

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Wiebe et al., GoM Calanus

Page 1

Does predation control the diapausing stock of *Calanus finmarchicus* in the Gulf of Maine?

Wiebe, P.H., M.F. Baumgartner, N.J. Copley, G.L. Lawson, C. Davis, R. Ji, and C.H. Greene

ABSTRACT

The variability of zooplankton populations is controlled by external and internal forcing, with the former being principally large-scale changes in circulation, and the latter being driven by in situ growth, competition, and predation. Assessing the relative importance of these forcings is challenging and requires analyses of multifaceted observational data. As part of the U.S. GLOBEC Georges Bank program, a series of cruises were conducted in fall 1997, 1998, and 1999 to survey diapausing populations of *Calanus finmarchicus* and their predators in Wilkinson, Jordan, and Georges Basins of the Gulf of Maine. Station and underway sampling were conducted using net (1m² MOCNESS) and bioacoustic (BIOMAPER-II) systems, respectively, to acquire vertically stratified data for zooplankton biomass, taxonomic, size, and life-stage composition, together with associated environmental data. The results show that the autumn diapausing *C. finmarchicus* abundance was much lower in 1998 than in 1997 or 1999, even though the overall zooplankton biomass levels were comparable between the three years. The size frequency distribution of the diapausing individuals had a bi-modal pattern in 1997 and 1999, but a single mode in 1998, indicating the demise of an early cohort of the diapausing stock. The relative biomass and computed energy demand of potential invertebrate predators (euphausiids, decapods, medusae, and siphonophores) was found to be higher in 1998 and could account for the missing *C. finmarchicus* cohort. Evidence collected from this study supports the hypothesis that local predation has the potential to control the diapausing stock of *C. finmarchicus* in the Gulf of Maine.

Peter H. Wiebe: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA [tel:+1 508-289-2313, fax +1 508-457-2169, e-mail: pwiebe@whoi.edu]. **Corresponding author**

Mark F. Baumgartner: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA [tel:+1 508-289-2678, fax +1 508-457-2169, e-mail: mbaumgartner@whoi.edu].

Nancy J. Copley: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA [tel:+1 508-289-3204, fax +1 508-457-2169, e-mail: ncopley@whoi.edu].

Gareth L. Lawson: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA [tel:+1 508-289-3649, fax +1 508 457-2169, e-mail: glawson@whoi.edu].

Cabell Davis, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA [tel:+1 508-289-2333, fax +1 508-457-2169, e-mail: cdavis@whoi.edu].

Rubao Ji, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA [tel:+1 508-289-2986, email: rji@whoi.edu]

Charles H. Greene: Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853-1504, USA [tel: +1 607-255-5449, fax +1 607-275-1662, email: chg2@cornell.edu].

Keywords: Gulf of Maine; *Calanus finmarchicus*; Fall abundance variability; *Calanus* C5 size variability; Predation control

1. INTRODUCTION

The copepod *Calanus finmarchicus* is a one of the keystone species in the plankton of the northern Atlantic Ocean because of its high spring and summer abundance and biomass in the open ocean as well as on continental shelves and because of its importance as prey for higher trophic levels (Wishner et al., 1995; Sundby, 2000; Heath et al., 2004; Melle, et al., 2014; Suca et al. 2021; Kristiansen et al. 2021; Skjoldal et al. 2021)). The main population centers within its biogeographic range are in the Norwegian and Labrador Seas, with marginal populations derived from these sources (Heath et al. 2004; Speirs et al. 2005, 2006). Future projections of the species in a warming climate indicate a poleward shift of the main population centers and marked reduction of the population on the NW Atlantic shelf (Reygondeau and Beaugrand 2011; Grieve et al. 2017). Within the Gulf of Maine (GoM) / Georges Bank (GB) system, *C. finmarchicus* dominates zooplankton secondary production during spring and early summer, both on GB and in the GoM proper (Bigelow, 1914, 1926; Davis, 1987a; Meise and O'Reilly, 1996; Durbin, 1997; Durbin et al., 1997, 2003; Runge et al., 2006). The shallow Georges Bank *C. finmarchicus* population has been hypothesized to arise from diapausing populations in the deep basins of the Gulf of Maine. Processes that regulate the survivorship of *C. finmarchicus* from the diapausing populations may provide a seeding source of this species to Georges Bank, where growth and fertility are enhanced due to higher, but still limiting, food levels (Davis 1987a; Campbell et al., 2001). To quantify this seeding potential, information is needed about what processes regulate the abundance and mortality of the diapausing *C. finmarchicus* populations in the Gulf of Maine. Also needed is information about how physical processes in the Gulf of Maine interact with the seasonal and diel vertical migration (DVM) behaviors of *C. finmarchicus* in seeding Georges Bank with new recruits each year. More broadly, knowledge of the mechanisms controlling the diapause stock is important for a better understanding of how the population in NW Atlantic will respond to climate variability and change (Greene et al., 2013; Runge et al., 2015).

Substantial variation in *C. finmarchicus* abundance over the past several decades has been observed from MARMAP-ECOMON bongo net surveys (Meise and O'Reilly, 1996, Ji et al., 2021) and Continuous Plankton Recorder surveys (Conversi, et al., 2001, Greene and Pershing 2000, 2003; Pershing et al., 2005; Greene et al., 2013; Meyer-Gutbrod et al., 2021). The underlying physical-biological mechanisms linking the climate variability and the observed variation of *C. finmarchicus* abundance have not been fully resolved (Greene et al., 2013). Broadly speaking, the variation could be caused by one or more environmental forcings that are responsible for changes in either the internal production within the Gulf of Maine or exchange processes with external populations (Greene et al. 2004; Pershing et al., 2009). These two forcings are not mutually exclusive. Rather, they can reinforce or balance one another. The internal production term could be further divided into two major parts - population growth and mortality loss, while the exchange term could be influenced by the upstream Scotian Shelf Water, Labrador Current, or Slope Water. Multiple hypotheses have been proposed over the last several decades to assess the predominance of certain drivers, and these hypotheses need to be continuously tested using newly available methodology and datasets.

Fluctuations in the surface *C. finmarchicus* CPR data collected nearly continuously since the 1960s have been linked to remote forcing associated with decadal-scale shifts in the Arctic climate system as well as

with interannual variability in the North Atlantic Oscillation (NAO - Hurrell and Deser (2009); Greene et al., 2013). The Data from the Continuous Plankton Recorder (CPR) during the 1990s showed surface abundance of late-stage *C. finmarchicus* in the Gulf of Maine were depressed, reportedly coinciding with an ecosystem regime shift associated with the arrival of negative salinity anomalies from the Arctic Ocean (Greene et al., 2012; 2013). This lower abundance, however, was not evident in the integrated tow data (0-200m) from ECOMON surveys (Ji et al, 2021). GLOBEC MOCNESS data from 1998 showed that the abundances of diapausing *C. finmarchicus* in the Gulf of Maine was low, hypothetically linked to a dramatic drop in the NAO Index and a subsequent shift in the NW Atlantic's coupled Slope Water system (Greene et al., 2003). However, the underlying causal mechanisms remain unclear (Greene et al., 2003; 2004; Ji, 2011). Greene et al. (2003; 2004) speculated that extension of the Labrador Slope Water adjacent to the outer shelf and its subsequent incursion into the GoM during strongly negative NAO years could be blocking upstream sources of *C. finmarchicus* from entering the Gulf. An alternative hypothesis is that with the incursion of Labrador Slope Water, conditions conducive to enhanced invertebrate predator populations reduced the *C. finmarchicus* diapause stock through predation.

Although during the past few decades the dominant pattern has been for the NAO to be in a positive phase, during the winter of 1995-1996 there was a substantial shift to the negative phase (Bersch, 2002). A consequence of this shift was the increased flow of colder, fresher seawater from the outer Labrador Current around the Grand Banks and into the Slope Water in 1997 (Drinkwater et al., 1998, 1999; Pershing et al., 2001; Mountain, 2012). By early 1998 some Labrador Slope Water entered the GoM (Pershing et al., 2001; Townsend et al. 2015). This change of water mass property has been hypothesized to be associated with a significant shift in the *C. finmarchicus* supply into the GoM, thus affecting the population size inside the entire Gulf (Pershing et al., 2001; Greene et al., 2003, 2004). However, both Labrador Slope Water and Warm Slope Water (WSW) (Drinkwater et al. 2003; Mountain 2012) have at least an order of magnitude lower *C. finmarchicus* abundance than the GoM (Miller et al., 1991; Head and Pepin 2008), thus potentially diluting the GoM population regardless of NAO phase.

Long-term CPR and ECOMON survey data demonstrate that there is a strong relationship between decadal-scale regime shifts in the northwest Atlantic and *C. finmarchicus* abundance in the GoM from one decade to the next (Greene et al., 2013; Meyer-Gutbrod et al., 2021). Nevertheless, recent survey data analyses of survey data and modeling studies indicate that the seasonal and interannual variability of *C. finmarchicus* in GoM is rarely determined by size of diapause stock nor by lateral exchange with adjacent water masses, but rather by internal population dynamics within the GoM itself (Ji et al. 2021). These findings are in agreement with earlier studies (Fish and Johnson, 1937; Redfield, 1941; Mullin, 1963). While size of the diapause stock may rarely influence *C. finmarchicus* abundance in the GoM from one year to the next, it is likely that the GoM population cannot sustain itself over the long run without seeding from upstream waters (Miller et al., 1998; Saumweber and Durbin, 2006; Greene et al., 2013). Therefore, understanding what processes control size of the diapause stock during anomalous years may be critical for understanding how this population may survive in the future of rapid climate change (Runge et al., 2015).

As part of the U.S. Global Ocean Ecosystem Dynamics Program (GLOBEC), diapausing *C.*

finmarchicus in the GoM deep basins were sampled in the fall to examine the population abundance, distribution, and stage structure in relation to the hydrography and zooplankton community composition. There were five cruises to the GoM with one conducted in the fall of 1997 (Oct), two in 1998 (Oct and Dec), and two in 1999 (Oct and Dec). Thus, the periods before, during, and after the Labrador Slope Water incursion occurred were sampled. The objective of this paper is to examine the year to year variability in the *C. finmarchicus* in light of this event and to assess the likelihood that increased predation, rather than supply processes, led to the inter-annual variations in *C. finmarchicus* abundance observed.

140 2. METHODS

141 Broad-scale surveys were conducted to estimate spatial and temporal changes in the distribution of the
142 diapausing *Calanus* populations in Wilkinson, Jordan, and Georges Basins aboard either R/V *Endeavor*
143 or R/V *Oceanus*. Included were fixed-station studies to collect 1-m² Multiple Opening/Closing Net and
144 Environmental Sensing System (MOCNESS - Wiebe et al., 1985) samples to examine diel changes in
145 the vertical distributions and small-scale patchiness of predators and prey, and video and acoustic
146 surveys using the BIo-Optical Multi-frequency Acoustical and Physical Environmental Recorder
147 (BIOMAPER-II; Wiebe et al., 2002) to examine the scale-dependent spatial coupling of predators and
148 prey in the deep basins.

149
150 The five Gulf of Maine cruises were laid out as a series of tracklines traversing the three major basins in
151 the Gulf of Maine (Figure 1; Table 1) and took ten to twelve days to complete. On EN307, the first
152 cruise, work began in Georges Basin and then proceeded to Jordan Basin followed by Wilkinson. For
153 the other four cruises, work began in Wilkinson Basin and ended in Georges Basin. In addition to the
154 along-track data collection, time was allotted each day for a CTD cast between 1000 and 1400 hours and
155 one or two MOCNESS tows. One or more tows were taken in each basin on each cruise, with a total of
156 21 tows analyzed (Figure 2; Table 2). In addition to the Gulf of Maine samples, samples collected with a
157 MOCNESS in the upper 800 to 1000 m of the Slope Water south of New England on a time-series set of
158 cruises in 1981 and 1982 (Miller et al., 1991) were re-examined to obtain information on *Calanus*
159 *finmarchicus* lengths and to present the vertical data and environmental data in the context of the Gulf of
160 Maine *Calanus finmarchicus* data.

161 2.1 Gear.

162 2.1.1 MOCNESS.

163
164 A standard 1-m² MOCNESS was used to collect zooplankton for comparison with the acoustic
165 backscattering data (Wiebe et al., 1985) and Video Plankton Recorder (VPR) data (see Benfield et al.,
166 2003). This MOCNESS carried nine nets (335 µm mesh) and sampled eight depth-specific strata. The
167 system was equipped with a modified TSK flowmeter and SeaBird temperature and salinity sensors,
168 which were mounted facing forward on the frame. A SeaTech fluorometer was often mounted on the top
169 portion of the frame. The MOCNESS was launched and recovered from the stern so that acoustic data
170 could be obtained concurrently from the BIOMAPER-II (Wiebe et al., 2002), which was being towed

6
174 off the starboard quarter of the vessel. All MOCNESS tows were conducted with ship speeds of 1.5 -
175 2.5 knots. The nets began collecting samples quantitatively from approximately 10 m above the sea floor
176 to the surface. The zero net was open from the surface to the maximum depth of tow, then sampling
177 strata for nets 1 through 8 commenced while the MOCNESS was hauled back to the surface (Net tow
178 type 17, Wiebe et al., 2015). The depth intervals sampled were dependent on water depth. Generally,
179 intervals of 25 m were sampled near the bottom and the surface, and remaining intervals ranged from 25
180 to 75 m. The down cast (net 0) was fished at a wire speed of 15 m/minute, and the up cast (nets 1-8)
181 was hauled in at a speed of between 5 and 15 m/minute. Approximately 100 to 300 cubic meters of
182 water were filtered for each of nets 1 through 8. Samples were often split prior to preservation with a
183 box splitter (Motoda, 1959), with half the catch preserved in alcohol for genetic analyses and the other
184 half preserved in buffered formalin for biovolume measurement, species identifications, and silhouette
185 analyses (Davis and Wiebe 1985). Data were also collected in 1981 and 1982 with MOCNESS in a
186 time-series in the Slope Water south of New England. Only temperature and depth were measured on
187 MOCNESS. Samples were processed as described above. Some data from this time series were reported
188 by Miller et al., (1991).
189

190 2.1.2 BIOMAPER-II.

191 BIOMAPER-II is a towed system capable of conducting quantitative surveys of the spatial distribution
192 of coastal and oceanic plankton/nekton. The system consisted of a multi-frequency sonar produced by
193 Hydroacoustic Technology Inc (HTI), a Video Plankton Recorder (VPR - Davis et al., 1992, 2004;
194 Benfield et al., 2003), and an environmental sensor package (CTD, fluorometer, transmissometer). The
195 acoustic system collected backscatter data from a total of ten echosounders (five pairs of transducers
196 with center frequencies of 43 kHz, 120 kHz, 200 kHz, 420 kHz, and 1 MHz), half of which were
197 mounted on the top of the tow-body looking upward, while the other half look downward. This
198 arrangement enabled acoustic scattering data to be collected for much of the water column.
199

200 The acoustic frequencies were chosen to bracket the transition from the Rayleigh to geometric scattering
201 regions for the target species under investigation. Echo integration was conducted at 12-second
202 intervals, except on the first cruise (EN307) when the integration period was 30-s, to provide volume-
203 backscattering data at all five frequencies. Split-beam data were collected at the four lower frequencies.
204 All raw acoustic data were recorded on digital audio tape, while the processing for echo integration was
205 carried out in real time.
206

207 The software to acquire the data, which was provided by HTI, enabled the simultaneous acquisition of
208 data on five frequencies each with two transducers (one up-looking and one down-looking). The range
209 allocated for each transducer was dependent on frequency with the lowest frequencies given the longest
210 range and the highest frequency the shortest range (i.e. 43 kHz = 200 m, 120 kHz = 200 m, 200 kHz =
211 149 m, 420 kHz = 100 m, 1000 kHz = 35 m). The vertical resolution at all frequencies after echo-
212 integration was 0.5 m. A ping cycle for all frequencies and transducers took about 2.5 seconds with a
213 firing sequence of down-looking 43, 120, 200, 420, 1000 kHz and then up-looking 43, 120, 200, 420,
214 1000 kHz. Target strength measurements were also collected on the lower four frequencies out to 20
215 meters from the surface of the split beam transducers.
216

2.2 Sample Processing.

MOCNESS: The formalin preserved fractions of the MOCNESS samples were processed using three different techniques. Displacement volumes from the Gulf of Maine and Slope Water were measured using the standard CalCOFI procedure described by Alhstrom (1958). Working in a fume hood, the sample and preserving fluid were poured into a volumetric cylinder and the total volume in cubic centimeters (cc) was recorded. If large animals (> 0.5 cc) were present they were selectively removed and their displacement volumes were measured separately. The contents of the original cylinder were then poured through a fine mesh sieve into an identical cylinder thus straining out the plankton and the volume again recorded. The difference between the reading with the plankton (with or without large animals) is the biovolume estimate.

2.2.1 *Calanus finmarchicus* Counts and Size Measurements.

Counts of *Calanus finmarchicus* adults and copepodid stages in aliquots of the samples were made with a binocular microscope. *Calanus hyperboreous* and *C. glacialis* were present in low numbers, but not counted. Depending on the abundance of *C. finmarchicus* in the samples, splits ranged from 1/256 to $\frac{1}{2}$ of the entire sample. All *C. finmarchicus* were counted and staged from copepodite C1 to adult C6. (Note that stages C1-C2 were under-sampled by the 0.335mm mesh net, Anderson and Warren, 1991). Approximately 100 individuals were removed for staging and length measurement. For stages that were not abundant, all individuals encountered in the split were removed for measurement. For the Slope Water samples, the abundances had previously been determined (Miller et al., 1991), so ~ 30 animals were removed for each abundant stage and all specimens for rare stages were collected from a sub-sample. (This amounted to none or only a few in some cases.) The animals were placed in a Petri dish and scanned on an Epson Expression scanner at 1200 dpi and the prosome lengths (head + thorax) were measured using Matlab-based digitizer software (Little and Copley, 2003). Prosome lengths were measured from the tip of the head to the base of the urosome (as opposed to the distal end of the 5th thoracic segment). Only *C. finmarchicus* size data of the CVs from 550 to 400 m in October and December 1981 collected in the Slope Water are presented below for comparison with the October and December Gulf of Maine data.

For each basin, data were pooled together for different years and months if there was more than one tow. For example, there were two tows during October 1997 in the Wilkinson Basin. All the prosome length measurements for the individuals collected by these two tows were used in the ANOVA and GMM calculations. Samples collected by MOCNESS tows that had mid-depths deeper than 100 m and 150 m were used in the analyses to make sure they were diapausing individuals.

A 2-way ANOVA (Analysis of variance; a Matlab Mathworks® toolbox called ‘anovan’ used for N-way analysis of variance) for all basins and all years in October 1997, 1998, and 1999 was done to examine the size differences in C5s between the years and the basins. ANOVA was used because there were unequal number of size observations for the basins and years. A second 2-way ANOVA was done on the December 1998 and 1999 size data to see if a similar pattern in size differences between the years and the basins occurred. Finally, a 3-way ANOVA was done for all basins (WB, JB, GB), both months

6
261 (Oct, Dec), and two years (98 and 99) to examine differences in C5 size between months as well as
262 basins and years.

263
264 A Gaussian Mixture Model (GMM) was used to parse the size structure of C5 individuals living deeper
265 than 150 m into cohorts (data from below 100 m was also used and did not result in a change in results).
266 The estimation was done using the GMM function *fitgmdist* from Mathworks® Matlab version R2020a,
267 with an assumption that the prosome lengths from each cohort have a Gaussian distribution. The total
268 number of cohorts for each basin was not predetermined. Instead, the Akaike information criterion
269 (AIC) was used to choose the best fitting GMM over varying numbers of cohorts as long as they are less
270 than 6 (theoretically the maximum number of cohorts should not exceed 3 in the Gulf of Maine). The
271 cohorts identified ranged between one and two.

272
273 2.2.2 Estimates of Carbon Requirements in the Water Column.

274
275 A silhouette photograph was made from each sample (or a split of a sample) of selected tows to assess
276 the contributions of the major zooplankton taxonomic groups in terms of their numerical abundance,
277 length frequency distribution, and estimated wet weight (Davis and Wiebe, 1985; Lavery et al., 2007).
278 The photographs (8x10") were scanned to 1200 dpi. The silhouette procedure and a description of the
279 software used is given by Little and Copley, 2003. In most cases animals were identified to a taxonomic
280 group such as copepod or euphausiid, although some were classified more specifically, e.g. *Limacina*
281 *retroversa* (shelled pteropods), *Clione limacina* (naked pteropod). In the case of siphonophores, which
282 often fall apart upon capture in the nets, pneumatophores, bracts, and nectophores were counted and
283 measured separately.

284
285 The silhouette data were used to calculate invertebrate predation impact on *C. finmarchicus* in the Gulf
286 of Maine for each of the tows listed in Table 2 except for EN330 MOC1. For each measured individual,
287 the length data were converted into wet weight using taxa specific equations developed by Davis and
288 Wiebe (1985) and subsequent additions for taxa not considered originally. Wet weights were converted
289 to carbon weights based on taxa specific conversion factors also given by Davis and Wiebe (1985) and
290 others. The taxa-specific data were converted to abundance and standing stock of carbon based on the
291 aliquot size, number of photographic cells measured (counted), and volume filtered by the net.

292
293 Estimated carbon requirement of each animal in a sample was based on the individual carbon estimate
294 and the average water temperature for that sample. Using the equation by Ikeda (1985):

295
296 $\ln(y) = a0 + a1 * \ln(x1) + a2 * x2$

297
298 where $x1$ is body mass in mg carbon units, $x2$ is temperature in °C, $a2$ is related to Q10 by $Q10 =$
299 $\exp(10 * a2)$, and y = oxygen consumption in $\mu\text{l O}_2/\text{individual/hr}$. $a0$, $a1$, and $a2$ are constants given by
300 Ikeda et al. (2000) in their Table 10.2 - Note the equation 1 is mistyped in Ikeda et al., (2000).

301
302 Conversion of oxygen consumption to carbon was done using:

303
304 $\text{mgC/individual/hr} = \text{ml O}_2/\text{individual/hr} * \text{RQ} * 12/22.4.$

305

306 where 12/22.4 is the weight (12 g) of carbon in 1 mole (22.4 g) of carbon dioxide and RQ = 0.97. As
307 noted by Ikeda et al., (2000), the carbon requirement can be used as an index of minimum food
308 requirement when assimilation efficiency and growth are not considered. See Ikeda et al., (2000) for
309 more details.

310

311 In the computation, small copepods, *Limacina*, crustacean larvae, cyphonautes, ostracods, and salps
312 were considered competitors of *C. finmarchicus*, and large copepods, decapods, euphausiids,
313 amphipods, chaetognaths, siphonophores, medusae, polychaets, and fish larvae were considered its
314 invertebrate predators (we acknowledge that other fish predators may have been present, but we have no
315 data on other predators in our data set).

316

317 In summary, length measurements of taxa in a sample were measured and converted to carbon. Then
318 using the temperature for the tow/sample, the O₂ consumption for each individual was computed. The
319 O₂ consumption was then converted to a carbon food requirement. The standing stock of the taxa as
320 competitors and predators, and the food requirement of predators, in terms of carbon estimated for each
321 depth strata sampled and for the entire water column, then were calculated and compared to the carbon
322 in *C. finmarchicus*. Days to consume *C. finmarchicus* was calculated by dividing *C. finmarchicus*
323 (mgC/m²) by the predator carbon (mgC/m²/day).

324

325 2.2.3 Acoustics.

326

327 Volume backscattering strength, S_v (where S_v = 10log10(s_v) in units of decibels, and s_v is the observed
328 volume backscattering coefficient), is a measure of the intensity of emitted sound that is scattered back
329 to the source per cubic meter. All transducers were acoustically calibrated by the manufacturer
330 (Hydroacoustic Technologies Inc., Seattle, WA, USA) each year for source level, receive sensitivity, as
331 well as transmit and receive beam patterns (Supporting Information Appendix A). An in-situ calibration
332 also was performed prior to some cruises with a 38 mm tungsten carbide (6% cobalt) standard target,
333 following established practices (Foote et al., 1987).

334

335 Acoustic data from the up- and down-looking transducers were combined to provide a nearly continuous
336 vertical acoustic record extending from the surface to at least 200 m, and at most 350 m, depending on
337 the position of the BIOMAPER-II along its towyo path. This acoustic record then was edited using
338 custom MATLAB-based routines to remove unwanted returns from the surface bubble layer and the
339 bottom. Noise spikes also were manually removed based on visual scrutiny. Measurements of
340 integrated backscattering were separated by day and night, and data for an hour at dawn and dusk were
341 excluded from this analysis to eliminate possible bias from diel vertical migration. The data were used
342 to produce average day and night profiles for each basin starting at 20 m and extending down to 200 m
343 in 10 m intervals. This depth range was chosen since the surface bubble layer sometimes obscured
344 measurements shallower than 20 m and all three basins had acoustic data to 200 m. In addition to mean
345 values, 0th (minimum), 10th, 25th, 50th (median), 75th, 90th, and 100th (maximum) percentiles were
346 computed. The total integrated S_v (dB) values per m² for each basin were also computed for each cruise.
347 For EN307 in Jordan Basin, none of the surveying was done during daylight.

59

60

61

62

63

64

65

3. RESULTS

3.1 *Calanus finmarchicus* Abundance and Size in the Gulf of Maine.

For *Calanus finmarchicus*, autumn and winter is normally the period when the population is in diapause well below the surface throughout the North Atlantic (Hirche, 1996; Heath et al., 2004). This deep diapausing stock was true for the Gulf of Maine, with most of the *C. finmarchicus* population found below 100 m on all five cruises (Figure 3). Maximum concentration was seldom in the bottom net, but was instead at some intermediate depth. In spite of the expectation that the population should have been absent from the surface waters, there were always *C. finmarchicus* present there. Most individuals throughout the water column were C5 copepodids. The percentages varied between 77 and 95%, except for a single tow (Georges Basin, October 1998) which had 45.6% C5s and 38.8% C4s. Females and males were present in small numbers (Table 3) at times occurring in the upper 50 m. C4s were also present in all tows, often occurring at depth, but sometimes also in significant numbers in the upper 50 meters. C3s were present in all but four of the twenty-one tows, occurring mostly in the upper 50 m. On the four tows where C2s occurred, they were also in surface waters.

The depth distribution properties of the *C. finmarchicus* population were determined from plots of the cumulative frequency distribution of individuals from the surface to the maximum depth of tow. The 17, 50, and 83 centiles were used to determine the central depth distribution instead of 50 to 75% to match what was done by Heath et al., 2004 and the relationship of the bulk of the population to temperature and salinity properties determined from sensors on the MOCNESS in a manner similar to that described by Heath et al., 2004. The center of distribution of the population generally fell between 100 and 200 m (Figure 4). Only in Georges Basin did the center occur between 200 and 250 m (October 1997 and 1998, and December 1999). The depth range of the central 66% of the population (17th to 83rd percentile) was usually less than 100 m and occasionally as narrow as 50 m.

The range of temperatures and salinities corresponding to the depth ranges inhabited by the core of the population was 7 to 8 °C and 33.3 to 35 PSU in 1997 and somewhat lower in 1998 (6 to 7.5 °C and 32.6 to 34.9 PSU) coinciding with the influx of colder fresher Labrador Slope Water into the Gulf of Maine (Townsend et al., 2015). In October and December 1999, *C. finmarchicus* experienced much warmer and saline conditions (7.5 to 9.7 °C; 33.8 to 35.1 PSU) with the exception of those residing in Wilkinson Basin in October 1999. There they experienced slightly lower temperatures and saline conditions similar to those present in 1998 (5 to 6.5 °C; 32.7 to 33.8 PSU). Thus, the central portion of the population experienced substantial variation in temperature and salinity while maintaining a fairly steady depth distribution (Figure 4).

The 2-way ANOVA for October revealed significant differences in *C. finmarchicus* C5 size between years and basins (Table 4). A multiple comparison test (Matlab multcompare) showed that the C5s were significantly smaller in Georges Basin than either Jordan or Wilkinson Basin ($p < 0.05$), but in the latter two, they C5s were not significantly different in size ($p > 0.05$). In 1998, C5s were significantly smaller than 1997 or 1999 ($p < 0.01$, Table 4). In the December case, 1998 had significantly ($p < 0.01$) smaller C5s than in 1999, and the basins were significantly different from each other with GB having the smallest

6
392 C5s, WB intermediate in C5 size, and JB having the largest C5s ($p < 0.05$). The three-way ANOVA that
393 included months (Oct, Dec), years (1998, 1999), and basins (WB, JB, GB), showed significant size
394 differences ($p < 0.01$) existed between all three parameters. A multiple comparison test revealed that
395 December C5s were significantly smaller than in October ($p < 0.05$). The C5s were significantly smaller
396 in 1998 than in 1999, and GB had significantly smaller C5s than either WB or JB ($p < 0.05$), which were
397 not different (Table 4).
398

399 GMM analysis of the size frequency distribution of the C5 individuals below 150 m depth in October
400 and December showed a multimodal pattern in 1997 and 1999, but a single mode in 1998 (Figure 5 A,
401 B). The modes are indicated by the red lines on each plot. The single mode in both October and
402 December of 1998 indicates the demise of an early cohort of the diapausing stock.
403

404 3.2 Vertical Distribution of Biovolume and Taxa. 405

406 The vertical distribution of zooplankton biovolume varied substantially between basins and between
407 sampling times (Figure 6). Highest values can occur in all depth levels - surface waters, intermediate
408 depth range, and in the deepest sampled depth. A part of the inconsistency could be related to diel
409 vertical migration (Baumgartner et al., 2011). For Wilkinson Basin, which had day/night tow pairs on
410 four of the five cruises, surface values were lower during the day than at night on three of them,
411 indicating some diel vertical migration.
412

413 The contribution of *C. finmarchicus* to the zooplankton biovolume measurements varied between years.
414 A regression analysis of the vertical distribution of zooplankton biovolume versus *Calanus finmarchicus*
415 wet weight (as computed from individual lengths determined by stage during counting individuals in
416 each net) was conducted (Figure 7). If the depth distribution for the total water column sampled is
417 compared, the relationship between these two variables is slightly positive for 1997, slightly negatively
418 related for 1998, and more strongly positively related in 1999. Only the 1999 relationship is significant
419 ($p < 0.01$), however. If only samples deeper than 100 m are considered, the relationships are stronger and
420 positively significant in 1997 and 1999. Although the regression is not significant with our sample size
421 ($p = 0.41$, $n = 28$), the apparent negative relationship for 1998 suggests that, as other components of the
422 invertebrate biomass increased, *C. finmarchicus* did not change significantly. Based on the silhouette
423 data, euphausiids and medusae (*Calanus* predators) dominated the biomass in 1998 as described below.
424

425 3.3 Vertical Distribution from Acoustic Backscattering Data. 426

427 The high frequency volume backscattering data provided the most complete coverage of the Gulf of
428 Maine basins on the cruises (Figure 1). Although the backscattering data did not measure the
429 distribution of the biomass of the zooplankton and micronekton directly, the composition of organisms
430 and their scattering characteristics, in addition to biomass, influence total backscattering, so overall
431 patterns in the acoustics data can augment the interpretations of the net tow data. The vertical
432 distribution of the 200 kHz volume backscattering integrated in 10 m bins from 20 m to 200 m (Figure
433 8) were similar to the vertical patterns observed at 120 and 420 kHz (not shown). The observations at
434 200 kHz were chosen for presentation as a balance between water column coverage (i.e., sampling to
59
60
61
62
63
64
65

6 greater ranges than at 420 kHz) and optimizing for small zooplankton (i.e., better than 43 and 120 kHz).
435
436

437 Water column-integrated day and night volume backscattering values for each basin were essentially the
438 same during all cruises, so there was no significant day/night bias (Table 5; $p = 0.9$ – 1-way Anova).
439 There were, however, clear day/night shifts in some of the vertical profiles of volume backscattering
440 (Figure 8). During the day, depths below 100 m generally had larger Sv and surface values were lower.
441 The reverse generally occurred at night. The differences were most evident in 1999 (both October and
442 December) and much less apparent in December of 1998 when the changes between day and night in
443 Wilkinson and Georges Basin were small.
444

445 3.4 Vertically Integrated Abundance Patterns for the Three Years. 446

447 The abundance of *C. finmarchicus* was an order of magnitude lower in 1998 than it was in 1997 or 1999.
448 The water column-integrated numbers of *C. finmarchicus* during the three years ranged from 15,686 to
449 86,341 per m^2 in 1997, 2,168 to 6,962 per m^2 in 1998, and 14,119 to 85,359 per m^2 in 1999 (Figure 3).
450 Georges Basin usually had the lowest numbers per m^2 for each sampling period and it also had the
451 smallest C5s for all three years (Figure 3). There was not a substantial difference in the abundance
452 between the October and December in 1998 and 1999. The dramatic drop in the abundance during 1998
453 compared to 1997 and 1999, however, was statistically significant ($p < 0.001$ - 1-way Anova). The drop
454 was Gulf-wide with the lowest values recorded in Georges Basin.
455

456 The integrated values of biovolume, total numbers of copepods from the silhouette analysis, and
457 integrated volume backscattering data did not show the dramatic drop that the *Calanus finmarchicus*
458 abundance showed (Figures 6, 7, 8). There was not a significant drop in the integrated biovolume
459 during 1998 compared to 1997 and 1999 ($p > 0.1$ - Wilcoxon test) that paralleled that observed
460 significant drop in the *C. finmarchicus* abundance data (Figure 9).
461

462 The major zooplankton taxonomic groups in terms of their numerical abundance and estimated wet
463 weight biomass (as determined by silhouette analysis) were copepods (2 categories < 2.5 mm and ≥ 2.5
464 mm), euphausiids, decapod shrimp, pteropods (*Limacina* sp), medusa, siphonophores, and salps.
465 Numerous other categories that were not as abundant were combined into the other category (Figure 10).
466 In 1997 and 1999, copepods were dominant. In contrast, in 1998, there were fewer copepods, and
467 predators dominated, including euphausiids, decapods, medusae, and siphonophores (Figure 10). There
468 was significantly higher percent biomass of predators in 1998 than in 1997 or 1999 ($p = 0.014$ 1-way
469 Anova test). The pteropod, *Limacina retroversa*, was also very abundant, especially in Georges and
470 Jordan Basin.
471

472 3.5 Comparison of the GoM *Calanus* Distributions to those in Slope Water. 473

474 Diapausing *C. finmarchicus* were present below 400 m in the Slope Water from June until March 1980-
475 81 (Figure 3 in Miller et al., 1991 – Figures 12, 13). This pattern was very different from what was
476 observed in the Gulf of Maine, where the C5s leave diapause and begin molting to adult in January
477 (Davis 1987b; Lynch et al. 1998). The size of *C. finmarchicus* C5s in the Slope Water was slightly
478 larger than those in the Gulf of Maine (Figure 6) and much lower in abundance. The diapausing depth of
60
61
62
63
64
65

6
479 *C. finmarchicus* in the Slope Water (>400m) was well below the sill depth of the Northeast Channel
480 (~230 m).

481 **4. DISCUSSION**

482
483
484 The motivation for studying the GoM diapause stock of *Calanus finmarchicus* during the GLOBEC
485 years (1995 to 1999) was to examine the hypothesis that processes regulating the survivorship and
486 supply of *C. finmarchicus* from diapausing stocks in the deep basins of the Gulf of Maine determine its
487 annual production on Georges Bank (Clarke et al. 1943; Davis 1987a; GLOBEC 1992). The cruises in
488 fall of 1997, 1998, and 1999 were designed to determine what processes regulate the abundance and
489 survivorship of these diapausing *Calanus* stocks.

490
491 Following the abrupt drop in the NAO index in 1996, the Labrador Current intensified, making a larger
492 than usual contribution to the Slope Water during 1998 and replacing the warm Slope Water that
493 typically occurs there and in the GoM (Pershing et al., 2001; Mountain, 2012; Townsend et al. 2015). It
494 apparently entered the GoM in 1998. It was hypothesized that the low abundance of diapausing *C.*
495 *finmarchicus* in the deep basins during fall 1998 was due to a reduction in its supply to the Gulf of
496 Maine (Greene and Pershing, 2000, Pershing et al., 2001). Since both Labrador Slope Water and Warm
497 Slope Water have an order of magnitude lower abundance of *C. finmarchicus* than the GoM, differences
498 between these “sources” is not a viable explanation, as both inflows would reduce the diapause stock.
499 While a disruption of advective supply from the Western Scotian Shelf has been hypothesized (Greene
500 et al., 2013), we have seen no data that can be directly attributed to *C. finmarchicus* CVs advected into the
501 GoM from the Scotian Shelf Water in the fall. In this paper, we examine an alternative hypothesis - that
502 enhanced invertebrate predation reduced the *C. finmarchicus* population in the GoM before and during
503 fall of 1998. We examine this hypothesis by analyzing the size structure of diapausing individuals and
504 the energy demand of potential predators in the years before, during, and after 1998.

505
506
507 **4.1 *C. finmarchicus* Diapause Depth in the Gulf of Maine.**

508
509 Previous modeling has suggested that a significant number of diapausing *C. finmarchicus* C5s must
510 reside below 200 m in the deep basins of the Gulf of Maine in order to produce the observed population
511 in the GoM in the spring time (Lynch et al., 1998). They indicated that the numbers of the unmeasured
512 deep population had to be similar to that measured by the MARMAP surveys in the GoM (which had a
513 maximum sampling depth of 200m, Meise and O'Reilly (1996). Our sampling to just above the bottom
514 in the GoM basins showed that most of the diapausing C5s occurred between 100 and 200 m (Figure 3),
515 not next to the bottom and thus not in support of the Lynch et al. (1998) contention. Field data from
516 Head and Pepin (2008) also showed that in some inshore areas of the Canadian NW Atlantic Continental
517 Shelf, highest abundance of diapausing *C. finmarchicus* were below 100 m, but well above the bottom
518 (i.e. Cabot Strait), which they attributed to possible predator avoidance.

519
520 **4.2 Comparison with Slope Water and Other Parts of the North Atlantic.**

6 Bigelow (1926) described the GoM as a “*Calanus* community”. Its high abundance in this region equals
522 or exceeds that in other regions of the North Atlantic (Melle et al., 2014). Abundance of *C.*
523 *finmarchicus* in the deep basins of the GoM ranged from 15,666 to 86,341/ m² in fall 1997, and from
524 14,119 to 85,359 / m² in fall 1999. In contrast, the *C. finmarchicus* abundance ranged between 2,168 to
525 6,962 /m² in the fall of 1998 (Figure 3). Except for Georges Basin in which the central portion of the
526 population was in 200 to 250 m depths, the central portion of *C. finmarchicus* in the other basins was
527 between 100 and 200 m. Temperatures were above 6 °C up to 9 °C and salinities ranged from 33 to 35
528 PSU (Figure 4). In the Slope Water time series, *C. finmarchicus* was primarily at the surface during the
529 period of the spring bloom in March through early June (Figure 12). The rest of the year, C5s were
530 diapausing at depth. The values of *C. finmarchicus* ranged from 500 to 23,000 /m² (Figure 12) and the
531 diapausing population was found below 400 m and in temperatures below 6 °C (Figure 13). Salinities
532 (not measured on the tows) experienced by *C. finmarchicus* would normally range from 34.8 to 35 PSU
533 for *Calanus* at these depths. In an earlier study, Mullin (1963) found high abundance of *C. finmarchicus*
534 in Wilkinson Basin that ranged from ~3,000 /m² in early spring (March 1962) to 41,000 /m² in June
535 1963.

536 In other portions of its range in Northern Atlantic and Norwegian Sea, Heath et al. (2004) reported
537 abundances of stage C4-C5 *C. finmarchicus* ranging from >15,000 /m² in the Labrador Sea, northern
538 Irminger Basin, northern Iceland Basin, Faroe-Shetland Channel/eastern Norwegian Sea, and Norwegian
539 Trench of the eastern North Sea. The Faroe-Shetland Channel and Norwegian Sea had abundances
540 >40,000 /m². The depths of the diapausing *C. finmarchicus* in the North Atlantic are below 500 m to
541 around 1500 m with temperatures ranging around 4 °C down to 0 °C and salinities were below 35 PSU,
542 except in the Rockall Basin and Norwegian Trench where temperature were around 8 °C and salinities
543 above 35 PSU. These latter regions also had much lower *C. finmarchicus* abundances. In the Labrador
544 Sea, Head and Pepin (2008) reported abundances of *C. finmarchicus* > 600 m down to 2000 m between
545 9,000 and 20,000 /m² in winter 2002. Higher abundances (> 30,000 /m²) occurred southwest of the tail
546 of the Grand Bank and in Cabot Strait region (~46,000 /m²). In the Slope Water off the Western Scotian
547 Shelf, the abundances (4,000-21,000 /m²) were similar to those in the Slope Water south of New
548 England (Miller et al., 1991; Figure 12). At two stations in the shallow water regions of the Grand Banks
549 and Flemish Cap, very high abundances of late-stage (C4-C6 stages of *C. finmarchicus* occurred (>
550 100,000 /m²) in ring net tows. Similar high abundance of *C. finmarchicus* C5s (mixed with *C.*
551 *helgolandicus*) were noted by Halvorsen et al., (2003) in the waters of the Norwegian Sea west of
552 Tromsø in the Tromsø Basin in the Norwegian Sea. They ranged from 70,000 to 150,000 /m² and
553 were mainly diapausing at depths of 700 to 1200 m. The *C. finmarchicus* abundances in the Gulf of
554 Maine in Fall 1997 and Fall 1999 were as high or higher than those found elsewhere in the North
555 Atlantic.

556 4.3 Physiological Consequences of Diapausing at Warm Temperatures.

557 Most diapausing *C. finmarchicus* reside between 100 and 200 m in the GoM, with salinities between 33
558 and 35 PSU, and temperatures well above 6 °C. Current physiological models predict short diapause
559 (<90 days) at these temperatures due to early depletion of lipid reserves (Saumweber and Durbin, 2006;
560 Ingvarsdottir et al, 1999; Jónasdóttir, 1999). One consequence of a short diapause period is an early end
561 of diapause and return to the surface before the spring bloom (Saumweber and Durbin, 2006; Johnson et
562
563
564
565
60
61
62
63
64
65

al., 2008). Head and Pepin (2008) also noted that diapausing *C. finmarchicus* were found in high concentrations in a wide range of temperatures ranging from 2 to 9 °C and were uncertain of the effects on the populations residing in high temperatures. Exiting diapause early could result in higher predation risk and reduced survivorship.

4.4 Enhanced Predation Being Important in 1998.

The silhouette data and the derived total *C. finmarchicus* carbon and predator carbon consumption rates suggested that invertebrate predators as defined in the Methods could have had a major impact on the *C. finmarchicus* population (Table 6). There were substantial differences fall estimates of predator consumption of *C. finmarchicus* in some or all of the GoM basins especially in December of 1998 (OC334 - Figure 11). The fall 1998 estimates of the time to consume *Calanus* was significantly lower than in 1997 and 1999 ($p = .0211$ – one way Anovan). By contrast the competitors of *C. finmarchicus* had lower biomass and overall consumption rates in 1998 than other years, so that competition is an unlikely cause of the *Calanus* decline. In addition, *Calanus* biomass was relatively lower than that of its competitors in 1998, suggesting that *Calanus* may have been the preferred prey of the invertebrate predators.

Durbin et al., (1995) found deep diel vertical migration of the *C. finmarchicus* population in the 1988 SCOPEX study site in the southern portion of the Wilkinson Basin, but essentially none in the following year, and suggested that the diel migration was likely to be in response to the variable presence of predators. Baumgartner et al. (2011) found similarly variable diel vertical migration in the southwestern Gulf of Maine and attributed the observed variability to *C. finmarchicus* feeding history (i.e., lipid accumulation) and predation. Based on the acoustics data presented in Figure 8, DVM was stronger in 1997 and 1999, and almost non-existent in 1998. The implication is that enhanced predation reduced the numbers of *C. finmarchicus* in 1998 and caused a decline in DVM in 1998. In addition, the single mode in the size distribution in 1998 (Figure 5) indicates the demise of an early cohort of the diapausing stock.

In a comparison of mortality rates of *Calanus finmarchicus* in five locations in the North Atlantic (Georges Banks, the northern North Sea, Ocean Station M, Lurefjorden, and Sørdfjorden), Ohman et al. (2004) found that the observed mortality rates were appreciably higher than those determined in mesocosms with few predators. They concluded that natural populations experience significantly higher mortality than might be expected due to physiological shortcomings alone. Ohman et al. (2004) also concluded that *"In those situations where the predator field has been well characterized, regional variations are clearly relatable to different types of predators with different prey selection characteristics. We expect that such differences in predator fields underlie the remaining geographic variations, although this issue requires direct quantitative test. Just as local variations in the primary production cycle can generate different rates of population increase, spatial differences in the rates, patterns, and causal agents of mortality will influence the dynamics of Calanus finmarchicus in different sectors of the Atlantic."*

A recent study that applied model-based scaling and sensitivity analyses to the MARMAP and the EcoMon regional plankton dataset collected over the last four decades (1977-2017) revealed that

699 interannual variability of the *C. finmarchicus* population in the GoM was driven by both internal
680 population dynamics and external exchanges, with the relative importance of each driver depending on
691 the season (Ji et al., 2021). The internal dynamics could be the dominant driver for the spring growing
692 season across all three basins; while the role of the external exchange is basin-dependent. For example,
693 Georges Basin could be more influenced by a Slope Water intrusion than the other two basins due to its
694 proximity to the Slope Water, suggesting a Gulf-wide decline of diapausing stock could be caused by
695 drivers other than Slope Water intrusion. Our data support the hypothesis that predators in the Gulf of
696 Maine strongly influence the mortality of *Calanus finmarchicus*, agreeing with previous studies on
697 predatory control of copepod populations on Georges Bank (Davis, 1984), in Disko Bay, Greenland
698 (Banas et al., 2021), southwest of Iceland (Gislason et al., 2007), in Norwegian fjords (Bageon et al.,
699 2001; Eiane et al., 2002), and in the Barents Sea (Kvile et al., 2021). The estimates of days to consume
700 resident *C. finmarchicus* in the GoM suggest that increased predation caused the low abundances of *C.
701 finmarchicus* adults observed in 1998 (Figure 11; Table 6). A significantly higher percent biomass of
702 predators occurred in 1998, especially euphausiids and medusae (Figure 10). Thus, predation loss rather
703 than advective supply provides a viable explanation for the low abundance of diapausing *C.
704 finmarchicus* in the GoM in 1998.

625 626 5. CONCLUSIONS 627

628 1) Diapausing populations of *Calanus* in the Gulf of Maine had abundances per m² in 1997 and 1999
629 that are among the highest observed in the North Atlantic Ocean.

630 2) The *C. finmarchicus* population in the Gulf of Maine lives at shallower depths and warmer
631 temperatures than the population in the adjacent Slope Water.

632 3) There was a significant and marked decline in the abundance of diapausing *C. finmarchicus* in the
633 Gulf of Maine during the fall of 1998, relative to 1997 and 1999.

634 4) The lower abundance of GoM *C. finmarchicus* in 1998 was coincident with the lagged hydrographic
635 effects of the 1995-1996 negative NAO, which dramatically altered the NW Atlantic's coupled Slope
636 Water system. However, both Labrador Slope Water and Warm Slope Water have an order of
637 magnitude lower *C. finmarchicus* abundance than the GOM, eliminating supply from these sources as a
638 viable explanation for the lower abundances observed in 1998.

639 5) Total water column biovolumes and acoustic backscattering were similar among years due to a
640 marked proportional increase in invertebrate predators of *C. finmarchicus* in 1998. Estimated predation
641 rates associated with these invertebrate predators could account for the reduction of the 1998 *C.
642 finmarchicus* diapause stock to the observed levels as spring *C. finmarchicus* production was similar
643 between years.

644 6) In general, predation can play a key role in copepod population dynamics and should be examined
645 more closely in future studies.

We would like to thank the captain and crew of the R/V *Endeavor* and the R/V *Oceanus* for productive cruises; their professionalism was greatly appreciated. We also thank the many participants on the cruises who made the data collection a success. We thank the three reviewers who contributed to a through critique of the manuscript and provided helpful comments. Research support was provided by the US GLOBEC Georges Bank Program through the CILER Cooperative Agreement NA-67RJO148 (NOAA Coastal Ocean Program).

7. CRediT author statement

Peter Wiebe: Conceptualization of project, Methodology, Data analysis, Writing- Original draft preparation, Reviewing, and Editing; **Charles Greene:** Conceptualization of project, Methodology, Writing- Reviewing, and Editing; **Mark Baumgartner, Gareth Lawson, Nancy Copley:** Data analysis, Writing- Reviewing and Editing; **Rubao Ji, Cabell Davis:** Data analysis, Writing- Original draft preparation, Reviewing, and Editing;

7. REFERENCES

Anderson, J.T., and Warren, W.G. 1991. Comparison of Catch Rates among Small and Large Bongo Sampler for *Calanus finmarchicus* Copepodite Stages. Canadian Journal of Fisheries and Aquatic Sciences 48(2): 303–308. doi:10.1139/f91-042

Bagøien, E., Kaartvedt, S., Aksnes, D.L., and Eiane, K. 2001. Vertical distribution and mortality of overwintering Calanus. Limnology and Oceanography. 46: 1494-1510.

Banas, N.S., Møller, E.F., Laidre K.L, Simon M., Ellingsen I.H., and Nielsen T. G. 2021. Reconciling Behavioural, Bioenergetic, and Oceanographic Views of Bowhead Whale Predation on Overwintering Copepods at an Arctic Hotspot (Disko Bay, Greenland). Frontiers. Marine Science. 8: 614582. doi: 10.3389/fmars.2021.614582

Baumgartner, M.F., Lysiak, N.S.J., Schuman, C., Urban-Rich, J., and Wenzel, F.W. 2011. Diel vertical migration behavior of *Calanus finmarchicus* and its influence on right and sei whale occurrence. Marine Ecology Progress Series 423:167-184. doi: 10.3354/meps08931

Benfield, M. C., Lavery, A.C., Wiebe, P.H., Greene, C.H., Stanton, T.K., and Copley, N.J. 2003. Distributions of physonect siphonulae in the Gulf of Maine and their potential as important sources of acoustic scattering. Canadian Journal of Fisheries and Aquatic Sciences 60: 759–772. doi: 10.1139/F03-065.

691 Bersch, M. 2002. North Atlantic Oscillation-induced changes of the upper layer circulation in the
692 northern North Atlantic Ocean, *Journal of Geophysical Research*. 107(C10): 3156,
693 <https://doi.org/10.1029/2001JC000901>.

694 Bigelow, H.B. 1914. Explorations in the Gulf of Maine, July and August, 1912, by the U.S. Fisheries
695 schooner Grampus. Oceanography and notes on the plankton. *Bulletin Museum of Comparative Zoology*
696 at Harvard College. 29–147.

697 Bigelow, H. B. 1926. Plankton of the offshore waters of the Gulf of Maine, US Government Printing
698 Office. 538 pages. <https://www.biodiversitylibrary.org/bibliography/4192>.

699 Campbell, R. G., Runge, J.A., and Durbin, E.G. 2001. Evidence for food limitation of *Calanus*
700 *finmarchicus* production rates on the southern flank of Georges Bank during April 1997. *Deep Sea Res.*
701 Part II. Topical Studies in Oceanography. 48: 531–549. doi:10.1016/s0967-0645(00)00089-8

702 Clarke, G.L., Pierce, E.L., and Bumpus, D.F. 1943. The distribution and reproduction of *Sagitta elegans*
703 on Georges Bank in relation to the hydrographical conditions. *Biological Bulletin*. 85: 201–226.

704 Conversi, A., Piontkovski, S., and Hameed, S. 2001. Seasonal and interannual dynamics of *Calanus*
705 *finmarchicus* in the Gulf of Maine (Northeastern US shelf) with reference to the North Atlantic
706 Oscillation. *Deep-Sea Research II*. 48: 519-530.

707 Davis, C. S. 1984. Predatory control of copepod seasonal cycles on Georges Bank. *Marine Biology*. 82:
708 31-40.

709 Davis, C. S. 1987a. Zooplankton life cycles., p. 256–267. In *Georges Bank*. MIT Press.

710 Davis, C. S. 1987b. Components of the zooplankton production cycle in the temperate ocean. *Journal of*
711 *Marine Research*. 45: 947–983.

712 Davis, C.S. and Wiebe, P.H. 1985. Macrozooplankton biomass in a warm-core Gulf Stream ring: Time
713 series changes in size, structure, and taxonomic composition and vertical distribution. *Journal of*
714 *Geophysical Research*. 90: 8871-8884.

715 Davis, C.S., Gallager, S.M., Berman, M.S., Haury, L.R., and Strickler, J.R. 1992. The video plankton
716 recorder (VPR): Design and initial results. *Archiv fuer Hydrobiologie, Beiheft: Ergebnisse der*
717 *Limnologie* 36: 67–81.

718 Davis, C.S., Hu, Q., Gallager, S.M., Tang, X., and Ashjian C.J. 2004. Real-time observation of taxon-
719 specific plankton distributions: An optical sampling method. *Marine Ecology Progress Series* 284: 77–
720 96.

721 Drinkwater, K.F., Mountain, D.B., and Herman, A. 1998. Recent changes in the hydrography of the
722 Scotian Shelf and Gulf of Maine—a return to conditions of the 1960s? *Northwest Atlantic Fisheries*
723 *Organization SRC Doc. 98/37*, 16 pp.

724 Drinkwater, K.F., Mountain, D.B., and Herman, A. 1999. Variability in the Slope Water properties off
60
61
62
63
64
65

725 eastern North America and their effects on the adjacent shelves. ICES ASC O:08, 26 pages.
726 <http://www.ices.dk/sites/pub/CM%20Documents/1999/O/O0899.pdf>

727 Drinkwater, K. F., Belgrano, A., Borja, A., Conversi, A., Edwards, M., Greene, C.H., Ottersen, G.,
728 Pershing, A.J., and Walker, H. 2003. The response of marine ecosystems to climate variability
729 associated with the North Atlantic Oscillation. Geophysical Monograph. American Geophysical Union
730 134: 211–234.

731 Durbin, E.G., Gilman, S.L., Campbell, R.G., and Durbin, A.G. 1995. Abundance, biomass, vertical
732 migration and estimated development rate of the copepod *Calanus finmarchicus* in the southern Gulf of
733 Maine during late spring. Continental Shelf Research. 15 (4/5): 571-591.

734 Durbin, E. 1997. Zooplankton dynamics of the Gulf of Maine and Georges Bank Region. In:
735 “Proceedings of the Gulf of Maine Ecosystem Dynamics Scientific Symposium and Workshop”. [Eds]
736 Wallace, G.T, and E.F. Braasch. RARGOM Report, 97-1. Hanover, NH. Pgs:53-67.

737 Durbin, E.G., Runge, J.A., Campbell, R.G., Garrahan, P.R., Casas, M.C., and Plourde. S. 1997. Late
738 fall-early winter recruitment of *Calanus finmarchicus* on Georges Bank. Marine Ecology Progress Series
739 Series. 151: 103-114.

740 Durbin, E.G., Campbell, R.G., Casas, M.C., Ohman, M.D., Niehoff, B., Runge, J.A., and Wagner, M.,
741 2003. Interannual Variation in Phytoplankton blooms and Zooplankton Productivity and Abundance in
742 the Gulf of Maine During Winter. Marine Ecology Progress Series. 254, 81–100.

743 Eiane, K., Aksnes, D.L., Ohman, M.D., Martinussen, M.B. 2002. Stage-specific mortality of *Calanus*
744 spp. under different predation regimes. Limnology and Oceanography. 47: 636-645.

745

746 Fish, C.J., and Johnson, M.W. 1937. The Biology of the Zooplankton Population in the Bay of Fundy
747 and Gulf of Maine with Special Reference to Production and Distribution. Journal of the Biological
748 Board of Canada, 3: 189–322.

749 Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N., and Simmonds, E. J. 1987. Calibration of
750 acoustic instruments for fish-density estimation: A practical guide, ICES Cooperative Research Report
751 No. 144.

752 Gislason, A., Eiane K., Reynisson, P., 2007. Vertical distribution and mortality of *Calanus finmarchicus*
753 during overwintering in oceanic waters southwest of Iceland. Marine Biology. 150:1253-1263. DOI
754 10.1007/s00227-006-0400-7

755

756 GLOBEC. 1992. U. S. GLOBEC: Northwest Atlantic Implementation Plan for the Georges Bank Study.
757 Report Number 6. 69pps.

758

759

760

761

762

763

764

765

766

6
758 Greene, C.H., and Pershing, A.J. 2000. The response of *Calanus finmarchicus* populations to climate
759 variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation.
760 ICES Journal of Marine Science. 57(6): 1536-1544.
10

761 Greene, C.H., and Pershing, A.J. 2003. The flip-side of the North Atlantic Oscillation and modal shifts
762 in Slope-Water circulation patterns. Limnology and Oceanography. 48(1): 319-322.

14
763 Greene C.H., Pershing, A.J., Conversi, A., Planque, B., Hannah, C., Sameoto, D., Head, E., Smith, P.C.,
764 Reid, P.C., Jossi, J., Mountain, D. 2003. M.C. Benfield, P.H. Wiebe, T. Durbin. Trans-Atlantic
765 responses of *Calanus finmarchicus* populations to basin-scale forcing associated with the North Atlantic
766 Oscillation. Progress in Oceanography. 58: 301–312.

20
767 Greene, C.H., Pershing, A.J., Monger, B.C., Benfield, M.C., Durbin, E.G., and Casas, M.C. 2004.
768 Supply-Side Ecology and the Response of Zooplankton to Climate-Driven Changes in North Atlantic
769 Ocean Circulation. Oceanography. 17(3): 60-71.
24

770 Greene, C. H. 2012. The winters of our discontent. Scientific American. 307: 50–55,
771 doi:10.1038/scientificamerican1212-50.

28
772 Greene, C.H., Meyer-Gutbrod, E., Monger, B.C., McGarry, L.P., Pershing, A.J., Belkin, I.M.,
773 Fratantoni, P.S., Mountain, D.G., Pickart, R.S., Proshutinsky, A., Ji, R., Bisagni, J.J., Hakkinen, S.M.A.,
774 Haidvogel, D.B., Wang, J., Head, E., Smith, P., Reid, P.C., and Conversi, A. 2013. Remote climate
775 forcing of decadal-scale regime shifts in Northwest Atlantic shelf ecosystems. Limnology and
776 Oceanography. 58(3), 2013, 803–816. doi:10.4319/lo.2013.58.3.0803
35

777 Grieve, B.D., Hare, J.A., and Saba, V.S. 2017. Projecting the effects of climate change on *Calanus*
778 *finmarchicus* distribution within the U.S. Northeast Continental Shelf. Scientific Reports. 7: 6264.
779 doi:10.1038/s41598-017-06524-1

40
780 Halvorsen, E., Tande, K.S., Edvardsen, A., Slagstad, D., and Pedersen, O.P. 2003. Habitat selection of
781 overwintering *Calanus finmarchicus* in the NE Norwegian Sea and shelf waters off Northern Norway in
782 2000–02. Fisheries Oceanography 12: 339–351. doi:10.1046/j.1365-2419.2003.00255.x
44

783 Head, E., and Pepin, P. 2008. Variations in overwintering depth distributions of *Calanus finmarchicus* in
784 the slope waters of the NW Atlantic Continental Shelf and the Labrador Sea. Journal of Northwest
785 Atlantic Fishery Science. 39: 49–69. doi:10.2960/J.v39.m600

49
786 Heath, M.R., Boyle, P.R., Gislason, A., Gurney, W.S.C., Hay, S.J., Head, E.J.H., Holmes, S.,
787 Ingvarsdóttir, A., Jónasdóttir, S.H., Lindique, P., Pollard, R.T., Rasmussen, J., Richards, K., Richardson,
788 K., Smerdon, G., and Speirs, D. 2004. Comparative ecology of over-wintering *Calanus finmarchicus* in
789 the northern North Atlantic, and implications for life cycle patterns. ICES Journal of Marine Science 61:
790 698-708.

56
791 Hirche, H-J. 1996. Diapause in the marine copepod, *Calanus finmarchicus* — A review. Ophelia. 44(1-
792 3): 129–143. doi:10.1080/00785326.1995.10429843
59

60
61
62
63
64
65

6
793 Hurrell, J.W., and Deser, C. 2009. North Atlantic climate variability: The role of the North Atlantic
794 Oscillation. *Journal of Marine Systems* 78: 28 - 41. doi:10.1016/j.jmarsys.2008.11.026
9
795 Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and
796 temperature. *Marine Biology*, 85: 1-11.
12
797 Ikeda, T., Torres, J.J., Hernandez-Leon, S., and Geiger, S.P. 2000. Metabolism. In "ICES Zooplankton
798 Methodology Manual" [Eds] R. Harris, P. Wiebe, J. Lenz, H.R. Skjoldal, and M. Huntley. Academic
799 Press. London. pages 456 - 532.
17
800 Ingvarsdóttir A., Houlihan D.F., Heath M.R., Hay S.J. 1999. Seasonal changes in respiration rates of
801 copepodite stage V *Calanus finmarchicus* (Gunnerus). *Fisheries Oceanography*. 8(Suppl 1): 73-83.
20
802 Ji, R. 2011. *Calanus finmarchicus* diapause initiation: new view from traditional life history-based
803 model. *Marine Ecology Progress Series*. 440: 105–114.
24
804 Ji, R., Runge, J.A., Davis, C.S., and Wiebe, P.H. 2021. Drivers of variability of *Calanus finmarchicus*
805 in the Gulf of Maine: roles of internal production and external exchange. *ICES Journal of Marine
806 Science*. Accepted.
28
807 Johnson, C.L., Leising, A.W., Runge, J.A., Head, E.J.H., Pepin, P., Plourde, S., and Durbin, E.G. 2008.
808 Characteristics of *Calanus finmarchicus* dormancy patterns in the Northwest Atlantic. *ICES Journal of
809 Marine Science*. 65: 339–350.
33
810 Jónasdóttir, S.H. 1999. Lipid content of *Calanus finmarchicus* during overwintering in the Faroe–
811 Shetland Channel. *Fisheries Oceanography*. 8 (Suppl. 1): 61-72. <https://doi.org/10.1046/j.1365-2419.1999.00003.x>
38
812 Kristiansen, I., Jónasdóttir S.H., Gaard, E., Eliasen, S.K., and Hátún. H. 2021. Seasonal variations in
813 population dynamics of *Calanus finmarchicus* in relation to environmental conditions in the
814 southwestern Norwegian Sea. *Deep-Sea Research Part I*. 171: 103508. doi:10.1016/j.dsr.2021.103508
43
815 Kvile, K.Ø., Prokophchuk, I.P., and Stige, L.C. 2021. Environmental effects on *Calanus finmarchicus*
816 abundance and depth distribution in the Barents Sea. *ICES Journal of Marine Science*.
48
817 <https://doi.org/10.1093/icesjms/fsab133>.
818
820 Lavery, A.C., Wiebe, P.H., Stanton, T.K., Lawson, G.L., Benfield, M.C., and Copley, N. 2007.
821 Determining dominant scatterers of sound in mixed zooplankton populations. *Journal of the Acoustical
822 Society of America*. 122(6): 3304–3326.
53
823 Little W.S., and Copley. N.J. 2003. WHOI Silhouette DIGITIZER, Version 1.0, Users Guide. WHOI
824 Technical Report WHOI-2003-05. 66 pages
56
825 Lynch D.R., Gentleman W.C., McGillicuddy D.J., and Davis C.S. 1998. Biological/physical simulations
826 of *Calanus finmarchicus* population dynamics in the Gulf of Maine. *Mar Ecol Prog Ser* 169:189–210
59
60
61
62
63
64
65

6
827 Meise, C.J., and O'Reilly. J.E. 1996. Spatial and seasonal patterns in abundance and age-composition of
828 *Calanus finmarchicus* in the Gulf of Maine and on Georges Bank: 1977-1987. Deep-Sea Research II.
829 43(7-8): 1473-1501.
10

830 Melle, W., Runge, J., Head, E., Plourde, S., Castellani, C., Licandro, P., Pierson, J., Jonasdottir, S.,
831 Johnson , C., Broms, C., Debes, H., Falkenhaug, T., Gaard, E., Gislason, A., Heath, M., Niehoff, B.,
832 Nielsen, T.G., Pepin, P., Stenevik, E.K., and Chustm, G. 2014. The North Atlantic Ocean as habitat for
833 *Calanus finmarchicus* : environmental factors and life history traits. Progress in Oceanography. 129, 244
834 – 284.
18
835 Meyer-Gutbrod, E.L., Greene, C.H., Davis, K.T.A., and Johns, D.G. 2021. Ocean Regime Shift is
836 Driving Collapse of the North Atlantic Right Whale Population. Oceanography. 34(3): 13-21.
837 <https://doi.org/10.5670/oceanog.2021.3xx>.
22

838 Miller, C.B., Cowles T.J., Wiebe, P.H., Copley, N.J., and Grigg, H. 1991. Phenology in *Calanus*
839 *finmarchicus*; hypotheses about control mechanisms. Mar. Ecol. Prog. Ser. 72: 79-91.
26
840 Miller, C.B., Lynch, D.R., Carlotti, F., Gentleman, W., and Lewis, C.V.W. 1998. Coupling of an
841 individual-based population dynamic model of *Calanus finmarchicus* to a circulation model for the
842 Georges Bank region. Fisheries Oceanography. 7: 219–234.
30

843 Motoda, S. 1959. Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries Sciences,
844 Hokkaido University. 7: 73-94.
34
845 Mountain, D.G. 2004. Variability of the Water Properties in NAFO Subareas 5 and 6 During the 1990s .
846 Journal of Northwest Atlantic Fishery Science. 34: 103-112. doi:10.2960/J.v34.m475
37
847 Mountain, D.G. 2012. Labrador slope water entering the Gulf of Maine—response to the North Atlantic
848 Oscillation. Continental Shelf Research. 47, 150–155. doi: 10.1016/j.csr.2012.07.008
40
849 Mullin, M. M. 1963. Comparative ecology of the genus *Calanus* in the Gulf of Maine. PhD thesis,
850 Department of Biology, Harvard University. 97 Pages.
43

851 Ohman M.D., Eiane K., Durbin E.G., Runge J.A., and Hirche H-J. 2004. A comparative study of
852 *Calanus finmarchicus* mortality patterns at five localities in the North Atlantic. ICES Journal of Marine
853 Science. 61: 687 – 697.
48
854 Pershing, A.J., Greene, C.H., Hannah, C., Sameoto, D., Head, E., Mountain, D.G., Jossi, J.W., Benfield,
855 M.C., Reid, P.C., and Durbin, T.G. 2001. Oceanographic Responses to Climate in the Northwest
856 Atlantic. Oceanography. 24(3): 76-82. <https://doi.org/10.5670/oceanog.2001.25>.
53
857 Pershing, A.J., Greene, C.H., Jossi, J.W., O'Brien, L., Brodziak, J.K.T., and Bailey, B.A. 2005.
858 Interdecadal Variability in the Gulf of Maine Zooplankton Community with potential impacts on fish
859 recruitment. ICES Journal of Marine Science. 62: 1511-1523.
57
58
59
60
61
62
63
64
65

6
860 Pershing, N. R. Record, B. C. Monger, D. E. Pendleton, and L. A. Woodard. 2009. Model-based
861 estimates of *Calanus finmarchicus* abundance in the Gulf of Maine. *Marine Ecology Progress Series*.
862 378: 227–243, doi:10.3354/meps07828.
10

863 Redfield, A.C. 1941. The effect of the circulation of water on the distribution of the calanoid community
864 in the Gulf of Maine. *Biological Bulletin*. 80: 86–110.
14

865 Reygondeau, G., and Beaugrand, G. 2011. Future climate-driven shifts in distribution of *Calanus*
866 *finmarchicus*. *Global Change Biology*. 17: 756–766. doi:10.1111/j.1365-2486.2010.02310.x
17

867 Runge, J.A., Plourde, S., Joly, P., Niehoff, B., and Durbin, E., 2006. Characteristics of egg production of
868 the planktonic copepod, *Calanus finmarchicus*, on Georges Bank: 1994–1999. *Deep-Sea Research II*.
869 53, 2618–2631. <https://doi.org/10.1093/plankt/fbu098>
22

870 Runge, J.A., Ji, R., Thompson, C.R.S., Record, N.R., Chen, C., Vandemark, D.C., Salisbury, J.E., and
871 Maps, F. 2015. Persistence of *Calanus finmarchicus* in the western Gulf of Maine during recent extreme
872 warming. *Journal of Plankton Research*. 37(1): 221–232.
26

873 Saumweber, W.J., and Durbin, E.G. 2006. Estimating potential diapause duration in *Calanus*
874 *finmarchicus*. *Deep-Sea Research II*. 53: 2597–2617. doi:10.1016/j.dsr2.2006.08.003
30

875 Skjoldal, H.R., Aarflot, J.M., Bagøien, E., Skagseth, Ø. Rønning, J., and Lien, V.S. 2021. Seasonal and
876 interannual variability in abundance and population development of *Calanus finmarchicus* at the western
877 entrance to the Barents Sea, 1995–2019. *Progress in Oceanography*. 195: 102574.
878 doi:10.1016/j.pocean.2021.102574
36

879 Speirs, D.C., Gurney, W.S., Heath, M.R., and Wood, S.N. 2005. Modelling the basin-scale demography
880 of *Calanus finmarchicus* in the north-east Atlantic. *Fish. Oceanogr*. 14: 333–358.
39

881 Speirs, D. C., Gurney, W.S., Heath, M.R., Horbelt, W. Wood, S.N, and De Cuevas, B.A. 2006. Ocean-
882 scale modelling of the distribution, abundance, and seasonal dynamics of the copepod *Calanus*
883 *finmarchicus*. *Marine Ecology Progress Series*. 313: 173–192.
44

884 Suca, J.J., Wiley, D.N., Silva, T.L., Robuck, A.R., Richardson, D.E., Glancy, S.G., Clancey, E.,
885 Giandonato, T., Solow, A.R., Thompson, M.A., Hong, P., Baumann, H., Kaufman, L., and Llopiz,
886 J.K. 2021. Sensitivity of sand lance to shifting prey and hydrography indicates forthcoming change to the
887 northeast US shelf forage fish complex. *ICES Journal of Marine Science*. 78(3): 1023–1037
888 doi:10.1093/icesjms/fsaa251
51

889 Sundby, S. 2000. Recruitment of Atlantic cod stocks in relation to temperature and advection of copepod
890 populations. *Sarsia* 85: 277–298.
54

891 Townsend, D.W., Pettigrew, N.R., Thomas, M.A., Neary, M.G., McGillicuddy Jr., D.J., and O'Donnell,
892 J. 2015. Water masses and nutrient sources to the Gulf of Maine. *Journal of Marine Research*, 73, 93–
893 122.
59
60
61
62
63
64
65

6
894 Wiebe, P.H., Morton, A.W., Bradley, A.M., Backus, R.H., Craddock, J.E., Cowles, T.J., Barber, V.A.,
895 and Flierl, G.R. 1985. New developments in the MOCNESS, an apparatus for sampling zooplankton
896 and micronekton. *Mar. Biol.*, 87: 313-323.
10

11
897 Wiebe, P.H., Stanton, T.K., Greene, C.H., Benfield, M.C., Sosik, H.M., Austin T., Warren, J.D., and
898 Hammar. T. 2002. BIOMAPER II: An integrated instrument platform for coupled biological and
899 physical measurements in coastal and oceanic regimes. *IEEE Journal of Oceanic Engineering*. 27(3):
900 700-716.
16

901 Wiebe, P.H., Allison, D., Kennedy, M., and Moncoiffe, G. 2015. A Vocabulary for the Configuration of
902 Net Tows for Collecting Plankton and MicroNekton. *Journal of Plankton Research*. 37(1): 21–27. First
903 published online November 6, 2014 doi:10.1093/plankt/fbu101.
21

904 Wishner, K.F., Schoenherr, J. R., Beardsley, R., and Chen, C. 1995. Abundance, distribution and
905 population structure of the copepod *Calanus finmarchicus* in a springtime right whale feeding area in the
906 southwestern Gulf of Maine. *Continental Shelf Research* 15: 475-507.
26
907

908 Figure Legends 909

910 Figure 1. Distribution of cruise tracklines in the Gulf of Maine along which BIOMAPER-II acoustic,
911 optical, and environmental data were collected in fall of 1997, 1998, and 1999. The bold red lines
912 indicate where BIOMAPER-II was being towed. WB- Wilkinson Basin, JB- Jordan Basin, and GB -
913 Georges Basin.
914

915 Figure 2. Distribution of 1-m² MOCNESS tows taken on the fall cruises to the Gulf of Maine in 1997,
916 1998, and 1999 (indicated by the numbers and symbols). The circled tows are those that have been
917 processed.
918

919 Figure 3. The vertical distribution (individuals/m³) of *Calanus finmarchicus* collected in the three major
920 basins in Gulf of Maine during the fall of 1997, 1998, and 1999 as stacked horizontal bars with the
921 various copepodid stages indicated by the colors. WB- Wilkinson Basin, JB- Jordan Basin, and GB -
922 Georges Basin. Bottom depth indicated by diamond on each vertical plot. Total (vertically integrated)
923 abundance individuals/m² also is given for each profile. Day and Night tows indicated by N and D in the
924 Cruise tow number at the top of each plot.
925

926 Figure 4. The distribution of the central 66% portion (17th to 83rd percentile) of *Calanus finmarchicus*
927 sampled in the Gulf of Maine in 1997, 1998, and 1999 as a function of depth, temperature, and salinity
928 measured with the MOCNESS sensors. The dotted lines provide a context for viewing relationship
929 between depth, temperature, and salinity. WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges
930 Basin.
931

932 Figure 5, *Calanus finmarchicus* C5 size distribution in 1997, 1998, 1999 taken from samples below 150
933 m. Cohorts were decomposed using a Gaussian Mixture Model (GMM). μ is the mean of a probability
934 distribution, σ is the standard deviation of the Probability Distribution Function (PDF), and p is the
61
62
63
64
65

6
935 Component Proportion, n is the number of observations. The red line on the plots demarks the modes.
936 WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges Basin.
937

938 Figure 5A. October size distribution of *Calanus finmarchicus* C5s (1997, 1998, 1999)
939

940 Figure 5B. December size distribution of *Calanus finmarchicus* C5s (1998, 1999).
941

942 Figure 6. The vertical distribution of MOCNESS zooplankton biovolumes collected in the three major
943 basins in Gulf of Maine during the fall of 1997, 1998, and 1999. WB- Wilkinson Basin, JB- Jordan
944 Basin, and GB - Georges Basin. Total integrated biovolumes as cubic centimeters (cc) per m² are given
945 for each profile. Day and Night tows indicated by N and D in the Cruise tow number at the top of each
946 plot. The line with the double-sided arrow distinguishes October data from December data.
947

948 Figure 7. The relationship between total zooplankton biovolume and the wet weight of *Calanus*
949 *finmarchicus* by years for all MOCNESS tow depths and only those greater than 100 and 150 meters. *C.*
950 *finmarchicus* wet weights determined from a length to ww relationship.
951

952 Figure 8. The day/night vertical distribution of volume backscattering at 200 kHz in the three major
953 basins in Gulf of Maine during the fall of 1997, 1998, and 1999. WB- Wilkinson Basin, JB- Jordan
954 Basin, and GB - Georges Basin. Each plot gives median backscattering in 10 m depth bins between 20
955 and 200 m, and the error bars on that show the 25th and 75th percentiles. Day is blue; night is red. The
956 line with the double-sided arrow distinguishes October data from December data.
957

958 Figure 9 Time-series changes in integrated values of a) *Calanus finmarchicus*, b) total biovolumes, c)
959 average volume backscatter at 200 kHz, d) silhouette total copepod counts, and e) biomass of *Calanus*
960 (square) and total copepods (triangle) based on length to wet weight relationships. The individual
961 symbols in each plot represent integrated values for a MOCNESS tow, except for the volume
962 backscattering (SV) where individual symbols represent the mean from a particular tow.
963

964 Figure 10. The percent composition of zooplankton taxa based on silhouette data for each MOCNESS
965 net that were integrated for the water column. The minor contributors to both abundance and biomass
966 are grouped as "others".
967

968 Figure 11. Predation pressure on *C. finmarchicus* in the GoM based on estimates of the carbon in *C.*
969 *finmarchicus*, invertebrate competitors and predators based on Silhouette analysis of the MOCNESS
970 samples and Ikeda's 1985 model of oxygen uptake as a function of individual length and temperature.
971 Note: the half-year increments on the X-axis are given as .5.
972

973 Figure 12. The vertical distribution of *Calanus finmarchicus* collected in the Northwest Atlantic Slope
974 Water during 1981 and 1982 south of New England. Total integrated numbers per m² are given for each
975 profile. Most vertical profiles published by Miller et al., (1991) as cumulative percents as a function of
976 depth by stage.
977

Figure 13. The distribution of the central portion (17th to 83rd percentile) of the *Calanus finmarchicus* population sampled in the North Atlantic Slope Water in 1981 and 1982 as a function of depth and temperature. The numbers above the month designations are the year-days when the tows were taken. Note there are two May values and two October values in 1981 and two March values in 1982. Environmental data not published by Miller et al., (1991) as presented herein.

Table 1. Information about each cruise used in this paper. The Tracklines are illustrated on Figure 1.

Ship/Cruise	Cruise Dates	BIOMAPER-II Trackline distance
R/V Endeavor 307	7-17 October 1997	1017.1km; 549.2nm
R/V Oceanus 332	19-28 October 1998	558.6km; 301.6nm
R/V Oceanus 334	3-13 December 1998	929.6km; 502.0nm
R/V Endeavor 330	16-24 October 1999	1085.6km; 586.2nm
R/V Endeavor 331	4-14 December 1999	876.3km; 473.1nm

1
2
3
4
5
6999 Table 2. MOCNESS tow information (21 tows). Bottom depth estimated using etopo1 data. WB-
1000 Wilkinson Basin; JB-Jordan Basin; GB-Georges Basin.
1001

Cruise	Day/Month/Year	Basin	Time In*	Time Out*	Lat In	Lon In	Lat Out	Lon Out	Max Depth of Tow (m)	Bottom Depth (m)
En307m9_N	16/Oct/1997	WB	289.898600	289.942789	42.48	-68.75	42.51	-68.77	180	185.4
En307m7_D	14/Oct/1997	WB	287.619500	287.676898	42.40	-68.82	42.41	-68.74	190	205.75
En307m4_N	12/Oct/1997	JB	285.048600	285.098345	43.52	-67.89	43.55	-67.89	240	245.17
En307m3_N	10/Oct/1997	GB	284.151430	284.206481	42.42	-67.00	42.44	-67.05	344	363.05
Oc332m1_N	22/Oct/1998	WB	295.808700	295.860160	42.60	-69.76	42.63	-69.75	175	235.75
Oc332m2_D	23/Oct/1998	WB	296.586280	296.635660	42.38	-69.07	42.37	-69.01	200	212.91
Oc332m3_D	24/Oct/1998	JB	297.617100	297.663870	43.78	-67.60	43.75	-67.63	225	231.25
Oc332m4_N	24/Oct/1998	JB	297.960200	298.012190	43.28	-67.83	43.25	-67.84	230	234
Oc332m6_N	26/Oct/1998	GB	299.854100	299.908320	42.30	-66.89	42.32	-66.84	280	290.9
Oc334m1_N	04/Dec/1998	WB	338.963180	339.027770	42.39	-69.13	42.39	-69.07	215	223.7
Oc334m3_N	06/Dec/1998	JB	343.006940	343.063190	43.35	-67.99	43.39	-67.97	235	240.15
Oc334m5_D	06/Dec/1998	GB	343.629830	343.703660	42.34	-67.66	42.34	-67.57	223	241.43
En330m1_D	17/Oct/1999	WB	290.607000	290.634010	42.25	-69.25	42.26	-69.28	195	206.25
En330m2_N	18/Oct/1999	WB	294.01597	294.0806	42.42	-69.82	42.42	-69.80	241	246.75
En330m4_D	20/Oct/1999	JB	294.66597	294.71458	43.51	-67.17	43.53	-67.22	208	200.7
En330m5_N	22/Oct/1999	JB	295.00903	295.05278	43.64	-67.51	43.61	-67.52	215	223.11
En330m6_N	24/Oct/1999	GB	297.84236	297.90763	42.32	-67.60	42.33	-67.68	240	257.65
En331m2_N	04/Dec/1999	WB	338.95694	339.001380	42.27	-69.31	42.26	-69.35	200	211.3
En331m5_N	06/Dec/1999	JB	340.91319	340.95764	43.83	-67.72	43.80	-67.70	225	213.82
En331m4_D	06/Dec/1999	JB	340.51458	340.562500	43.32	-68.00	43.28	-68.01	211	235.6
En331m6_N	08/Dec/1999	GB	343.90138	343.968056	42.50	-67.08	42.49	-67.03	200	333.8

1002
1003 *- Year-day. Time in fractions of a day.
1004
1005
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 3. Percent of *Calanus finmarchicus* in stages C2 to C6 in MOCNESS tows based on integrated counts from all eight nets. Cruise WB = Wilkinson Basin; JB = Jordan Basin; GB = Georges Basin.

Cruise	Month/Year	Basin	female	male	C5	C4	C3	C2
En307m9	Oct/1997	WB	4.87	0.03	81.69	13.26	0.16	0.00
En307m7	Oct/1997	WB	2.27	0.16	88.29	4.10	3.52	1.66
En307m4	Oct/1997	JB	1.77	0.22	77.55	20.46	0.00	0.00
En307m3	Oct/1997	GB	2.28	0.23	88.79	8.61	0.09	0.00
Oc332m1	Oct/1998	WB	3.09	0.55	70.97	24.00	1.39	0.00
Oc332m2	Oct/1998	WB	5.19	1.67	78.27	14.66	0.22	0.00
Oc332m3	Oct/1998	JB	2.01	0.79	65.67	27.84	3.51	0.18
Oc332m4	Oct/1998	JB	6.31	1.39	78.33	13.97	0.00	0.00
Oc332m6	Oct/1998	GB	1.67	0.27	45.55	38.78	13.72	0.00
Oc334m1	Dec/1998	WB	1.69	0.58	79.05	18.22	0.45	0.00
Oc334m3	Dec/1998	JB	2.20	0.79	80.98	15.37	0.63	0.03
Oc334m5	Dec/1998	GB	6.90	2.19	77.22	13.69	0.00	0.00
En330m1	Oct/1999	WB	1.43	0.18	84.61	13.77	0.00	0.00
En330m2	Oct/1999	WB	1.92	0.16	85.07	12.72	0.11	0.01
En330m4	Oct/1999	JB	1.24	0.21	93.53	5.01	0.00	0.00
En330m5	Oct/1999	JB	1.74	0.09	90.15	8.01	0.02	0.00
En330m6	Oct/1999	GB	3.11	0.28	82.91	13.68	0.02	0.00
En331m2	Dec/1999	WB	3.84	1.98	86.25	7.81	0.12	0.00
En331m5	Dec/1999	JB	1.32	0.80	93.81	4.06	0.01	0.00
En331m4	Dec/1999	JB	1.83	1.02	95.30	1.84	0.01	0.00
En331m6	Dec/1999	GB	1.96	0.47	89.96	7.59	0.01	0.00

Table 4. *Calanus finmarchicus* C5 statistics (Mean size, Standard deviation, and number of observation) by basin, months, and years. Slope Water C5 values are included for comparison with the Gulf of Maine values. Wilkinson basin = WB, Jordan basin = JB, Georges basin = GB, Slope Water = SW.

Year	WB	std	N	JB	std	GB	std	N	Basin means
1997 Oct	2.228	0.2461	344	2.351	0.2346	303	2.196	0.2240	597 2.26
1998 Oct	2.228	0.2268	264	2.160	0.2021	318	2.161	0.1894	558 2.18
1998 Dec	2.114	0.2140	220	2.117	0.2069	210	2.021	0.1666	446 2.08
1999 Oct	2.262	0.2790	570	2.248	0.2243	434	2.157	0.2002	155 2.22
1999 Dec	2.171	0.2311	227	2.257	0.2510	498	2.119	0.2242	442 2.18
Mean	2.20			2.23			2.13		
OctMeans	2.24			2.25			2.17		
DecMeans	2.14			2.19			2.07		
	SW								
1981 Oct	2.321	0.1860	29						
1981 Dec	2.224	0.1946	29						

Table 5. Mean values of 200 kHz acoustic data for depth interval 20 to 200 m. The mean S_v is expressed in dB ($10 \times \log_{10}(s_v)$). There were no day data in Jordan basin. The nighttime (nt)-day differences are not significantly different at the $p = 0.9$ level (1-way Anova). Wilkinson basin = WB, Jordan basin = JB, Georges basin = GB.

cruise_Basin	Year_month	Night	Day	nt - day
en307_GB	1997 Oct	-64.5862	-67.7064	3.1202
en307_JB	1997 Oct	-67.4687	-	-
en307_WB	1997 Oct	-67.8637	-69.1834	1.3197
oc332_GB	1998 Oct	-70.3786	-67.7376	-2.6410
oc332_JB	1998 Oct	-66.8753	-69.2102	2.3348
oc332_WB	1998 Oct	-66.7779	-66.7122	-0.0657
oc334_GB	1998 Dec	-62.8006	-61.4028	-1.3979

oc334_JB	1998 Dec	-62.0602	-62.1371	0.0769
oc334_WB	1998 Dec	-62.4439	-62.7466	0.3027
en330_GB	1999 Oct	-68.2266	-67.2492	-0.9775
en330_JB	1999 Oct	-63.4989	-64.3849	0.886
en330_WB	1999 Oct	-67.4132	-68.0534	0.6402
en331_GB	1999 Dec	-64.6574	-65.7603	1.1029
en331_JB	1999 Dec	-65.9626	-63.5816	-2.3809
en331_WB	1999 Dec	-64.4086	-63.8081	-0.6005

Mean Diff 1.7199

Table 6. Estimates of the carbon in *C. finmarchicus*, invertebrate competitors and predators based on Silhouette analysis of the MOCNESS samples and Ikeda's 1985 model of oxygen uptake as a function of individual length and temperature. Days to consume *C. finmarchicus* was calculated by dividing *C. finmarchicus* (mgC/m²) by the predcarb (mgC/m²/day).

Cruise	Tow	YearTime	C. fin mgC/m ²	compet mgC/m ²	pred mgC/m ²	competcarb mgC/m ² /day	predcarb mgC/m ² /day	Ccompet/predcarb - days	C.fin/predcarb - days
EN307	m3	1997.778	1146.2	1406.73	1087.27	92.96	39.98	35.2	28.67
EN307	m4	1997.781	6343.81	4327.47	5159.85	264.38	229.40	18.9	27.65
EN307	m7	1997.787	864.47	1210.77	414.95	74.46	15.97	75.8	54.13
EN307	m9	1997.793	1905.18	2158.44	1140.95	132.80	38.02	56.8	50.11
OC332	m1	1998.81	565.38	731.64	415.40	45.39	11.33	64.6	49.92
OC332	m3	1998.816	591.80	1098.71	426.55	61.86	12.63	87.0	46.85
OC332	m4	1998.816	363.48	718.85	2235.87	46.84	57.50	12.5	6.32
OC332	m6	1998.822	184.28	968.63	4217.82	65.19	99.78	9.7	1.85
OC334	m1	1998.927	334.10	1477.62	2014.58	92.65	45.56	32.4	7.33
OC334	m3	1998.933	334.39	941.52	1527.02	54.74	34.69	27.1	9.64
OC334	m5	1998.94	208.84	855.08	768.02	50.76	19.49	43.9	10.72
EN330	m2	1999.796	7255.55	5524.46	4246.49	322.52	157.52	35.1	46.06
EN330	m5	1999.808	5620.50	5059.23	1716.51	317.80	60.02	84.3	93.64
EN330	m6	1999.816	2556.23	2283.32	1328.10	163.86	43.35	52.7	58.97
EN331	m2	1999.929	2972.58	1830.48	2856.44	105.45	80.80	22.7	36.79
EN331	m4	1999.933	5773.08	4443.86	2287.87	248.97	108.05	41.1	53.43
EN331	m5	1999.934	4832.81	3346.39	1510.18	204.53	65.29	51.3	74.02
EN331	m6	1999.942	1200.09	869.58	2173.68	53.94	63.31	13.7	18.96

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Appendix A. Supporting Information. Calibration data for BIOMAPER-II echosounder and transducers.
27
2829 EN307
30
31

	43 kHz		120 kHz		200 kHz		420 kHz		1000 kHz	
Parameter	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP
Nominal beamwidth	6	6	3	3	3	3	3	3	3	3
Mean beam pattern factor (bav2)	9.95e-4	1.018e-3	1.95e-4	2.12e-4	2.38e-4	2.10e-4	2.86e-4	2.78e-4	2.16e-4	2.22e-4
Source level (re:1 μ Pa at 1 m)	223.31	223.12	228.59	228.41	227.82	227.5	226.99	227.69	218	218
Receiving Sensitivity (re: 1 V/ μ Pa)	-151.59	-153.44	-162.28	-162.21	-168.44	-169.07	-168.34	-167.68	-182.58	-183.33
Receive gain setting	0	0	0	0	6	6	0	0	12	12
A(Integration scaling constant)	9.974e-7	1.0081e-6	1.0003e-6	1.0023e-6	1.0060e-6	9.957e-7	9.910e-7	1.0002e-6	9.975e-7	1.0097e-6
Pulse length (ms)	5	5	5	5	5	5	2.5	2.5	1.25	1.25
Chirp bandwidth (kHz)	10	10	10	10	10	10	10	10	10	10
Ping rate	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417

51 OC332 & OC334
52
53

	43 kHz		120 kHz		200 kHz		420 kHz		1000 kHz	
Parameter	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP
Nominal beamwidth	6	6	3	3	3	3	3	3	3	3
Mean beam pattern factor (bav2)	1.018e-3	9.95e-4	1.95e-4	2.12e-4	2.38e-4	2.10e-4	2.86e-4	2.78e-4	2.16e-4	2.22e-4

Source level (re:1 μ Pa at 1 m)	223.12	223.31	228.59	228.41	227.82	227.5	226.99	227.69	218	218
Receiving Sensitivity (re: 1 V/ μ Pa)	-153.44	-151.59	-168.28	-168.21	-168.44	-169.07	-168.34	-167.68	-182.58	-183.33
Receive gain setting	0	0	6	6	6	6	0	0	12	12
A(Integration scaling constant)	1.0081e-6	9.974e-7	1.0003e-6	1.0023e-6	1.0060e-6	9.957e-7	9.910e-7	1.0002e-6	9.975e-7	1.0097e-6
Pulse length (ms)	5	5	5	5	5	5	5	5	5	5
Chirp bandwidth (kHz)	10	10	10	10	10	10	10	10	10	10
Ping rate	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417

EN330 & EN331

	43 kHz		120 kHz		200 kHz		420 kHz		1000 kHz	
Parameter	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP
Nominal beamwidth	6	6	3	3	3	3	3	3	3	3
Mean beam pattern factor (bav2)	1.140e-3	9.27e-4	2.24e-4	1.99e-4	2.22e-4	2.29e-4	2.72e-4	2.79e-4	2.79e-4	2.73e-4
Source level (re:1 μ Pa at 1 m)	224.32	223.07	229.44	226.94	227.22	227.53	221.5	222.12	217.27	216.96
Receiving Sensitivity (re: 1 V/ μ Pa)	-154.01	-154.49	-162.87	-167.59	-170.57	-170.13	-170.44	-169.5	-184.92	-182.42
Receive gain setting	0	0	0	0	6	6	0	0	12	12
A(Integration scaling constant)	1.2071e-6	1.3371e-6	8.470e-7	5.0407e-6	1.9626e-6	1.2517e-6	5.5576e-6	5.6955e-6	1.6702e-6	8.962e-7

Figure 1. Distribution of cruise tracklines in the Gulf of Maine along which BIOMAPER-II acoustic, optical, and environmental data were collected in fall of 1997, 1998, and 1999. The bold red lines indicate where BIOMAPER-II was being towyo'd. WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges Basin.

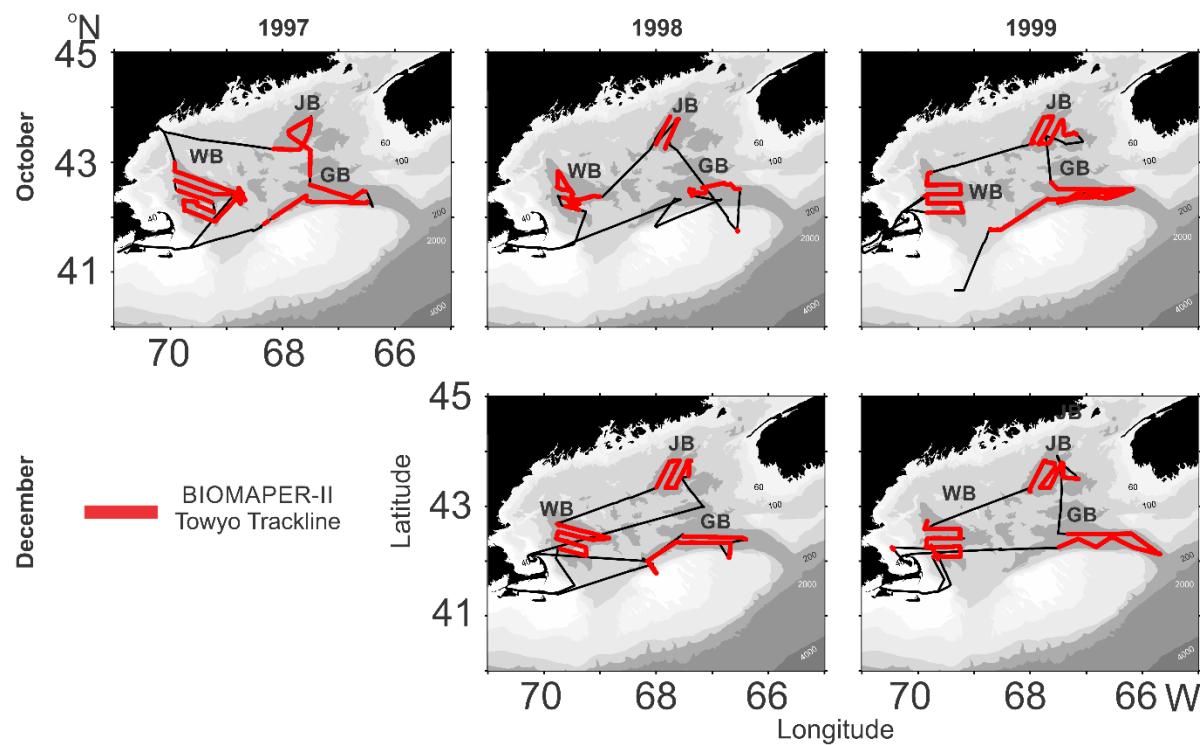


Figure 2. Distribution of 1-m² MOCNESS tows taken on the fall cruises to the Gulf of Maine in 1997, 1998, and 1999 (indicated by the numbers and symbols). The circled tows are those that have been processed.

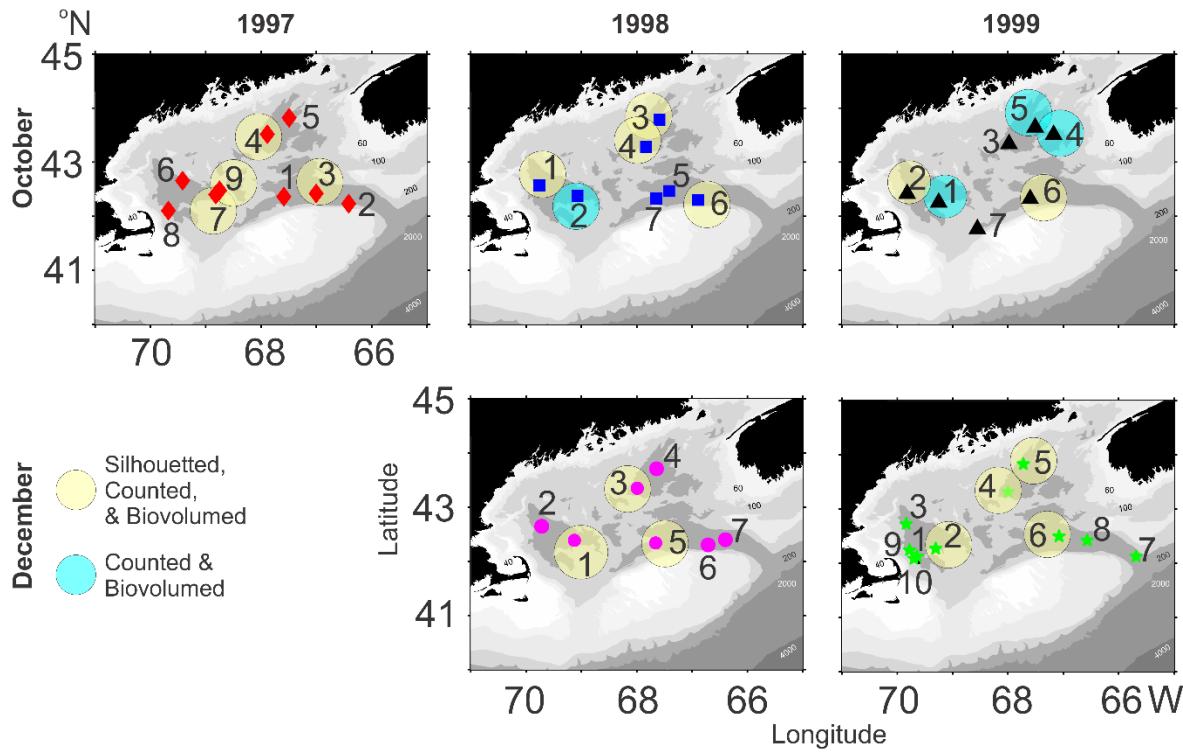


Figure 3. The vertical distribution (individuals/m³) of *Calanus finmarchicus* collected in the three major basins in Gulf of Maine during the fall of 1997, 1998, and 1999 as stacked horizontal bars with the various copepodid stages indicated by the colors. WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges Basin. Bottom depth indicated by diamond on each vertical plot. Total (vertically integrated) abundance individuals/m² also is given for each profile. Day and Night tows indicated by N and D in the Cruise tow number at the top of each plot. The line with the double-sided arrow distinguishes October data from December data.

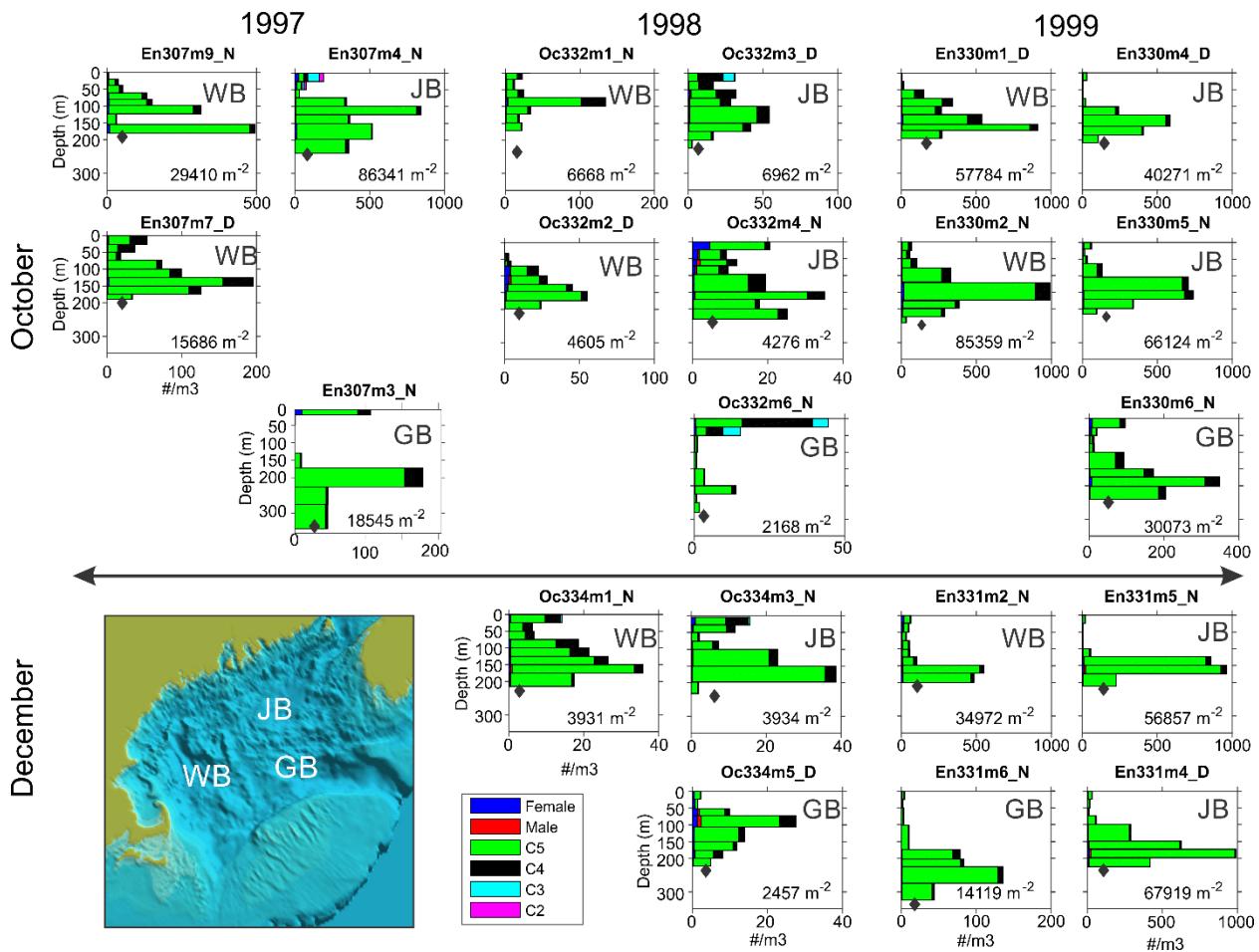


Figure 4. The distribution of the central 66% portion (17th to 83rd percentile) of *Calanus finmarchicus* sampled in the Gulf of Maine in 1997, 1998, and 1999 as a function of depth, temperature, and salinity measured with the MOCNESS sensors. The dotted lines provide a context for viewing relationship between depth, temperature, and salinity. W- Wilkinson Basin, J- Jordan Basin, and G - Georges Basin.

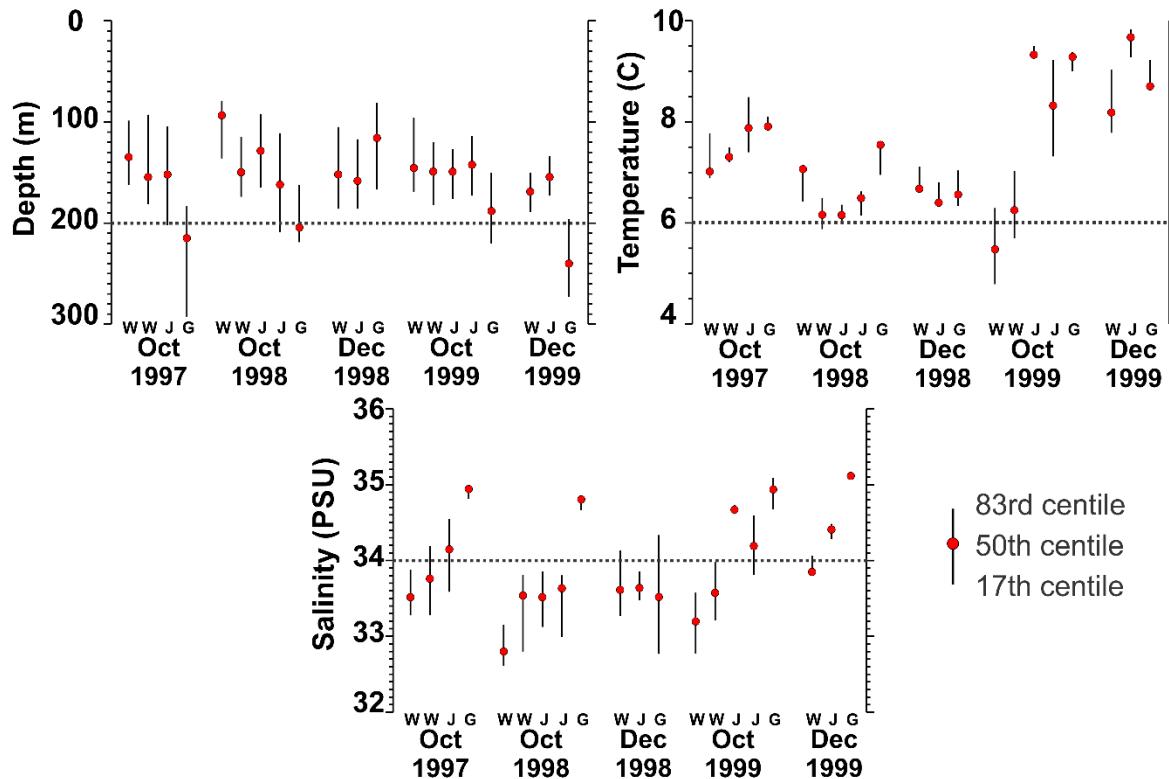


Figure 5, *Calanus finmarchicus* C5 size distribution in 1997, 1998, 1999 taken from samples below 150 m. Cohorts were decomposed using a Gaussian Mixture Model (GMM). μ is the mean of a probability distribution, σ is the standard deviation of the Probability Distribution Function (PDF), and p is the Component Proportion, n is the number of observations. The red line on the plots demarks the modes. WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges Basin.

Figure 5A. October size distribution of *Calanus finmarchicus* C5s (1997, 1998, 1999)

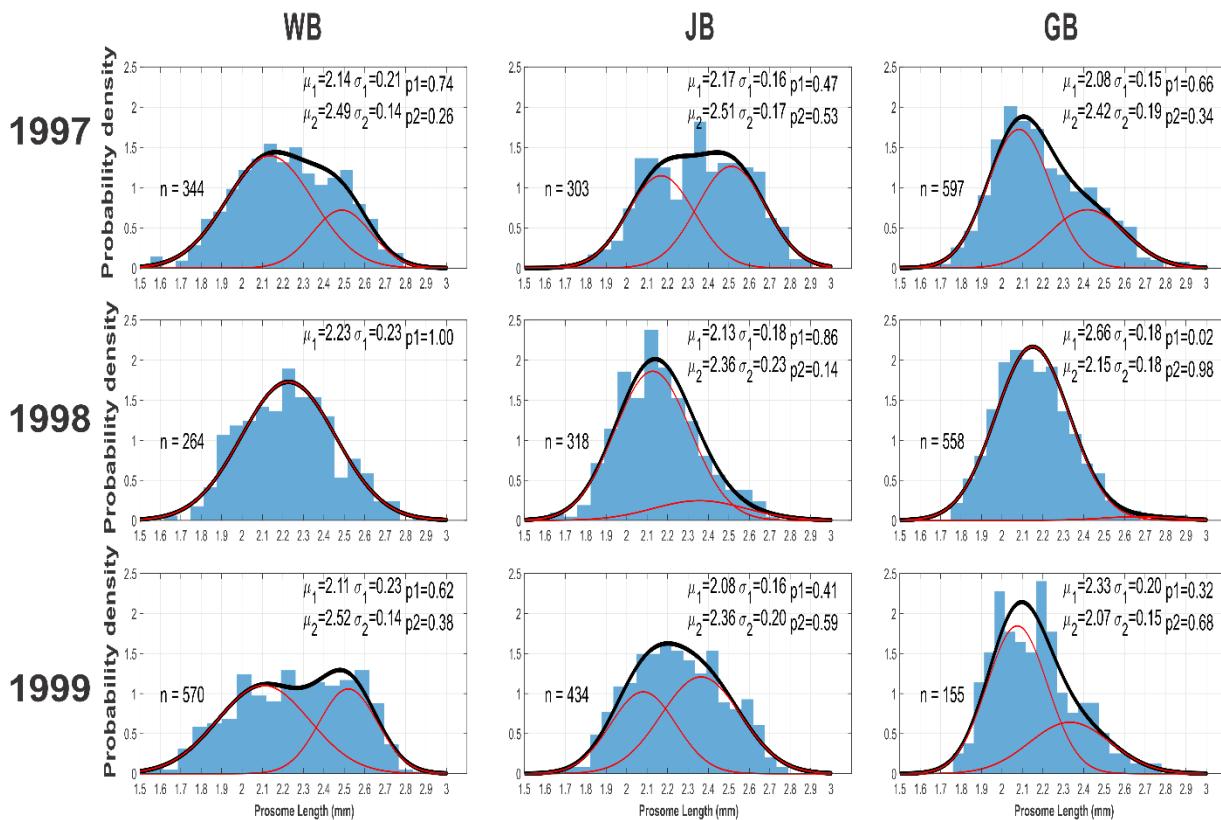


Figure 5B. December size distribution of *Calanus finmarchicus* C5s (1998, 1999).

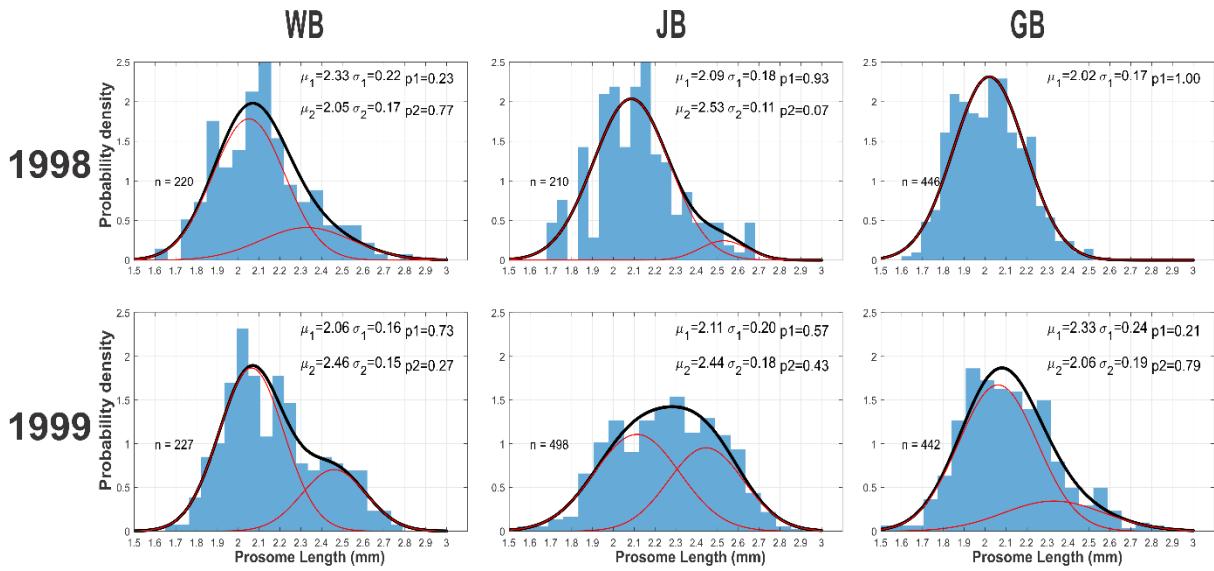


Figure 6. The vertical distribution of MOCNESS zooplankton biovolumes collected in the three major basins in Gulf of Maine during the fall of 1997, 1998, and 1999. WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges Basin. Total integrated biovolumes as cubic centimeters (cc) per m² are given for each profile. Day and Night tows indicated by N and D in the Cruise tow number at the top of each plot. The line with the double-sided arrow distinguishes October data from December data.

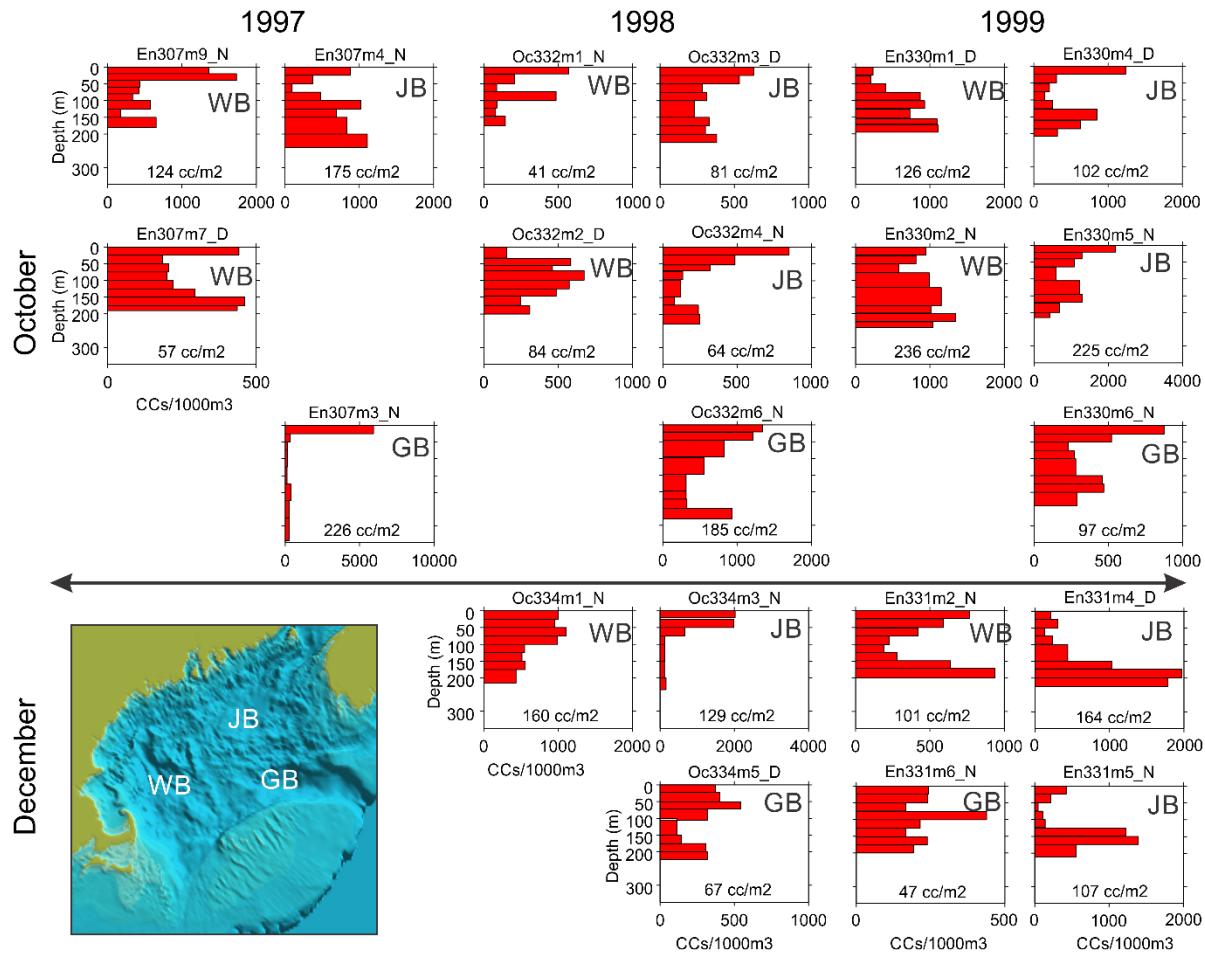


Figure 7. The relationship between total zooplankton biovolume and the wet weight of *Calanus finmarchicus* by years for all MOCNESS tow depths and only those greater than 100 and 150 meters. *C. finmarchicus* wet weights determined from a length to ww relationship.

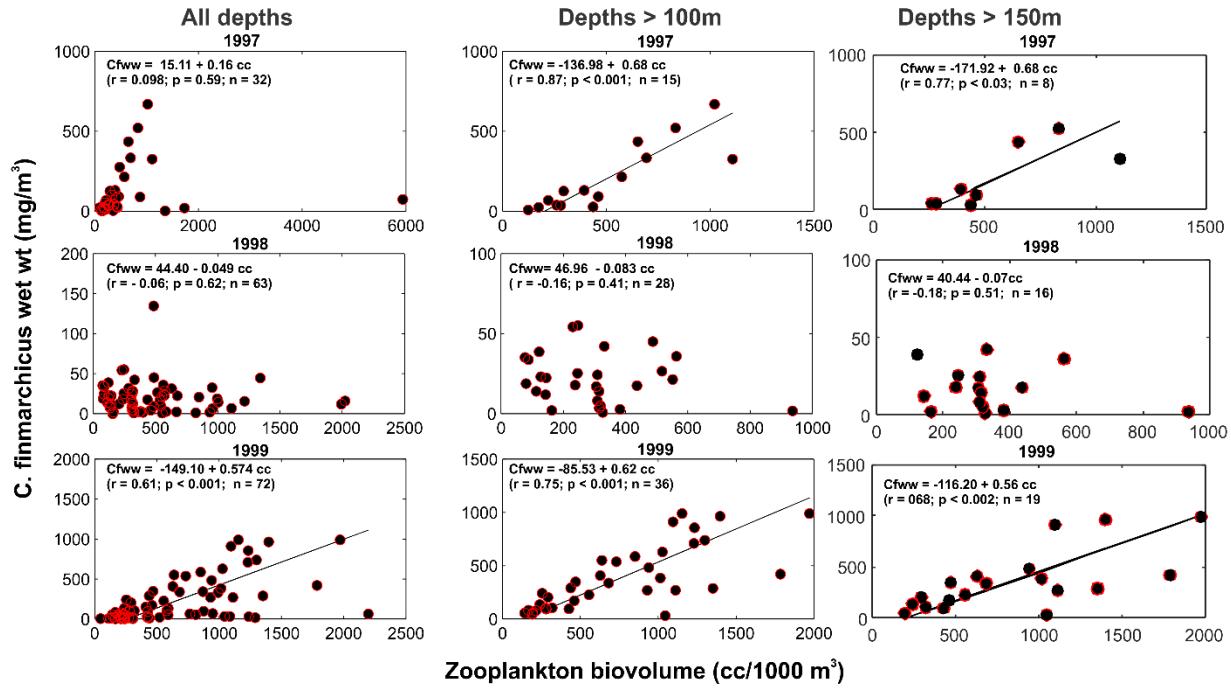


Figure 8. The day/night vertical distribution of volume backscattering at 200 kHz in the three major basins in Gulf of Maine during the fall of 1997, 1998, and 1999. WB- Wilkinson Basin, JB- Jordan Basin, and GB - Georges Basin. Each plot gives median backscattering in 10 m depth bins between 20 and 200 m, and the error bars on that show the 25th and 75th percentiles. Day is blue; night is red. The line with the double-sided arrow distinguishes October data from December data.

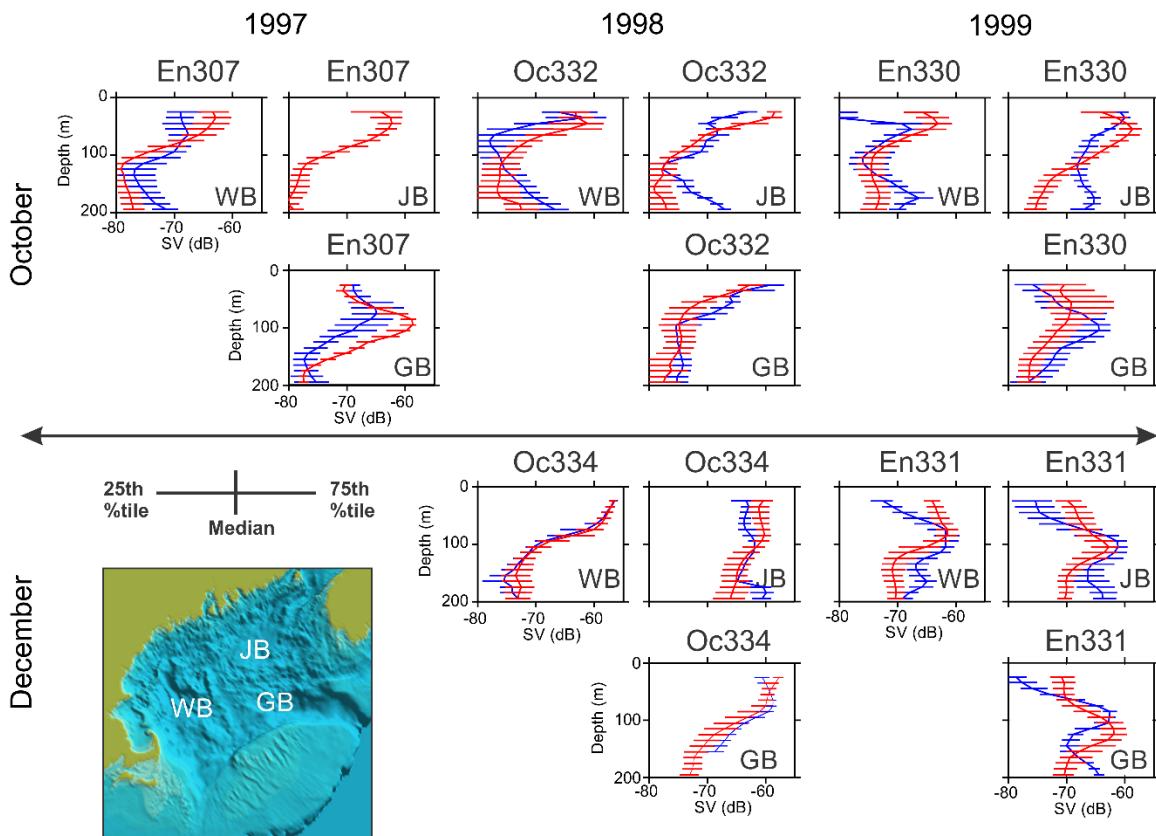


Figure 9 Time-series changes in integrated values of a) *Calanus finmarchicus* abundance, b) total biovolumes, c) average volume backscatter at 120 kHz, d) silhouette total copepod counts, and e) biomass of *Calanus* (square) and total copepods (triangle) based on length to wet weight relationships. The individual symbols in each plot represent integrated values for a MOCNESS tow, except for the volume backscattering (Sv) where individual symbols represent the mean from a particular tow..

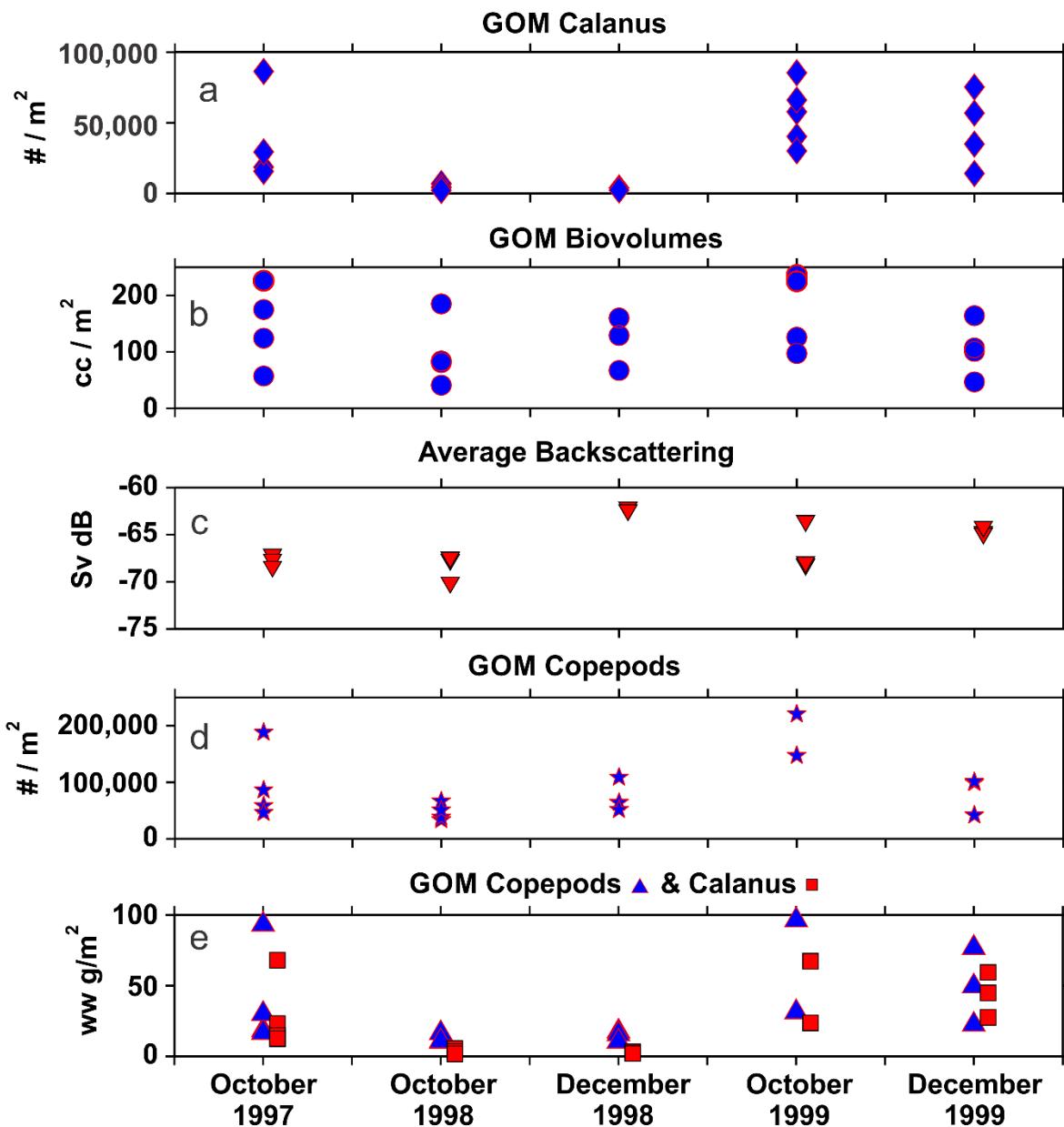


Figure 10. The percent composition of zooplankton taxa based on silhouette data for each MOCNESS net that were integrated for the water column. The minor contributors to both abundance and biomass are grouped as “others”.

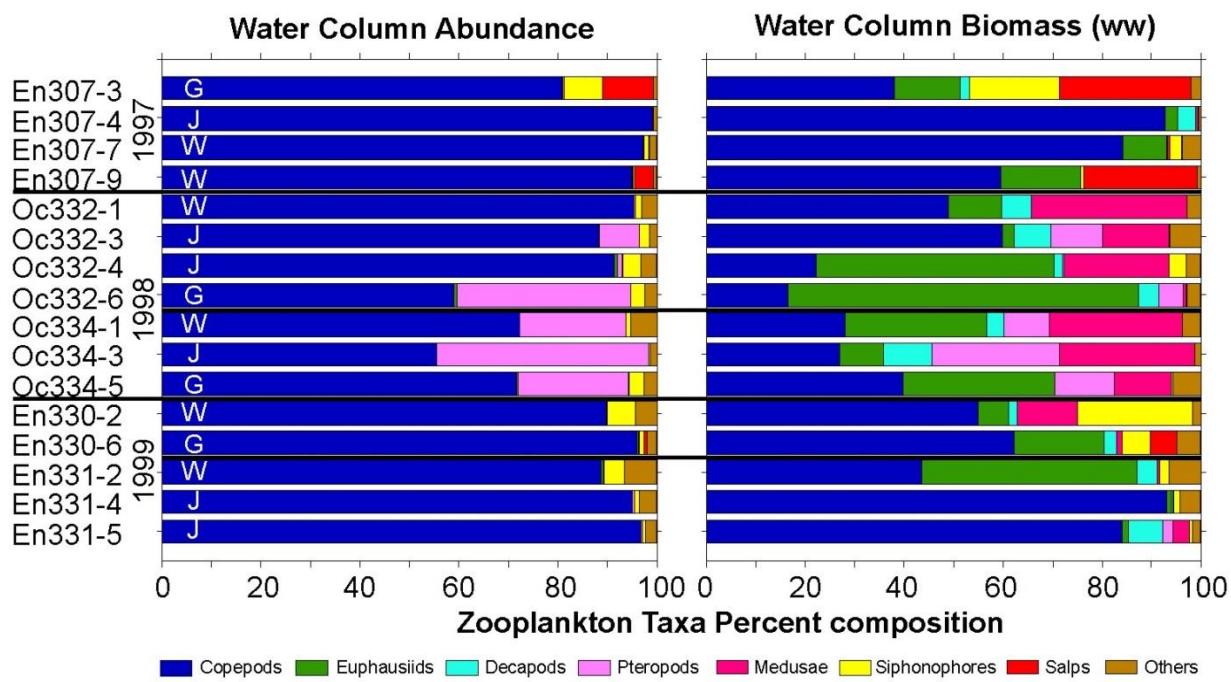


Figure 11. Predation pressure on *C. finmarchicus* in the GoM based on estimates of the carbon in *C. finmarchicus*, invertebrate competitors and predators based on Silhouette analysis of the MOCNESS samples and Ikeda's 1985 model of oxygen uptake as a function of individual length and temperature. Note: the half-year increments on the X-axis are given as .5.

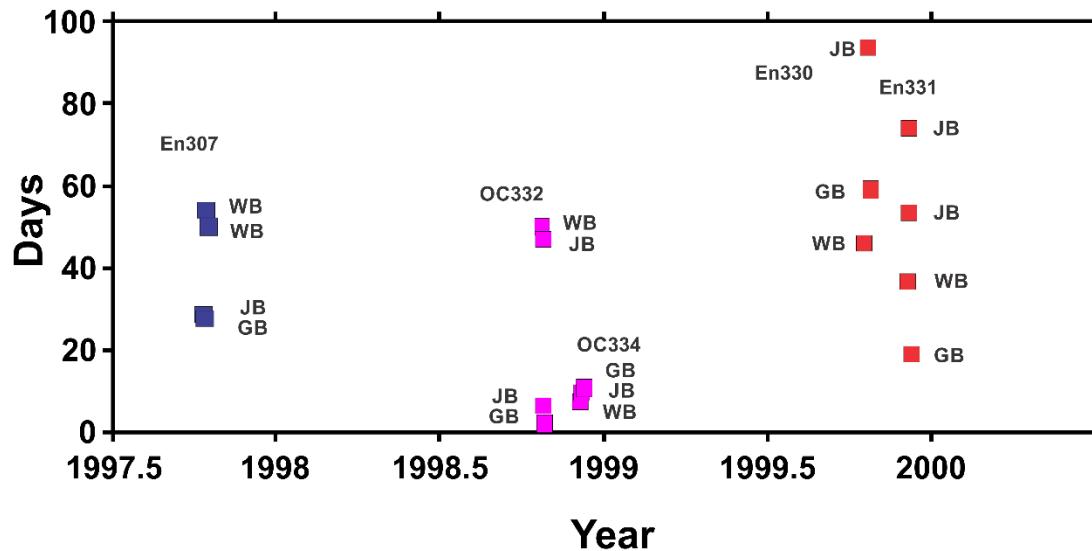
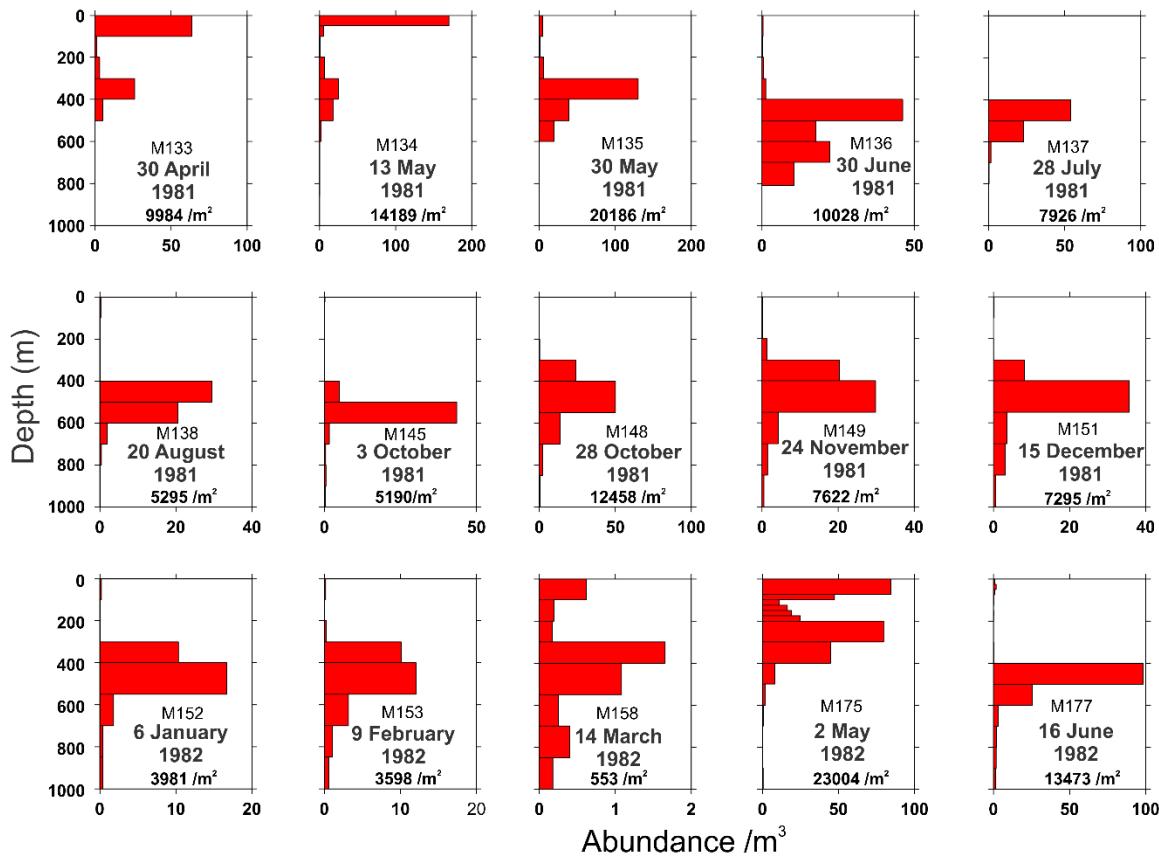
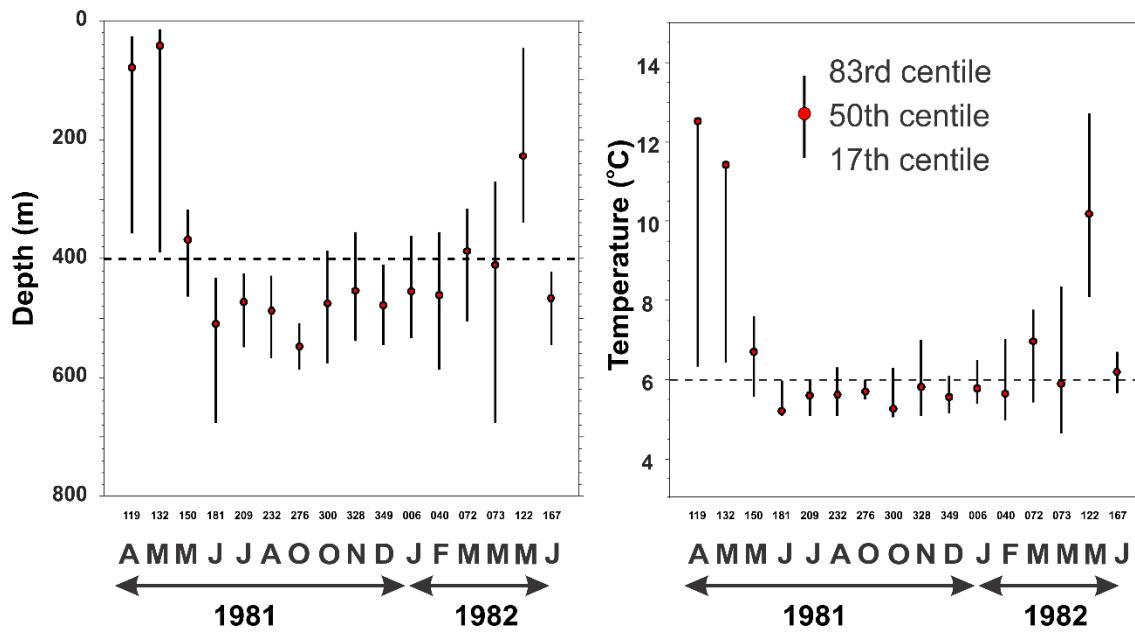




Figure 12. The vertical distribution of *Calanus finmarchicus* collected in the Northwest Atlantic Slope Water during 1981 and 1982 south of New England. Total integrated numbers per m^2 are given for each profile. Most vertical profiles published by Miller et al., (1991) as cumulative percents as a function of depth by stage.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 13. The distribution of the central portion (17th to 83rd percentile) of the *Calanus finmarchicus* population sampled in the North Atlantic Slope Water in 1981 and 1982 as a function of depth and temperature. The numbers above the month designations are the year-days when the tows were taken. Note there are two May values and two October values in 1981 and two March values in 1982. Environmental data not published by Miller et al., (1991) as presented herein.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: