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Abstract

Atlantic sea scallops support one of the most valuable fisheries in the eastern United States. The
scallop population is susceptible to climate-related environmental stress. Assessing and projecting
climate impacts rely on the fundamental understanding of scallop ecophysiology, including the
influences of temperature and food supply on its energy balance and growth potential. In this study,
we developed a scope for growth (SFG) model driven by high-resolution hydrodynamic and
biological models to assess the spatial and seasonal variability of scallop energy dynamics. The
overall SFG on the Northeast U.S. Shelf is higher in May-June and lower in January-February,
with substantial spatial heterogeneity. In the Mid-Atlantic Bight (MAB), negative SFG occurs
from July to October due to strong thermal stress. Particulate organic matter in detrital form is an
important food source for scallops, with higher/lower contribution in the cold/warm seasons,
respectively. Warming and food deficiency induce a noticeable contraction of suitable scallop
habitats in the MAB, while their impacts on Georges Bank are insignificant. Known seasonal
spawning patterns and observed growth rates in these regions match the patterns of SFG generated
by the model. The sensitivity of SFG to the variations in food and temperature increases with
scallop size. Large scallops are more likely to experience low or negative SFGs than smaller ones,
implying that the habitats shrink as scallops grow older/bigger. This study provides key
information about scallop growth potential and biogeography from the perspective of energy
balance, thus helping the development of adaptive fisheries management strategies.

Keywords: Atlantic sea scallop, Northeast U.S. Shelf, scope for growth, seasonality, food
availability, thermal stress, habitats
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1. Introduction

The Atlantic sea scallop (Placopecten magellanicus) supports one of the most
economically important fisheries on the Northeast U.S. Shelf (NES) (Cooley et al., 2015; Lee et
al., 2017). The U.S. sea scallop fishery generated average annual ex-vessel revenues of over $500
million in the 2010s, about quadruple those during the 1990s (NMFS, 2014). The severe
overfishing from the 1970s to the mid-1990s led to the depletion of sea scallops and other
groundfish species, resulting in losses of billions of dollars to the New England economy (Edwards
and Murawski, 1993). Since 1994, a series of fishery management regulations, including fishing
effort reductions, gear and crew restrictions, and closed areas were implemented to rebuild the
depleted sea scallop stocks (Hart and Rago, 2006). The biological features of sea scallops (e.g.,
rapid growth, low natural mortality and limited mobility) allow them to benefit greatly from spatial
management schemes in the fishing grounds (Hart, 2003). Because of these measures, the
abundance of sea scallops recovered rapidly and was fully rebuilt by 2001 (Hart and Rago, 2006).

The habitats of the Atlantic sea scallop range from the north shore of the Gulf of St.
Lawrence to Cape Hatteras, North Carolina (Stewart and Arnold, 1994). The primary harvest areas
in the northeast U.S. are Georges Bank (GB), the Great South Channel (GSC) and the Mid-Atlantic
Bight (MAB) with bottom depth between 35 and 120 m (Fig. 1; Hart and Rago, 2006). Sea scallops
also occur in estuaries and embayments along the Gulf of Maine and Canada, where water depths
can be as shallow as 2 m (Naidu and Anderson, 1984; Hart and Chute, 2004; Torre et al., 2019).
The highest scallop population densities can be found in areas with suitable temperature, salinity,
substrate, high larvae retention, along with low predation pressure and high food availability
(Tremblay and Sinclair, 1992; Hart and Chute, 2004; Hart 2006; Harris et al., 2018).

Sea scallop growth shows strong spatial heterogeneity on the NES, with some of the highest
growth rates on GB (Stewart and Arnold, 1994). The linear mixed-effect model developed by Hart
and Chute (2009) indicated that scallop populations in the MAB have smaller asymptotic shell
heights than those in GB, although the speed to reach asymptotic size (so called Brody growth
coefficient) in the MAB is relatively higher. Sea scallops in both GB and the MAB have smaller
asymptotic shell heights in deeper water due to limited food supply (Hart and Chute, 2009). The
impacts of many biotic and abiotic conditions (e.g., water temperature, food availability, latitude,

bottom depth, flow velocity, fishing pressure, and age) on the growth of scallops have been
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extensively investigated in previous studies (e.g., MacDonald and Thompson, 1985; Shumway et
al., 1987; Wildish et al., 1987; Thouzeau et al., 1991; Harris and Stokesbury, 2006; Hart and Chute,
2009). Among all the environmental factors, temperature and food are likely to be the most
important ones for scallop growth (Cranford et al., 1998). The optimal temperature for the growth
of adult scallops occurs at 10-15 °C, and mortality increases greatly as the bottom temperature
approaches 21 °C (Stewart and Arnold, 1994). Compared with water temperature, food availability
may be even more crucial because growth can be virtually independent of temperature once food
supply is sufficient (MacDonald and Thompson, 1986). The principal food source for scallops is
thought to be phytoplankton, supplemented by detritus and attached microbes (e.g., bacteria) when
phytoplankton becomes limiting (Shumway et al., 1987; Grant and Cranford, 1991). The analysis
of gut contents indicated that the diet of scallops contains more than 20 species of algae ranging
from 10-350 um, as well as miscellaneous items including detritus and other particulate organic
matter (e.g., pollen grains; Shumway et al., 1987). The abundance of different diet components
varies in the cross-shelf direction: sea scallops in coastal areas and bays can feed on seagrass
detritus, and benthic and pelagic food items are equally important; for offshore sea scallops, the
importance of benthic food items outweighs that of pelagic ones, and resuspended organic material
can be a crucial food supplement (Shumway et al., 1987; Grant and Cranford, 1991). The
seasonality of algal species composition ingested by sea scallops coincides with their bloom
periods, indicating sea scallops are opportunistic feeders that take advantage of available organic
matter in their surrounding habitats (Shumway et al., 1987). The feeding behavior of sea scallops
can be greatly influenced by food quality (particulate organic matter content per unit dry weight
of diet particles). A high concentration of inorganic particles in food (i.e., low food quality) can
inhibit scallop nutrition by reducing absorption efficiency, whereas the scallop diet utilization can
be enhanced by exceptionally low concentration of inorganic particles (< 0.5 mg/l; Cranford and
Gordon, 1992).

Scope for growth (SFG) represents the residual energy available for growth and
reproduction after all metabolic demands have been met (Bayne and Newell, 1983). As a proxy
for the growth potential, SFG has been widely applied to assess the responses of scallop growth to
environmental stress and physiological traits (e.g., MacDonald and Thompson, 1986; Grant and
Cranford, 1991; Bacon, 1994; MacDonald et al., 1998). Short-term laboratory feeding experiments

revealed that the SFG approaches an asymptote with increasing food quantity and quality
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(MacDonald et al., 1998). Although the annual cycle of SFG generally has low or negative values
in the cold season and higher values in the warm season (MacDonald and Thompson, 1986), high
SFGs can be detected at both high and low bottom temperatures, implying that the SFG can be
influenced by other factors (e.g., food availability) rather than temperature alone (Bayne and
Newell, 1983; MacDonald and Thompson, 1986).

Although many previous studies based on the laboratory experiments shed light on the
response of SFG to the ambient environments, its spatiotemporal variations over the primary sea
scallop habitats on the NES and the effects of multiple stressors are not well quantified. In this
study, we constructed a scallop SFG model driven by high-resolution hydrodynamic and biological
models, which are capable of reproducing the concentrations of major food items (phytoplankton
and detritus) for sea scallops, as well as the water temperature near the bottom (Chen et al., 2011;
Zang et al., 2021). The objectives of this study are to (1) reveal the seasonality and spatial
heterogeneity of SFG for sea scallops on the NES, (2) quantify the respective contributions of
different food sources to scallop energy balance, and (3) explore the impacts of warming and
changing food availability on the SFG of scallops. Two contrasting years in the 2000s (normal
year 2010 vs. warm year 2012) were selected for comparative numerical simulations in order to
assess the sensitivity of SFG for sea scallops of different sizes to changes in food availability and

temperature.

2. Data and Methods

2.1 Bottom temperature and food concentration

The bottom temperature used in this study was extracted from the outputs of Finite Volume
Community Ocean Model-Gulf of Maine Version 3 (FVCOM-GOM3). FVCOM-GOM3 is a
hydrodynamic model nested within the FVCOM-Global model (Chen et al., 2003, 2011, 2021a).
The model domain covers the NES from the Scotian Shelf to the MAB and adjacent slope and
basin regions. The horizontal grid resolution varies from 0.5 to 10 km depending on the complexity
of topography (Chen et al., 2011). The model grid is discretized vertically into 45 layers using a
hybrid terrain-following coordinate. Mooring and ship measurements of temperature, salinity, and

current profiles are assimilated into FVCOM—-GOM3 to improve the quality of its outputs (Chen
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et al., 2009). Many physical variables of FVCOM-GOM3, including water level, temperature,
salinity, and current fields, have been calibrated carefully in previous studies (Chen et al., 2011;
Sun et al., 2013, 2016; Li et al., 2015). The daily bottom temperature was estimated by averaging
the hourly mean outputs of FVCOM-GOM3. The FVCOM-GOM3 model outputs were
downloaded from the data server of the University of Massachusetts Dartmouth

(http://fvcom.smast.umassd.edu) (Fig. S1).

The daily concentrations of bottom phytoplankton and detritus were extracted from the
outputs of the 3-D lower trophic marine food web model (Zang et al., 2021). This nitrogen-based
biological model is driven by FVCOM—-GOM3 in an offline coupling mode. The model has ten
functional groups, including two types of phytoplankton (small phytoplankton (SP) and large
phytoplankton (LP)) and one type of large detritus (LD). Multiple physical and biogeochemical
processes regulating the dynamics of phytoplankton and detritus (e.g., horizontal advection,
vertical mixing and sinking, resuspension, phytoplankton growth, decomposition) are explicitly
resolved in the model to reproduce their concentrations on the NES. Readers are referred to Stock
and Dunne (2010), Song et al. (2010, 2011) and Zang et al. (2021) for more details regarding the
model’s structure and governing equations. The comparisons between the model results and
observations in Zang et al. (2021) indicated that the marine food web model can reasonably capture
the seasonal and spatial patterns of phytoplankton on the NES, although it is difficult to evaluate

the distribution of detrital organic matter near the bottom due to the lack of observational data.
2.2 Sea scallop SFG model

We applied a sea scallop SFG model to simulate the spatiotemporal variability of energy
balance by following the carbon (C) budget over the primary scallop fishing grounds from GB to
the MAB. The SFG (unit: mg C/ind/day) of an individual scallop can be estimated by the difference

between the energy gain through absorption and the loss due to respiration:

RR
SFG = 24+ (ARpny + ARper =+ RQ - 12)
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Where ARp,, and ARp,, are the absorption rates for phytoplankton and detritus, respectively (unit:
mg C/ind/hr). RR represents the respiration rate of sea scallops (mg Oz/ind/hr). RQ is the molar
ratio of CO2/O2. Absorption rates are calculated as the product of clearance rate (CRppy (pet));
absorption efficiency (AEppy (pety), and the concentrations of phytoplankton and detritus in the

bottom layer (Cppyper)):

ARPhy(Det) = CRPhy(Det) ’ AEPhy(Det) ’ CPhy(Det)

The absorption efficiency varies greatly with dietary quality, and previous studies
suggested that the food quality of phytoplankton is better than that of detritus (Grant and Cranford,
1991), so we adopted higher absorption efficiency for phytoplankton (AEpy, ) and lower absorption
efficiency for detritus (AEp,.;; see Table. 1 for more details). Phytoplankton and detritus
concentrations in the biological model are the values at the center of bottom grid cells, which are
several to more than 100 cm above bed (cmab). Since scallops live at the water-sediment interface
and a strong vertical gradient of particulate matter concentration exists near the bottom boundary
layer, directly applying the biological model results to the SFG model might underestimate the
absorption rate and the SFG. Here, phytoplankton and detritus concentrations 1 cmab are estimated

using the Rouse profile to represent food condition for scallops (Rouse, 1937; Swart, 1976):

VA _Ws,Phy(Det)

CPhy(Det) = CPhy(Det),model( ) e
Zmodel

Where Cppymoder @0d Cpermoger are the simulated bottom phytoplankton and detritus
concentrations. Z,,,4¢; i the height of the bottom grid center above the sea floor. z is the half of
scallop shell width (i.e., distance from the sea bed to the scallop valve opening; 1 cmab). W pp,,
and W p., represent the settling velocities of phytoplankton and detritus, respectively. k is the von

Karman constant. The shear velocity u, is estimated following the law of the wall:

_ K- U(Zmodel)

Z
In ( mZoOdel)
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Where U is the current speed at elevation z,,,,4.;. Zo is the apparent bottom roughness as inferred
from the height of the zero intercept of U(Z,,04e1)-

The clearance rates for phytoplankton and detritus (CRppy per)) are regulated by ambient

water temperature and individual dry tissue weight (DTW):

DTW
CRPhy(Det) = CRstd,Phy(Det) fer(T) - (DTW .
st

)bCR

Where CRgtq phy(pet) iS the clearance rate of scallops with standard dry tissue weight (DT Wy,,) at
the reference temperature (Ty.r). bcg is a consistent weight exponent for clearance. fcg(T)

represents the temperature limiting factor based on the Arrhenius relationship with a temperature

tolerance term (Kooijman, 2010; Fig. 2a):

T T T T, _
T, T [1+eXp(%_T¢)+eXp(_TAH —%)] !
f. (T) = exp A TA), L_CR H_CR
Tref TL_CR TH_CR Tref

Where T, and T..5 are the Arrhenius temperature and reference temperature, respectively. T}, cg
and Ty cp relate to the lower and upper boundaries of the tolerance range for clearance, and T,
and T,y are the Arrhenius temperatures for the rate of decrease at both boundaries. Compared with
other monotonous temperature relationships (e.g., Qiorelationship), the Arrhenius relationship can
well represent the negative effects of thermal stress on scallop physiological features at a
temperature above the optimal range.

The respiration rate of sea scallops (RR) varies with temperature (fzz(T)) and scallop dry

tissue weight:

DTW

)bRR
DTWtq4

RR = RRgq * frr(T) - (
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Where RR;, is the respiration rate of scallops with standard dry tissue weight (DTWj;,) at the
reference temperature (Ty.r). bgg is a consistent weight exponent for respiration. Arrhenius
relationship with the temperature tolerance term is applied to estimate the impact of thermal stress

on respiration rate (fgg(T); Fig. 2b):

Ty Ty (TAH T \y-1
r, 1y (e (Fo i) e (it - )
frr(T) = exp T f_7 . ™ T:4L T,;H T
T (g ) e B
[ P Tref TL_RR P TH_RR Tref ]

Where T} pr and Ty zp are the lower and upper boundaries of the tolerance range for

respiration. Values for the model parameters mentioned above and related references are listed in
Table 1. The MATLAB-based SFG model source code and parameters are available at
http://ulysse2.whoi.edu:8080/thredds/catalog/data/zzang/Project Scallop/catalog.html.

2.3 Experimental design

We designed both the realistic 2-dimensional (2-D; longitude-latitude) experiments
covering the entire NES and the idealized 0O-dimensional (0-D) experiments to explore the
responses of SFG to the variations of ambient environments and scallop size. Daily sea scallop
absorption rate, clearance rate, and SFG on the NES were simulated using daily averaged water
temperature and food concentration extracted from the hydrodynamic and biological model results
in 2010 (Figs. S1-S4), with the same horizontal spatial resolution as the FVCOM-GOM3 (0.5 to
10 km). The bimonthly mean absorption rate, clearance rate, and SFG were estimated based on
daily results. We chose the year 2010 as the benchmark run because its water temperature in 2010
can overall represent the thermal climatology before the significant warming since 2012 (Kleisner
et al., 2017; Chen et al., 2021b), and the main purpose of the benchmark run is to establish a
baseline for the sea scallop energy budget. We estimated bimonthly mean sea scallop absorption
rate, clearance rate, SFG, and their standard deviations using daily model outputs to reveal their
seasonality and spatial heterogeneity.

To estimate the impact of warming on scallop energy balance, a sensitivity test was

conducted based on the bottom temperature in 2012, which has been widely recognized as a “warm
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year” on the NES (Pershing et al., 2015; Chen et al.,, 2021b). Phytoplankton and detritus
concentrations in both the benchmark run and the sensitivity test were based on the biological
model results in 2010, so the SFG difference between 2010 and 2012 was induced only by
temperature variation. The DTW of scallop in the 2-D experiments was assigned as 5 g (4-year-
old adult; MacDonald, 1986).

Food availability is another important factor regulating scallop energy balance and growth
potential. The comparisons of bottom phytoplankton and detritus between 2010 and 2012
demonstrate strong spatiotemporal variations of scallop food concentration on the NES (Figs. S5,
S6 and S7). To quantitatively examine the response of SFG to the variation of food availability,
we conducted four 2-D sensitivity tests in 2010 with 20% and 40% increase/decrease in
phytoplankton and detritus concentrations.

Idealized 0-D experiments were also used for sensitivity testing. We estimated the SFG of
sea scallops under different food concentration and bottom temperature scenarios. To simplify the
simulations, only one type of food representing the mixture of phytoplankton and detritus was used
in these 0-D simulations. The clearance rate and absorption efficiency for the mixed food were
specified as the mean values for phytoplankton and detritus. Food concentration increased from 0
to 6 mmol N m™ with 0.2 mmol N m™ interval, and temperature ranged from 0 to 21 °C with 1 °C
interval. Different DTW values were applied in the cases (DTW =1g,5 g, 10 g, and 15 g) to

examine the influence of scallop size on SFG.

3. Results

3.1 Spatiotemporal patterns of absorption rate, respiration rate, and SFG

The seasonal variations of the scallop absorption rate for phytoplankton and its standard
deviation over the NES (Figs. 3 and S8) were correlated with phytoplankton concentration (Figs.
S2 and S3), with elevated magnitude from March to August (peak value > 40 mg C/ind/day and
standard deviations > 20 mg C/ind/day) and lower magnitude in the rest of the year (peak value <
20 mg C/ind/day and standard deviations < 10 mg C/ind/day). The correlation coefficient between
the spatially averaged bimonthly absorption rate for phytoplankton and phytoplankton

concentration was 0.93 (p=0.008). Regions with higher absorption rates were primarily located
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nearshore in most seasons. An exception was found from July to October, during which the
enhanced absorption mainly occurred in the deeper MAB (> 35 m; Fig. 3d and 3e). High bottom
temperatures exceeding the optimal range for clearance rate resulted in a lower absorption rate on
the inner shelf (Figs. 3 and S1), indicating the importance of thermal stress in modulating scallop
growth and spatial distribution.

Due to the differences in productivity and resuspension intensity, spatial heterogeneity of
LD on the NES was substantial, with higher concentration in GB and the northern MAB and lower
concentration in the southern MAB (Zang et al., 2021; Fig. S4). The absorption rates for LD in the
southern MAB were lower than that in the northern MAB and GB throughout the year (Fig. 4).
Within the southern MAB, higher absorption rates for LD (> 20 mg C/ind/day) occurred from
November to June due to the joint effects of favorable bottom temperature and LD supply (Fig. 4a,
4b, 4c and 4f). Over GB and the northern MAB, the absorption rates for LD exceeded 25 mg
C/ind/day for the entire year with the exception at the edge of GB (Fig. 4). Relatively high standard
deviations of the absorption rate for LD (> 10 mg C/ind/day) mainly distributed in the northern
MAB and along the southern flank of GB (Fig. S9), implying the great variabilities of LD
availability and physical environments in these regions.

To quantitatively estimate the relative importance of different food sources for sea scallops,
we compared the bimonthly absorption rates for phytoplankton (SP + LP) and LD (Fig. 5). The
comparison of absorption rates revealed that detritus was the primary food source for scallops over
the entire NES from November to February due to low phytoplankton concentrations (Fig. 5a and
5f). With the increase of primary production from March to October, the relative importance of
phytoplankton in food composition was elevated, suggesting the improved food quality for
scallops (Fig. 5b, 5c, 5d, and 5e). Over GB and the northern MAB, the absorption rate for LD
outweighed that for phytoplankton year round. In the southern MAB, however, phytoplankton was
the predominant food item from March to October (Fig. 5).

The respiration rate of scallops at a given size was only regulated by temperature in our
model, so its seasonality matched that of bottom temperature (Fig. S1). The peak respiration rate
occurred in September and October (> 18 mg C/ind/day), and the low rate occurred in March and
April (< 12 mg C/ind/day) (Figs. 6 and S1). An exception was found in July and August, when
very high bottom temperatures in the southern MAB nearshore regions resulted in the dramatic

decline of respiration rate to almost zero (Fig. 6d). This relationship between bottom temperature



303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

Atlantic sea scallop scope for growth

and respiration rate suggested that the exceptional high temperature imposed strong negative
effects on the metabolism of scallops, making the coastal southern MAB inhospitable for scallop
growth and survival. Compared with the standard deviations of absorption rates for phytoplankton
and LD, the standard deviations of the respiration rate were lower with limited spatial
heterogeneity throughout the year (0-8 mg C/ind/day; Fig. S10).

The bimonthly spatiotemporal patterns of scallop SFG depending: 1) solely on
phytoplankton and 2) on both phytoplankton and detritus are shown in Figs. 7 and 8, respectively.
When phytoplankton was treated as the only food source for scallops, the long duration of negative
SFG covering the primary scallop fishing grounds suggested that phytoplankton alone was
insufficient to meet the energy demands of sea scallops (Fig. 7). The spatiotemporal variability of
SFG standard deviation was similar to that of absorption rate for phytoplankton (Figs. S8 and S11),
suggesting that the food uptake was responsible for the variations of sea scallop energy balance.

With both phytoplankton and detritus included, the SFG increased dramatically and
remained positive in most regions throughout the year (Fig. 8). In January and February, the SFG
was low and homogeneous over the entire shelf, ranging from 20 to 30 mg C/ind/day with
relatively low standard deviations (2-15 mg C/ind/day) (Figs. 8a and S12a). Subsequently, an
increase in SFG primarily occurred over GB, the northern MAB, and the coastal southern MAB
from March to June (Fig. 8b and 8c). The SFG over NES reached a maximum in May and June, at
more than 60 mg C/ind/day on the inner shelf (Fig. 8c). In July and August, the SFG became
negative in coastal areas due to high temperatures and at the shelf break due to low food availability
(Fig. 8d). In September and October, negative SFG in the MAB covered larger areas, limiting the
regions with positive SFG to a belt between the 35 and 100 m isobaths (Fig. 8e). The standard
deviations of SFG on the NES were high in nearshore regions and the southern flank of GB from
March to October (> 20 mg C/ind/day; Fig. S12). The SFG became positive again with lower
standard deviations over the entire NES in November and December (Figs. 8f and S12f) due to the

decreased energy loss associated with lower respiration and increased absorption rate for LD.

3.2 Impacts of warming and food availability on scallop SFG over the NES

To explore the impacts of warming on the energy balance of scallops, we compared the

bottom temperature and the 2-D simulated SFG in 2010 (normal year) and 2012 (warm year). Here,
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we only analyzed the temperature and SFG differences between these two years from July to
October, during which thermal stress was strongest (Fig. 9). Bimonthly mean bottom temperature
from July to October was ~2 °C higher in 2012 than in 2010, except for the shelf break and central
GB in July-August and Hudson shelf valley in September-October (Fig. 9a and 9b). In July and
August, the coastal region with negative SFG expanded seaward in 2012, implying the potential
shrinking of scallop habitats due to strong thermal limitation (yellow color in Fig. 9¢). The regions
with high uncertainties (i.e., SFG > 0 or SFG < 0 is not statistically significant in 2010 or 2012
based on one-tailed z-test) only covered small areas in the MAB (grey color in Fig. 9c). The spatial
coverages of negative SFG at the MAB shelf break in 2010 and 2012 were almost identical due to
minor differences in bottom temperature between these two years (Fig. 9a and 9c). In September
and October, the seaward expansion of negative SFG in 2012 could be found in the MAB between
38.5 °N and 40 °N (Fig. 9d). The regions with high uncertainties are mainly distributed on the
MAB inner shelf with very low sea scallop densities (grey color in Fig. 9d). Although warming in
2012 was dominant over GB, its influence on the SFG spatial distribution was minor (Fig. 9c and
9d), implying that temperature might not be the primary limiting factor over GB.

Decreasing the food concentration at the bottom by 20% caused only a slight change in the
region with positive SFGs in July-August in the MAB (Fig. 10a). In September-October, a 20%
decrease in food concentration caused a noticeable reduction of the positive SFG region in the
MAB towards the mid-shelf (Fig. 10b). A 40% decrease in food concentration led to the dramatic
contraction of the positive SFG region, and the entire southern MAB had negative SFG in
September-October (Fig. 10c and 10d). The results of sensitivity tests with increasing food
concentrations showed that the positive SFG region only changed marginally with additional food
supply in July-August (Fig. 10e and 10g), while enhanced food supply in September-October
contributed to an expansion of positive SFG in both onshore and offshore directions in the MAB
(green area in Fig. 10f and 10h). The spatial distribution of SFG over GB was less sensitive to the

variation of food concentration than that in the MAB.

3.3 Sensitivity of SFG to food, temperature, and scallop size

The results of the idealized 0-D simulations were analyzed to examine the influences of

food abundance, temperature, and scallop size on the SFG (Fig. 11). The responses of SFG to food
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and temperature variations were very similar for scallops in different weight classes: the SFG
increased with food concentration and peaked between 12 and 15 °C (Fig. 11). The sensitivity of
SFG to food concentration variation increased with bottom temperature from 0 °C to the upper
limit of the optimal range (around 15 °C). Once temperature exceeded the optimal range, the SFG
dropped sharply and became negative. The SFG was always negative when food concentration
was lower than 1 mmol N m or the bottom temperature exceeded 18 °C (Fig. 11). The range of
SFG increased with scallop size (1 DTW: -6.5-29.0 mg C/ind/day; 5 DTW: -23.7-86.6 mg
C/ind/day; 10 DTW: -41.2-138.5 mg C/ind/day; 15 DTW: -57.0-182.2 mg C/ind/day), suggesting
the energy balances of large scallops were more sensitive to the variations of ambient
environments than small scallops. The boundaries between positive and negative SFGs for
different weight classes (black solid lines in Fig. 11) illustrated that the SFG for larger sea scallops
became negative in more temperature and food conditions. The model results suggested that young
age classes have larger habitats, thus explaining the absence of adults in the southern MAB scallop

habitats (Fig. S13; Hart et al., 2020).

4. Discussion

4.1 Impacts of warming on scallop population dynamics and biogeography

The scallop habitats from GB to the MAB have been experiencing rapid warming over the
last several decades due to the synergistic effects of multiple physical processes (e.g., along-shelf
transport, air-sea heat exchange, and shelf-basin scale interactions; Shearman and Lentz, 2010;
Chen et al.,, 2014; Saba et al., 2016). Given the apparent vulnerability of scallops to high
temperature, climate-driven rapid warming is expected to profoundly influence their population
dynamics and biogeography (Hare et al., 2016; Lowen et al., 2019). A comprehensive
understanding of warming impact has long been recognized as critical in terms of scallop fisheries
management and conservation planning in a changing climate (Cooley et al., 2015; Hare et al.,
2016; Chen et al., 2021b).

One of the most dramatic effects of warming is the changes in scallop distribution. The
comparison of SFG model results between a normal year (2010) and a warm year (2012) shows

the offshore expansion of the negative SFG region, suggesting habitat shrinkage and potential
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reduction of total abundance of scallops in the southern MAB under rapid warming (Fig. 9). The
period from summer to early fall should gain more attention in the future due to the strong thermal
limitation in the MAB (Fig. 8d and 8e). Unlike our simulated offshore shift of scallop habitats in
the MAB and the marginal change over GB due to warming (Fig. 9), an ensemble species
distribution model (SDM) based on the projected warming scenario (NOAA GFDL CM2.6; Saba
et al., 2016) over the next eight decades indicate the northward shift of scallop habitat, with a
marked decline of the habitat suitability over GB and the MAB (Tanaka et al., 2020). The
discrepancy between our study and the SDM results can be attributed to different time scales the
two studies focus on: the SFG model only tests the ramification of one-year warming with ~ 2 °C
bottom temperature increase (Fig. 9a and 9b), while the SDM projection represents the impacts of
~ 4-5 °C warming over the next eighty years (Saba et al., 2016; Kleisner et al., 2017). If we apply
the long-term temperature projection to the SFG model, the extra 2-3 °C temperature increase
would result in further contraction of scallop habitats, and the entire MAB and GB could become
unsuitable for scallops as well. Also, the SDM projection represents scallop habitat shift due to the
changes in abiotic factors alone (i.e., bottom temperature and salinity), while holding all other top-
down and bottom-up variables constant (Tanaka et al., 2020). Our SFG model, however,
incorporates the impacts of both temperature and food availability. According to the results of the
idealized 0-D tests, SFG becomes more sensitive to food concentration with increasing
temperature from 0 to 15 °C, and sufficient food supply may help scallops to compensate for the
energy loss due to respiration and provide extra energy for growth and reproduction within the
optimal temperature range. Given the importance of food supply in scallop energy balance
(MacDonald and Thompson, 1986), the inclusion of the food effect in our study could explain the
different responses of scallop habitat changes to warming in the two models.

Warming influences the spatial distribution and abundance of scallops via not only
modulating the physiological processes of scallops, but also regulating the phenology and
magnitude of spawning. Scallop spawning over the NES has a strong semi-annual cycle with
spatial heterogeneity: spawning on GB is more dominant and consistent in fall (September-
October), and relatively protracted and erratic spawning occurs in spring (May-June; Barber et al.,
1988; Dibacco et al., 1995; Thompson et al., 2014). In the MAB, spring spawning is often stronger
with a longer duration than the fall spawning (Kirkley and DuPaul, 1991; Schmitzer et al., 1991).

Spawning timing and magnitude can be related to temperature fluctuation, because rapid
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temperature change acts as a cue for spawning induction (Culliney, 1974; Parsons et al., 1992).
Under the influence of longer summer duration associated with climate-related warming, the rapid
change of bottom temperature will occur earlier during the spring warm-up and later during the
fall cool-off (Thomas et al., 2017). If this trend continues in the future, the spawning season will
be shifted to wintertime when stronger onshore and southward transport is more frequent on the
NES, which might expose scallop larvae to more coastal and southern regions that are often
associated with higher thermal-induced mortality (Munroe et al., 2018; Fuchs et al., 2020).

Warming can also affect scallop spawning magnitude by changing food availability and
uptake (Barber et al., 1988). Food plays a vital role in scallop spawning because gamete production
requires a great deal of energy (MacDonald and Thompson, 1986). The energy uptake by scallops
and related growth rate shows strong seasonality with dramatic spatial heterogeneity. Oxygen
isotope results indicate the growth of adult scallops in GB and GSC is faster in late summer and
fall than that in winter due to a better food supply associated with high primary production (Chute
et al., 2012). Similarly, tagged scallops that mainly experienced warmer conditions grew faster
than ones that experienced primarily cooler waters (Harris and Stokesbury, 2006). The energy
reserved in the warm season supports the subsequent strong fall spawning in GB and GSC. Unlike
GB and GSC, primary production in the MAB is high during late fall and winter, and that can
provide enough energy for scallop rapid growth in the cold season and strong spring spawning in
the next year (Brust et al., 2001; Chute et al., 2012). The simulated energy balance represented by
SFG likely explains the difference of spawning magnitude between GB/GSC and the MAB, with
higher SFG and stronger spawning in summer and fall in the GB/GSC area and higher SFG and
stronger spawning in winter and spring in the MAB (Fig. 8). Since temperature can also influence
food availability via many direct and indirect physical and biogeochemical processes (e.g.,
phytoplankton growth, stratification/mixing, detritus decomposition), it is reasonable to speculate
that the warming-induced food supply variability will substantially impact scallop spawning
magnitude and thus population size in the future.

Climate-related warming can influence scallop energy balance and abundance by changing
the dispersal of scallop larvae during the pelagic stage. The results of an individual-based larval
modeling study presented in Chen et al. (2021) showed that the enhancement of warming-induced
clockwise gyre circulation limits scallop larval transport from GB to the MAB, resulting in higher

retention rate and scallop recruitment over GB. Moreover, warming can shorten the duration of
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larvae stage and consequently, transport distance and mortality by accelerating the development
of larvae (Tremblay et al., 1994; Gilbert et al., 2010). Given the joint effects of these processes,
warming can potentially weaken the connectivity between different scallop habitats and enhance
local retention and larval survival. For those self-sustaining scallop populations (e.g., GB and GSC;
Tremblay et al., 1994; Chen et al., 2021), low connectivity between different habitats under rapid
warming is favorable for biomass accumulation in upstream regions due to higher proportion of
local settlement and development. Conversely, populations highly dependent on larval inputs from
upstream regions (e.g., the Virginia Beach region; Munroe et al., 2018) might experience reduced
recruitment owing to the decrease of external larvae supply. If so, the spatial heterogeneity of total
energy demands for scallops on the NES might become stronger: for the habitats with elevated
retention rate, the increasing population size and scallop density can raise the total energy demands
and increase food limitation; the total energy demands in the habitats relying on external larval
supply, however, can be reduced due to lower scallop abundance.

Warming can also affect sea scallop biogeography and population dynamics by altering
top-down forcing. The major predators of sea scallops include sea stars, crabs, lobsters, and
demersal fish species. The negative correlation between the density of the sea star Astropecten
americanus, a predator of small invertebrates including juvenile scallops, and scallop recruitment
in the MAB suggests that the top-down forcing can strongly influence scallop density (Hart, 2006;
Shank et al., 2012), and is an important factor determining the offshore boundary location of
scallop habitats (Hart, 2006; Lowen et al., 2019). Given the increase of sea star density and the
decrease of scallop recruitment with water depth > 75 m in the MAB (Hart, 2006), the potential
seaward shift of habitats under warming can expose scallop populations to higher predation
pressure, thereby causing the reduction in abundance. Furthermore, laboratory experiments show
that the predation rate of scallops by sea stars Asterias vulgaris and crabs Cancer irroratus
increases significantly with temperature due to the intensified predator activities and decreased
effectiveness of scallop escape response (Barbeau and Scheibling, 1994). In our model, the use of
SFG to represent the suitability of scallop habitat only takes thermal stress and food condition into
account. A future comprehensive study including the thermal responses of scallop physiology and
phenology in different life stages and top-down forcing can provide a better understanding of

warming’s impact on scallop population dynamics and spatial distribution.
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4.2 Food condition as a critical component in the climate impact assessment

Like other aquatic ectotherms, scallops need to increase their energy investment in
response to climate-related environmental stress, such as warming and acidification. As stress level
increases, the elevated energy demand for basal maintenance will affect life-history performance
and energy fluxes within individuals (Sokolova, 2021). Food condition (e.g., food quantity and
quality) is a critical component in the energy balance for scallops. Since stressor exposure often
decreases the amount and rate of energy assimilation, a constraint in food availability could
exacerbate the negative impact. On the other hand, favorable feeding conditions could enhance
energy uptake by scallops and thus increase stress tolerance. In the case of ocean acidification
(OA), bivalves like scallops consume more energy to cope with OA due to the changes in
metabolism, acid-base regulation, and calcification (Saba et al., 2019). A reduction of energy
available for growth and reproduction due to OA-induced extra-energy costs can be detrimental to
scallop population growth (Cooley et al., 2015; Rheuban et al., 2018). However, laboratory and
field measurements indicate that negative effects of OA on some bivalve species (e.g., Chilean
scallop, king scallop, and mussel) can be offset by sufficient food supply, suggesting the vital role
of food condition in scallop growth and survival under OA (Melzner et al., 2011; Sanders et al.,
2013; Thomsen et al., 2013; Ramajo et al., 2016). Negative impacts of other stressors like warming
can also be reduced by additional food supply. The coupling between food concentration and
scallop asymptotic size in offshore direction suggests the overwhelming effects of food availability
on scallop growth (Hart and Chute, 2009). To the best of our knowledge, only a few studies have
examined the simultaneous limitations of food availability and other stressors (e.g., warming) on
sea scallop, although their effects have been tested separately in short-term laboratory experiments
(e.g., MacDonald and Thompson, 1985; Cranford and Grant, 1990; Grant and Cranford, 1991;
Desrosiers et al., 1996). Future studies are needed to fill these knowledge gaps with a focus on the

climate-induced multi-stressor impact on sea scallop population dynamics and biogeography.

4.3 Implications for scallop fishery management under climate change

The primary goal of fisheries management is to provide the greatest overall benefits by

maximizing yield and preventing overfishing (Lee et al., 2019; Hart et al., 2020). The

implementation of effective scallop fishery management on the Northeast U.S. Shelf since 1994
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has dramatically increased scallop total biomass, landings, and prices (Hart and Rago, 2006; Lee
et al., 2019). Given the climate-induced rapid warming in the NES sea scallop habitats over the
last several decades, an adaptive fishery management plan can potentially offset to some degree
the negative consequences of climate change (Gaines et al., 2018; Rheuban et al., 2018).

Sea scallop populations have greatly benefited from rotational and long term closures due
to the sedentary nature of adult sea scallops (Hart, 2003; Hart and Rago, 2006; Cooley et al., 2015;
Lee et al., 2019). However, as scallop distributions shift due to the changing climate, these areas
may need to be moved. As suggested by our study and Tanaka et al. (2020), the scallop habitat
suitability in terms of SFG and physical conditions can vary greatly from seasonal to decadal scales.
Thus, establishing adaptive management strategies with long-term effectiveness becomes critical
in protecting scallop stocks in the future, and it is essential to take multiple physical and biological
stressors into account when designing management plans. As an effective tool to estimate the
spatiotemporal variation of growth potential, our model explicitly resolves scallop SFG with high
spatial and temporal resolutions, which can provide valuable information for improving the current
fisheries management and spatial planning from the perspective of energy balance and growth
potential.

The increased frequency of episodic events induced by climate change can change physical
and biogeochemical conditions over scallop habitats rapidly, making the scallop fishery
management even more challenging. There has been a general westward shift for the Gulf Stream
destabilization point with increased basin-shelf interactions (Andres, 2016). Consequently, the
MAB has been more frequently influenced by the direct intrusion of Gulf Stream and the shedding
of anticyclonic warm-core rings (Gawarkiewicz et al., 2012; Gangopadhyay et al., 2019).The
intrusion of oligotrophic Gulf Stream water at the surface can markedly reduce primary production
on the shelf and food availability for scallops (Shumway et al., 1987; Zhang and Gawarkiewicz,
2015). On the other hand, recent field measurements and model results present the existence of
subsurface diatom hotspots associated with the upwelling of nutrient-rich deep Gulf Stream water
(Oliver et al., 2021). Such productivity enhancement over the shelf break might facilitate the
offshore expansion of scallop habitats, especially considering the strong food limitation along the
offshore boundary of the suitable scallop habitat. The rapid shift of the thermal regime induced by
slope water intrusion can potentially impact the scallop population dynamics at short time scales.

The hydrographic surveys and moored observations on the southern New England Shelf show that
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the onshore intrusion of near bottom slope water can stretch onto the inner shelf, with rapid
temperature increase from 12 to 16 °C lasting more than 3 weeks (Ullman et al., 2014). Since the
optimal temperature for scallop growth is between 10 and 15 °C, the intrusion of bottom slope
water can impose stronger thermal stress on local scallop populations. Seasonally, more warm-
core rings are produced in summer and fall, which overlap with the scallop spawning season on
GB and the MAB (Silver et al., 2021). Given that spawning is triggered by abrupt temperature
change (Culliney, 1974; Parsons et al., 1992), the intrusion of warm slope water could affect the
scallop reproduction schedule and thus the connectivity between different habitats. How to
incorporate the information of short-term oceanographic dynamics into management
considerations remains a challenge, and warrants future investigation.

Our scope for growth model results indicate that larger scallops are more vulnerable to the
unfavorable food and thermal conditions than smaller individuals, as has also been found in other
bivalve species (e.g., Shumway, 1983; Yuan et al., 2010; Munroe et al., 2013a, 2013b; Rybovich
et al.,, 2016). The enhanced sensitivity to stressors of larger bivalves is due to the imbalance
between oxygen uptake and supply: the gill surface area per body weight decreases with size, and
decreased tissue oxygen, and transition to anaerobic metabolism occurs earlier and more
substantially in larger individuals under harsh conditions (Shumway, 1983; Portner, 2002, 2010).
Since the fishery mainly takes large scallops, the effects of climate change may be more
detrimental to the harvestable portion of the biomass. Additionally, large scallops
disproportionally contribute to the reproduction due to the increase of sea scallop fecundity with
age and shell height (Schmitzer et al., 1991; Hart and Chute, 2004; Hennen and Hart, 2012). Thus,
the loss of large scallops due to environmental stressors could not only reduce the harvestable

biomass directly but also the reproductive potential and subsequent recruitment.

4.4 Model limitations and future work

Although the model results in the present study yielded valuable insights into the factors
modulating the spatiotemporal patterns of scallop SFG over the NES and the effects of food
availability and rapid warming on biogeographic distributions, this work had some limitations
which suggest future directions of inquiry. First, scallops were assumed to only consume

phytoplankton and detritus, while other food items such as microzooplankton and bacteria were
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not taken into account (Shumway et al., 1987; Grant and Cranford, 1991). Estimation of food
availability for scallops in the bottom boundary layer was based on simple parameterization
schemes and warrant further improvements in future studies. The concentrations of phytoplankton
and detritus at 1cmab are estimated using the Rouse profile with constant settling velocities. The
settling velocities of phytoplankton and detritus in the ocean, however, are influenced by many
biotic and abiotic factors (e.g., flocculation/deflocculation, swimming behavior, morphological
features of cells; Bienfang et al., 1982; Kamykowski et al., 1992; Friedrichs and Scully, 2007).
Thus, the simplified settling velocity scheme used in both the biological model and the scallop
SFG model might result in uncertainties in food concentrations at the bottom. Additionally, the
resuspension of detritus on the seabed was estimated using current—induced bottom shear stress,
whereas both field observations and models suggested strong wave—induced resuspension
during energetic events (e.g., winter storms and hurricanes; Miles et al., 2015). Given the important
role of resuspension in scallop food quality and quantity (Grant et al., 1997; Cranford et al., 1998;
Witbaard et al.,, 2001), future modelling efforts should better resolve particulate matter
resuspension and its influence on scallop feeding behavior via coupling with wave models.

Second, the variations of clearance and respiration rates with temperature in our SFG
model were parameterized based on the previous laboratory experiments. However, these
experiments were conducted below the optimal temperature range. The lack of measurements at
higher temperatures made the physiological responses to thermal stress weakly constrained, and
model uncertainties could increase at higher bottom temperatures. Given the importance of
temperature in shaping the boundaries of scallop habitats and SFG estimations, future lab
experiments should focus more on the thermal stress by measuring clearance and respiration rates
at higher temperatures that include the entire optimal range.

A high potential SFG does not always correlate with high scallop abundance. This is
evident from the discrepancies between the SFG model results and the spatial distribution of
scallops based on the dredge survey data over central GB and southern New England Shelf, where
the SFG is positive in our simulation but scallops are largely absent (Figs. 1 and 8). The
discrepancies suggest that there are factors beyond food and temperature that control the scallop
population dynamics in these two regions. One possible reason for the low scallop abundance over
the center of GB and the southern New England Shelf could be the instability of substrate. The

estimation of sediment stability index suggests that central GB with bottom depth < 60 m is very
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unstable due to strong disturbance associated with tidal currents (Harris et al., 2012, 2018). There
is a substantial portion of the southern New England Shelf with fine grained sediment, which is
unfavorable for the settlement of scallop larvae (Dalyander et al., 2013). Scallop larvae may delay
settlement for several days until suitable substrates are encountered (Culliney, 1974). Other factors,
such as predation and fishing pressure, could also significantly affect scallop abundance (e.g., Hart,
2006; Shank et al., 2012). Thus, model-based estimation of scallop distributions needs to include

multiple biotic and abiotic factors that impact sea scallops at different life stages.

5. Conclusions

An Atlantic sea scallop SFG model was developed and applied to the NES to explore the
spatiotemporal variability of energy balance at a seasonal scale. The thermal stress based on the
Arrhenius relationship and the food limitation depending on the simulated phytoplankton and
detritus concentrations were included to examine their joint effects on the SFG. The results
indicated that the overall SFG was highest in May-June, and relatively low in January-February.
The SFG in the MAB showed different seasonality with negative values from July to October due
to the substantial thermal stress. Phytoplankton alone was insufficient to meet the energy demands
of sea scallops. Detritus was an important food source for scallops, and its contribution to energy
gain was more important under colder temperatures. The suitability of scallop habitats represented
by the SFG was more susceptible to the variations of temperature and food supply in the MAB
than that in GB. The sensitivity of SFG to food availability increased with temperature from 0 to
15 °C, and the SFG of large scallops was more sensitive to the changing environments than that of
small scallops. Given the important role of food and thermal conditions in assessing the scallop
energy balance and growth potential, future studies and the development of fisheries management
strategies should consider multi-stressor effects (e.g., warming, food supply, and OA) on different
time scales to address the changing scallop biogeography and population dynamics under climate

change.
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Fig. 1. The climatology of Atlantic sea scallop density (unit: number of scallops per tow) over the
Northeast U.S. Shelf from Georges Bank to the Mid-Atlantic Bight from 1978 to 2017 (data source:
dredge survey data provided by NOAA and Canadian scallop survey data provided by the
Department of Fisheries and Oceans, Canada). The original dredge survey data are projected onto
a grid with 0.05°x0.05° resolution. The color in each grid represents the mean scallop density based
on all the survey data in the grid. The red and blue lines are 35 and 100 m isobaths, respectively.



Atlantic sea scallop scope for growth

35 ; ' ' . 5 T T i
; i:;?mir:; ((g:;\ﬂt:: g::m:r:. 113311,) (a) § measurements (Shumway et al., 1988) (b)
3[] # phytoplankton (Cranford and Gtanl‘, 18a0) E i::,:r::”ay etal(1968)
’15"‘ §  sediment/kelp (Cranford and Grant, 1990) 3 4
o ——— model (phytoplankton) c
£ o || —— model (detritus) =~
o o
£ o
= é 3r
2 @
& g A
o L
8 c 2
c S
=
- E
o a1
[1}]
o
0 1 1 ! I 0 1 I I 1
0 4 8 12 16 20 24 0 4 8 12 16 20 24
670 Temperature ( C) Temperature ( C)

671  Fig. 2. The variations of clearance rate (left) and respiration rate (right) with temperature for a
672  standard scallop individual (DTW = 6.3 g; Grant and Cranford, (1991)). In the left panel, the red
673  and blue lines represent the clearance rate for phytoplankton and detritus, respectively. Asterisks
674  and dots are the measured clearance rate in Grant and Cranford (1991) and Cranford and Grant
675  (1990). In the right panel, the black line is the fitting curve based on the measurements (black dots)
676  in Shumway et al. (1988). The green line is the respiration rate of Atlantic sea scallop used in the
677  SFG model. Error bars in the figure represent one standard deviation.
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Fig. 3. Bimonthly sea scallop absorption rate for phytoplankton (SP+LP) over the NES (scallop
DTW =5 g).
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689  Fig. 5. Bimonthly comparison between absorption rate for phytoplankton and detritus over the
690 NES. Blue/red color indicates that phytoplankton/detritus is more important (higher absorption
691 rate).
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693  Fig. 6. Bimonthly sea scallop respiration rate over the NES (scallop DTW =5 g).
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696  Fig. 7. Bimonthly sea scallop SFG over the NES feeding only on phytoplankton (warm color:

697 SFG > 0 mg C/ind/day; cold color: SFG < 0 mg C/ind/day).
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701  Fig. 8. Bimonthly sea scallop SFG over the NES feeding on both phytoplankton and detritus
702  (warm color: SFG > 0 mg C/ind/day; cold color: SFG < 0 mg C/ind/day).
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Fig. 9. The upper two panels represent the bimonthly mean bottom temperature difference between
2010 and 2012 in July-August (a) and September-October (b) (red: 2012 > 2010; blue: 2010 >
2012). The lower two panels show the spatial distribution of bimonthly mean SFG difference
between 2010 and 2012 (blue: SFG > 0 in both years; yellow: SFG > 0 only in 2010; green: SFG >
0 only in 2012; red: SFG < 0 in both years). The one-tailed z-test was applied to the daily SFG at
each location in July-August (panel c) and September-October (panel d) to examine the statistical
significance. Grey color in panels c and d represents those regions where SFG > 0 or SFG <0 is
not statistically significant in 2010 or 2012.



718
719

720
721
722

42/ (a) Jul-Aug

Latitude

M SFG(2010)>0 SFG(2010 & 20% food | >0

TISFG(2010)>0 SFG(2010 & 20% food | )<0

=1 SFG(2010)<0 SFG(2010 & 20% food | )>0
M SFG(2010)<0 SFG(2010 & 20% food | )<0

-76 -74

Latitude

72 -70 -68 -66
Longitude

M SFG(2010)>0 SFG(2010 & 40% food y )>0

[ SFG(2010)>0 SFG(2010 & 40% food )<0 |

I SFG(2010)<0 SFG(2010 & 40% food | >0
M SFG(2010)<0 SFG(2010 & 40% food | )<0

-76 -74

Latitude

-72 -70 -68 -66
Longitude

M SFG(2010)>0 SFG(2010 & 20% food 1)>0

TISFG(2010)>0 SFG(2010 & 20% food 1)<0 |

B SFG(2010)<0 SFG(2010 & 20% food 1)>0
W SFG(2010)<0 SFG(2010 & 20% food 1)<0

-76 -74

42| (g) Jul-Aug

Latitude

-72 -70 -68 -66
Longitude

I SFG(2010)<0 SFG(2010 & 40% food 1)>0
M SFG(2010)<0 SFG(2010 & 40% food *+)<0

W SFG(2010)>0 SFG(2010 & 40% food 1 )>0
TISFG(2010)>0 SFG(2010 & 40% food 1)<0

-76 -74

-72 -70 -68 -66
Longitude

Latitude

Latitude

Latitude

Latitude

(b) s;ap-o‘Ft

Atlantic sea scallop scope for growth

-74 -72 -70 -68 -66
Longitude

-74 -T2 -70 -68 -66
Longitude

-74 -72 -70 -68 -66
Longitude

-74 -72 -70 -68 -66
Longitude

Fig. 10. The SFG difference between the benchmark run and the sensitivity tests on the NES with
20% food decrease (a and b), 40% food decrease (c and d), 20% food increase (e and f), and 40%
food increase (g and h). The left panels represent the results in July-August, and the right panels
represent the results in September-October.
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Fig. 11. The variations of SFG with temperature and food concentration. The four panels represent
scallops with different dry tissue weights (panel a: DTW=1 g; panel b: DTW=5 g; panel c:
DTW=10 g; panel d: DTW=15 g). Red/blue color represents positive/negative SFG. The solid
black lines are the boundaries between positive and negative SFG.
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730 Table. 1. SFG model parameters used in this study and related references
731

Parameters Symbol  Units Value References

Clearance rate of a standard scallop for CRstq,pry 1/ind/hr 14.0 Grant and Cranford, (1991)
phytoplankton at reference temperature

Clearance rate of a standard scallop for CRs¢q per  Vind/hr 5.3 Grant and Cranford, (1991)
detritus at reference temperature

Respiration rate of a standard scallop at RRg 4 mg O>/ind/hr 1.69 Shumway et al. (1988)
reference temperature

Absorption efficiency for phytoplankton AEpp, % 80 Grant and Cranford, (1991)
Absorption efficiency for detritus AEz.: % 50 Grant and Cranford, (1991)
Dry tissue weight of a standard scallop DTWsq 8 6.3 Grant and Cranford, (1991)
Weight exponent for clearance bcr - 0.7 (MacDonald and Thompson,
1986)

Weight exponent for respiration brr - 0.8 Shumway et al. (1988)
Reference temperature Trer K 279 Grant and Cranford, (1991)
Arrhenius temperature T, K 5290  Van der Veer et al. (2006)
Rate of decrease at lower boundary TaL K 51154 Van der Veer et al. (2006)
Rate of decrease at upper boundary Tay K 47126 Van der Veer et al. (2006)
Lower boundary of tolerance range for T, cr K 275 Van der Veer et al. (2006)
clearance
Lower boundary of tolerance range for T, rr K 275 Van der Veer et al. (2006)
respiration
Upper boundary of tolerance range for Ty cr K 292 Van der Veer et al. (2006)
clearance
Upper boundary of tolerance range for Ty rr K 297 This study
respiration

732

733
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