the contribution of the sdK star. Only > 1o detections have been shown for the Swift data, as

the object magnitude lies below the detection threshold for over half of the orbit. The prominent

phase shifts in the peak flux indicate that the object transitions from a cooler to a hotter surface over

the course of the flux maximum. Our LCURVE and ICARUS models were not able to account for

this physical effect, so we arbitrarily shifted the other light curves to match the us-band maximum

flux for the purpose of constructing simple models. In order to estimate the temperature of the day

side of the irradiated object, we fitted the spectral energy distribution from the apparent magnitudes
at orbital phase 0.55, the peak of the Swift UVOT UVW?2 light curve. One orbital cycle has been

repeated for display purposes. All the error bars illustrated represent 1o uncertainties in apparent

magnitude.
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Extended Data Figure 3: ICARUS model fit to lightcurve An example ICARUS toy model
fit to data between orbital phases 0.25 and 0.75 (ignoring data outside these phases), with the
temperature of the day side of the companion fixed to 10462 K, the distance fixed to 1140 pc, a
fitted inclination of ¢ =~ 66 deg and an irradiated object with a radius of just 0.029 R,. The
data from left to right illustrate the HIPERCAM us, gs, 75, is, and z; filters, with the dashed black
lines illustrating the best fit model in that filter. The light curves have been artificially shifted to
line up with the us-band maximum light, as the ICARUS model is unable to capture the strong
colour-dependent phase shifts seen in the data. We did not perform an MCMC over these models,
as we found that there were acceptable fits for a wide range of inclinations and other parameters
given the limitations of using a simple direct heating model. Because we chose to fit the flux at
peak, but not at minimum (where the wind contributes significantly), most models fit the peak flux
well, but the excess flux at minimum increases gradually to the redder passbands, suggesting that
there may be a colour dependence associated with the flux contribution from the wind, though this

is difficult to disentangle from the flux contribution of the sdK at minimum light.
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Extended Data Figure 4: Model fit to peak of ZTF J1406+1222’s spectral energy distribution
The spectral energy distribution at the orbital phase of the Swift UVOT maximum flux. The
red squares illustrate the filter averaged model, which convolves the model spectrum with the
respective HIPERCAM and Swift filters. The solid line is the best-fit white dwarf model spectrum.
We used a grid of white dwarf model atmospheres because they naturally cover the appropriate
surface gravities and temperatures needed to model the irradiated face of the companion, which
could be either a brown dwarf or a white dwarf. The Swift detection strongly constrains its dayside
temperature, giving a best-fit value of 7,, = 10462150 K. All the error bars illustrated represent

1o uncertainties in apparent magnitude.
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We attempted to fit both the hydrogen absorption and emission lines in order to measure
radial velocity variations on the orbital period. However, the hydrogen absorption lines are broad
and only visible over a short orbital phase interval, preventing us from extracting reliable radial
velocity shifts from them. This is not surprising given that these absorption lines are blended with

variable emission from the ablation wind, as well as underlying features of the sdK spectrum.

However, we detected appreciable radial velocity variations in the much narrower Balmer
emission lines. As discussed in the main text, we found that these features are blueshifted after
superior conjunction of the black widow, and we interpret this as a signature that they originate
from a cometary tail spiraling around the irradiated companion, or potentially from the intrabinary
shock in the system. Figure 4 presents the best sine fit to the emission-line radial velocity curve,

overplotted with the phase-folded trailed spectra.

Cool subdwarf atmospheric analysis We identified the sdK nature of the hierarchical companion
due to the presence of strong CaH absorption lines, a signature of these low metallicity late type
stars*’. Typically, late type main-sequence stars are characterized in terms of line indices, which
are measures of the strength of an absorption line relative to the continuum, the most important of
which are the CaH and TiO indices*®. Analyzing the spectral indices of ZTF J1406+1222 presents a
unique challenge because it is variable, with a non-negligible contribution from the inner binary at
the wavelengths of these indices. In order to compensate for the variability, we compute the indices
using a coadd of spectra taken within the faintest 20 percent of the inner binary orbit in order
to minimize its contribution. This analysis yielded the spectral indices and derived parameters

presented in Extended Data Table 2. We use the empirical relation*” to determine the metallicity
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of the sdK star based on the indices found. One way to compute its temperature is using the CaH2
index*, where the effective temperature is given by Tog = 269641618 x CaH?2, which gives Tog =
4020 £ 70 K. The uncertainty has been estimated by computing the scatter of the indices of the
individual phase resolved spectra. Additionally, by fitting the BT-NextGen (GNS93) atmospheric
models for low mass stars®® to the region around the TiO+CaH band (between 62504 and 7250A4)
in the spectra taken during the faintest portion of the orbit, as illustrated in the inset of Extended
Data Figure 5, we also obtain estimates of 7og = 3800 4+ 30 K and [Fe/H| = —1.16 &+ 0.084 dex,
though the uncertainties, derived from the covariance matrix of the fit, are sensitive to the slope
of the continuum and dilution due to the black widow component, and thus are underestimated.
Additionally, we use the Ca II 8542 A line originating from the sdK to estimate the systematic
velocity of the system by fitting for velocities in individual spectra, and taking a weighted average
of these measurements. We measure a systemic velocity of v = 67 & 30kms™~!, where the
uncertainty is dominated by the systematic uncertainty of the absolute wavelength calibration
which we estimate by taking a simple barycentric corrected coadd of the individual spectra, and
measuring the velocity of the Ca IT 8542 A line in this coadd and comparing with the value yielded
by the weighted average of fitting the individual epochs. We also verified that the scatter in the
velocities estimated using the individual epochs does not track the 62-minute orbital period of the

black widow component.

Distance Estimate We use three approaches to constrain the distance to the system: 1. using the
parallax as reported in Gaia eDR3!, 2. using the absolute magnitude of the sdK companion in the

K band, and 3. putting an upper limit based on the large proper motion of the system. We discuss

34



17
4 x10

w
IS
[

|

<
b
£ 32 |
o
‘o 3~ -
S TiO+CaH x107"
) I+
28| Ty -
[T
26 | 3 -
2
24 — —
6500 7000
20 | | | | | | |
5500 6000 6500 7000 7500 . 8000 8500 9000 9500
Wavelength (A)

Extended Data Figure 5: Red LRIS spectrum of ZTF J1406+1222 The red LRIS spectrum of
ZTF J1406+1222 illustrating the significant contribution from the cool sdK component. The broad
feature at 6700 — 7000 A is a combination of titanium oxide (TiO) absorption bands commonly
seen in late type stars and strong calcium hydride (CaH) bands, which are more intense in low
metallicity sdM/sdK stars. We classify the object as a low metallicity star by measuring the ratio
of the TiO to CaH bands in a coadd of spectra at close to the minimum flux of the black widow
component to avoid significant contamination of the continuum. Additionally, we also estimated
the metallicity by performing a fit of atmospheric models to the region of the spectrum around the

TiO+CaH band, as illustrated in the inset.
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all three approaches here.

As of Gaia eDR3, only the sdK component contains a full astrometric solution, and its
parallax is measured to be w = 2.1118 £ 1.5882 mas. Estimating a distance based on this is
challenging, as the parallax measurement is hardly larger than its uncertainty. The best distance
estimate based on this astrometric solution according to the Bailer-Jones et al. catalog® is 1290123 pc.

This value is poorly constrained, so we did not use it in our analysis, but instead used the properties

of the sdK companion.

In order to estimate the distance to the system using the luminosity of the sdK, we interpolated
over evolutionary model grids®® using the estimated metallicity [Fe/H] = —1.173 dex and the
observed colour (V' — K) = 3.34 + 0.09 as input parameters. Because our highest signal-to-noise
ratio light curve was obtained in g, we empirically correct it to the V' band using the sample
of objects presented in >*, which contains g and V magnitudes for a large sample of objects.
We find that over this entire sample of objects, the g — V' correction factor is 0.738 £ 0.072.
We use the minimum brightness of our HIPERCAM g light curve of 21.289 4 0.0127 magap to
estimate an apparent magnitude of the sdK of V' = 20.55 & 0.09. Technically, the black widow
still contributes here, but if that were the case it would cause the sdK to appear warmer than
expected and cause the distance to be slightly overestimated, which would drive lightcurve models
even further in favor of a neutron star solution. The model grids also contain estimates of the
effective temperature, which we found to be T, = 3870 £ 70 K, consistent with the estimate
made using the CaH2 index as well as with the spectroscopic model. The distance we calculated

using this analysis and the observed UKIDSS K'-band apparent magnitude of K = 17.182+0.054
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1s 1140 £ 200 pc, with an approximate absolute K -band magnitude of My = 6.6 = 0.3. This does
not account for the uncertainty in the metallicity, as the grids used do not extend to metallicities
above [Fe/H| = —1.0 dex. Rather than extrapolate these grids, we made a more robust but broader
estimate of the distance by investigating the measured absolute magnitudes of a nearby sample
of cool subdwarf stars with colours similar to our observed colour of (V — K) = 3.34 4+ 0.09.
Based on the recent sample presented in 34, we find that the K -band absolute magnitude of the
companion should fall between 6 and 8, in good agreement with the M = 6.6 £ 0.3 estimated
using evolutionary models. The absolute magnitude range of 6 < My < 8 corresponds to a
distance interval of 680 < d < 1720pc. Based on its absolute magnitude, spectral type, and

metallicity, we estimate that the sdK has a mass of approximately 0.18 M, to 0.3 M.

Finally, in order to place a very conservative absolute upper bound on the distance using
the proper motion, we assume that the cool companion should have a tangential velocity less than
1200 kms~1, as, if it exceeded this value, it would be the fastest hyper-velocity pulsar known.
This seems implausible, especially considering that it is a wide triple system. Given the 74.486 +
1.769 mas yr~! proper motion, this corresponds to a distance upper limit of approximately 3400 pc.
Additionally, an analysis of the object’s kinematics revealed that it would be on a trajectory to
escape the Galaxy if it were at a distance of > 2000 pc, so the latter distance is a more realistic

upper bound.

Establishing the hierarchical triple nature of the system Archival SDSS>’ and Pan-STARRs1®
images (Extended Data Figures 6 and 7) revealed the presence of what appears to be two distinct

sources separated by a fraction of an arcsec, even though Gaia DR2 only detected a single source
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Table 2: Spectroscopic properties of the subdwarf K star. The values presented here
are shown in two columns, one considering indices of spectra taken within the faintest 30
percent of the light curve, centred around minimum brightness (orbital phases ¢ = 0.8 to
¢ = 0.1), and the other from a spectroscopic model fit to the coadd of the spectra taken
around the faintest phase. The first four rows show the spectroscopic indices*® commonly
used to characterize low metallicity, cool subdwarf stars #’. [Fe/H] is an estimate of the
metallicity of the object based on the (rio/can index computed according to the formalism

described in . The final row gives the metallicity classification of the object.

Index/Parameter Value (¢ = 0) Value (Spectroscopic)

TiO5 0.953 £ 0.044
CaH2 0.820 = 0.041
CaH3 0.90 = 0.045

CaH2 + CaH3 1.718 £ 0.084

(TiO/CaH 0.45 £ 0.50

[Fe/H] —0.94 +£0.82 —1.16 £0.08
Tesr 4020+ 70K 3800 £ 30K
(Classification esdK esdM
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at this position. With the release of Gaia eDR3, a second source was identified by Gaia 0.5555 £
0.0045 arcsec away from the previously detected source. However, no further astrometric information
is available for this source. The Gaia source with a full astrometric solution exhibits a large proper
motion of 74.486 + 1.769 mas yr—!, which corresponds to the sdK star seen in the spectrum. By
monitoring the position of the centroid of the point spread function (PSF) of the source in the
HiPERCAM images, we were able to demonstrate that these two sources must be co-moving, and
thus members of a hierarchical triple system. In Extended Data Figure 8, we illustrate that the
position angle between the two sources has not changed significantly since the Gaia measurement
in 2016, whereas if one assumed that the variable black widow component was a distant background
source with low proper motion and only the sdK exhibited this large proper motion, this position
angle would have changed substantially in five years. Thus, we conclude that the sdK is a common
proper motion companion to the 62-minute binary, making it the outer companion in a hierarchical

triple system.

We estimate the separation of the sdK and the BW by using the observed angular separation
of 0.5555 + 0.0045 arcsec between the Gaia positions, and the estimated distance of 1140 pc,
yielding a separation of approximately 600 astronomical units. Using the estimated sdK mass of
0.25 Mg, and taking the inner black widow binary as having a mass of approximately 1.45 M, we
estimate that this would correspond to an orbital period of 11000 years in a circular orbit (around
10500 + 500 years if one instead allows the mass of the inner BW to vary between 1.4 M and
2.0 M rather than fixing it to 1.45 Mg.) It is quite possible that the orbit of the sdK is far from

circular, which means we can only estimate a lower limit to the orbital period, by considering that
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SDSS colour

Extended Data Figure 6:
image of ZTF J1406+1222 An SDSS
DR9 colour image cutout of the ZTF
J1406+1222,
colour across the PSF with the sdK on the
left. The two red boxes indicate the J2016.0

positions of the two Gaia eDR3 sources.

revealing an asymmetric

This image has been centred on the same
coordinates as the Pan-STARRSI cutout

shown in Figure 7.
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Extended Data Figure 7: Pan-STARRSI1
colour image of ZTF J1406+1222 A
Pan-STARRSI1 colour image cutout at the
same centroid as the SDSS image in
Figure 6. The Pan-STARRS1 PSF exhibits
the same colour asymmetry as seen in the
SDSS image, and the centroid is closer to the
Gaia source position than the SDSS image
due to the 74.5masyr~! proper motion of

the system.
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Extended Data Figure 8: Astrometric characterization of ZTF J1406+1222 a) The measured
Gaia eDR3 J2016 position of the sdK is shown by the blue circles and the measured position of the
variable black widow component is illustrated by the red diamonds. The magenta stars represent
the projected J2021.5 position of the sdK, given the proper motion in its Gaia astrometric solution.
The solid black line shows the position angle between the two Gaia source positions. The pink
star indicates the position of the source in an SDSS u image obtained in J2003.4, and the black
star indicates the source position in the SDSS z image at this epoch. Because the BW component
dominates in u band, and the sdK in z band, these positions should approximately reflect the
positions of the two components in J2003.4, and the dashed arrows indicate that these sources
are co-moving, having both translated their positions significantly since that epoch (by about an
arcsecond). b) The black points indicate the measured centroid of the point spread function of the
variable source with respect to a reference star on the HIPERCAM r-band images. This centroid
moves back and forth between the two sources of luminosity as the black widow component
brightens and fades, and gives a precise estimate of the position angle between the two sources
when the data were obtained, at epoch J2021.5. The solid blue line is a linear fit to the data used
to derive a slope to measure this position angle, whose value is shown in the legend. The slope is
consistent with the J2016 position angle and clearly inconsistent with only the sdK having moved
since epoch J2016.0, demonstrating that the two sources must indeed be co-moving, and thus part
of a hierarchical triple system.
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the current separation represents the maximum separation of a highly elliptical orbit.

Swift XRT and NuSTAR analysis We obtained five separate Swift XRT observations of the
object (observation IDs 00013598001, 00013598002, 00013598003, 00013598004, 00013598005)
for a total of 12 ks exposure time. We used XIMAGE to coadd all the XRT exposures and compute
a 3-0 upper limit on the count rate within an 18 arcsec aperture using the uplimit routine of
XIMAGE. The aperture only contained 1 count, and the 3-o0 upper limit on the count rate was
6.648 x 10~*count s~!. We used WebPIMMS to convert this into a 3-c upper limit on the
unabsorbed flux in the 0.2 — 10 keV band, which is 2.6 x 107! ergcm~2s71, assuming a column
density of ng = 2 x 10?° along the line of sight. Taking our estimated distance of 1140 pc, this
translates into a 3-0 upper limit on the source luminosity of 4.04 x 103 ergs™! at 0.2 — 10keV.

We assumed a power law spectrum with a photon index of 2 when estimating the source flux.

We also obtained a NuSTAR observation (ID 90601325002) with 28 ks on source time with
module A and 25 ks with module B. The source was not detected, with 191 counts in a 50 arcsec
aperture in module A, with an average background of 177 counts determined using an annulus
centred on the source with an inner and outer radius of 100 and 200 arcsec, respectively. The 50
arcsec aperture in module B produced 192 counts and the background amounts to an average of 205
in an equivalent area. Using XIMAGE, we summed the two exposures and supplied the summed
background rate to the up1imit routine, which yielded a 3-o upper limit of 0.0013899 count s 1.
Using WebP IMMS, we estimate this corresponds to an unabsorbed flux of 1.178x 1073 erg cm 257!

translating to a luminosity upper limit of 1.83 x 103! ergs™! at 0.2 — 10 keV assuming a distance

of 1140 pc, and a column density of ny = 2 x 10?° along the line of sight. Like with the Swift
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observation, we assumed a power law spectrum with a photon index of 2.

There is a relation between the pulsar spin down luminosity, E, and the heating luminosity
inferred from the irradiated companion, Ly, and the X-ray luminosity in the system>®. In Extended
Data Figure 9, we illustrate the deeper Swift upper limit and our estimates on the E based on
light curve modelling and assuming a pulsar heating efficiency factor 0.1 < n < 1. The black
diamonds indicate the measured X-ray luminosity of other black widow systems, and the red
triangles are upper limits for other black widows which have not yet been detected in X-rays. Our
Swift observation would have failed to recover several known systems at the estimated distance
of 1140 pc and similar F, and thus future deeper X-ray observations will be informative in further
constraining ZTF J1406+1222’s X-ray luminosity. Unlike other black widow systems, we have not
directly detected the pulsar, and thus have no direct measurement of £, but rather only an estimate
of Ly. Typical Ly values in spider binaries are on the order of n = 0.15, indicating that only
a fraction of the spin down luminosity of the neutron star contributes to heating the companion.
However, for illustrative purposes, we choose an upper limit of 7 = 1 because ZTF J1406+1222,
with its extremely short orbital period and cometary tail most resembles PSR J1311-3430, an object
consistent with n > 1. Light curve models are unable to fully capture the complicated heating
physics in such systems, for example, an intrabinary shock which wraps around the companion
and subtends a larger cross section of the neutron star spin down flux than possible with only the

companion.

Swift UVOT analysis We constructed a UVW2-band light curve of the system from the Swift

observations 00013598003, 00013598004 and 00013598005. We used the uvotlc tool to bin
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Extended Data Figure 9: X-ray luminosity constraint of ZTF J1406+1222 The 0.2 — 10 keV
X-ray luminosity, Lx vs E for known black widow systems®-% (detections shown as black circles
and upper limits as red triangles). The red dashed line indicates the region which we have
constrained ZTF J1406+1222 to occupy based on the X-ray luminosity upper limit derived from
our Swift observation and the estimate of F based on the peak temperature of the irradiated face
of the neutron star’s companion. Several known millisecond pulsars with a similar E are currently
below our X-ray flux upper limit, and thus deeper observations may yield an X-ray detection of
ZTF J1406+1222.
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event mode data into 10 s snapshots and constructed a binned light curve by computing a weighted
sum of the measured fluxes in these snapshots according to orbital phase. These measurements are
presented in Extended Data Figure 2, where we have omitted < 1-0 detections (many of which
were consistent with negative fluxes and would not have translated to a magnitude scale). One
snapshot, 00013598005, was centred around the time of minimum light with an exposure duration
of 1736 s, covering the full fainter half of the orbit. The source was not detected above background
in this deep exposure, and we used XIMAGE and a 5 arcsec aperture to compute a 3-¢ upper limit
on the apparent magnitude of the object during the fainter half of the orbit, which we found to be

> 22.9map in the UVW2 band.

Fermi Analysis The source is not detected by the Fermi Gamma-ray Telescope. We computed an
upper limit to the gamma-ray luminosity using a prescription similar to that used for Swift J1644+5734°!
We considered a 15-degree region around the source and the 100 — 10000 MeV energy range, and
perform a binned likelihood analysis of Fermi LAT data between 2008-08-04 and 2021-08-27. We

2572, We assumed a power law

find a 3-0 upper limit on the photon rate of 9.64 x 10~1° photon cm ™~
with photon index 2, which is typical of spider binaries at gamma-ray energies®?. This corresponds
to a 30 uppper limit on the gamma-ray luminosity of L, < 1.45 x 103 ergs™! for an assumed
distance of 1140 pc; this means the source is fainter than most known black widow binaries in
the Fermi 4FGL catalog exhibit®>. The system is at a similar distance to PSR J0636+5128, a
95.8-minute orbital period black widow which is also not in the Fermi LAT 8 yr catalog®. As

discussed in the work on PSR J0636+5128%, this may be due to gamma-ray luminosity being

preferentially beamed towards the spin equator in the system, our our viewing the system at high
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inclination. Our heating models of the lightcurve are able achieve good fits with physical solutions
for inclinations as low as 35 degrees, and thus it is possible that for if the spin of the pulsar is
aligned with the binary orbit, we intercept very little gamma-ray luminosity. Because the ZTF
J1406+1222 was selected optically, its selection was not biased towards gamma-ray bright sources

like those selected using Fermi.

Galactic kinematic analysis The high proper motion and low metallicity sdK companion of ZTF
J1406+1222 are suggestive that the system is an object in the Galactic halo. To confirm this, we
used the galpy® package to compute its trajectory around the Milky Way over 6 Gyr, using the
McMillan2017 potential®, and it’s Gaia astrometric solution and the radial velocity of the sdK
measured from the LRIS spectra. The resulting trajectories, shown in Extended Data Figures 10
and 11, are clearly consistent with a halo trajectory in which the object reaches scale heights of
> 10 kpc out of the Galactic disk, as seen in Figure 10, and > 10 kpc radially from the Galactic
centre, as seen in Extended Data Figure 11. This analysis revealed that the object would escape the
Galaxy when placed at a distance of > 2000 pc. Significantly, the solution corresponding to ZTF
J1406+1222 being 940 pc away from Earth passes within just 50 parsecs of the Galactic center, as
illustrated in Extended Data Figure 11. This suggests that the system may have originated from a

disrupted globular cluster.

Searches for Radio Pulsations Black widow pulsars are capable of producing detectable radio
pulsations (e.g. see °7), provided the radio emission is beamed toward Earth and it is not
scattered or absorbed. These effects can be mitigated by performing observations at higher radio

frequencies. To search for radio pulsations from ZTF J1406+1222, we performed three radio
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Extended Data Figure 10: Radial vs scale height orbital solution of ZTF J1406+1222 around
the Galaxy A plot illustrating the Milky Way orbit of ZTF J1406+1222 over the course of 10 Gyr.
The colours (green, orange and blue) indicate three different distances corresponding to our best
distance estimate of 1140 £ 200 pc and the 1-0 upper and lower bounds of this distance estimate.
In all cases, the object reaches a scale height (z) of more than 10 kpc above the Galactic disk and
travels a great distance ([?) away from the Galactic centre in the radial direction, clearly indicating
that it is a halo object. Notably, the green line, illustrating the orbital solution if ZTF J1406+1222
is at =~ 940 +£ 200 pc passes within 50 parsecs of the Galactic center.
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Extended Data Figure 11: Cross section of ZTF J1406+1222’s orbital solution in the Galaxy
Cross section of the Milky Way orbit of ZTF J1406+1222 over the course of 10 Gyr. The colours
(green, orange and blue) indicate three different distances corresponding to our best distance

estimate of 1140 + 200 pc and the 1-0 upper and lower bounds of this distance estimate.
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observations with the NASA Deep Space Network (DSN; see ’!) radio telescopes, which were
carried out with the DSS-13 (34 m diameter) and DSS-14 (70 m diameter) antennae. The DSS-13
observation (epoch 1) was carried out for 56 minutes starting at 2020 July 02 21:57:00 UTC,
at a center frequency of 2.26 GHz (S-band) with a recording bandwidth of 110.625 MHz. Two
additional observations were performed with DSS-14 during separate epochs, with one starting
at (epoch 2) 2020 July 13 22:02:24 UTC for a duration of 183 minutes at a center frequency of
1.54 GHz (L-band) with a recording bandwidth of 320.625 MHz, and another starting at (epoch 3)
2021 July 31 05:35:00 UTC for a duration of 75 minutes at a center frequency of 2.24 GHz
(S-band) with a recording bandwidth of 115.625 MHz. During each observation, power spectral
measurements were recorded across the band at high time resolution in a digital polyphase filterbank

with a sampling time of 102.4 us and a frequency resolution of 0.625 MHz.

The data processing procedures are similar to those described in earlier studies of pulsars
and magnetars with the DSN (e.g. see "'=’*). We reduced the radio data by first identifying and
masking data corrupted by radio frequency interference (RFI) using the r£1i f i nd tool available in
the PRESTO pulsar search package’. The data were then bandpass-corrected, and low frequency
fluctuations in the baseline were removed by subtracting the moving average from each data point
in each frequency channel, which was calculated using 100 ms of data around each time sample.
Next, the sample times were corrected to the solar system barycenter (SSB) using the prepdata

tool available in PRESTO and JPL’s DE405 ephemeris.

The maximum predicted DM contribution along the line-of-sight is 23.4/21.9 pc cm™ according

to the NE2001/YMW 16 electron density models’®7”, and there is likely an additional, unknown
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contribution to the DM from the dense, ionized plasma wind produced by evaporation of the
companion. We chose to incoherently dedisperse the L-band and S-band data using dispersion

measure (DM) trials between 0 and 5000 pc cm™.

For each observation, the DM trial spacing
was chosen to minimize the total dispersive smearing (e.g. due to dispersive smearing within
each frequency channel, dispersive smearing across all frequency channels from the DM step-size,

and the sampling time). When determining the dedispersion scheme, we ignored the effects of

scattering, which would have resulted in larger DM step-sizes.

We searched for bright, astrophysical single pulses using a Fourier domain matched-filtering
algorithm, where each dedispersed time series was convolved with boxcar functions with logarithmically
spaced widths between 102.4 us and 30.72ms. Candidates identified from each DM trial with
a signal-to-noise ratio (S/N) > 6 were saved and classified using the FETCH (Fast Extragalactic
Transient Candidate Hunter) software package’®, which uses a deep-learning convolutional neural
network to identify astrophysical radio pulses. No astrophysical single pulses were detected during
any of our radio observations. We place the following 60 upper limits on the peak flux density of
single pulses from ZTF J1406+1222, assuming a fiducial width of 1 ms: (epoch 1) < 1.88Jy at

S-band, (epoch 2) < 0.23 Jy at L-band, and (epoch 3) < 0.41 Jy at S-band.

We also carried out a search for radio pulsations using accelsearch, a Fourier Domain
Acceleration Search (FDAS) pipeline available in PRESTO, which employs a matched-filtering
algorithm to correct for Doppler smearing. The search was carried out by summing 16 harmonics
and using the —zmax 1200 option, which defines the maximum number of Fourier bins that

the highest harmonic can linearly drift in the power spectrum (e.g. due to orbital motion). We
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carried out pulsation searches at L-band and S-band by independently searching overlapping data
segments spanning 10% of the orbital period (6.2 min). Searching shorter data segments, spanning
10% of the orbit, aids in mitigating the sensitivity loss due to orbital motion since the pulsar spin
frequency experiences an approximately linear drift in the regime where Ty, < Por/10 7. We also
carried out searches for pulsations with periods between 1 ms and 100 s in each dedispersed time
series segment using a GPU-accelerated Fast Folding Algorithm (FFA). We folded the dedispersed
data modulo each of the period candidates identified by the two algorithms, but we found no
statistically significant signals with S/N > 6 in any individual data segment. We place the following
60 upper limits on the radio flux density of ZTF J1406+1222, assuming a duty cycle of 10% and
an integration time of 6.2 min: (epoch 1) < 0.7 mJy at S-band, (epoch 2) < 0.1 mJy at L-band, and
(epoch 3) < 0.2mly at S-band. These sensitivity limits are comparable to the typical luminosities
of known pulsars at 1 kpc in the ATNF pulsar catalog®®, and many pulsars in the catalog at this

distance are below this luminosity threshold.

There are several possible explanations for the lack of radio pulsations observed from this
system. It is possible that the black widow pulsar is either radio-quiet, producing radio pulsations
that are below the above-mentioned detection thresholds, or its radio emission is not beamed
toward Earth. Alternatively, if the pulsar is an aligned rotator, then it is unsurprising that pulsations
were not be detected. At a distance of 1.14 kpc, the predicted diffractive interstellar scintillation (DISS)
bandwidth is ~8 MHz and the predicted DISS timescale is ~13 minutes at 1 GHz (assuming a
transverse velocity of 100kms™), according to NE20017°. At S-band, the DISS bandwidth and

DISS timescales are ~177 MHz and ~30 minutes, respectively, assuming a scaling of Avpgg o< v*
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and tpss oc v!2. Since the scintillation bandwidth at S-band is larger than our observing bandwidth,
it is possible that scintillation-induced modulation could have reduced the apparent flux density of
the radio pulses to a level below our detection threshold. Since ZTF J1406+1222 is a compact
system, with an estimated semi-major axis of 0.59 R, for a 1.4 M, neutron star in a circular orbit
with a 0.05 M, companion, extreme scattering and eclipses due to the presence of gas flowing out
from the irradiated companion is also likely a contributing factor to the detectability of the pulsar’s

radio emission.

Formation Questions The wide tertiary companion and short inner binary orbital period of ZTF
J1406+1222 are highly unusual amongst neutron star systems, prompting the question of whether
these two peculiarities are related, and challenging formation models. The orbital period of 62
minutes is the shortest known for a black widow system, the previous record holder being PSR
J1653.6-0159 with an orbital period of 75 minutes®!. Similar to cataclysmic variables, formation
models for black widow and redback systems (e.g., 873%) predict that hydrogen rich donors reach
a minimum orbital period at F,,;, ~ 80 min, slightly longer than that of ZTF J1406+1222. Shorter
minimum orbital periods are possible if the donor star is somewhat evolved®® (i.e., it has a
helium-rich composition). Hence, the ablated component of ZTF J1406+1222 may have formed
from a helium-rich star that began mass transfer near the end of its progenitor’s main sequence

evolution.

There is no obvious reason to believe the widely separated tertiary allowed the system to
reach unusually short orbital periods. The dynamics of the inner binary would naively be decoupled

from the influence of the outer tertiary once general relativistic precession occurs on a timescale

52



shorter than the precession induced by the outer body, which will happen at orbital periods far
greater than one hour. Similarly, any formation models involving tidal effects or mass transfer
from the third body would probably not occur due to its very wide separation. The same applies to

formation models invoking a three-body common envelope event®’.

In fact, the wide tertiary companion in ZTF J1406+1222 poses serious problems for most
formation models of the system. It is difficult to understand how the widely separated companion,

with an orbital velocity of ~ 1km s™?

, was not unbound due to a kick imparted to the inner
binary upon the formation of the neutron star. In formation models of the pulsar triple system
PSR J0337+1715%, the outermost orbit has a period of P =17 d (orbital velocity of ~ 100 km/s)
at the time of the supernova, so the system would have more easily stayed bound. Appealing to

extremely small supernova kicks® is not sufficient for ZTF J1406+1222 to have remained bound,

as explained below.

In standard binary formation channels of spider systems and low-mass X-ray binaries, the
binary evolution begins with a massive (M; ~ 10 — 20 M) star at moderate orbital separation
(a ~ 1AU) with a low-mass (Ms ~ 1My) companion star. A common envelope phase occurs
after the primary expands into a red supergiant, after which the binary is composed of the helium
core (M; ~ 3 — 6 M) of the primary in a ~ 1 day orbital period with the low-mass companion.
The helium star undergoes a core-collapse explosion to form a neutron star, ejecting its remaining

helium/carbon/oxygen envelope, and possibly being kicked in the process.

In the absence of significant envelope stripping via case-BB mass transfer after core He-burning®”
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(as expected for higher mass helium stars), a few solar masses of material is expected to be ejected
during the explosion. This is comparable to the remaining mass of the system, and thus the inner
binary could become unbound due to the supernova mass loss, even in the absence of a kick.

The instantaneous mass loss will also kick the centre of mass of the inner binary by a velocity

Av = vpe(Mej/Mena), where vge = \/G(Ml + My)/a[My/(M; + M,)] is the helium star
orbital velocity before the explosion, M, is the ejecta mass and Mgna = My + My — M, is
the post-explosion mass of the system. For a typical pre-explosion configuration of M; ~ 4 Mg,
My ~ 1 Mg, My ~ 2.5Mg and a ~ 7R, we thus expect a kick of Av ~ vy, ~ 70 km s~'. This
is far larger than the orbital velocity of the low-mass tertiary object in ZTF J1406+1222, meaning

that the third body should become unbound for any choice of parameters near our fiducial values.

There are a few ways in which the net kick could be lower than these estimates. If the
companion mass M5 at the time of core-collapse is much smaller, e.g. My ~ 0.1 Mg, this would
lower the kick velocity by a factor of ~ 10 to several km s~!, but this would likely still unbind
the tertiary. If the ejecta mass was much smaller, e.g. My ~ 0.25Mg as would be expected
for a low-mass helium star that lost most of its envelope via case-BB mass transfer™, this would
lower the kick by a factor of ~ 10, but once again the tertiary would likely become unbound.
A combination of these two mechanisms could potentially operate, but one would expect the
companion to accrete some of the transferred mass such that its pre-explosion mass increases well
above 0.1 M. The mass loss kick could be diminished if the pre-explosion orbital period is longer
than one day, but it can only be a few times larger in order to ensure that subsequent magnetic

braking can shrink the system to the observed short period, which is not enough to greatly decrease
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the kick velocity. Finally, it is possible that a supernova kick to the neutron star could cancel out
the mass loss kick so that the overall kick to the inner binary is very small. But given the typical
kick scale of a few hundred kilometers per second, great fine tuning would be required to reduce

the binary motion to less than a few km s~

Since none of the solutions above are particularly compelling, other formation mechanisms
should be considered. One possibility is that the inner binary of ZTF J1406+1222 had a much
larger orbital separation than a ~ 7 R, e.g., if it never went through a common envelope phase.
This would entail a much smaller kick due to mass loss upon core-collapse, perhaps allowing
the tertiary to remain bound. Given the right orbital inclination of the tertiary, the inner binary
could be hardened by high-eccentricity migration®' (e.g. Kozai oscillations). Upon tidal orbital
circularization to short periods, magnetic braking and gravitational wave emission would then
bring the system to the short orbital period observed. However, this mechanism would still require
an exceptionally small supernova kick (less than a few km s™!) to the neutron star in order for the

tertiary to remain bound, which may be unlikely.

Another possibility is that this system was dynamically assembled and ejected from a globular
cluster. In order to dynamically eject a bound triple system, a four-body interaction would be
required. For instance, a binary-binary interaction could have occurred, ejecting one star and
forming a bound triple system, while also imparting enough momentum to the triple system to
eject it from the cluster. However, that scenario may still require some fine tuning to retain a
widely separated third body whose orbital velocity is much less than a typical globular cluster

escape velocity. A remarkably similar system is PSR J1024-0719%2, which also has a low-mass
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low-metallicity widely separated companion star, and was suggested to have been ejected from a

globular cluster.

If ZTF J1406+1222 formed in the Galactic field, perhaps the most appealing solution is that
the neutron star in ZTF J1406+1222 was formed by AIC rather than a core-collapse explosion.
In this scenario, the neutron star was formed from a white dwarf that grew to larger than the
Chandrasekhar mass M¢, ~ 1.4 M, after accreting from the binary companion. In this case,
the decrease in gravitational mass of the neutron star upon AIC is ~ 0.1 My, resulting in a kick
to the centre of motion of the binary of a few km s~ (or less for M, < 1Mg), small enough
that the tertiary is more likely to remain bound. The neutron star could become a millisecond
pulsar immediately (depending on the spin rate of the accreting white dwarf) or after further
mass accretion from the binary companion, creating the spider system that we observe today.
More sophisticated modelling of the possibilities outlined above should be performed in order to

understand the formation of ZTF J1406+1222.

1 Data Availability

Reduced HIPERCAM photometric data and LRIS spectroscopic data are availible at

https://github.com/kburdge/ZTFJ1406-1222. The X-ray observations already in the public domain,
and their observation IDs have been supplied in the text. The ZTF data is also in the public domain.
The proprietary period for the spectroscopic data will expire at the start of 2022, at which point the

raw spectroscopic images will also be accessible via the Keck observatory archive.
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2 Code Availability

Upon request, the first author will provide code (primarily in python) used to analyze the observations,

and any data used to generate figures (MATLAB was used to generate most of the figures).
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