
1. Introduction
Earth's radiation belts have been the observational target on numerous satellites starting from Explorer 1 and 3 
and Sputnik 2 and 3 to the most recent missions, the Van Allen Probes (called earlier Radiation Belt Storm Probes 
[RBSP]) twin spacecraft and the Japanese Exploration of energization and Radiation in Geospace “Arase” (ERG) 
probe. The direct measurements of energetic particles and other quantities of radiation belts provide the most 
information on the complexity of the radiation belts dynamics. In case when no mission is operating and no direct 
observations of radiation belts are available, other types of measurements become of critical importance. Data 
containing indirect effects from the energetic particles in the radiation belts detected as background counts by the 
instruments not designed to measure radiation belts particles can be the only source for further development and 
validation of the radiation belts' models.

Using the advantage of changes in Cluster orbit in 2007–2009 which brought it very close to the Earth (peri-
gee at around L = 2, where L is the McIlwain parameter) and availability of the Double Star data, Ganushkina 
et al. (2011) provided the direct evidence that the background counts in HIA (Hot Ion Analyzer) and CODIF 
(COmposition and DIstribution Function) instruments due to penetration of energetic particles of radiation belts 
can determine the locations of the boundaries of the outer and inner belts. The assumption that the measured 
background is due to 𝐴𝐴 𝐴 2  MeV (megaelectronvolt) electrons was proven by the simulations using the Casino 
(Monte Carlo Simulation of Electron Trajectory in Solids, http://www.gel.usherbrooke.ca/casino/). At the same 
time, this 2 MeV threshold is not an absolute one, since the contamination can also come from the gamma-rays 
emitted by incoming electrons via the Bremsstrahlung process (e.g., Kasahara et al., 2009). For the proton back-
ground, 30 MeV as the low threshold energy was proved using the SRIM (The Stopping and Range of Ions in 
Matter, http://www.srim.org/) simulation software. Keeping in mind the above mentioned assumptions, it was 
nevertheless possible to study the variations of the determined radiation belt boundaries with time and solar wind 
driving and draw conclusions on the slot region widening due to weaker inward radial diffusion and weak local 
acceleration.

Background counts can define specific features in the radiation belt fluxes as, for example, the discovery of a 
storage ring (Baker et al., 2013) following the launch of the Van Allen Probes. This transient feature was observed 
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as a ring of energetic (𝐴𝐴 𝐴 2 MeV) electrons located between L-shells of 3 and 3.5 separate from the traditional 
radiation belts. This additional belt was formed on September 2, 2012 following the arrival of an interplanetary 
shock, it was present for about four weeks and it disappeared on October 1, 2012.

In later studies, storage ring feature was also called a third belt and, more recently, a remnant belt as more un-
derstanding of the nature of it has appeared. Turner et al. (2013) analyzed THEMIS (Time History of Events and 
Macroscale Interactions during Substorms) SST (Solid State Telescope) data and reported 13 events when two 
peaks were observed in the electron phase space density (with energies from ∼400 keV to several MeV) in the 
outer radiation belt region. Yuan and Zong (2013) found eight events when the radiation belts exhibited three 
belts using data from the low-altitude SAMPEX (Solar Anomalous and Magnetospheric Particle Explorer) space-
craft. Kellerman et al. (2014) reanalyzed the available data during the March 1991 storm and found clear presence 
of a storage ring. As more Van Allen Probes data became available, Baker et al. (2016) reported the signatures of 
storage ring during two storms in 2015 and later Pinto et al. (2018) identified 30 three-belt events between Sep-
tember 2012 and November 2017 with energy peaked at 5.2 MeV and the lifetime ranged from days at 1.8 MeV 
up to months at 6.3 MeV. The most recent study by Hao et al. (2020) found double peaks at L = 3.5 and L = 4.5 
in 500–800 keV electron spectrograms present for 2–3 days during September 2017 storm. Baker et al. (2013) 
suggested that the appearance of the storage ring was related to the loss of the electrons in the outer radiation 
belt, but not to the freshly injected particles. The formation of such three-belt structure was attributed by Mann 
et al. (2013) to radial transport of electrons driven by ULF (ultra-low frequency) waves. Later simulation studies 
by Shprits et al. (2013); Shprits et al. (2018) demonstrated the role of scattering by electromagnetic ion cyclotron 
waves to the Earth's atmosphere. They showed that the storage ring electrons can remain trapped for a long time 
due to the absence of resonant interactions with very-low-frequency plasma waves at low latitudes and, as a con-
sequence, no scattering. Pinto et al. (2019) using Van Allen Probes measurements inside the plasmasphere found 
a good agreement between the observed decay rates with theoretical lifetimes of ultra-relativistic electrons for 
losses due to hiss waves based on recent statistics of hiss waves and plasmaspheric density.

In the present paper, we will use the original name “storage ring” as was given in Baker et al. (2013). This particu-
lar noticeable feature is used here to demonstrate based on Cluster data the strength of the method to determine 
the finer specifics and temporal features in the radiation belts from the measured background, not only the usually 
well-observed locations of the outer and inner belts. This method is rather straightforward and applicable when 
the data from electrostatic analyzer instrument HIA onboard Cluster are available and the penetrating electron 
background can be identified in the energy-time spectrograms as a sharp increase in the counting rates appearing 
simultaneously in all energy channels.

At the same time, the applicability of such a method meets with a difficulty when HIA data are not available, 
as has occurred during the later Cluster years. Moreover, the Double Star mission was a rather short mission. 
Regardless of the absence of HIA data, we suggest a new approach to define the locations of radiation boundaries 
using the background information when only the CODIF instrument data are in use.

Despite its designed lifetime of 2 years, Cluster has been providing the data for more than 20 years now. As of Oc-
tober 2020, its mission has been extended, at least, until the end of 2022. The new approach presented in the cur-
rent paper aims towards the full usage of this unprecedented repository of data to reveal the radiation belts struc-
ture and dynamics. Section 2 briefly describes the instrumentation and data used in the paper. A new approach to 
define the locations of radiation belts boundaries using only CODIF data together with further applications of our 
previously developed method when both HIA and CODIF data are available are demonstrated in Section 3. Two 
time periods are analyzed in detail as two examples when a storage ring was clearly observed on Cluster (both 
HIA and CODIF instruments) and Double Star (HIA instrument) data on July–August 2007 and only on Cluster 
CODIF data on September–October 2012. We discuss both methods and draw conclusions in Section 4. The wid-
er purpose of the paper is to demonstrate how to turn the instrument background into scientifically valuable data.

2. Instrumentation
The Cluster mission was launched in 2000 and it consists of four identical spacecraft on similar elliptical polar 
orbits with an initial perigee at about 4 RE (RE = 6371 km is the Earth's radius) and an apogee at 19.6 RE (Escoubet 
et al., 2001). During perigee passes, Cluster traverses the inner magnetosphere providing its latitudinal profiles 
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almost along the same flux tube (Dandouras, 2013; Dandouras et al., 2005, 2009) and covering all magnetic local 
times (MLTs) when crossing the equator due to the annual precession of its orbit.

The Cluster orbit perigee moved closer to the Earth, from about 4 RE in the year 2000 to about 1.3 RE in the 
year 2010 due to Sun–Moon gravitational perturbations and to maneuvers (Escoubet et al., 2015). In November 
2009, the orbit period was reduced to about 54 hr 35 min due to the lowering of the apogees of the four Cluster 
spacecraft by about 5,000 km. The orbit inclination had deviated from its original 90° and the apogee moved to 
the Southern Hemisphere. In 2013, the perigee altitude increased again and apogee started returning back to the 
Northern Hemisphere. In 2017–2018, the gravitational perturbations resulted even in an increase of perigee up 
to 6–7 RE.

Figure 1. Example of boundaries (dashed vertical lines) of outer and inner radiation belts based on the measured background 
seen in the energy versus time ion spectrograms in counts/second by the Cluster (a) HIA and (b) CODIF instruments on June 
30, 2008, and (c) Double Star TC-1 HIA energy-time spectrogram in counts/second together with (d) L-values on August 8, 
2007 (reproduced from (Ganushkina et al., 2011)).
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CODIF and HIA are two complementary spectrometers of the Cluster Ion 
Spectrometry (CIS) experiment with the time resolution of 4 s (one spacecraft 
spin) (Rème et al., 2001). The mass-resolving spectrometer CODIF provides 
the three-dimensional ion distribution functions for the major magnetospher-
ic species (H+, He+, He++, and O+), with energies from ∼25 eV/e to about 
40 keV/e. The CODIF instrument combines ion energy per charge selection, 
by deflection in a rotationally symmetric toroidal electrostatic analyzer, with 
a subsequent time-of-flight analysis. An MCP (microchannel plate) detector 
ring is used to detect both the incoming ions and the secondary electrons, 
provided by the time-of-flight system. The detector ring is segmented in 16 
anodes, each anode covering 22.5°. These anodes are grouped in two sections 
of 180° each, and only one of the two sections is operated at a time. The HIA 
sensor does not provide mass resolution but instead detects ions in the energy 
range of 5 eV/e to 32 keV/e with an angular resolution of 5.6°. The magnetic 
field data are from the FGM (Fluxgate Magnetometer) experiment (Balogh 
et al., 2001).

The Double Star TC-1 was the joint mission of the European Space Agen-
cy (ESA) and China National Space Administration (CNSA) launched 
into an elliptical orbit of 1.09–13.4 RE with 28.5° inclination in 2004 (Liu 
et al., 2005). It reentered the atmosphere on October 2007. The Cluster and 
Double Star orbits were in almost the same meridian. The HIA instrument on 
board the Double Star TC-1 spacecraft, which was nearly identical to the CIS 
HIA sensor on board Cluster, measured the three-dimensional ion distribu-
tion functions without mass discrimination with energies between 5 eV/q and 
32 keV/q (Rème et al., 2005). The magnetic field data come from the FGM 
experiment (Carr et al., 2005).

3. Turning Instrument Background Into Science Data
3.1. Boundaries of the MeV Radiation From keV Measurements by 
Both Cluster CIS HIA and CODIF and Double Star HIA

3.1.1. Method to Determine the Boundaries of Radiation Belts

Decreasing of perigee resulted in Cluster entering deep in to the radiation 
belts region, where MeV particles can penetrate through the walls of elec-

trostatic-analyzer plasma instruments and directly affect their MCP detectors. Such penetrating particles induce 
a counting background that can be used to identify the presence of these very energetic populations (Delory 
et al., 2012; Ganushkina et al., 2011). Figure 1 (see Figures 1 and 4 in Ganushkina et al., 2011) presents example 
energy-time spectrograms in counts/second measured by (a) HIA and (b) CODIF instruments on June 30, 2008 
with Cluster going as low as L = 2.6 to illustrate the method to identify the inner and outer radiation belt bound-
aries out of the background counts. The counts appearing simultaneously in all energy channels as seen in HIA 
spectrogram strongly indicate that they come from the penetrating particle background, insensitive to the particle 
energy selection by the electrostatic analyzer. Entering and leaving the outer and inner radiation belts which 
can be seen in the presence or absence of the background counts in all energy channels provide the locations of 
the boundaries of the outer and inner radiation belts (marked by dashed vertical lines). The background seen in 
CODIF spectrogram provides additional information but it cannot be used in a similar way as HIA spectrogram 
for determining the boundaries. The double signal coincidence technique used in CODIF to eliminate most of 
the penetrating particles results in the reduced background without clear appearance of simultaneous counts 
in all energy channels. Figure 1 demonstrates an example of an energy-time spectrogram (c) in counts/second 
measured by the Double Star HIA instrument on August 8, 2007 together with (d) L-values. The white gap on the 
spectrogram corresponds to the spacecraft being in eclipse. Since the background measured by the Double Star 
HIA instrument is rather similar to that of Cluster HIA, the same method was applied to identify the boundaries. 
When Double Star leaves the outer belt moving inbound, it crosses the inner boundary of the outer radiation belt. 
It then detects the slot region between this boundary and the outer boundary of the inner radiation belt. Close 

Day Month UT interval Satellite Storage ring MLT

2 July 1000–1300 Cluster no 16.5–16.8

3 July 0600–0800 Double Star no 14–20, 02–05

7 July 0500–0730 Cluster yes 15.4–17.4

11 July 0600–0800 Double Star yes, inbound 13–16, 03–05

13 July 1200–1500 Double Star yes 12–14, 3–6

14 July 0800–1030 Cluster yes 15–16

16 July 1630–2000 Cluster unclear/yes 16

18 July 0100–0400 Double Star yes 13–15, 4–6

19 July 0200–0500 Cluster yes 15–16

19 July 0400–0700 Double Star yes 13–15, 3–5

21 July 1130–1400 Cluster yes/weak 15

21 July 1200–1300 Double Star unclear 13–16

23 July 2000–2330 Cluster no 15–16

24 July 2100–2400 Double Star yes 12–14, 4–6

26 July 0600–0830 Cluster yes 15–16

26 July 0100–0300 Double Star yes 13–15, 3–5

27 July 0400–0600 Double Star unclear 13–15, 3–5

28 July 1400–1730 Cluster yes/weaker 15–16

31 July 2300–0230 Cluster yes/weaker 15–16

2 August 0900–1200 Cluster yes/weak 15

4 August 1700–2030 Cluster no 15

7 August 0300–0600 Cluster no 14–15

7 August 1400–1700 Double Star no 11–14, 2–4

Table 1 
List of Available Cluster and Double Star Observations of a Storage Ring 
During July–August 2007 Period With Dates Discussed in Detail Marked 
by Bold
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to its perigee, Double Star leaves the inner belt (inner boundary of the inner 
radiation belt). When moving outbound, the outer boundary of the inner belt 
and the inner boundary of the outer belt are again crossed.

The Double Star data plot reveals also another feature: as seen in the spectro-
gram, when the spacecraft exits the inner belt and approaches perigee, and 
before the data gap due to the eclipse, the HIA instrument detects the iono-
spheric particles as a very intense population below 15 eV/q. This population 
is detected only in the tailward looking and in the dawnward looking sectors: 
this is due to the relative motion of the spacecraft with respect to the ambient 
plasma (Vx < 0 and Vy < 0 for the spacecraft) which “scoops” the cold plasma 
into the instrument.

We employ the same method of determining the boundaries of radiation belts 
from the background measurements on the keV instruments not covering the 
MeV energies of the radiation belts for identifying not only usually well-ob-
served locations of the outer and inner belts but temporal boundaries of the 
storage ring.

3.1.2. Example Event on July–August 2007

During the first event on July–August 2007, signatures of a storage ring were 
clearly visible. This event was selected from the previously analyzed (Ga-
nushkina et al., 2011) periods of Cluster data (April 2007–June 2009) and of 
Double Star data (May 15–28 September 2007). Both Cluster CIS HIA and 
CODIF data were available with Double Star HIA data in addition.

Table 1 presents the list of all days with UT intervals when data were available, listing whether or not the bounda-
ries of storage ring were noticeable and MLTs crossed by the satellites. The dates of observations that we discuss 
in more detail in the present paper are marked bold. Due to the type of the orbit, Cluster crossed the inner magne-
tosphere regions at 14–16 MLT on both inbound and outbound passes for all the days. Double Star was at 12–16 
MLT on the inbound and at 02–06 MLT on the outbound passes.

The overview of the solar wind and geomagnetic activity during the period of interest from July 1 to August 10, 
2007 is presented in Figure 2. High resolution (5 min) data were obtained from OMNIWeb (https://omniweb.
gsfc.nasa.gov/). Variations of (a) IMF Bz, (b) solar wind speed Vsw, (c) solar wind dynamic pressure Psw are shown 
together with the (d) AE, and (e) SYM-H indices.

Figures 3–6 present the sequence of selected measurements from Cluster and Double Star for the first half of July 
2007 when the storage ring has appeared. Figures 8–10 show the selected measurements from Cluster and Double 
Star for the second half of July 2007 and the beginning of August 2007 when the storage ring has disappeared. 
The corresponding times are marked with bold font in Table 1 and with vertical solid lines in Figure 2.

Each plot of Cluster data (data from C3 satellite) in Figures 3, 4, 6, 8, and 9 shows in the top panel the energy-time 
ion spectrogram of counts per second from CIS HIA instrument where entering and leaving the regions with 
penetrating electron flux (𝐴𝐴 𝐴 2 MeV for Cluster) can be identified as a sharp increase/decrease in the counting rates 
appearing/disappearing simultaneously in all energy channels.

The next panel presents the energy-time H+ spectrogram of counts per second measured at CIS CODIF instru-
ment. The CODIF instrument is the time-of-flight ion mass spectrometer with onboard processing which uses 
the detection of two signals, that is, a “start” signal and a “stop” signal separated in time by a valid time-of-flight 
interval (corresponding to the ion velocity) to validate an ion detection. This double signal coincidence technique 
helps in eliminating most of the penetrating particles, which produce only “single” signals, substantially reducing 
the background “ion counts” in the radiation belts. While the background can be still seen, the CODIF ener-
gy-time H+ ion spectrograms are not best suited for the identification of the radiation belt boundaries.

Figure 2. Overview of solar wind and geomagnetic activity during the July 1–
August 10, 2007 period with vertical lines marking selected times for Cluster 
and Double Star when a storage ring was observed (red) or not (blue).

https://omniweb.gsfc.nasa.gov/
https://omniweb.gsfc.nasa.gov/
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A partial exception to this is the O+ ion counts, shown in the next panel (third from the top). Due to the greater 
time-of-flight of these heavy ions (smaller velocity for a given energy), the valid time window for the detection 
of both a “start” signal and a “stop” signal is longer. This increases the probability of detecting during this time 
window two uncorrelated penetrating particles generating two signals (one each), one penetrating particle mim-
icking a “start” signal and the other mimicking a “stop” signal, and generating thus a false (background) O+ ion 
count. The fourth panel from the top presents the HIA ion counts per second integrated over all energies, whereas 
the fifth panel shows CODIF O+ counts per second integrated over all energies. The spikes on the plot are data 
artifact. Variations in CODIF O+ counts reflect the appearance of the background as seen in HIA spectrograms. 
The sixth and last panel in the bottom contains the L-values which Cluster crossed.

The top panel at each plot of Double Star measurements in Figures 5, 7, and 10 contains instrument operation 
data (instrument mode and MCP high-voltage settings), whereas the following five panels show ion energy-time 
spectrograms in counts per second units. The first four of them show ions arriving in the 90° × 180° sector with 
a field-of-view pointing in the sun (second panel from the top), dusk (third panel), tail (fourth panel), and dawn 
(fifth panel) direction respectively, whereas the sixth panel shows the omni-directional data. These allow the con-
firmation of the isotropic nature of the plasma outside the background areas of the radiation belts. Note that, due 
to a thicker shielding on Double Star than on Cluster, the background due to the penetrating particles is reduced 
allowing to identify the plasma populations even in the outer radiation belt and in the storage ring. This is not, 
however, the case in the inner belt, where the count rates due to the penetrating particles are extreme and saturate 

Figure 3. Cluster CIS data, July 2, 2007: energy-time spectrograms of counts/second for (top panel) ions from CIS HIA instrument, (second panel) H+ and (third panel) 
O+ ions from CIS CODIF instrument, integrated over all energies counts/second of (fourth panel) HIA ions and (fifth panel) CODIF O+ ions with (bottom panel) L 
values which Cluster crossed. The spikes in fourth panel are data artefact. Regions of outer radiation belts are marked by vertical dashed lines. No storage ring, intense 
radiation belt.
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the detector. The data gap, at the middle of the inner belt, is due to a loss of data acquisition when the satellite gets 
in the Earth's shadow (loss of Sun-reference pulse). The seventh panel presents the plasma density as calculated 
from the measured ion distribution functions. Outside the radiation belts, for example, in the slot region, this 
gives the density of the ion populations that are in the instrument energy range (5 eV/q–32 keV/q). However, in 
the areas where background due to penetrating particles is present, this density value is artificially boosted by the 
penetrating particle counts. The bottom, eight panel shows the L-shell value evolution.

We will analyze Figures 2–10 together with Table 1 simultaneously when describing the appearance, persistence 
and disappearance of a storage ring during the July–August 2007 time period as seen in Cluster and Double Star 
spectrograms. As can be seen in Figure 2, the beginning of July (July 1–3) was rather quiet. Cluster observations 
on July 2, 11–13 UT (marked as blue vertical line in Figure 2) did not contain any indications of a storage ring 
presence (Figure 3). We can see Cluster entering and leaving the outer radiation belt as it is shown in the back-
ground counts in the spectrograms and in the peaks of the integrated over all energies HIA ion and CODIF O+ 
counts.

During the period of July 3–6, large oscillations in IMF Bz, a gradual increase of Vsw to 640 km/s indicated the 
occurrence of a small CIR (Corotating Interaction Region) storm with HSS (high speed stream) feature. The 
first signs of a storage ring appeared (Figure 4) on July 7, 05–08 UT (red vertical line in Figure 2). A new slot 
was formed in the HIA spectrogram with the reduced background counts between two areas with the increased 
background counts. CODIF spectrograms are less definite but both integrated over all energies HIA ion and 
CODIF O+ counts curves show two peaks corresponding to the increased background counts with a dip between 
them corresponding to a newly formed slot. The background counts at distances closer to Cluster perigee are the 

Figure 4. Cluster CIS data (similar to Figure 3), July 7, 2007: Appearance of storage ring.
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indicators of a storage ring presence. If this storage ring was formed due to the small CIR storm described above, 
Cluster observed it 3.5 days after the storm maximum.

End of July 10 when IMF Bz reached about −10 nT was the initial phase of a small CME storm with SYM-H 
dropping to −30 nT in the beginning of July 11. Double Star observed a clear signature of a storage ring (Ta-
ble 1, data only from inbound pass, not shown) during the 06–08 UT interval which was at around the main 
phase of the storm. Very distinct signatures of a storage ring were seen on Double Star at 12–15 UT of July 
13 (Figure 5). Several boundaries are seen in Figure 5: the inner boundary of the outer radiation belt (first 
vertical dashed line on Double Star inbound pass) and outer boundary of the inner radiation belt (last vertical 
dashed line on Double Star inbound pass) and the same boundaries in the reverse order on the outbound pass. 
In addition to the boundaries described above, in Figure 5, we see a new, second slot formed between the inner 
boundary of the outer radiation belt and a new area of background counts. This new area is the storage ring 
seen in Double Star data, especially distinct in the omni-directional spectrogram (third panel from the bottom). 
The plasma density presented at the second panel from the bottom shows a clear increases due to penetrating 
particles when Double Star enters the radiation zones and decreases when it goes into slot regions. The storage 
ring was observed at the maximum of a small CME storm and after two days of storm recovery. It is hard to 
say whether we see the same, previously formed storage ring after the small CIR storm on July 4 or the new 
one formed at the small CME storm.

Figure 5. Double Star HIA data, July 13, 2007: (top panel) instrument operation data as instrument mode and MCP high-voltage settings, ion energy-time 
spectrograms in counts/second with ions arriving in the 90° × 180° sector with a field-of-view pointing in the sun (second panel from the top), dusk (third panel), tail 
(fourth panel), and dawn (fifth panel) direction respectively with omni-directional data (sixth panel), (seventh panel) plasma density as calculated from the measured 
ion distribution functions, and (eight panel) L-shell values. The data gap is due to a loss of data acquisition when the satellite gets in the Earth's shadow. Regions of 
radiation belts are marked by vertical dashed lines. Clear storage ring.



Journal of Geophysical Research: Space Physics

GANUSHKINA ET AL.

10.1029/2021JA030014

9 of 19

The next CME-type storm occurred on July 14 with an initial southward turning of the IMF Bz at around 09 UT 
(−11 nT at about 18 UT). Cluster observed very clear signatures of a storage ring during 09–10 UT on July 14, 
right at the beginning of the main phase of the storm (Figure 6). We can see a very distinct new slot between 
the inner boundary of the outer radiation belt and outer boundary of the storage ring. The next two observations 
(Table 1, data not shown) also contained storage ring signatures. While July 19 was a rather quiet day, Cluster 
observed clear signatures of a storage ring during 03–04 UT (data not shown) and Double Star saw them, too, 
during 05–08 UT on that day (Figure 7) with a second slot and a new area of background counts. After that, no 
clear signatures of a storage ring were seen until July 24 when Double Star (data not shown) spectrograms showed 
the distinct increases in the background counts representing the presence of a storage ring. Two days later on July 
26, while geomagnetic conditions were still not disturbed, Double Star (data not shown) still saw a storage ring 
present on 01–03 UT and later Cluster observed still clear signatures on 06–0830 UT (Figure 8).

Cluster observed storage ring features on the end of July 31-beginning of August 1, 2300–0230 UT (Figure 9), but 
they were considerably weaker than those on August 2, 09–12 UT (data not shown). Observations from Cluster 
on August 4, 17–2030 UT, and August 7, 03–06 UT (data not shown), and Double Star on August 7, 14–17 UT 
(Figure 10, the thin vertical stripes in the spectrograms are telemetry glitches), did not show any storage ring 
signatures.

The conducted analysis of the locations of boundaries determined from the background counts is able to provide 
the L-values for each boundary detected during the July–August 2007 event (Figure 11) on both satellites. On the 
inbound pass, the satellites first cross the outer boundary of the outer belt (blue rhombuses) which locations var-
ies from 5 to 8 in L being on average at L = 6. The inner boundary of the outer belt is marked by the blue circles 
(located at about L = 4), the outer boundary of the storage ring is marked by the red circles and the gap between 

Figure 6. Cluster CIS data (similar to Figure 3), July 14, 2007: Clear storage ring.
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them is the new slot. Red triangles depict the locations of the inner boundary of the storage ring. The mean width 
of the new slot and new storage ring in L is about 0.3–0.5. So, the storage ring is usually located at Ls between 3 
and 4. Thus, background information can be of high use, especially, if no actual particle data are available.

3.2. Boundaries of the MeV Radiation From keV Measurements From Cluster CIS CODIF Only

3.2.1. Adaptation of Method to Determine the Boundaries of Radiation Belts

As was presented above, if the data from the simple electrostatic analyzer instrument HIA onboard Cluster and 
Double Star are available, the radiation belt boundaries can be identified in the energy-time spectrograms as a 
sharp increase in the counting rates appearing simultaneously in all energy channels. No data from the Double 
Star spacecraft, however, have been available after October 2007. Since October 2012, HIA instrument operations 
onboard Cluster have been reduced to 1 hr per orbit due to an instrument issue. For the events where no HIA data 
were available (HIA instrument switched off onboard Cluster), we have to apply a new method here, so as to use 
the data of only the CODIF instrument. As was mentioned in the descriptions of CODIF spectrograms shown in 
in Figures 3, 4, 6, 8, and 9, the double signal coincidence technique used in the CODIF instrument significantly 
reduces the background counts. Energy-time ion spectrograms from CODIF alone cannot be directly used in a 
similar way as HIA spectrograms.

The O+ ion counts, due to their longer time-of-flight as compared to H+ and longer time window for both the 
“start” and “stop” signal, have increased probability to detect the generated false background as was explained in 
Section 3.1.2. When defining the boundary position from CODIF spectrograms, we analyze the changes in O+ ion 
counts/sec with time 𝐴𝐴 Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Δ𝑐𝑐
 for all 31 energy channels step by step in time. Whenever possible, we determine the 

Figure 7. Double Star HIA data (similar to Figure 5), July 19, 2007: Clear storage ring.
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first time moment, when the 𝐴𝐴 Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Δ𝑐𝑐

 is the largest and the same for all energy channels (sharpest gradient) and put 
a boundary there. We compare two time steps before and two time steps after of each time moment. We always 
conduct a visual inspection of the defined boundary locations.

In the new approach, additional information for penetrating particles comes from the CODIF full telemetry data 
set, which besides the valid ion detection events (“start” signal plus “stop” signal plus valid detection position 
for each event, i.e., valid ion detected) includes also count rates of “single” events. These are separate counters 
that register (a) the total of the “start” signals detected, independently of whether a start signal was accompanied 
by a stop signal or not (“start” rates), (b) the total of the “stop” signals detected, independently of whether a 
stop signal was preceded by a start signal or not (“stop” rates), and also (c) the “non-valid” event rates (Kistler 
et al., 2013). These additional data streams are not energy dependent but rather summed over all energy channels 
and look directions.

“Start” and “stop” rates give thus each a measure of the sum of the detected ions (valid detections), plus the ions 
that generated only a “start” or only a “stop” signal respectively (due to the finite detection efficiency of the 
MCPs), plus the penetrating particles. In the presence of penetrating particles the “start,” “stop,” and “non-valid” 
event rates increase, but this increase is not accompanied by a corresponding increase of the valid events that are 
shown in the energy-time spectrograms, particularly for the light ions as H+. To define the boundary position 
from telemetry signals, we follow the evolution of the telemetry counts/sec with time 𝐴𝐴 Δ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Δ𝑡𝑡
 for all 3 signals de-

scribed above. We determine all the time moments, when the 𝐴𝐴 Δ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
Δ𝑡𝑡

 changes its sign and attribute them with local 
minima and maxima. The same procedure is applied to CODIF O+ counts per second integrated over all energies. 
It is thus the combined information from these CODIF data, that is, O+ ion count rates, “start” count rates and 

Figure 8. Cluster CIS data (similar to Figure 3), July 26, 2007: Clear storage ring.



Journal of Geophysical Research: Space Physics

GANUSHKINA ET AL.

10.1029/2021JA030014

12 of 19

“non-valid” event count rates that is used here to identify and locate the boundaries of the radiation belts and of 
the storage ring. It includes the quantitative determination of directions of changes in counts gradients along the 
orbit and qualitative visual inspection of all the available measurements taking also into account the exact loca-
tions of Cluster in the magnetosphere (L, latitude etc.). This is demonstrated below for the September–October 
2012 event, an interval with a documented presence of a storage ring by Baker et al. (2013).

3.2.2. Example Event on September–October 2012

As an example to demonstrate the validity of the new approach to determine the boundaries of radiation belts 
when only Cluster CODIF data were available, the September–October 2012 period was selected which has been 
extensively analyzed starting with the Baker et al.  (2013) study. Table 2 contains the list of available Cluster 
observations during the September–October 2012 period with corresponding UT intervals, presence or absence 
of storage ring features, determined L-values and MLT sectors for storage ring (when present). Not many obser-
vations were available from Cluster during that period but the presence of a storage ring detected from them is in 
agreement with what was shown in Baker et al. (2013) (see their Figure 3a). According to Baker et al. (2013), a 
“storage ring” of high-energy electrons emerged after September 2 (Cluster saw first signatures of a storage ring 
on September 8) and disappeared on October 1 (Cluster did not observe any clear signatures of a storage ring 
starting from October 1).

Figure 12 presents the overview of solar wind and geomagnetic activity during the September 1–15 October 
2012 period with vertical lines marking times when Cluster observed the storage ring (red), the observed storage 
ring was weak (dashed red) and not observed (blue). As in Figure 2, the time series of (a) IMF Bz, (b) solar wind 
speed Vsw, (c) solar wind dynamics pressure Psw are shown together with (d) AE and (e) SYM-H indices. An 

Figure 9. Cluster CIS data (similar to Figure 3), July 31, 2007: Weaker storage ring.



Journal of Geophysical Research: Space Physics

GANUSHKINA ET AL.

10.1029/2021JA030014

13 of 19

Figure 10. Double Star HIA data (similar to Figure 5 but without instrument operation data), August 7, 2007: No storage ring.

Figure 11. L-values for radiation belt boundaries determined from the background counts from (a) inbound and (b) outbound passes of both Cluster and Double Star 
satellites during the July–August 2007 event.
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interplanetary shock wave has passed on September 3 which can be seen as a 
sharp increase in Vsw (Figure 12b) and change in the IMF Bz (Figure 12). The 
appearance of a new population of relativistic electrons at a around L = 4 was 
associated with the high value of Vsw on September 5. Cluster saw signatures 
of a storage ring on four passes (from September 8 to September 17). Another 
high speed solar wind stream was observed on September 20–21 which was 
also related to another period of high-energy electron flux (Cluster observed 
weaker storage ring on September 20 and 22). One more interplanetary shock 
wave passed on October 1st and SYM-H index dropped to −150 nT indicat-
ing the occurrence of a moderate geomagnetic storm (Figure  12e) but no 
signatures of a storage ring were observed.

We will concentrate on two time intervals of Cluster data in the present 
paper, September 11, 04–07 UT, and October 6, 0040–0430 UT. They 
are marked bold in Table 2. Figure 13 presents the observations on Sep-
tember 11 when the storage ring features were seen. Three upper panels 
show the energy-time spectrograms of fluxes of three ion species meas-
ured by Cluster CODIF instrument, H+, He+, and O+, respectively. The 
background counts on the H+ spectrogram (Figure 13a) do not indicate 
any storage ring signatures. The same is true to the counts on He+ spec-
trogram (Figure 13b). O+ spectrogram provides the possibility to detect 
the background more clearly (Figure 13c). It is obvious from Figure 13d, 
where CODIF O+ counts per second integrated over all energies are pre-

sented. O+ counts show an increase and a decrease at the UT interval from 0605 to 0617 which correspond 
to a storage ring. A storage ring is also present in the inbound pass as well, at around 0500 UT, however, on 
the outbound pass, the signature is more prominent, and therefore, we concentrate our analysis on the out-
bound pass only. The lower panels in Figure 13 present count rates for the (e) start signal, (f) stop signal and 
(g) start plus stop signals for “non-valid” event count rates without valid detection position. Panels (a)–(d) 

present the particle counts transmitted in the “normal” science telemetry 
products with a high time resolution, whereas panels (e)–(g) show the 
“monitor rates” products, which are diagnostic telemetry products trans-
mitted with a lower time resolution. We can see similar to Figure  13d 
peaks in all three count rates, so that it is possible to detect the location of 
the storage ring from these background counts (marked as vertical dashed 
lines). Cluster was going from dusk to dawn via noon during September–
October 2012 event. Storage ring signatures were detectable mainly on 
the outbound pass, in the morning hours. L-values and MLTs for the ob-
served storage ring background counts were obtained (shown in Table 2). 
At around 08 MLT, the storage ring is located between L-shells of 2.9 and 
3.4 with the width ΔL of about 0.4.

Figure 14, in the same format as Figure 13, shows the Cluster CODIF ener-
gy-time spectrograms of fluxes of (a) H+, (b) He+ and (c) O+, (d) O+ counts 
per second integrated over all energies, and the count rates for CODIF (e) 
start signal, (f) stop signal, and (g) start plus stop signals for “non-valid” 
events for October 6. After September 22, Cluster did not see any signa-
tures of the storage ring and October 6 is a good example of the absence 
of those signatures. Cluster saw a shrunken outer radiation belt (which was 
also noticed by Baker et al., 2013), and the outskirts of the inner belt but 
no peaks in the background counts which could indicate to a storage ring 
presence. Thus, combined O+ ion counts and start, stop and “non-valid” 
event count rates from the CODIF instrument can be directly used to locate 
the permanent and transient features in the radiation belts, including their 
boundaries.

Day Month UT interval Storage ring (SR) LSR MLTSR

2 September 0300–0600 no

8 September 2100–0100 yes 3.0–3.4 0840–0815

11 September 0300–0800 yes 2.9–3.3 0835–0810

15 September 1600–2000 yes 3.0–3.4 0810–0745

17–18 September 2200–0200 yes 3.0–3.4 0810–0745

20 September 0500–0800 yes, weak 3.1–3.4 0750–0730

22 September 1100–1500 yes, very weak

1 October 1230–1530 no

3 October 1830–2200 no

6 October 0100–0400 no

8 October 0600–1000 no

10 October 1200–1700 no

12 October 1800–2300 no

Table 2 
List of Available Cluster Observations During the September–October 2012 
Period With Dates Discussed in Detail Marked by Bold

Figure 12. Overview of solar wind and geomagnetic activity during the 
September 1–October 15, 2012 period with vertical lines marking times when 
Cluster observed the storage ring (red), the observed storage ring was weak 
(dashed red) and not observed (blue).
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4. Discussion and Conclusions
This Technical Report on Methods paper has described the approach on how to turn the instrument background 
to scientifically valuable data. For this purpose, we have used the background counts due to penetrating energetic 
particles of radiation belts detected on Cluster CIS HIA and CODIF instruments. Appearance and disappearance 
of such background counts mark entering and leaving the radiation belts by the Cluster spacecraft. Thus, the lo-
cations of the boundaries of the outer and inner belts can be determined. In HIA spectrograms the counts are seen 
simultaneously in all energy channels and it is rather straightforward to define the boundaries. In the case when 
HIA measurements are not readily available, the double signal coincidence technique used in CODIF instrument 
does not allow to use the CODIF energy-time ion spectrograms alone for the same procedure of determining 
the locations of radiation belts. Therefore, a new approach was proposed in which CODIF full telemetry data is 
exploited. CODIF telemetry data employs separate counts that register “start,” “stop,” and “non-valid” signals 
which always increase in the presence of penetrating particles even when no corresponding increase are shown 

Figure 13. Presence of storage ring signatures as seen on Cluster CODIF data and in telemetry data (start, stop, and non-
valid event rates) on September 11, 2012.
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in the energy-time spectrograms. July–August 2007 and September–October 2012 time periods were used for 
method demonstration on a presence of a third radiation belt, or storage ring.

During July–August 2007 period, the signatures of the storage ring have persisted for almost a month clearly seen 
in Cluster HIA measurements. Among the previously analyzed data from April 2007 to June 2009, six periods 
were detected with clear presence of a storage ring (April 19–24, May 20, and November 19 in 2007 and May 
23–30, June 1–13, and October 29 in 2008). The storage ring signatures can be easily seen in Cluster CIS spec-
trograms at http://cluster.irap.omp.eu/public/spectro/. During the September–October 2012 event, appearance, 
presence and disappearance of the storage ring observed by Cluster using the method of combination of CODIF 
O+ spectrograms and telemetry signals are in agreement with figures from Baker et al. (2013). As compared to 
the storage ring events determined from THEMIS data (Turner et al., 2013), out of 16 events provided by D. 
Turner and listed in Table 3 all had signatures also in Cluster data (when data were available), except for one on  

Figure 14. Absence of storage ring signatures as seen on Cluster CODIF data and in telemetry data (start, stop, and non-
valid event rates) on October 6, 2012.

http://cluster.irap.omp.eu/public/spectro/
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December 12, 2012. Starting from 2012, only CODIF data were used to determine the storage ring presence. 
Thus, this demonstrates that both methods, with and without HIA data, can serve as an additional source of in-
formation about radiation belts structure.

The obtained locations of the storage ring also provided its width. For the July–August 2007 period, the storage 
ring was situated at 3.0 𝐴𝐴 𝐴 L 𝐴𝐴 𝐴 4.2 with its width ΔL between 0.1 and 0.9 as detected by Cluster and at 2.8 𝐴𝐴 𝐴 L 𝐴𝐴 𝐴 
3.9 and ΔL between 0.3 and 0.9 as seen by Double Star. For September–October 2012 event, the storage ring was 
located at 2.9 𝐴𝐴 𝐴 L 𝐴𝐴 𝐴 3.4 with ΔL of 0.3–0.4. Baker et al. (2013) stated that the observed storage ring during that 
event stayed unchanged at L ∼ 3–3.5 for 4 weeks. Yuan and Zong (2013) gave the locations of the third radiation 
belt at 3 𝐴𝐴 𝐴 L 𝐴𝐴 𝐴 4 with one event at 2 𝐴𝐴 𝐴 L 𝐴𝐴 𝐴 3. Similar positions at Ls between 3 and 4 were obtained by Turner 
et al. (2013), Kellerman et al. (2014), and Hao et al. (2020). Pinto et al. (2018) gave the range of Ls between 2.8 
and 3.8 for 30 identified three-belt events. L-shells and widths of the storage ring provided by our methods are in 
agreement with all previous studies. It is necessary to stress that the proposed methods are not meant to substitute 
particle measurements in the analysis of the radiation belts structure. The methods cannot be easily used in an 
automatic manner but requires some visual inspection. The detected background varies significantly depending 
on the satellite orbit, geomagnetic conditions, state of the instrument and so forth. In case of Cluster observations, 
telemetry raw data are also important. Telemetry raw data are not usually considered as a helpful addition and it 
requires more detailed knowledge of the satellite's characteristics. Nevertheless, the strength of these methods is 
the ability to provide a source of information on the radiation belts features when no other particle measurements 
are available at all but only background counts were detected.

Summarizing the results discussed above, the conclusions are the following:

1.  Instrument background counts as seen in the case of the Cluster and Double Star satellites provide highly 
valuable information about the radiation belt features including temporary ones such as the storage ring.

2.  As a new approach, telemetry raw counts on Cluster used when no HIA data were available and CODIF 
shielding restricts direct background analysis, register signals which increase due to penetrating particles even 
when no corresponding increases are shown in the CODIF energy-time spectrograms.

3.  Applications of the background and telemetry combination approaches to the analysis of two periods when 
the storage ring was detected between the traditional outer and inner belts resulted in the agreement of the  

SR on THEMIS data SR on Cluster data

26 March 2008 No data

02 May 2010 No data

03 August 2010 06 August 2010, 15–18 UT (HIA + CODIF)

04 February 2011 No data

01 March 2011 No data

27 May 2011 No data

17 September 2011 September 17 (12–18 UT) and 19 (18–24 UT), 2011 (HIA + CODIF)

24 October 2011 21 October 2011, 12–18 UT (HIA + CODIF)

24 January 2012 No data

09 March 2012 14 March 2012, 06–12 UT (CODIF)

04 April 2012 10 April 2012, 06–12 UT (CODIF)

12 April 2012 April 12 (12–18 UT) and 14 (18–24 UT), 2012 (CODIF)

23 April 2012 April 21, 2012, 12–18, 18–24 UT (CODIF)

01 September 2012 Shown in present paper

12 December 2012 No signatures

13 January 2013 09 January 2013, 00–06 UT (CODIF)

Table 3 
List of Storage Ring Events Obtained From THEMIS Data (Turner et al., 2013), Provided by D. Turner With 
Corresponding Events From Cluster
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obtained L-shells and widths of storage with those of the previous studies. The presented approaches are 
able to provide valuable information on the radiation belts features when no other particle measurements are 
available but only background counts.

Data Availability Statement
The data for solar wind, IMF data, and geomagnetic indices were obtained from OMNIWeb (http://omniweb.gsfc.
nasa.gov/). The CIS and HIA data from both Cluster and Double Star are available at the Cluster Science Archive 
(CSA) (https://csa.esac.esa.int/csa-web/). CODIF telemetry data are all available at CSA (CIS ion spectrometer, 
Ancillary, Monitor Rates, product CP_CIS − CODIF_HS_RATES, parameter SF for CODIF Start Rate, SR for 
Stop Rate and NVE for Non-Valid Event Rate), processed by IFSIIDL software which has been developed by 
Giuseppe Pallocchia, of IAPS – INAF (Rome, Italy) and by clweb software (http://clweb.irap.omp.eu/) developed 
by Emmanuel Penou of IRAP.

References
Baker, D. N., Jaynes, A. N., Kanekal, S. G., Foster, J. C., Erickson, P. J., Fennell, J. F., et al. (2016). Highly relativistic radiation belt electron 

acceleration, transport, and loss: Large solar storm events of March and June 2015. Journal of Geophysical Research: Space Physics, 121(7), 
6647–6660. https://doi.org/10.1002/2016JA022502

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., et al. (2013). A long-lived relativistic electron storage ring 
embedded in earth’s outer van Allen belt. Science, 340(6129), 186–190. https://doi.org/10.1126/science.1233518

Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., et al. (2001). The cluster magnetic field investigation: Overview of 
in-flight performance and initial results. Annales Geophysicae, 19(10/12), 1207–1217. https://doi.org/10.5194/angeo-19-1207-2001

Carr, C., Brown, P., Zhang, T. L., Gloag, J., Horbury, T., Lucek, E., et  al. (2005). The double star magnetic field investigation: Instrument 
design, performance and highlights of the first year’s observations. Annales Geophysicae, 23(8), 2713–2732. https://doi.org/10.5194/
angeo-23-2713-2005

Dandouras, I. (2013). Detection of a plasmaspheric wind in the earth’s magnetosphere by the cluster spacecraft. Annales Geophysicae, 31(7), 
1143–1153. https://doi.org/10.5194/angeo-31-1143-2013

Dandouras, I., Cao, J., & Vallat, C. (2009). Energetic ion dynamics of the inner magnetosphere revealed in coordinated cluster-double star obser-
vations. Journal of Geophysical Research: Space Physics, 114(A1). https://doi.org/10.1029/2007JA012757

Dandouras, I., Pierrard, V., Goldstein, J., Vallat, C., Parks, G. K., Réme, H., et al. (2005). Multipoint observations of ionic structures in the plas-
masphere by cluster-cis and comparisons with image-EUV observations and with model simulations. In Inner magnetosphere interactions: 
New perspectives from imaging (p. 23–53). American Geophysical Union (AGU). https://doi.org/10.1029/159GM03

Delory, G. T., Luhmann, J. G., Brain, D., Lillis, R. J., Mitchell, D. L., Mewaldt, R. A., & Falkenberg, T. V. (2012). Energetic particles detected by 
the electron reflectometer instrument on the mars global surveyor, 1999–2006. Space Weather, 10(6). https://doi.org/10.1029/2012SW000781

Escoubet, C. P., Fehringer, M., & Goldstein, M. (2001). Introduction to the cluster mission. Annales Geophysicae, 19(10/12), 1197–1200. https://
doi.org/10.5194/angeo-19-1197-2001

Escoubet, C. P., Masson, A., Laakso, H., & Goldstein, M. L. (2015). Recent highlights from cluster, the first 3-d magnetospheric mission. Annales 
Geophysicae, 33(10), 1221–1235. https://doi.org/10.5194/angeo-33-1221-2015

Ganushkina, N. Y., Dandouras, I., Shprits, Y. Y., & Cao, J. (2011). Locations of boundaries of outer and inner radiation belts as observed by 
cluster and double star. Journal of Geophysical Research: Space Physics, 116(A9). https://doi.org/10.1029/2010JA016376

Hao, Y. X., Zong, Q.-G., Zhou, X.-Z., Zou, H., Rankin, R., Sun, Y. X., et al. (2020). A short-lived three-belt structure for sub-mev electrons in 
the van Allen belts: Time scale and energy dependence. Journal of Geophysical Research: Space Physics, 125(9), e2020JA028031. https://
doi.org/10.1029/2020JA028031

Kasahara, S., Asamura, K., Ogasawara, K., Kazama, Y., Takashima, T., Hirahara, M., & Saito, Y. (2009). A noise attenuation method for medi-
um-energy electron measurements in the radiation belt. Advances in Space Research, 43(5), 792–801. https://doi.org/10.1016/j.asr.2008.11.012

Kellerman, A. C., Shprits, Y. Y., Kondrashov, D., Subbotin, D., Makarevich, R. A., Donovan, E., & Nagai, T. (2014). Three-dimensional data 
assimilation and reanalysis of radiation belt electrons: Observations of a four-zone structure using five spacecraft and the verb code. Journal 
of Geophysical Research: Space Physics, 119(11), 8764–8783. https://doi.org/10.1002/2014JA020171

Kistler, L. M., Mouikis, C. G., & Genestreti, K. J. (2013). In-flight calibration of the cluster/CODIF sensor. Geoscientific Instrumentation, Meth-
ods and Data Systems, 2(2), 225–235. https://doi.org/10.5194/gi-2-225-2013

Liu, Z. X., Escoubet, C. P., Pu, Z., Laakso, H., Shi, J. K., Shen, C., & Hapgood, M. (2005). The double star mission. Annales Geophysicae, 23(8), 
2707–2712. https://doi.org/10.5194/angeo-23-2707-2005

Mann, I. R., Lee, E. A., Claudepierre, S. G., Fennell, J. F., Degeling, A., Rae, I. J., et al. (2013). Discovery of the action of a geophysical synchro-
tron in the Earth’s van Allen radiation belts. Nature Communications, 4, 2795. https://doi.org/10.1038/ncomms3795

Pinto, V. A., Bortnik, J., Moya, P. S., Lyons, L. R., Sibeck, D. G., Kanekal, S. G., et al. (2018). Characteristics, occurrence, and decay rates of 
remnant belts associated with three-belt events in the earth’s radiation belts. Geophysical Research Letters, 45(22), 12099–12107. https://doi.
org/10.1029/2018GL080274

Pinto, V. A., Mourenas, D., Bortnik, J., Zhang, X.-J., Artemyev, A. V., Moya, P. S., & Lyons, L. R. (2019). Decay of ultrarelativistic remnant 
belt electrons through scattering by plasmaspheric HISS. Journal of Geophysical Research: Space Physics, 124(7), 5222–5233. https://doi.
org/10.1029/2019JA026509

Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., et al. (2001). First multispacecraft ion measurements in and 
near the earth’s magnetosphere with the identical cluster ion spectrometry (cis) experiment. Annales Geophysicae, 19(10/12), 1303–1354. 
https://doi.org/10.5194/angeo-19-1303-2001

Rème, H., Dandouras, I., Aoustin, C., Bosqued, J. M., Sauvaud, J. A., Vallat, C., et al.(2005). The HIA instrument on board the TAN CE 1 dou-
ble star near-equatorial spacecraft and its first results. Annales Geophysicae, 23(8), 2757–2774. https://doi.org/10.5194/angeo-23-2757-2005

Acknowledgments
The work of N. Ganushkina and M. 
Liemohn at the University of Michigan 
was partly supported by National Aero-
nautics and Space Administration grants 
NNX17AI48G, 80NSSC20K0353, NNX-
17AB87G, and 80NSSC20K1504 grants. 
The contributions by N. Ganushkina were 
also partly supported by the Academy 
of Finland (grant 339329). French par-
ticipation in the Cluster project has been 
supported in part by CNES (grant number 
to IRAP 4500065232).

http://omniweb.gsfc.nasa.gov/
http://omniweb.gsfc.nasa.gov/
https://csa.esac.esa.int/csa-web/
http://clweb.irap.omp.eu/
https://doi.org/10.1002/2016JA022502
https://doi.org/10.1126/science.1233518
https://doi.org/10.5194/angeo-19-1207-2001
https://doi.org/10.5194/angeo-23-2713-2005
https://doi.org/10.5194/angeo-23-2713-2005
https://doi.org/10.5194/angeo-31-1143-2013
https://doi.org/10.1029/2007JA012757
https://doi.org/10.1029/159GM03
https://doi.org/10.1029/2012SW000781
https://doi.org/10.5194/angeo-19-1197-2001
https://doi.org/10.5194/angeo-19-1197-2001
https://doi.org/10.5194/angeo-33-1221-2015
https://doi.org/10.1029/2010JA016376
https://doi.org/10.1029/2020JA028031
https://doi.org/10.1029/2020JA028031
https://doi.org/10.1016/j.asr.2008.11.012
https://doi.org/10.1002/2014JA020171
https://doi.org/10.5194/gi-2-225-2013
https://doi.org/10.5194/angeo-23-2707-2005
https://doi.org/10.1038/ncomms3795
https://doi.org/10.1029/2018GL080274
https://doi.org/10.1029/2018GL080274
https://doi.org/10.1029/2019JA026509
https://doi.org/10.1029/2019JA026509
https://doi.org/10.5194/angeo-19-1303-2001
https://doi.org/10.5194/angeo-23-2757-2005


Journal of Geophysical Research: Space Physics

GANUSHKINA ET AL.

10.1029/2021JA030014

19 of 19

Shprits, Y. Y., Horne, R. B., Kellerman, A. C., & Drozdov, A. Y. (2018). The dynamics of van Allen belts revisited. Nature Physics, 14, 102–103. 
https://doi.org/10.1038/nphys4350

Shprits, Y. Y., Subbotin, D., Drozdov, A. Y., Usanova, M. E., Kellerman, A. C., Orlova, K., et al. (2013). Unusual stable trapping of the ultrarel-
ativistic electrons in the van Allen radiation belts. Nature Physics, 9, 699–703. https://doi.org/10.1038/nphys2760

Turner, D. L., Angelopoulos, V., Li, W., Hartinger, M. D., Usanova, M., Mann, I. R., et al. (2013). On the storm-time evolution of relativistic 
electron phase space density in earth’s outer radiation belt. Journal of Geophysical Research: Space Physics, 118(5), 2196–2212. https://doi.
org/10.1002/jgra.50151

Yuan, C., & Zong, Q. (2013). The double-belt outer radiation belt during CME- and CIR-driven geomagnetic storms. Journal of Geophysical 
Research: Space Physics, 118(10), 6291–6301. https://doi.org/10.1002/jgra.50564

https://doi.org/10.1038/nphys4350
https://doi.org/10.1038/nphys2760
https://doi.org/10.1002/jgra.50151
https://doi.org/10.1002/jgra.50151
https://doi.org/10.1002/jgra.50564

	Turning Instrument Background Into Science Data for Structural Features of Radiation Belts
	Abstract
	1. Introduction
	2. Instrumentation
	3. Turning Instrument Background Into Science Data
	3.1. Boundaries of the MeV Radiation From keV Measurements by Both Cluster CIS HIA and CODIF and Double Star HIA
	3.1.1. Method to Determine the Boundaries of Radiation Belts
	3.1.2. Example Event on July–August 2007

	3.2. Boundaries of the MeV Radiation From keV Measurements From Cluster CIS CODIF Only
	3.2.1. Adaptation of Method to Determine the Boundaries of Radiation Belts
	3.2.2. Example Event on September–October 2012


	4. Discussion and Conclusions
	Data Availability Statement
	References


