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ABSTRACT
We study the communication complexity of dominant strategy

implementations of combinatorial auctions. We start with two do-

mains that are generally considered “easy”: multi-unit auctions with

decreasing marginal values and combinatorial auctions with gross

substitutes valuations. For both domains we have fast algorithms

that find the welfare-maximizing allocation with communication

complexity that is poly-logarithmic in the input size. This immedi-

ately implies that welfare maximization can be achieved in ex-post

equilibrium with no significant communication cost, by using VCG

payments. In contrast, we show that in both domains the commu-

nication complexity of any dominant strategy implementation that

achieves the optimal welfare is polynomial in the input size.

We then move on to studying the approximation ratios achiev-

able by dominant strategy mechanisms. For multi-unit auctions

with decreasing marginal values, we provide a dominant-strategy

communication FPTAS. For combinatorial auctions with general

valuations, we show that there is no dominant strategy mechanism

that achieves an approximation ratio better than𝑚1−𝜀
that uses

𝑝𝑜𝑙𝑦 (𝑚,𝑛) bits of communication, where𝑚 is the number of items

and 𝑛 is the number of bidders. In contrast, a randomized dominant

strategy mechanism that achieves an 𝑂 (
√
𝑚) approximation with

𝑝𝑜𝑙𝑦 (𝑚,𝑛) communication is known. This proves the first gap be-

tween computationally efficient deterministic dominant strategy

mechanisms and randomized ones.

En route, we answer an open question on the communication

cost of implementing dominant strategy mechanisms for more than

two players, and also solve some open problems in the area of

simultaneous combinatorial auctions.
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1 INTRODUCTION
In his seminal 1961 paper [31], Vickrey considers single item auc-

tions: there is one item and 𝑛 bidders, the value of each bidder 𝑖 for

the item is 𝑣𝑖 . Vickrey defines the second-price auction: the highest

bidder wins the item and pays the second highest bid. It is shown

that in a second-price auction, bidding truthfully is a dominant

strategy for each bidder. However, observe that our definition of

a second-price auction was a bit careless. Bidding truthfully is in-

deed a dominant strategy when the second price auction is held

by asking the bidders to simultaneously submit their bids, or when

implemented iteratively, by conducting a (continuous) ascending

auction. However, this is not always the case. Consider a “serial”

implementation of a second price auction in which the bids of play-

ers 1, . . . , 𝑖 − 1 are publicly revealed before player 𝑖 makes a bid.

Truth-telling is no longer a dominant strategy for, e.g., player 1: if

the strategy of all other players is “bid 0 unless player 1 bids 10, in

which case bid 9”, then player 1 is better off bidding 11 when his

true value is 𝑣1 = 10.

The Setting. In this paper we analyze the hardness of dominant

strategy implementations in combinatorial auctions. Recall that in

a combinatorial auction there is a set 𝑀 of heterogeneous items

( |𝑀 | =𝑚) and a set 𝑁 of bidders (|𝑁 | = 𝑛). The private information

of each bidder 𝑖 is his value for every subset of the items: 𝑣𝑖 :

2
𝑀 → R. The standard assumptions are that the valuations are non-

decreasing (for each 𝑆 ⊆ 𝑇 , 𝑣 (𝑇 ) ≥ 𝑣 (𝑆)) and normalized (𝑣𝑖 (∅) =
0), though we will sometimes impose additional restrictions on the

valuations. Our goal is to find an allocation of the items (𝑆1, . . . , 𝑆𝑛)
that maximizes the social welfare: Σ𝑖𝑣𝑖 (𝑆𝑖 ).

We use communication protocols to model mechanisms. Specifi-

cally, we work in the blackboard model, so all messages sent are

observable by all players. The input of each player 𝑖 is his valuation

𝑣𝑖 . As usual, the communication protocol is represented by a tree

that dictates which players (simultaneously) speak at each node,

and the identity of the next node given the messages. The leaves

of the protocol specify the outcome: the allocation and payments.

We assume that each player is interested in maximizing his profit:

the value of his assignment minus his payment. We assume that all

mechanisms are normalized, i.e. that a player that wins the empty

bundle pays zero.

A strategy S𝑖 of player 𝑖 dictates (given the valuation 𝑣𝑖 ) which

messages player 𝑖 sends at each node. We say that S𝑖 is dominant
for player 𝑖 if for every set of possible strategies S′

−𝑖 of the other
players, every valuation profile (𝑣1, . . . , 𝑣𝑛) and every strategy S′

𝑖
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of player 𝑖 it holds that:

𝑣𝑖 (𝑓𝑖 (S𝑖 (𝑣𝑖 ),S′
−𝑖 (𝑣−𝑖 ))) − 𝑝𝑖 (S𝑖 (𝑣𝑖 ),S′

−𝑖 (𝑣−𝑖 )) ≥
𝑣𝑖 (𝑓𝑖 (S′

𝑖 (𝑣𝑖 ),S
′
−𝑖 (𝑣−𝑖 ))) − 𝑝𝑖 (S′

𝑖 (𝑣𝑖 ),S
′
−𝑖 (𝑣−𝑖 ))

where 𝑓𝑖 (S𝑖 (𝑣𝑖 ),S′
−𝑖 (𝑣−𝑖 )) and 𝑝𝑖 (S𝑖 (𝑣𝑖 ),S′

−𝑖 (𝑣−𝑖 )) specify

the allocation and payment of player 𝑖 , respectively, given

that player 𝑖 follows the actions specified by S𝑖 (𝑣𝑖 ) and

the other players follow the actions specified in the vector

S′
−𝑖 (𝑣−𝑖 ) = (S′

1
(𝑣1), . . . ,S′

𝑖−1 (𝑣𝑖−1),S
′
𝑖+1 (𝑣𝑖+1), . . . ,S

′
𝑛 (𝑣𝑛)). Con-

sider a mechanism in which each player 𝑖 has a dominant strategy

S𝑖 . Let𝑉𝑖 be the set of possible valuations of a player and letA is the

set of all possible allocations. Let 𝑓 : 𝑉1×· · ·×𝑉𝑛 → A be the social

choice function defined by 𝑓 (𝑣1, . . . , 𝑣𝑛)𝑖 = 𝑓𝑖 (S𝑖 (𝑣𝑖 ),S−𝑖 (𝑣−𝑖 )). In
this case we say that the mechanism implements 𝑓 in dominant

strategies.

The importance of the specifics of the implementation and how

they affect the solution concept are well known. The notion of ex-

post equilibrium, defined by Cremer and McLean [12], attempts in

a sense to get around this by ignoring the specifics of the implemen-

tation. A function 𝑓 : 𝑉1×· · ·×𝑉𝑛 → A is implementable in ex-post
equilibrium if there are functions 𝑝1, . . . , 𝑝𝑛 : 𝑉1 × · · · × 𝑉𝑛 → R
such that for every player 𝑖 , valuations 𝑣𝑖 and 𝑣 ′

𝑖
of player 𝑖 , and

valuations 𝑣−𝑖 of the other players:

𝑣𝑖 (𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 )) − 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ) ≥ 𝑣𝑖 (𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )) − 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )
Roughly speaking, in an ex-post equilibrium none of the players

regrets playing according to his true value, if the other players

are playing according to their true values as well. This rules out

“unreasonable” strategies like in the serial second price auction de-

scribed above. An alternative description would be that an ex-post

incentive compatible implementation of a function 𝑓 is a commu-

nication protocol that computes a function 𝑓 and the associated

payments, where 𝑓 can be implemented in dominant strategies.

However, in this protocol the players might not have dominant

strategies. Clearly, every dominant-strategy implementation is also

an ex-post implementation. The other direction is not true, as the se-

rial implementation of a second price auction demonstrates.
1
Thus

the communication cost of ex-post implementations is potentially

much smaller than the cost of dominant-strategy implementations.

The goal of this paper is to determine whether the communica-

tion cost of implementations in dominant strategy is significantly

larger than the cost of ex-post implementations. Intuitively, one

might suspect that dominant-strategy mechanisms require signifi-

cantly more communication than ex-post mechanisms. However,

prior research can offer only mixed evidence to support this. First,

the revelation principle implies, in particular, that every ex-post

implementable function 𝑓 is also dominant strategy implementable

(the implementation is simple: each player simultaneously reveals

his valuation, and the outcome is determined accordingly). How-

ever, as was already observed by Conitzer and Sandholm [11], this

naive implementation method might easily result in an exponential

blow-up in the communication complexity. Yet, this method works

well in domains in which the private information of the players can

be succinctly described, e.g., single-parameter domains.

1
Admittedly, in some algorithmic mechanism design papers that analyze the commu-

nication complexity of incentive compatible mechanisms the distinction between the

two notions is less explicit than it should be.

Our interest is in themore complicatedmulti-parameter domains.

Almost all known deterministic incentive compatible mechanisms
2

[18, 20, 23, 29] are maximal-in-range mechanisms. Moreover, in

each of them each bidder sends in the first round his value of

all the (polynomially many) bundles he might win. Hence these

mechanisms are dominant strategy.

The evidence that implementation in ex-post equilibrium does

not buy much computational power comparing to dominant-

strategy implementation is more than anecdotal. In [14] it is

shown – perhaps counter-intuitively – that every two player

ex-post mechanism for combinatorial auctions in a rich enough

domain (in particular, one that includes all XOS valuations) can

be implemented in a dominant-strategy equilibrium with only a

polynomial blow-up in the communication complexity.
3

In contrast, there is evidence supporting the idea that ex-post

mechanism design is significantly less costly, communication-wise.

Very recently, [30] presented a carefully crafted setting in which

there is a mechanism that implements a welfare maximizer in an

ex-post equilibrium with 𝑐 bits, but every dominant-strategy imple-

mentation requires 𝑒𝑥𝑝 (𝑐) bits.

Our Results. We begin our explorations by considering the result

of [14] discussed above, that shows that every function 𝑓 for two

players in a “rich enough” auction domain that can be implemented

in an ex-post equilibrium can also be implemented in dominant

strategies with only a polynomial blow-up in the communication.

The paper [14] leaves open the question of whether this result

holds also for mechanisms with more than two players. We answer

this question in the negative by showing that the equivalence in

implementations is unique for two player mechanisms: there is a

three-player social choice function for general valuations that has

an ex-post implementation that uses only 𝑐 bits, but 𝑒𝑥𝑝 (𝑐) bits are
required for any dominant-strategy implementation. The proof can

be found in the full version.

Next, in Section 3 we consider two auction domains that are

largely considered ”easy” in the algorithmic mechanism design

literature: multi-unit auctions with decreasing marginal values

and combinatorial auctions with gross substitutes valuations (see,

e.g., the surveys [8, 27]). In multi-unit auctions with decreasing

marginal values, the welfare maximizing solution can be found

with 𝑝𝑜𝑙𝑦 (𝑛, log𝑚) communication, and in combinatorial auctions

with gross substitutes valuations, the welfare maximizing solution

can be found with 𝑝𝑜𝑙𝑦 (𝑛,𝑚) communication [28]. We thus get that

in both settings the function that outputs the welfare maximizing

allocation is implementable with low communication (since VCG

payments can be computed with only a polynomial blow up in the

communication).

However, these results hold only in an ex-post equilibrium. In a

sharp contrast, we show that an exponential blow up is required

for dominant strategy implementations (again, in the blackboard

model):

2
The only exception is [7] which is the only known example of a mechanism that is

not maximal in range and achieves the state of the art results in a well-studied domain.

3
In [14] an analogous result is proved also for domains that include all submodular

valuations, under certain constraints.
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Theorem:

(1) The communication complexity of every normalized mecha-

nism that finds a welfare-maximizing allocation for two play-

ers in dominant strategies in multi unit auctions when the

valuations exhibit decreasing marginal values is Ω(𝑚 · log𝑚).
In contrast, there is a mechanism with communication com-

plexity 𝑝𝑜𝑙𝑦 (log𝑚) that finds the welfare-maximizing allo-

cation in an ex-post equilibrium.

(2) The communication complexity of every normalized mech-

anism that finds a welfare-maximizing allocation even for

two players in dominant strategies in combinatorial auctions

with gross substitutes valuations is 𝑒𝑥𝑝 (𝑚). In contrast, there
is a mechanism with communication complexity 𝑝𝑜𝑙𝑦 (𝑚)
that finds the welfare-maximizing allocation in an ex-post

equilibrium.

We note that these results echo the recent result of [30] which was

the first to show that the communication cost of dominant-strategy

implementations of welfare maximizers might be exponential com-

paring to the communication cost of ex-post implementations but

in an artificial domain. In contrast, our results prove an exponential

blow-up of welfare maximizers in well-studied auction domains.

Perhaps in contrast to the common perception, the theorem

demonstrates that these domains are not “easy” from the point of

view of dominant-strategy mechanism design. This immediately

raises the question of whether we can have good approximations

to the social welfare by low-communication dominant-strategy

mechanisms. For multi-unit auctions, we answer this question in

the affirmative:

Theorem: Let 𝜀 > 0. There is a dominant-strategy (1 + 𝜀)-
approximation mechanism for multi-unit auctions with valuations

that exhibit decreasingmarginal values thatmakes 𝑝𝑜𝑙𝑦 (𝑛, log𝑚, 1𝜀 )
value queries.

Whether one can get good approximation ratios for combinato-

rial auctions with gross substitutes valuations remains an open

question. The maximal-in-range mechanism of [20] achieves an

approximation ratio of𝑂 (
√
𝑚) in dominant strategies for the much

larger class of subadditive valuations. However, we do not even

know whether dominant strategy maximal-in-range mechanisms

with polynomial communication can achieve a better approxima-

tion ratio (known impossibilities for maximal-in-range mechanisms

[13, 17] hold for ex-post mechanisms but not for gross-substitutes

valuations).

We then move on to analyzing the approximation ratios achiev-

able by dominant-strategy mechanisms in the standard domain of

combinatorial auctions with general (monotone) valuations. From

a pure optimization point of view, there is an 𝑂 (
√
𝑚) approxima-

tion algorithm that is not incentive compatible and this is the best

achievable with polynomial communication [25, 26]. Whether this

is achievable with a deterministic ex-post incentive compatible

mechanism remains a major open question, but we are able to

answer this question in the negative for dominant-strategy mecha-

nisms (Section 4):

Theorem: Fix 𝜀 > 0. The communication complexity of a mecha-

nism that provides an𝑚1−𝜀
approximation for combinatorial auc-

tions with general valuations in dominant strategies is 𝑒𝑥𝑝 (𝑚).

The best currently known mechanism (dominant-strategy or

ex-post incentive compatible) is the simultaneous maximal-in-

range algorithm of [23] that guarantees an approximation ratio of

𝑂 ( 𝑚√
log𝑚

). To put the theorem in context, so far, following a long

line of research, the only separation between the approximation

ratios achievable by ex-post mechanisms and non incentive com-

patible algorithms for combinatorial auctions that use polynomial

communication was achieved in [4]. This separation applies to

two-player combinatorial auctions with XOS valuations, and

relies on the taxation framework [14]. Recall that [14] shows the

equivalence of ex-post and dominant strategy implementations for

two player settings, thus the result of [4] is also the first to separate

dominant-strategy mechanisms for combinatorial auctions and

their non-truthful counterparts.

However, a proof for our theorem requires more players, since

for two players a second-price auction on the bundle of all items

provides an approximation ratio of 2.
4
Thus, new tools are required

to prove a bound that is worse than 2.

The proof consists of two mains steps. First, we prove in Section

5 that:

Theorem: Fix 𝜀 > 0. The communication complexity of a simulta-

neous algorithm that provides an𝑚1−𝜀
approximation for combi-

natorial auctions with general valuations is 𝑒𝑥𝑝 (𝑚).

Simultaneous combinatorial auctions were introduced by [19]: in

these (not necessarily incentive compatible) algorithms, all players

simultaneously send a message of length 𝑝𝑜𝑙𝑦 (𝑛,𝑚) and the alloca-

tion is determined based only on these messages. Previous work

(e.g., [1, 2, 9, 10]) considered simultaneous combinatorial auctions

with restricted classes of valuations, e.g., subadditive valuations.

In the second step, we leverage the hardness result to dominant-

strategy mechanisms by showing that the existence of a determin-

istic dominant-strategies mechanism with approximation ratio 𝑐

implies a simultaneous algorithm with approximation ratio (close

to) 𝑐 .

We note that for general valuations, there exists a randomized
dominant strategy mechanism that achieves an approximation ratio

of 𝑂 (
√
𝑚) [21]. The mechanism is a probability distribution over

dominant-strategy mechanisms. Hence, we also obtain a separation

of the approximation ratio possible by polynomial communica-

tion randomized dominant-strategy mechanisms and deterministic

dominant-strategy mechanisms. An analogous separation for ex-
post mechanisms is not known.

Open Questions and Future Directions. We conclude with some

open questions. We showed that dominant-strategy mechanisms

cannot exactly maximize the welfare in polynomial communication

in combinatorial auctions with gross substitutes valuations. As

was already mentioned, it is an open question to determine the

approximation ratio achievable for this class or for other classes of

4
The taxation framework [14] offers also a different path to proving bounds for more

than 2 players by providing lower bounds on the taxation complexity, but this path

was not applied successfully so far.
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valuations that were extensively studied in the literature, such as

subadditive, XOS, and submodular.

We do provide some evidence that good dominant-strategymech-

anisms do not exist. Observe that all useful constructions of deter-

ministic dominant strategy mechanisms that we know are based

on simultaneous algorithms. In Section 5 we prove that:

Theorem: Fix 𝜀 > 0. The communication complexity of a simulta-

neous algorithm that provides an𝑚
1

16 approximation for combina-

torial auctions with gross substitutes valuations is 𝑒𝑥𝑝 (𝑚).

This answers an open question of [19]. Before our work, it was not

even known if there is a simultaneous algorithm for combinato-

rial auctions with submodular valuations that achieves a constant

approximation ratio.

Another exciting direction is proving impossibilities for random-

ized mechanisms. A recent line of work provides sub-logarithmic

approximation ratios for various classes of valuations [3, 5, 15]. All

these mechanisms are a probability distribution over dominant-

strategy mechanisms.
5
Are randomized ex-post mechanisms more

powerful than dominant-strategy mechanisms?
6

We end by noting that our mechanisms work in the blackboard

model and all messages sent are observable by all players. A more

relaxed model would allow private channels between the players

and the center. This assumes that the players trust the center not

to leak their messages and the private communication channel

itself is not leaky. We do not know how to take advantage of this

relaxed model, except for the case of combinatorial auctions with

𝑘 copies from each good, where the mechanism of [7] (the usual

outlier) cannot be implemented in dominant strategies but can be

implemented in the relaxed model. We leave studying this model

to future research.

2 FORMALITIES AND BASIC OBSERVATIONS
In this section we discuss some basic properties of dominant-

strategy mechanisms. These properties hold for every possible

domain, not only for combinatorial auctions. Thus, in this section

A is the set of alternatives (which are not necessarily allocations)

and the valuation of each player is 𝑣𝑖 : A → R.
Here and subsequently, when we talk about a fixed mechanism

M together with its dominant strategies S1, . . . ,S𝑛 we will slightly

abuse notation: We say that player 𝑖 with valuation 𝑣𝑖 sends a

message 𝑧 at vertex 𝑟 instead of saying that the dominant strategy

of player 𝑖 with valuation 𝑣𝑖 is to send message 𝑧 in at vertex 𝑟 . We

also say that valuations 𝑣1 . . . , 𝑣𝑛 reach a leaf of a protocol, instead

of saying that the strategy profile (S1 (𝑣1), . . . ,S𝑛 (𝑣𝑛)) leads to it.

2.1 Minimal Dominant Strategy Mechanisms
In this section, we show that all dominant strategy mechanisms can

be simplified without harming their dominant strategy equilibria

5
Only [15] claim explicitly that the mechanism is dominant strategy and not just

ex-post incentive compatible, but this is likely to be the case also for the other papers

as they follow the basic structure that was introduced in [15].

6
In contrast, many of the truthful-in-expectation mechanisms in the literature are

based on solving an LP and are not dominant strategies [22, 24], though some dominant-

strategy truthful-in-expectation mechanisms do provide an optimal approximation

ratio [16]. Analyzing the power of dominant-strategy truthful-in-expectation mecha-

nisms is also a fascinating avenue for future research.

and without any communication burden. Since our main interest in

this paper is in impossibility results, it implies that we can analyze

the power of “minimal” dominant strategy mechanisms without

loss of generality. Formally:

Definition 2.1. We say that a mechanism M is minimal with
respect to the strategies (S1, . . . ,S𝑛) and the valuations 𝑉 = 𝑉1 ×
· · · ×𝑉𝑛 if it satisfies the following properties:

(1) There are no useless messages in the protocol, i.e. if some player
𝑖 can send some message in some particular vertex, we assume
that it is a dominant strategy for some type 𝑣𝑖 to send this
message. It immediately implies that for every leaf in the pro-
tocol there exist valuations (𝑣1, . . . , 𝑣𝑛) such that the strategies
(S1 (𝑣1), . . . ,S𝑛 (𝑣𝑛) reach this leaf.

(2) There is at least one player 𝑖 that has two valuations 𝑣𝑖 , 𝑣 ′𝑖 ∈
𝑉𝑖 such that the strategies S𝑖 (𝑣𝑖 ) and S𝑖 (𝑣 ′𝑖 ) dictate sending
different messages at the root of the protocol.

Lemma 2.2. Let M be mechanism and strategies (S1, . . . ,S𝑛)
that realize a social choice function 𝑓 : 𝑉 → A with payments
𝑃1, . . . , 𝑃𝑛 : 𝑉 → R𝑛 in dominant strategies with communication
complexity of 𝑐 bits. Then, there exists a minimal mechanism M ′

and strategies (S′
1
, . . . ,S′

𝑛) that realize 𝑓 with the payments schemes
𝑃1, . . . , 𝑃𝑛 in dominant strategies with at most 𝑐 bits.

Proof. Given a mechanism, we can assume that it has no useless

messages because otherwise we can simplify the protocol by not

letting player 𝑖 send this message. Note that removing actions

that are dominant strategy for none of the players does not make

dominant strategies not dominant.

Similarly, if the second condition does not hold, then due to the

fact that there are no useless messages, the root 𝑟 has only one

child. Then, we can delete the root and take his child to be the new

root. We continue with this iterative trimming until we reach a

vertex that has a player 𝑖 with a “meaningful” message.

If no such vertex is found, it means that the social choice function

and payment schemes are constant for all valuations, so the empty

mechanism implements them (it has no root so it satisfies the second

condition trivially). □

2.2 Induced Trees of Mechanisms
We now introduce the notion of induced trees and prove a simple

property of them. Consider some vertex 𝑢 in a minimal dominant

strategy mechanism. Let 𝑍 𝑗,𝑢 denote the set of possible messages

that player 𝑗 can send at node 𝑢 (assume that 𝑍 𝑗,𝑢 = ∅ if player

𝑖 does not send any message at node 𝑢). Fix some player 𝑖 with

𝑍𝑖,𝑢 ≠ ∅ and some message profile for the other players 𝑧𝑢−𝑖 =

(𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑛) where each 𝑧 𝑗 ∈ 𝑍 𝑗,𝑢 . The induced tree
of player 𝑖 at vertex 𝑢 given 𝑧𝑢−𝑖 is the tree that is rooted by 𝑢 and

contains all subtrees that are connected to 𝑢 by an edge (𝑧𝑖 , 𝑧𝑢−𝑖 ) for
every possible 𝑧𝑖 ∈ 𝑍𝑖,𝑢 . I.e., we fix the messages of all other players

except player 𝑖 and think about each message 𝑧𝑖 as leading to the

subtree that the set of messages (𝑧𝑖 , 𝑧𝑢−𝑖 ) leads to. For an illustration,

see Figure 1.

Lemma 2.3. Fix some player 𝑖 , vertex 𝑢, and messages of the other
players 𝑧𝑢−𝑖 in a minimal dominant strategy mechanism. Consider the
induced tree of player 𝑖 at vertex 𝑢 given 𝑧𝑢−𝑖 . If alternative 𝐴 ∈ A
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(a) An illustration of the full tree protocol at vertex 𝑢.

𝑢

𝑣

𝑙

(𝐴, 𝑝1, 𝑝2)

𝑣 ′

𝑙 ′

(𝐴′, 𝑝 ′
1
, 𝑝 ′

2
)

𝑧1, 𝑧2
𝑧 ′
1
, 𝑧 ′
2

𝑧
′
1

, 𝑧
2

𝑧
1 , 𝑧 ′
2

(b) The induced tree of player 1 at vertex 𝑢 given the message 𝑧2 of player 2. The tree has two subtrees: a left subtree that contains node 𝑣 and
its descendants and a right subtree with node 𝑣′ and its descendants.

𝑢

𝑣

𝑙

(𝐴, 𝑝1)

𝑣 ′

𝑙 ′

(𝐴′, 𝑝 ′
1
)

𝑧 1
𝑧 ′
1

Figure 1: Illustration of the tree rooted at 𝑢 of a two-player protocol and one of its induced trees. The vertex 𝑢 satisfies that
𝑍1,𝑢 = {𝑧1, 𝑧′

1
} and 𝑍2,𝑢 = {𝑧2, 𝑧′

2
}, i.e. each player has two possible messages. The leaf 𝑙 that is labeled with (𝐴, 𝑝1, 𝑝2) satisfies

that the mechanism outputs alternative 𝐴, player pays 𝑝1 and player 2 pays 𝑝2. The same holds for the leaf 𝑙 ′ with respect to
its outcome (𝐴′, 𝑝 ′

1
, 𝑝 ′

2
). The induced tree at Figure 1b describes how the protocol looks like from the point of view of player 1

when player 2 sends the message 𝑧2.

appears in two different subtrees, then all the leaves in this induced
tree that are labeled with 𝐴 have the same payment for player 𝑖 .

Proof. Let ℓ and ℓ ′ be two leaves labeled with (𝐴, 𝑝𝐴) and with
(𝐴, 𝑝 ′

𝐴
) that belong in different subtrees, 𝑡 and 𝑡 ′. By the minimality

of themechanism, every leaf in the protocol has valuations such that

(S1 (𝑣1), . . . ,S𝑛 (𝑣𝑛)) reach this leaf. Thus, there exist valuations

𝑣, 𝑣 ′ ∈ 𝑉𝑖 , 𝑣−𝑖 , 𝑣 ′−𝑖 ∈ 𝑉−𝑖 such that:

(S𝑖 (𝑣),S−𝑖 (𝑣−𝑖 )) → ℓ, (S𝑖 (𝑣 ′),S−𝑖 (𝑣 ′−𝑖 )) → ℓ ′

Observe the following strategy profile S′′
−𝑖 : For every valuation 𝑣 ′′−𝑖 ,

choose the actions specified by S−𝑖 (𝑣−𝑖 ) until vertex 𝑢. Afterwards,
at the subtree 𝑡 , pick the actions that S−𝑖 (𝑣−𝑖 ) specifies, and at the

subtrees 𝑡 ′ pick the actions that S−𝑖 (𝑣 ′−𝑖 ) specifies. Since 𝑠−𝑖 and
𝑠 ′−𝑖 do not diverge until vertex 𝑢, we have that

(S𝑖 (𝑣),S′′
−𝑖 (𝑣

′′
−𝑖 )) → ℓ, (S𝑖 (𝑣 ′),S′′

−𝑖 (𝑣
′′
−𝑖 )) → ℓ ′

where the profit of player 𝑖 with valuation 𝑣 has to be larger than

her profit at ℓ ′, since S𝑖 (𝑣) is a dominant strategy for her. Thus,

𝑣 (𝐴)−𝑝𝐴 ≥ 𝑣 (𝐴)−𝑝 ′
𝐴
, so 𝑝 ′

𝐴
≥ 𝑝𝐴 . By applying the same argument

for the valuation 𝑣 ′, we get that 𝑝𝐴 ≥ 𝑝 ′
𝐴

=⇒ 𝑝𝐴 = 𝑝 ′
𝐴
. Thus,

we have that every two leaves labeled with alternative 𝐴 in the

induced tree of player 𝑖 given 𝑧𝑢−𝑖 have the same payment for player

𝑖 , which completes the proof. □

3 HARDNESS OF EXACTWELFARE
MAXIMIZATION

We now consider two domains that are generally considered “easy”

in the sense that the welfare maximizing allocation can be found

in time that is polylogarithmic in the representation size of the

valuations. For both domains we show that – in contrast to what

is perhaps a common misconception – incentive compatible mech-

anisms that maximize the welfare are incentive compatible only

in ex-post equilibrium. For dominant strategy mechanisms, we

show that the communication complexity is linear in the size of the

representation of the valuations.

Let us first recall how to obtain an ex-post incentive compatible

algorithm for combinatorial auctions with two players. Denote the

valuations by 𝑣1 and 𝑣2, and for every 1 ≤ 𝑥 ≤ 𝑚 let 𝑣 ′
1
(𝑥) = 𝑣1 (𝑥)−

𝑣1 (𝑥 − 1) and 𝑣 ′
2
(𝑥) = 𝑣2 (𝑥) − 𝑣2 (𝑥 − 1) be the marginal values. The

decreasing marginal values property guarantees that the welfare-

maximizing allocation (𝑜1, 𝑜2) is a point where 𝑣 ′
1
and 𝑣 ′

2
“cross”

each other, i.e. where 𝑣 ′
1
(𝑜1) ≥ 𝑣 ′

2
(𝑜2+1) and 𝑣 ′

1
(𝑜1+1) ≤ 𝑣 ′

2
(𝑜2) (see

also Lemma 6.1). 𝑣 ′
1
and 𝑣 ′

2
are monotone, so we have to find where

two ordered arrays “cross” each other. Thus, a simple binary search

will find the optimal allocation with 𝑝𝑜𝑙𝑦 (log𝑚) value queries. VCG
prices (player 1 pays 𝑣2 (𝑚) − 𝑣 (𝑜2), player 2 pays 𝑣1 (𝑚) − 𝑣 (𝑜1))
guarantee incentive compatibility in an ex-post equilibrium.
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For combinatorial auctions with gross-substitutes bidders the

optimal allocation can be found with communication 𝑝𝑜𝑙𝑦 (𝑚,𝑛)
for valuations that can be represented by 𝑒𝑥𝑝 (𝑚) bits [28].

Despite the fact that in ex-post equilibrium the optimal wel-

fare can be achieved efficiently, if we require dominant strategies

equilibrium, we get an exponential blowup in the communication

complexity in both domains.

Theorem 3.1. Fix a normalized mechanism which implements
in dominant strategies a welfare-maximizer for a multi-unit auc-
tion where the valuations have decreasing marginal utilities, and the
value of a bundle can be represented with O(log(𝑚)) bits. Then, the
communication complexity of the mechanism is Ω(𝑚 log(𝑚)).

Theorem 3.2. Fix a normalized mechanism which implements in
dominant strategies a welfare-maximizer for a combinatorial auction
with gross substitutes valuations, where the value of each bundle can
be represented with 𝑝𝑜𝑙𝑦 (𝑚) bits. Then, the communication complex-
ity of the mechanism is exponential in𝑚.

The proof Theorem 3.1 can be found in Section 6.1, whilst the

proof of Theorem 3.2 can be found in the full version of the paper.

Both proofs share a similar structure.

We now give some intuition for the proof in the context of

multi-unit auctions with decreasing marginal values. Consider the

following scenario. We restrict ourselves to some (large) set of val-

uations. Suppose that Bob is decisive: for (almost) every allocation

(𝑠,𝑚−𝑠), there exist two valuations of Bob 𝑣1
𝑏
, 𝑣2
𝑏
, such that for each

valuation 𝑣𝑎 of Alice that is in this set, the optimal allocation in the

instances (𝑣𝑎, 𝑣1𝑏 ) and (𝑣𝑎, 𝑣2𝑏 ) is (𝑠,𝑚 − 𝑠). Furthermore, assume

that the dominant strategy of Bob dictates a different message when

his valuation is 𝑣1
𝑏
than when it is 𝑣2

𝑏
.

Let 𝑣1𝑎, 𝑣
2

𝑎 be two valuations of Alice that are in the set. Since we

are implementing a welfare maximizer, Bob must get𝑚 − 𝑠 items

for every valuation 𝑣1𝑎, 𝑣
2

𝑎 of Alice. For simplicity, we assume for

now (but not in the proof) that we are using VCG payments, so

Bob’s payment might be different: it can be either 𝑣1𝑎 (𝑚) − 𝑣1𝑎 (𝑠) or
𝑣2𝑎 (𝑚) − 𝑣2𝑎 (𝑠). Thus, if Bob sends a different message for 𝑣1

𝑏
than

that of 𝑣2
𝑏
and Alice sends the same message for both 𝑣1𝑎, 𝑣

2

𝑎 , Bob

does not have a dominant strategy, since Alice can “force” him to

choose one such message by guaranteeing that his payment will be

higher otherwise.

To avoid this, Alice has to “commit” on her value for 𝑠 items.

That is, if 𝑣1𝑎 and 𝑣2𝑎 have a different value for 𝑠 items, then the

message that the dominant strategy of Alice dictates cannot be the

same for both of them. In fact, we show that this implies, roughly

speaking, that Alice’s first message must be so informative that we

can fully reconstruct Alice’s valuation from her first message. Thus,

her first message is very big, and the proof is complete. The main

challenge of the proof is to construct a big enough set of valuations

that satisfies all those properties.

To complement this hardness result, we show that for multi-unit

auctions with decreasing marginal values, arbitrarily good approx-

imations are possible in dominant strategies (a “communication

FPTAS”):

Theorem 3.3. For every 𝜀 > 0, there is a dominant strategy algo-
rithm for multi-unit auctions with decreasing marginal values that
makes 𝑝𝑜𝑙𝑦 ( 1𝜀 , 𝑛) value queries and provides an allocation with social

welfare at least (1 − 𝜀) ·𝑂𝑃𝑇 , where 𝑂𝑃𝑇 is the value of the optimal
social welfare.

In contrast, the only known upper bound on the approximation

ratio of efficient dominant strategy mechanisms for combinatorial

auctions with gross substitutes valuations is O(
√
𝑚) [20]. Deter-

mining the approximation ratio possible for this class remains an

open problem.

4 INAPPROXIMABILITY OF MECHANISMS
FOR GENERAL VALUATIONS

In this section we prove that no deterministic dominant strategy

mechanism with polynomial communication for general valuations

achieves an approximation ratio better than𝑚1−𝜀
. In contrast, there

is a randomized dominant strategy mechanism that achieves an

approximation ratio of 𝑂 (
√
𝑚) [21]. Note that an approximation

ratio of𝑂 (
√
𝑚) is the best possible with polynomial communication

even when ignoring incentives [28]. We refer the reader to the full

version for the exact statement.

The proof is composed of two main steps which we now describe.

Step I: A Lower Bound on Simultaneous Algorithms (Section 5). In
general, our approach is to show that dominant-strategy mecha-

nisms for combinatorial auctions with general valuations are as

powerful as simultaneous (non-incentive compatible) algorithms.

Recall that perhaps the “easiest” way to obtain a dominant strategy

mechanism is by designing an ex-post mechanism and making it

“simultaneous”. Indeed, almost all deterministic dominant-strategy

mechanisms in the literature are simultaneous. Thus, the first step is

done in Subsection 5.1: a proof that no simultaneous algorithm can

achieve an approximation ratio better than𝑚1−𝜀
with polynomial

communication.

Step II: Efficient Dominant Strategy Mechanisms Imply Efficient Si-
multaneous Mechanisms. Note that not all dominant strategy mech-

anisms are simultaneous. Consider the following example of a com-

binatorial auction with two players with additive valuations 𝑣𝐴, 𝑣𝐵 .

All values are integers between 1 and

(𝑚
2

2

)
. Split the items arbitrarily

to two equal sets 𝐴 and 𝐵. Alice can win only items from 𝐴, and

Bob wins only items from 𝐵. We associate each possible value of

Alice 𝑣𝐴 ({𝑏}) for some item 𝑏 ∈ 𝐵 with a distinct pair of items in

𝐵, and similarly we associate Bob’s value 𝑣𝐵 ({𝑎}) for some item

𝑎 ∈ 𝐴 with a distinct pair of items in 𝐴. According to the social

choice function, Alice wins her more valuable item among the pair

that 𝑣𝐵 ({𝑎}) points to and Bob wins his more valuable item among

the pair that 𝑣𝐴 ({𝑏}) points to.
A protocol with O(log𝑚) bits where they simultaneously send

𝑣𝐴 ({𝑏}) and 𝑣𝐵 ({𝑎}) in the first round and then each reports the

preferred item among the possible two items is clearly truthful

in dominant strategies. However, it is not hard to show that any

simultaneous mechanism for this auction requires Ω(𝑚 · log𝑚)
bits. Thus, this instance exhibits a separation between dominant

strategy and simultaneous implementations.

On the other hand, we will show that if a mechanism provides

an approximation ratio better than𝑚1−𝜖
to the welfare for general

valuations, it can used to construct a simultaneous algorithm with

comparable approximation ratio. We relegate the proof of this step

to the full version of the paper.
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5 SIMULTANEOUS ALGORITHMS FOR
COMBINATORIAL AUCTIONS

In this section we consider simultaneous combinatorial auctions.

The hardness results that we obtain will be used to prove impossi-

bility result for dominant strategy mechanisms for combinatorial

auctions with general valuations.

The setup is as follows: as usual, there is a set of items𝑀, |𝑀 | =𝑚,

and 𝑛 bidders with valuation functions 𝑣1, . . . , 𝑣𝑛 : 2
𝑀 → R+.

Each of them simultaneously sends a message 𝑠𝑖 to a central

authority; the messages all together are bounded by bit-length

𝐿. The algorithm, given the messages, produces an allocation

A(𝑠1, . . . , 𝑠𝑛) = (𝐴1, 𝐴2, . . . , 𝐴𝑛). The goal is the maximize

the social welfare

∑𝑛
𝑖=1 𝑣𝑖 (𝐴𝑖 ). We impose no computational

constraints on the bidders or the central authority.

Theorem 5.1. For𝑚 items and 𝑛 = Ω(𝑚2−𝜖 ) bidders with general
monotone (binary) functions as valuations, there is no simultaneous

mechanism with messages of size at most 2
𝑚

𝜖2

2

𝑛 which achieves an
approximation ratio better than𝑚1−𝜖 , for any fixed 𝜖 > 0.

Theorem 5.2. For𝑚 items and 𝑛 = Ω(𝑚
3

32 ) bidders with matroid
rank functions as valuations, there is no simultaneous mechanism

with messages of length 2
𝑚

1

32

𝑛 which achieves an approximation ratio

better than𝑚
1

16 .

The first theorem is used to prove a lower bound for domi-

nant strategy mechanisms. The second one solves an open prob-

lem of [19] that asks whether there is a simultaneous algorithm

that provides a constant approximation for submodular valuations.

Therefore, Theorem 5.2 answers this question negatively, even

for matroid rank functions (which are also gross substitutes val-

uations). We note that the result almost settles completely the

approximation ratio achievable in this setting, as a simultaneous

𝑂̃ (𝑚
1

3 )-approximation algorithm for all subadditive valuations ex-

ists [19].

5.1 Proof of Theorem 5.1: An Impossibility for
General Valuations

The Hard Distribution. We prove our impossibility for random-

ized mechanisms by applying Yao’s principle. Thus, we now de-

scribe a distribution over instances and analyze the performance of

deterministic mechanisms on it.

Fix 𝜖 > 0. Let the number of bidders be 𝑛 = 𝑚2−𝜖 − 𝑚, di-

vided into ℓ = 𝑚1−𝜖 − 1 groups 𝐺1, . . . ,𝐺ℓ of𝑚 bidders each. Let

(𝐴1, 𝐴2, . . . , 𝐴ℓ , 𝐵) be a random partitioning of the𝑚 items, such

that for all 𝑗 , |𝐴 𝑗 | = |𝐵 | = 𝑚𝜖
(note that𝑚𝜖 (ℓ + 1) = 𝑚). For each

group 𝐺 𝑗 , the set of relevant items is 𝐴 𝑗 ∪ 𝐵. Let A 𝑗 be a family of

𝑡 = 2
Θ(𝜖2𝑚𝜖 )

subsets of 𝐴 𝑗 ∪ 𝐵 of size𝑚𝜖
, such that one of the sets

is always𝐴 𝑗 and the other sets are chosen uniformly at random. By

standard concentration bounds, with high probability, these sets

overlap pseudo-randomly in the sense that the intersection of any

two sets inA 𝑗 has size ( 1
2
±𝜖)𝑚𝜖

. In the following, we will only use

a weaker statement which is that for any two sets𝐴 ∈ A 𝑗 , 𝐴
′ ∈ A 𝑗 ′

such that 𝐴 ≠ 𝐴 𝑗 , 𝐴
′ ≠ 𝐴 𝑗 ′ , we have 𝐴 ∩𝐴′ ≠ ∅ w.h.p. For any two

such sets 𝐴,𝐴′
, we have 𝐴 ⊆ 𝐵 ∪ 𝐴 𝑗 and 𝐴′ ⊆ 𝐵 ∪ 𝐴 𝑗 ′ , and the

probability that they are disjoint is at most 𝑒−Ω (𝑚𝜖 )
, since for every

𝑏 ∈ 𝐵, the probability that𝑏 ∈ 𝐴∩𝐴′
is 1/4 and these events are neg-

atively correlated. The number of such pairs of sets is 2
Θ(𝜖2𝑚𝜖 )

; i.e.

by the union bound, all pairs of sets𝐴 ∈ A 𝑗 \{𝐴 𝑗 }, 𝐴′ ∈ A 𝑗 ′ \{𝐴 𝑗 ′}
intersect with probability 1 − 𝑒−Ω (𝑚𝜖 )

.

For each bidder 𝑖 in group 𝐺 𝑗 , the valuation is supported on the

set of items 𝐴 𝑗 ∪ 𝐵. For each bidder 𝑖 ∈ 𝐺 𝑗 , we choose a random

sub-family B𝑖 ⊆ A 𝑗 such that each set in A 𝑗 appears in B𝑖 in-

dependently with probability
1

𝑚 . More specifically, we do this in

such a way that for each set 𝐴 ∈ A 𝑗 , we choose independently a

random bidder 𝑖 ∈ 𝐺 𝑗 for whom𝐴 ∈ B𝑖 ; for the other bidders 𝑖
′ ≠ 𝑖 ,

𝐴 ∉ B𝑖′ .

We define the valuation of bidder 𝑖 as:

𝑣𝑖 (𝑆) =
{
1 𝑆 ⊇ 𝐵 for some 𝐵 ∈ B𝑖 ,

0 otherwise.

I.e., a bidder 𝑖 is satisfied if she gets the items of some set in B𝑖 . We

call each subset in B𝑖 a set that bidder 𝑖 is interested in. In particular,

if𝐴 𝑗 ∈ B𝑖 , one way to satisfy a bidder in group𝐺 𝑗 is to allocate the

set 𝐴 𝑗 . However, this set is valuable only for those bidders 𝑖 ∈ 𝐺 𝑗

such that 𝐴 𝑗 ∈ B𝑖 . We call such bidders special in group 𝐺 𝑗 . Note

also that only a small number of non-special bidders can be satisfied

overall, since these bidders want random sets which intersect with

each other with high probability. This leads to the following lemma.

Lemma 5.3. With probability 1 − 𝑒−Ω (𝑚𝜖 ) , the welfare of an allo-
cation is at most 1 plus the number of special bidders who receive the
respective set 𝐴 𝑗 .

Proof. Any player who is not special can get value 1 only if

she gets a set in B𝑖 , which does not include the special set 𝐴𝑖 . As

we argued above, all the sets in B𝑖 \ {𝐴𝑖 }, for different values of
𝑖 , intersect pairwise with probability 1 − 𝑒−Ω (𝑚𝜖 )

. Hence, at most

one bidder can be satisfied this way. Any additional value comes

from special bidders who receive the respective set 𝐴 𝑗 . □

Lemma 5.4. The expected optimal welfare for this instance is
𝑂𝑃𝑇 ≥ 𝑚1−𝜖 − 1.

Proof. Each group 𝐺 𝑗 contains exactly 1 bidder who wants the

special set 𝐴 𝑗 . Hence, a solution which allocates 𝐴 𝑗 to the special

bidder in group 𝐺 𝑗 , achieves value exactly ℓ =𝑚1−𝜖 − 1. □

We now analyze the expected welfare achieved by any mecha-

nism on the random instance described above. By Yao’s principle,

we assume that that the mechanism is deterministic. A good mech-

anism should ensure that many of the sets 𝐴 𝑗 go to some special

bidder in group 𝐺 𝑗 . But how can it determine who the special bid-

ders are? For that, it would intuitively need to know the value of

𝐴 𝑗 for each bidder, but the bidders do not know which of their sets

is special and there are too many sets to encode in a message. Our

goal is to prove that this indeed implies an impossibility result in

the simultaneous model.

We prove that the messages (𝑠𝑖 : 𝑖 ∈ 𝐺 𝑗 ) sent by the bidders in

group 𝐺 𝑗 typically do not give us much information about who

the special bidder is. Suppose that the messages (𝑠𝑖 : 𝑖 ∈ 𝐺 𝑗 )
altogether have bit-length bounded by𝐿. Thesemessages are chosen

depending on the random valuations (𝑣𝑖 : 𝑖 ∈ 𝐺 𝑗 ), so each choice
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of messages appears with a certain probability. We distinguish

between “frequent” and “rare” message sets.

Definition 5.5. We call a message set (𝑠𝑖 : 𝑖 ∈ 𝐺 𝑗 ) frequent if it
appears with probability at least 1

4
𝐿 ; otherwise it is rare.

Observe that since the total number of messages is at most 2
𝐿
,

all rare messages together appear with probability less than
1

2
𝐿 .

Next, we prove that a frequent set of messages cannot give us much

information about the distribution of high-value sets. Recall that

without any conditioning, for a particular bidder 𝑖 ∈ 𝐺 𝑗 , each set

in A 𝑗 is chosen to be in B𝑖 with probability
1

|𝐺 𝑗 | =
1

𝑚 . The key

lemma is the following.

Lemma 5.6. Let 𝑠 = (𝑠𝑖 : 𝑖 ∈ 𝐺 𝑗 ) be a frequent set of messages.
Then for every bidder 𝑖 ∈ 𝐺 𝑗 , there are fewer than 𝐿 · |𝐺 𝑗 | sets𝐴 ∈ A 𝑗

such that conditioned on bidders in 𝐺 𝑗 sending 𝑠 , Pr[𝐴 ∈ B𝑖 | 𝑠] >
7

|𝐺 𝑗 | .

Proof. Suppose that 𝑠 is a frequent set of messages and there is

a family of 𝐿 · |𝐺 𝑗 | sets 𝐴 ∈ A 𝑗 with Pr[𝐴 ∈ B𝑖 | 𝑠] > 7

|𝐺 𝑗 | ; denote

it by S ⊂ A 𝑗 .

Consider the choices whether 𝐴 ∈ B𝑖 for 𝐴 ∈ S. Without any

conditioning, each 𝐴 is chosen to be in B𝑖 independently with

probability
1

|𝐺 𝑗 | . In expectation, the number of sets in S ∩ B𝑖 is

|S |
|𝐺 𝑗 | = 𝐿. Hence, by the Chernoff bound,

Pr[|S ∩ B𝑖 | > (1 + 𝛿)𝐿] ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝐿
<

1

2
𝛿𝐿

for 𝛿 ≥ 5. Consider now the conditioning on 𝑠 . Since Pr[𝑠] ≥ 1

4
𝐿 ,

this conditioning cannot increase the probability of any event by

more than a factor of 4
𝐿
. Therefore,

Pr[|S ∩ B𝑖 | > (1 + 𝛿)𝐿 | 𝑠] < 4
𝐿

2
𝛿𝐿

.

For 𝛿 = 5, we get Pr[|S∩B𝑖 | > 6𝐿 | 𝑠] < 1

8
𝐿 and the tail probability

decays exponentially beyond that. This implies that:

E[|S ∩ B𝑖 | | 𝑠] < 7𝐿

We assumed that Pr[𝐴 ∈ B𝑖 | 𝑠] > 7

|𝐺 𝑗 | for every 𝐴 ∈ S, and
|S| = 𝐿 · |𝐺 𝑗 |, a contradiction. □

We are now ready to conclude the proof of Theorem 5.1 by

showing that for any simultaneous mechanism with messages of

total size at most 𝐿 = 2
𝑚𝜖2/2

, executed on a random instance as

described above, the expected welfare is 𝑂 (1), while the optimum

is 𝑂𝑃𝑇 = Ω(𝑚1−𝜖 ).
We already showed above that 𝑂𝑃𝑇 = Ω(𝑚1−𝜖 ). Let us bound

the expectedwelfare achieved by bidders in group𝐺 𝑗 , assuming that

their messages together are bounded by 𝐿 bits. The contribution of

cases where 𝑠 = (𝑠𝑖 : 𝑖 ∈ 𝐺 𝑗 ) is a rare message set is small, because

they happen with total probability less than
1

2
𝐿 ; hence the expected

contribution from these cases is negligible (less than
𝑚
2
𝐿 ).

In the case of a frequent message set 𝑠 , consider the partitioning

of the items 𝐵∪𝐴 𝑗 among the bidders in group𝐺 𝑗 . This partitioning

is determined by 𝑠 . Lemma 5.6 says that for each bidder 𝑖 ∈ 𝐺 𝑗 ,

fewer than 𝐿 · |𝐺 𝑗 | sets 𝐴 ∈ A 𝑗 have the property that Pr[𝐴 ∈ B𝑖 |
𝑠𝑖 ] > 7

|𝐺 𝑗 | . Recall that |𝐺 𝑗 | =𝑚. Hence, among all the sets in A 𝑗 ,

at most 𝐿 · |𝐺 𝑗 |2 = 𝐿𝑚2
sets are “biased” in the sense that the value

is 1 for some bidder with conditional probability more than
7

𝑚 .

Considering group𝐺 𝑗 in isolation, the special set𝐴 𝑗 is uniformly

random among all sets in A 𝑗 , and this is true even conditioned

on the valuations in group 𝐺 𝑗 , and hence also conditioned on the

message set 𝑠 . (Recall that given the set of items 𝐵 ∪ 𝐴 𝑗 relevant

to group 𝐺 𝑗 , there is no way to distinguish the subset 𝐴 𝑗 , which is

equally likely to be any of the sets in A 𝑗 ). Furthermore, unless the

special set𝐴 𝑗 is one of the at most 𝐿𝑚2
biased sets discussed above,

however the items in 𝐴 𝑗 are allocated, each bidder is the special

bidder for it with conditional probability at most
7

𝑚 . If 𝐴 𝑗 is split

among multiple bidders, none of them receives all of 𝐴 𝑗 . If 𝐴 𝑗 goes

to a particular bidder, then this bidder is special with conditional

probability at most
7

𝑚 . Hence, conditioned on a message set 𝑠 , we

satisfy a special bidder with conditional probability at most
7

𝑚 .

Finally, in case the special set 𝐴 𝑗 is one of the biased sets, we

can assume that we derive value of 1 from it; however this happens

with probability at most
𝐿𝑚
|A 𝑗 | = 𝑂 (𝑚 · 2−𝑚

𝜖2

2 ). The contribution
of these cases is negligible.

We have ℓ = 𝑚1−𝜖 − 1 groups of bidders. There are also the

items in 𝐵, which can contribute value at most 1 in total, with high

probability. Hence, the total expected welfare is at most 1 + 7ℓ
𝑚 =

𝑂 (1).

5.2 Proof of Theorem 5.2: Simultaneous
Algorithms for Matroid Rank Functions

Here we combine the ideas of Section 5.1 with a construction of

matroids by Balcan and Harvey, which we recap here.

Theorem 5.7 ([6]). For any 𝑘 ≥ 8 with 𝑘 = 2
𝑜 (𝑚̃

1

3 ) , there exists a
family of sets A ⊆ 2

[𝑚̃] and a family of matroids {MB : B ⊆ A}
with the following properties:

• |A| = 𝑘 and |𝐴| = 𝑚̃
1

3 for every 𝐴 ∈ A.
• For every B ⊆ A and every 𝐴 ∈ A, we have:

rankMB (𝐴) = |𝐴|, if 𝐴 ∈ B .

rankMB (𝐴) = 8 log𝑘, if 𝐴 ∈ A \ B,

For an instance of combinatorial auctions with 𝑚 items, we

will use this construction with 𝑚̃ = 𝑚
3

4 and 𝑘 = 2
𝑚

1

16

; hence

rankMB (𝐴) is either𝑚
1

4 or 8 ·𝑚
1

16 , depending on the choice of B.
7

The Hard Distribution. We prove our impossibility for random-

ized mechanism by applying Yao’s principle. Thus, we now de-

scribe a distribution over instances and analyze the performance of

deterministic mechanisms on it. We define instances as follows.

Let the number of bidders be 𝑛 = 𝑚
1

8 (𝑚
3

4 − 𝑚
1

2 + 1), divided
into ℓ = 𝑚

3

4 −𝑚
1

2 + 1 groups 𝐺1, . . . ,𝐺ℓ of𝑚
1

8 bidders each. Let

(𝐴1, 𝐴2, . . . , 𝐴ℓ , 𝐵) be a random partitioning of the𝑚 items, such

that |𝐴 𝑗 | =𝑚
1

4 and |𝐵 | =𝑚
3

4 −𝑚
1

4 . (Note that𝑚
1

4 ·ℓ+𝑚
3

4 −𝑚
1

4 =𝑚.)

7
Note that compared to Balcan-Harvey, we switch the meaning of B and A \ B; we

find it more natural to use B to denote bases of the matroid. However, the reader

should keep in mind that there are also other bases in MB .
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For each bidder 𝑖 in group𝐺 𝑗 , the valuation is supported on the set

of items 𝐴 𝑗 ∪ 𝐵; it is a matroid rank function of a Balcan-Harvey

matroid on 𝑚̃ =𝑚
3

4 elements, with parameter 𝑘 = 2
𝑚

1

16

, defined by

set families B𝑖 ⊆ A 𝑗 and embedded in𝐴 𝑗 ∪𝐵 so that a random one

of the sets in A 𝑗 is mapped onto 𝐴 𝑗 , and the remaining elements

are mapped randomly onto 𝐵. (Note that we use a 𝑗 subscript for

A 𝑗 , because this family is shared among all the bidders in 𝐺 𝑗 .)

The sub-family B𝑖 ⊆ A 𝑗 of high-value sets for bidder 𝑖 is chosen

randomly in the following way: For each set 𝐴 ∈ A 𝑗 , we choose in-

dependently and uniformly at random one bidder 𝑖 in group𝐺 𝑗 such

that 𝐴 ∈ B𝑖 . For all the other bidders 𝑖
′ ∈ 𝐺 𝑗 , we don’t include 𝐴 in

B𝑖′ . Note that in expectation we have E[|B𝑖 |] =
|A 𝑗 |
|𝐺 𝑗 | =𝑚− 1

8 ·2𝑚
1

16

,

and |B𝑖 | is tightly concentrated. Exactly one bidder in group 𝐺 𝑗

has a high value for the set mapped to 𝐴 𝑗 , and we call this bidder

the special bidder in 𝐺 𝑗 .

Lemma 5.8. The optimal welfare for this instance is 𝑂𝑃𝑇 =𝑚.

Proof. In each group 𝐺 𝑗 , we allocate the special set 𝐴 𝑗 to the

special bidder, who receives value |𝐴 𝑗 | =𝑚
1

4 . The items in 𝐵 can be

allocated arbitrarily to some non-special bidders (since |𝐵 | =𝑚
3

4 −
𝑚

1

4 and the number of non-special bidders is Ω(𝑚
7

8 )), who get value
1 each. Hence, each item contributes exactly 1 and 𝑂𝑃𝑇 =𝑚. □

We analyze the expected welfare achieved by any mechanism

on the random instance described above. We make the following

simple claim.

Lemma 5.9. If at most𝑚 𝑗 of the items in 𝐴 𝑗 are allocated to the
special bidder in group 𝐺 𝑗 , then the welfare of the allocation is at

most 𝑂 (𝑚
15

16 ) + ∑
𝑗 𝑚 𝑗 .

Proof. The items in 𝐵 contribute at most |𝐵 | =𝑚
3

4 −𝑚
1

4 alto-

gether. Any player who is not special can get value at most𝑂 (𝑚
1

16 )
from the items in 𝐴 𝑗 , hence all these players together can get at

most𝑚
3

4 +𝑂 (𝑛 ·𝑚
1

16 ) = 𝑂 (𝑚
15

16 ). Finally, the special players can
get at most𝑚 𝑗 each from the items in 𝐴 𝑗 ; hence

∑
𝑗 𝑚 𝑗 . □

From here, the proof is similar to the proof of Theorem 5.1. We

complete the proof by showing that for any simultaneous mech-

anism with messages of total size at most 𝐿 = 2
𝑚

1

32

, executed

on a random instance as described above, the expected welfare is

𝑂 (𝑚
15

16 ), while the optimum is 𝑂𝑃𝑇 =𝑚.

We already showed above that 𝑂𝑃𝑇 = 𝑚. Let us bound the

expected welfare achieved by bidders in group 𝐺 𝑗 , assuming that

their messages together are bounded by 𝐿 bits. The contribution of

cases where 𝑠 = (𝑠𝑖 : 𝑖 ∈ 𝐺 𝑗 ) is a rare message set is small, because

they happen with total probability less than
1

2
𝐿 ; hence the expected

contribution from these cases is negligible (less than
𝑚
2
𝐿 ).

In the case of a frequent message set 𝑠 , consider the partitioning

of the items 𝐵∪𝐴 𝑗 among the bidders in group𝐺 𝑗 . This partitioning

is determined by 𝑠 . Lemma 5.6 says that for each bidder 𝑖 ∈ 𝐺 𝑗 ,

fewer than 𝐿 · |𝐺 𝑗 | sets 𝐴 ∈ A 𝑗 have the property that Pr[𝐴 ∈ B𝑖 |
𝑠𝑖 ] > 7

|𝐺 𝑗 | . Here, we have |𝐺 𝑗 | =𝑚
1

8 . Hence, among all the sets in

A 𝑗 , at most 𝐿 |𝐺 𝑗 |2 = 𝐿𝑚
1

4 sets are “biased” in the sense that the

value is high for some bidder with conditional probability more

than
7

𝑚1/8 .

The special set 𝐴 𝑗 is uniformly random among all sets in A 𝑗 ,

and this is true even conditioned on the valuations in group 𝐺 𝑗 ,

and hence also conditioned on the message set 𝑠 . (Recall that given

the set of items 𝐵 ∪ 𝐴 𝑗 relevant to group 𝐺 𝑗 , there is no way to

distinguish the subset 𝐴 𝑗 , which is equally likely to be any of the

sets in A 𝑗 ). Furthermore, unless the special set 𝐴 𝑗 is one of the at

most 𝐿 ·𝑚1/4
biased sets discussed above, however the items in 𝐴 𝑗

are split, each bidder is the special bidder for it with conditional

probability at most
7

𝑚1/8 . Suppose that bidder 𝑖 receives 𝑘𝑖 items

from𝐴 𝑗 in this allocation. Then the expected value that the bidders

derive from 𝐴 𝑗 is at most∑︁
𝑖∈𝐺 𝑗

7

𝑚1/8 · 𝑘𝑖 +
∑︁
𝑖∈𝐺 𝑗

(
1 − 7

𝑚1/8

)
𝑂 (𝑚

1

16 ) <

7 · |𝐴 𝑗 |
𝑚1/8 +𝑂 (𝑚1/16 |𝐺 𝑗 |) = 𝑂 (𝑚3/16)

because a bidder who is special gets value 1 for each item received

from 𝐴 𝑗 , |𝐴 𝑗 | =𝑚
1

4 , and a bidder who is not special receives value

at most𝑂 (𝑚
1

16 ) from𝐴 𝑗 . Finally, in case the special set𝐴 𝑗 is one of

the biased sets, we can assume that we derive full value |𝐴 𝑗 | =𝑚
1

4

from it; however this happens with probability at most 𝐿 · 𝑚
1

4

|A 𝑗 | =

𝑂 (𝑚
1

4 · 2−𝑚
1

32 ). The contribution of these cases is negligible.

We have ℓ ≤ 𝑚
3

4 groups of bidders. There are also the items in

𝐵, |𝐵 | ≤ 𝑚
3

4 , which can contribute at most |𝐵 | in total. Hence, the

total expected welfare is at most |𝐵 | +𝑂 (ℓ ·𝑚
3

16 ) = 𝑂 (𝑚
15

16 ).

6 MULTI-UNIT AUCTIONS WITH
DECREASING MARGINAL VALUATIONS

Consider a social choice function 𝑓 that always outputs an alloca-

tion that maximizes the welfare. This social choice function can be

implemented in dominant strategies by the VCG mechanism. The

next theorem shows that even if we restrict ourselves to a subset

of the valuations such that each valuation can be represented by

O(𝑚 · log𝑚) bits, any dominant-strategy normalized implementa-

tion of 𝑓 requires Ω(𝑚 · log𝑚) bits, even when there are only two

players. In contrast, recall that an ex-post implementation of this

set with VCG payments requires only 𝑝𝑜𝑙𝑦 (log𝑚) bits.
We also show an exponential blow up also in the implementa-

tion of dominant-strategy welfare maximizers for combinatorial

auctions with gross substitute valuations (Theorem 3.2). The two

hardness proofs share a very similar structure.

6.1 Hardness Result For Multi-Unit Auctions -
Proof of Theorem 3.1

Consider a multi-unit auction of𝑚 ≥ 5 items and two players (Alice

and Bob). The valuations that we consider belong to three families:

“semi-decisive” valuations 𝑉𝐷
, non-decisive valuations 𝑉𝑁𝐷

and

another set of valuations𝑉 𝑃
that we will use to show that payments

can be used as sketches of valuations.

Every semi-decisive and non-decisive valuation will have

a “weight” which is a scalar 𝛾 ∈ {1, . . . ,𝑚5} that captures its
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magnitude. We now define the set𝑉𝐷,𝛾
of semi-decisive valuations

with the scalar 𝛾 . Every 𝑣 ∈ 𝑉𝐷,𝛾
has two parameters: a special

bundle 𝑥∗ ∈ {2, . . . ,𝑚 − 2} and 𝑑𝑚 ∈ { 1
2
, 1} such that:

𝑣 (𝑥) =



0 𝑥 = 0,

𝛾 · 3𝑚8 𝑥 = 1,

𝛾 · (𝑚2 −𝑚 + 1) + 𝑣 (𝑥 − 1) 𝑥 ∈ {1, . . . , 𝑥∗},
𝛾 + 𝑣 (𝑥 − 1) 𝑥 ∈ {𝑥∗ + 1, . . . ,𝑚 − 1},
𝑑𝑚 + 𝑣 (𝑚 − 1) 𝑥 =𝑚.

To define the set of non-decisive valuations, we define for every

number of items 𝑥 ∈ {2, . . . ,𝑚} its set of all its possible marginal

utilities:

∀𝑥 ∈ {2, . . . ,𝑚 − 1},
𝐷𝑥 = {𝑚2 −𝑚𝑥,𝑚2 −𝑚𝑥 + 1, . . . ,𝑚2 −𝑚(𝑥 − 1)}

𝐷𝑚 = { 1
2

, 1}

For every weight 𝛾 ∈ {1, . . . ,𝑚5}, every valuation in the set𝑉𝑁𝐷,𝛾

is parameterized by a vector (𝑑2, . . . , 𝑑𝑚) ∈ 𝐷2 × · · · × 𝐷𝑚 such

that:

𝑣 (𝑥) =


0 𝑥 = 0,

𝛾 · 3𝑚8 𝑥 = 1,

𝛾 · 𝑑𝑥 + 𝑣 (𝑥 − 1) 𝑥 ∈ {1, . . . ,𝑚 − 1},
𝑑𝑚 + 𝑣 (𝑚 − 1) 𝑥 =𝑚.

Throughout the proof, we use the notations𝑉𝑁𝐷 =
𝑚5⋃
𝛾=1

𝑉𝑁𝐷,𝛾
and

𝑉𝐷 =
𝑚5⋃
𝛾=1

𝑉𝐷,𝛾
.

We are now going to define another set of valuations 𝑉 𝑃
with

the purpose of guaranteeing that different valuations in𝑉𝐷 ∪𝑉𝑁𝐷

induce different payments. We use this fact later on to sketch val-

uations. Every 𝑣 ∈ 𝑉 𝑃
has a valuation 𝑣 ′ ∈ 𝑉𝑁𝐷 ∪ 𝑉𝐷

, a sign

𝑠𝑛 ∈ {0, 1} and a special bundle 𝑡∗ ∈ {1, . . . ,𝑚} such that:

𝑣 (𝑥) =


0 𝑥 = 0,

𝑚15 + 𝑣 (𝑥 − 1) 𝑥 < 𝑡∗,

𝑣 ′(𝑚 − 𝑥 + 1) − 𝑣 ′(𝑚 − 𝑥) + (−1)𝑠𝑛
8𝑚2

+ 𝑣 (𝑥 − 1) 𝑥 = 𝑡∗,

𝑣 (𝑥 − 1) 𝑥 > 𝑡∗ .

It is easy to see that all the valuations in all three families are

normalized, monotone and have decreasing marginal utilities. Also,

the value of each bundle can be represented with O(log𝑚) bits. We

begin with a simple observation regarding the properties of welfare

maximizing allocations:

Lemma 6.1. Let 𝑣𝐴, 𝑣𝐵 : [𝑚] → R+ be multi-unit valuations with
decreasing marginal values. Suppose that 𝑠 ∈ {1, . . . ,𝑚 − 1} is a
number of items such that:

(1) 𝑣𝐵 (𝑚 − 𝑠) − 𝑣𝐵 (𝑚 − 𝑠 − 1) > 𝑣𝐴 (𝑠 + 1) − 𝑣𝐴 (𝑠).
(2) 𝑣𝐴 (𝑠) − 𝑣𝐴 (𝑠 − 1) > 𝑣𝐵 (𝑚 − 𝑠 + 1) − 𝑣𝐵 (𝑚 − 𝑠).

Then, (𝑠,𝑚 − 𝑠) is the unique welfare maximizing allocation. If
𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 1) > 𝑣𝐴 (1) − 𝑣𝐴 (0), then the unique welfare max-
imizing allocation is (0,𝑚). Equivalently, 𝑣𝐴 (𝑚) − 𝑣𝐴 (𝑚 − 1) >

𝑣𝐵 (1) − 𝑣𝐵 (0) implies that the only welfare maximizing allocation is
(𝑚, 0).

Its proof is relegated to the full version. It is easy to see that the

following two propositions together imply Theorem 3.1:

Proposition 6.2. Let M be a normalized mechanism with 𝑐 bits
which implements in dominant strategies a welfare maximizer for a
multi-unit auction where the valuations have decreasing marginal
utilities and the value of a bundle can be represented with O(log𝑚)
bits. Then, there exists 𝛾 ∈ {1,𝑚5} such that every element of𝑉𝑁𝐷,𝛾

can be represented with at most 𝑐 + O(log(𝑚)) bits.

Proposition 6.3. For every 𝛾 ∈ {1, . . . ,𝑚5}, The representation
size of a valuation in 𝑉𝑁𝐷,𝛾 is Ω(𝑚 log(𝑚)).

Proof of Proposition 6.3. By definition, for every 𝛾 ∈
{1, . . . ,𝑚5}, |𝑉𝑁𝐷,𝛾 | = 2 · (𝑚 + 1)𝑚−2

. Thus, by the pigeonhole

principle, the representation size of an element in 𝑉𝑁𝐷,𝛾
is

Ω(𝑚 log(𝑚)) bits. □

6.2 Proof of Proposition 6.2
Fix a dominant strategy normalized two-player mechanism

M,S𝐴,S𝐵 that implements a welfare-maximizer 𝑓 8 with payment

schemes 𝑃𝐴, 𝑃𝐵 for a multi-unit auction where the valuations

have decreasing marginal utilities and the value of a bundle

can be represented with O(log𝑚) bits. Observe that M is in

particular dominant strategies when the domain of each player is

𝑉𝐷 ∪𝑉𝑁𝐷 ∪𝑉 𝑃
. Denote with 𝑐 the communication complexity of

the mechanism M.

Observe that M is incentive compatible, so by the taxation prin-

ciple every valuation 𝑣𝐴 of Alice is associated with a menu of

prices to Bob, such that for every valuation 𝑣𝐵 of Bob the action

profile (S𝐴 (𝑣𝐴),S𝐵 (𝑣𝐵)) reaches a leaf that is labeled with a profit-

maximizing bundle given this menu. The same can be said of Bob’s

valuation and the menu presented to Alice.

The proof idea is as follows. We begin by showing that the

payments in themenu associatedwith a valuation are closely related

to its values (Subsection 6.2.1). In Section 6.2.2, we show that there

exists a set of valuations of Bob such that he sends the price of some

bundle (e.g., the price of 1 item), or otherwise Alice’s strategy S𝐴 is

not dominant. Consider now two valuations 𝑣𝐵, 𝑣
′
𝐵
from this set that

differ only in the price of 1 item. Assume towards a contradiction

that Alice has two valuations 𝑣𝐴, 𝑣
′
𝐴
with the same message such

that the optimal solution in every one of the four possible instance

is (𝑠,𝑚−𝑠) but 𝑃𝐵 (𝑚−𝑠, 𝑣𝐴) ≠ 𝑃𝐵 (𝑚−𝑠, 𝑣 ′
𝐴
) . In this case, the worry

is that Alice can determine Bob’s payment to be either 𝑃𝐵 (𝑚−𝑠, 𝑣𝐴)
or 𝑃𝐵 (𝑚 − 𝑠, 𝑣 ′

𝐴
) without changing Bob’s allocation, based only on

the price of 𝑣𝐵, 𝑣
′
𝐵
for one item. Thus, Bob will not have a dominant

strategy in this case unless Alice commits on the price she displays

for𝑚 − 𝑠 items (Subsection 6.2.3). However, if this happens for too

many bundles, we can reconstruct Alice’s valuation from her first

message (Subsection 6.2.4).

6.2.1 Payments Are Good Sketches. We now prove that the pay-

ments in the menu that each player presents to the other player are

tightly related to the valuation.

8
There is more than one welfare-maximizer due to tie breaking.
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Lemma 6.4. Let 𝑣𝐴 ∈ 𝑉𝑁𝐷 ∪𝑉𝐷 and let 𝑥 ∈ {1, . . . ,𝑚 − 1} be a
number of items. Then:

𝑃𝐵 (𝑥, 𝑣𝐴) ∈
[
𝑣𝐴 (𝑚) − 𝑣𝐴 (𝑚 − 𝑥) ± 1

8𝑚

]
where 𝑃𝐵 (𝑥, 𝑣𝐴) is the price of 𝑥 items presented to Bob when Alice has
the valuation 𝑣𝐴 . Similarly, every valuation of Bob 𝑣𝐵 ∈ 𝑉𝑁𝐷 ∪𝑉𝐷

and every 𝑥 ∈ {1, . . . ,𝑚 − 1} satisfy that:

𝑃𝐴 (𝑥, 𝑣𝐵) ∈
[
𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 𝑥) ± 1

8𝑚

]
We relegate the proof of Lemma 6.4 to the full version.

Corollary 6.5. Fix 𝑣𝐴 ∈ 𝑉𝑁𝐷 ∪ 𝑉𝐷 and a number of items
𝑥 ∈ {1, . . . ,𝑚 − 1}. Given every 𝑃𝐵 (𝑚 − 𝑥, 𝑣𝐴) and 𝑣𝐴 (𝑚), the exact
value of 𝑣𝐴 (𝑥) can be deduced.

Proof. By Lemma 6.4, we have that 𝑣𝐴 (𝑥) ∈ [𝑣𝐴 (𝑚) − 𝑃𝐵 (𝑚 −
𝑥, 𝑣𝐴)± 1

8𝑚 ]. Thus, given 𝑃𝐵 (𝑚−𝑥, 𝑣𝐴) and 𝑣𝐴 (𝑚), we can construct
an interval of size

1+1
8𝑚 ≤ 1

4
such that 𝑣𝐴 (𝑥) belongs in it. Recall

that 𝑥 ≤ 𝑚 so by definition 𝑣𝐴 (𝑥) is an integer and an interval of

size at most
1

4
has only one integer in it, so we can immediately

identify it. □

6.2.2 Bob Reveals Information That Does Not Affect the Allocation.
From now on, we focus on the following subsets of valuation sets

of Alice and Bob:

𝑉𝐴 = 𝑉𝐵 =
{ 𝑚5⋃
𝛾=1

𝑉𝑁𝐷,𝛾
} ⋃ { 𝑚5⋃

𝛾=1

𝑉𝐷,𝛾
}

Observe that the mechanismM together with the strategiesS𝐴,S𝐵

is also a dominant strategy implementation of 𝑓 , 𝑃𝐴, 𝑃𝐵 with respect

to 𝑉𝐴 × 𝑉𝐵 , since they have decreasing marginal values and the

value of a bundle can be described with O(log𝑚) bits. By Lemma

2.2, given the valuations 𝑉𝐴 ×𝑉𝐵 there exists a minimal dominant

strategy mechanismM ′
with strategies (S′

𝐴
,S′

𝐵
) that realize the

welfare-maximizer 𝑓 with payment schemes 𝑃𝐴, 𝑃𝐵 with 𝑐 ′ ≤ 𝑐

bits.

We remind that throughout the proof we slightly abuse notation:

we say that a player with valuation 𝑣 sends a message 𝑧 at vertex

𝑟 instead of saying that the dominant strategy of the player is to

send message 𝑧 given the valuation 𝑣 . We also use the notations𝑉𝛾
,

𝑉 ≤𝛾
or 𝑉 ≥𝛾

to denote all the valuations in 𝑉𝐴 or 𝑉𝐵 with weight 𝛾 ,

or the valuations with a weight which is smaller or larger than 𝛾 .

Observe that there exists a player, without loss of generality

Alice, that sends different messages for different valuations in𝑉𝐴 at

the root vertex of the protocol, which we denote with 𝑟 . The reason

for that is that M ′
is minimal and there exist (𝑣𝐴, 𝑣𝐵), (𝑣 ′𝐴, 𝑣

′
𝐵
) ∈

𝑉𝐴 ×𝑉𝐵 such that the optimal allocation for them differs. We will

show that since she sends non-trivial message in the first round, she

has a dominant strategy in M ′
only if Bob discloses very specific

information that, in certain situations, does not affect the allocation.

Formally:

Claim 6.6. One of the two conditions below necessarily holds:

(1) For every 𝑣1
𝐵
, 𝑣2
𝐵
∈ 𝑉

𝐷,𝛾=𝑚5

𝐵
such that 𝑃𝐴 (1, 𝑣1𝐵) ≠ 𝑃𝐴 (1, 𝑣2𝐵),

Bob sends different messages at vertex 𝑟 .
(2) For every 𝑣1

𝐵
, 𝑣2
𝐵
∈ 𝑉

𝐷,𝛾=1

𝐵
such that 𝑃𝐴 (𝑚 − 1, 𝑣1

𝐵
) ≠ 𝑃𝐴 (𝑚 −

1, 𝑣2
𝐵
), Bob sends different messages at vertex 𝑟 .

For the proof of Claim 6.6, we prove the following lemma, which

is the main working horse of this subsection:

Lemma 6.7. Let 𝑣1
𝐴
, 𝑣2
𝐴

∈ 𝑉𝐴 be two valuations of Alice, and let
𝑣1
𝐵
, 𝑣2
𝐵
be two valuations of Bob such that:

(1) The unique optimal solution for the instances (𝑣1
𝐴
, 𝑣1
𝐵
) and

(𝑣2
𝐴
, 𝑣2
𝐵
) is (𝑥,𝑚 − 𝑥).

(2) 𝑃𝐴 (𝑥, 𝑣1𝐵) ≠ 𝑃𝐴 (𝑥, 𝑣2𝐵).
(3) Alice sends different messages at the root vertex 𝑟 for 𝑣1

𝐴
and

𝑣2
𝐴
.

Then, Bob sends different messages at the root vertex 𝑟 for the valua-
tions 𝑣1

𝐵
and 𝑣2

𝐵
.

Proof. Denote with 𝑧1
𝐴
and 𝑧2

𝐴
the messages that Alice sends

for 𝑣1
𝐴
, 𝑣2
𝐴
. Assume towards a contradiction that Bob sends the same

message 𝑧𝐵 for the valuations 𝑣1
𝐵
, 𝑣2
𝐵
at the root vertex 𝑟 . Let 𝑡1, 𝑡2

be the subtrees that the message profiles (𝑧1
𝐴
, 𝑧𝐵) and (𝑧2

𝐴
, 𝑧𝐵) lead

to. Denote with 𝑙1, 𝑙2 the leaves that (𝑣1
𝐴
, 𝑣1
𝐵
) and (𝑣2

𝐴
, 𝑣2
𝐵
) reach

(respectively). For an illustration, see Figure 2.

𝑟

𝑙1

𝑥, 𝑃𝐴 (𝑥, 𝑣1𝐵)

𝑙2

𝑥, 𝑃𝐴 (𝑥, 𝑣2𝐵)

subtree 𝑡1 subtree 𝑡2

𝑧
1

𝐴
𝑧 2
𝐴

Figure 2: An illustration for the proof of Lemma 6.7. It de-
scribes two subtrees 𝑡1, 𝑡2 in the tree that the message 𝑧𝐵 of
Bob induces for Alice at the root vertex 𝑟 . The leaves 𝑙1, 𝑙2 are
the leaves that (𝑣1

𝐴
, 𝑣1
𝐵
) and (𝑣2

𝐴
, 𝑣2
𝐵
) reach, so by assumption

they are labeled with the allocation 𝑥 items for Alice with a
price of 𝑃𝐴 (𝑥, 𝑣1𝐵) and 𝑃𝐴 (𝑥, 𝑣2𝐵), respectively.

Note that the leaf 𝑙1 is labeled with the allocation (𝑥,𝑚 − 𝑥)
and with the payment 𝑃𝐴 (𝑥, 𝑣1𝐵) for Alice, and similarly the leaf

𝑙2 is labeled with the allocation (𝑥,𝑚 − 𝑥) and with the payment

𝑃𝐴 (𝑥, 𝑣2𝐵) for Alice. Observe that 𝑙1, 𝑙2 appear in different subtrees

𝑡1, 𝑡2, so by Lemma 2.2, they are labeled with the same payment for

Alice. However, 𝑃𝐴 (𝑥, 𝑣1𝐵) ≠ 𝑃𝐴 (𝑥, 𝑣2𝐵) by assumption, so we reach

a contradiction.

□

The following two lemmas are immediate corollaries of Lemma

6.7:

Lemma 6.8. Assume that there exist two valuations 𝑣1
𝐴
, 𝑣2
𝐴
∈ 𝑉 ≤𝑚2

𝐴

that Alice sends different messages for at the root vertex 𝑟 . Let 𝑣1
𝐵
, 𝑣2
𝐵
∈

𝑉
𝐷,𝛾=𝑚5

𝐵
be two semi-decisive valuations of Bob such that 𝑃𝐴 (1, 𝑣1𝐵) ≠

𝑃𝐴 (1, 𝑣2𝐵). Then, Bob sends different messages at the root vertex 𝑟 for
the valuations 𝑣1

𝐵
and 𝑣2

𝐵
.
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Proof. We begin by showing that for every 𝑣𝐴 ∈ 𝑉 ≤𝑚2

𝐴
and for

every 𝑣𝐵 ∈ 𝑉
𝐷,𝛾=𝑚5

𝐵
, the unique optimal allocation is (1,𝑚 − 1). By

Lemma 6.1, it suffices to prove the inequalities 𝑣𝐵 (𝑚 − 1) − 𝑣𝐵 (𝑚 −
2) > 𝑣𝐴 (2) − 𝑣𝐴 (1) and 𝑣𝐴 (1) − 𝑣𝐴 (0) > 𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 1), which
hold by definition:

𝑣𝐵 (𝑚 − 1) − 𝑣𝐵 (𝑚 − 2) ≥ 𝑚5 > 𝑚2 · (𝑚2 −𝑚 + 1) ≥ 𝑣𝐴 (2) − 𝑣𝐴 (1)
=⇒ 𝑣𝐵 (𝑚 − 1) − 𝑣𝐵 (𝑚 − 2) > 𝑣𝐴 (2) − 𝑣𝐴 (1)

𝑣𝐴 (1) − 𝑣𝐴 (0) ≥ 1 · 3𝑚8 > 1 ≥ 𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 1)
=⇒ 𝑣𝐴 (1) − 𝑣𝐴 (0) > 𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 1)

Thus, the unique optimal allocation for the instances

(𝑣1
𝐴
, 𝑣1
𝐵
), (𝑣2

𝐴
, 𝑣2
𝐵
) is (1,𝑚 − 1). Recall that by assumption Alice

sends different messages for 𝑣1
𝐴
, 𝑣2
𝐴
and that 𝑃𝐴 (1, 𝑣1𝐵) ≠ 𝑃𝐴 (1, 𝑣2𝐵),

so by Lemma 6.7, Bob sends different messages at the root vertex

for 𝑣1
𝐵
and 𝑣2

𝐵
, as needed. □

Lemma 6.9. Assume that there exist two valuations 𝑣1
𝐴
, 𝑣2
𝐴
∈ 𝑉 ≥𝑚2

𝐴

that Alice sends different messages for at the root vertex 𝑟 . Let 𝑣1
𝐵
, 𝑣2
𝐵
∈

𝑉
𝐷,𝛾=1

𝐵
be two semi-decisive valuations of Bob such that 𝑃𝐴 (𝑚 −

1, 𝑣1
𝐵
) ≠ 𝑃𝐴 (𝑚 − 1, 𝑣2

𝐵
). Then, Bob sends different messages at the

root vertex 𝑟 for the valuations 𝑣1
𝐵
and 𝑣2

𝐵
.

The proof of Lemma 6.9 is analogous to the proof of Lemma 6.8,

and can be found in the full version of the paper. We can now prove

Claim 6.6:

Proof of Claim 6.6. Recall that we have assumed (without loss

of generality) that there exist two valuations of Alice that she sends

different messages for at the root vertex 𝑟 . It implies that the mech-

anismM ′
satisfies at least one of the following conditions: either

Alice sends different messages for two valuations in 𝑉 ≤𝑚2

𝐴
or she

sends different messages for two valuations in 𝑉 ≥𝑚2

𝐴
(otherwise,

she sends the same message for all valuations in 𝑉𝐴 , since 𝑉
≤𝑚2

𝐴

and 𝑉 ≥𝑚2

𝐴
are intersecting and 𝑉𝐴 = 𝑉 ≤𝑚2

𝐴
∪𝑉 ≥𝑚2

𝐴
).

If she sends different messages for two valuations in𝑉 ≤𝑚2

𝐴
at the

root vertex 𝑟 , by Lemma 6.8, we get that for every 𝑣1
𝐵
, 𝑣2
𝐵
∈ 𝑉

𝐷,𝛾=𝑚5

𝐵

such that 𝑃𝐴 (1, 𝑣1𝐵) ≠ 𝑃𝐴 (1, 𝑣2𝐵), Bob sends different messages at

vertex 𝑟 . Similarly, if she sends different messages for two valua-

tions in 𝑉 ≥𝑚2

𝐴
, then by applying Lemma 6.9 we have that for every

𝑣1
𝐵
, 𝑣2
𝐵

∈ 𝑉
𝐷,𝛾=1

𝐵
with 𝑃𝐴 (𝑚 − 1, 𝑣1

𝐵
) ≠ 𝑃𝐴 (𝑚 − 1, 𝑣2

𝐵
), Bob sends

different messages at vertex 𝑟 . □

6.2.3 Alice Commits to Bob’s Payment. We now use the informa-

tion revealed by Bob about the semi-decisive valuations in 𝑉
𝛾=1

𝐵
or

in 𝑉
𝛾=𝑚5

𝐵
to show that there exists “large” set of valuations such

Alice has to commit to Bob’s payment for every possible allocation

in the first round of the mechanism. In Section 6.2.4, we will show

how to use the payment to reconstruct these valuations.

Observe that we now use the fact thatM ′
is dominant strategies

for Bob. For the statement of the claim, we define 𝑣
𝛾
𝑚−𝑠 ∈ 𝑉𝐷,𝛾

as the semi-decisive valuation parameterized with weight 𝛾 , the

special bundle 𝑥∗ =𝑚 − 𝑠 and 𝑑𝑚 = 1

2
.

Claim 6.10. The following holds for either 𝛾 = 1 or for 𝛾 = 𝑚5.
Let 𝑣𝐴 ∈ 𝑉

𝑁𝐷,𝛾

𝐴
be a valuation, and let 𝑧𝐴 be the message that

Alice sends for it at the root of the protocol. Fix a number of items
𝑠 ∈ {2, . . . ,𝑚−2} and let 𝑧𝐵 be the message that Bob sends at the root
if his valuation is the decisive valuation 𝑣𝛾𝑚−𝑠 defined above. Denote
with 𝑡 the subtree that the message profile (𝑧𝐴, 𝑧𝐵) leads to. Then:

(1) There exists a leaf at subtree 𝑡 labeled with the allocation
(𝑠,𝑚 − 𝑠).

(2) Every leaf at subtree 𝑡 that is labeled with the allocation (𝑠,𝑚−
𝑠) satisfies that it is labeled with the payment 𝑃𝐵 (𝑚 − 𝑠, 𝑣𝐴)
for Bob.

Proof. We show that condition 1 of Claim 6.6 implies that Claim

6.10 holds for𝛾 =𝑚5
. The proof that condition 2 of Claim 6.6 implies

that Claim 6.10 holds for 𝛾 = 1 is analogous. Claim 6.10 follows

since by Claim 6.6 at least one of the conditions specified in the

statement of Claim 6.6 holds.

Assume that condition 1 holds. Let 𝑣𝐴 ∈ 𝑉
𝑁𝐷,𝛾=𝑚5

𝐴
be a val-

uation, and let 𝑠 ∈ {2, . . . ,𝑚 − 2} be a number of items. Define

𝑣𝐵, 𝑣
′
𝐵
∈ 𝑉

𝐷,𝛾=𝑚5

𝐵
as follows. 𝑣𝐵 = 𝑣𝑚

5

𝑚−𝑠 and

𝑣 ′𝐵 (𝑥) =



0 𝑥 = 0,

𝑚5 ·𝑚8 𝑥 = 1,

𝑚5 (𝑚2 −𝑚 + 1) + 𝑣 ′(𝑥 − 1) 𝑥 ∈ {2, . . . ,𝑚 − 𝑠},
𝑚5 + 𝑣 ′(𝑥 − 1) 𝑥 ∈ {𝑚 − 𝑠 + 1, . . . ,𝑚 − 1},
𝑣 ′(𝑚 − 1) + 1 𝑥 =𝑚.

In words, 𝑣𝐵 and 𝑣 ′
𝐵
are the two decisive valuations with weight

𝛾 =𝑚5
and special bundle 𝑥∗ =𝑚 − 𝑠 . Note that the only difference

between 𝑣𝐵, 𝑣
′
𝐵
is the marginal value of the𝑚′

th item.

We begin by explaining why the unique welfare maximizing

allocation for the instance (𝑣𝐴, 𝑣𝐵) is (𝑠,𝑚 − 𝑠). By Lemma 6.1, it

suffices to prove that:

𝑣𝐵 (𝑚 − 𝑠) − 𝑣𝐵 (𝑚 − 𝑠 − 1) =𝑚5 · (𝑚2 −𝑚 + 1) >
𝑚5 · (𝑚2 −𝑚) ≥ 𝑣𝐴 (2) − 𝑣𝐴 (1) ≥ 𝑣𝐴 (𝑠 + 1) − 𝑣𝐴 (𝑠)

𝑣𝐴 (𝑠) − 𝑣𝐴 (𝑠 − 1) ≥ 𝑣𝐴 (𝑚 − 1) − 𝑣𝐴 (𝑚 − 2) ≥ 𝑚5 ·𝑚 >

𝑚5 ≥ 𝑣𝐵 (𝑚 − 𝑠 + 1) − 𝑣𝐵 (𝑚 − 𝑠)

Thus, the leaf 𝑙 that (𝑣𝐴, 𝑣𝐵 = 𝑣𝑚
5

𝑚−𝑠 ) reaches is labeled with the

allocation (𝑠,𝑚 − 𝑠). By definition, this leaf belongs in the subtree

𝑡 , so we have part 1 of the claim. For the proof of the second part,

recall that by Lemma 6.4 we have that:

𝑃𝐴 (1, 𝑣𝐵) ≤ 𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 1) + 1

8𝑚
,

𝑃𝐴 (1, 𝑣 ′𝐵) ≥ 𝑣 ′𝐵 (𝑚) − 𝑣 ′𝐵 (𝑚 − 1) − 1

8𝑚

Therefore:

𝑃𝐴 (1, 𝑣𝐵) ≤ 𝑣𝐵 (𝑚) − 𝑣𝐵 (𝑚 − 1) + 1

8𝑚
<

𝑣 ′𝐵 (𝑚) − 𝑣 ′𝐵 (𝑚 − 1) − 1

8𝑚
≤ 𝑃𝐴 (1, 𝑣 ′𝐵)

=⇒ 𝑃𝐴 (1, 𝑣𝐵) < 𝑃𝐴 (1, 𝑣 ′𝐵)

where the strict inequality holds because 𝑣 ′
𝐵
(𝑚) − 𝑣𝐵 (𝑚) = 1

2
and

𝑣 ′
𝐵
(𝑚 − 1) = 𝑣𝐵 (𝑚 − 1). Therefore, by condition 1 of Claim 6.6 we
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have that Bob sends different message 𝑧′
𝐵
for 𝑣 ′

𝐵
than the message

𝑧𝐵 he sends for 𝑣𝐵 at vertex 𝑟 .

Denote with 𝑡 ′ the subtree that the messages (𝑧𝐴, 𝑧′𝐵) lead to,

and denote the leaf in 𝑡 ′ that (𝑣𝐴, 𝑣 ′𝐵) reaches with 𝑙 ′. Since 𝑣𝐵
and 𝑣 ′

𝐵
are equal for all the coordinates in {1, . . . ,𝑚 − 1}, we have

that the unique welfare-maximizing allocation for (𝑣𝐴, 𝑣 ′𝐵) is also
(𝑠,𝑚 − 𝑠), so 𝑙 ′ is labeled with it. For an illustration, see Figure 3.

Since the mechanism M ′
realizes the welfare-maximizer 𝑓 with

the payment schemes 𝑃𝐴, 𝑃𝐵 , we have that the leaf 𝑙 that is labeled

with the allocation (𝑠,𝑚 − 𝑠) is labeled with the payment 𝑃𝐵 (𝑚 −
𝑠, 𝑣𝐴) for Bob. By Lemma 2.3 all the leaves in 𝑡 and in 𝑡 ′ that are
labeled with the allocation (𝑠,𝑚−𝑠) have the same price for Bob. By

combining these two facts, we get that all the leaves in the subtree

𝑡 labeled with the allocation (𝑠,𝑚− 𝑠) are labeled with the payment

𝑃𝐵 (𝑚 − 𝑠, 𝑣𝐴) for Bob, which completes the proof. □

𝑟

𝑙

𝑚 − 𝑠, 𝑃𝐵 (𝑚 − 𝑠, 𝑣𝐴)

𝑙 ′

𝑚 − 𝑠, 𝑃𝐵 (𝑚 − 𝑠, 𝑣𝐴)

subtree 𝑡 subtree 𝑡 ′

𝑧 𝐵
𝑧 ′
𝐵

Figure 3: An illustration for the proof of Claim 6.10. It de-
scribes the subtrees 𝑡, 𝑡 ′ in the tree that the message 𝑧𝐴 of
Alice induces for Bob at the root vertex 𝑟 . The leaves 𝑙, 𝑙 ′ are
the leaves that (𝑣𝐴, 𝑣𝐵) and (𝑣𝐴, 𝑣 ′𝐵) reach, so as we prove they
are labeled with the allocation (𝑠,𝑚 − 𝑠).

6.2.4 Reconstructing Alice’s Valuation. We can now complete the

proof of Proposition 6.2. Let 𝛾 ∈ {1,𝑚5} be the scalar that Claim
6.10 holds for. We will show how to represent every valuation

in 𝑉𝑁𝐷,𝛾
with at most 𝑐 ′ + O(log(𝑚)) ≤ 𝑐 + O(log(𝑚)) bits (we

remind that 𝑐, 𝑐 ′ stand for the communication complexity of the

mechanisms M,M ′
).

The representation of a valuation 𝑣 is composed of the values

𝑣 (1), 𝑣 (𝑚 − 1), 𝑣 (𝑚) and the message 𝑧𝐴 Alice sends at the root ver-

tex 𝑟 given the valuation 𝑣 . For every number of items 𝑥 ∈ [𝑚], we
show how to compute 𝑣 (𝑥) without any additional communication.

𝑣 (1), 𝑣 (𝑚 − 1) and 𝑣 (𝑚) are specified in the sketch. Let 𝑠 ∈
{2, . . . ,𝑚 − 2}. Let 𝑧𝐵 be the message that Bob sends at the root

vertex 𝑟 when his valuation is the decisive valuation 𝑣𝐵 = 𝑣
𝛾
𝑚−𝑠 .

Let ℓ be an arbitrary leaf in the subtree that (𝑧𝐴, 𝑧𝐵) leads to that

is labeled with the allocation (𝑠,𝑚 − 𝑠). By Claim 6.10, such a leaf

exists and it is labeled with the payment 𝑃𝐵 (𝑚 − 𝑠, 𝑣𝐴) for Bob.
Recall that 𝑣 (𝑚) is included in the representation, so by Corollary

6.5 we can extract 𝑣 (𝑠).

6.3 An FPTAS for Multi-Unit Auctions with
Decreasing Marginal Values- Proof of
Theorem 3.3

In Section 6.1 we showed that no mechanism finds the welfare

maximizing allocation in dominant strategies and 𝑝𝑜𝑙𝑦 (log𝑚) com-

munication. In this section we show that this result is tight.

The mechanism is an adaptation of the maximal in range 2-

approximation algorithm for general multi unit auctions of [18].

A maximal in range algorithm (see [17],[18]) is an algorithm that

finds the welfare maximizing solution in some pre-defined set of

allocations. VCG payments are used to guarantee incentive com-

patibility.

Our maximal-in-range algorithm will split the items into 𝑡 = 𝑚
𝑞

bundles of size 𝑞 = ⌊ 𝜀 ·𝑚
𝑛2

⌋, and (possibly) one additional bundle

of size 𝑙 = 𝑚 − 𝑡 · 𝑞. The maximal-in-range algorithm will opti-

mally distribute these items among the bidders. We implement the

algorithm by asking each bidder 𝑖 with valuation 𝑣𝑖 to send, simul-

taneously with the others, his values for all possible combinations

of the bundles: {𝑣𝑖 (𝑧 · 𝑞)}𝑧≤𝑡 and {𝑣𝑖 (𝑧 · 𝑞 + 𝑙)}𝑧≤𝑡 .
It is clear that the number of value queries that the algorithm

makes is 𝑝𝑜𝑙𝑦 (𝑛, 1𝜀 ). In fact, the running time of the algorithm is

also polynomial, the proof is essentially identical to that of [18].

The dominant strategy of each bidder is to send the true values,

since this is a simultaneous maximal-in-range algorithm. It remains

to prove the claimed approximation ratio.

Lemma 6.11. The social welfare of the allocation that the algorithm
outputs is at least (1 − 𝜀) ·𝑂𝑃𝑇 .

Proof. Wewill show that there is an allocation in the range with

social welfare at least (1− 𝜀) ·𝑂𝑃𝑇 . Since the algorithm is maximal-

in-range, it must output a solution with at least that welfare.

Fix some optimal allocation of the items (𝑜1, . . . , 𝑜𝑛). Without

loss of generality assume that all items are allocated:

∑
𝑖 𝑜𝑖 = 𝑚.

Thus, there must be some bidder, without loss of generality bidder

1, such that 𝑜1 ≥ 𝑚/𝑛.
For each 𝑖 > 1, obtain𝑜 ′

𝑖
by rounding up 𝑜𝑖 to the nearest multiple

of 𝑞. Let 𝑜 ′
1
= 𝑚 − ∑

𝑖>1 𝑜
′
𝑖
. Note that this allocation is indeed in

the range (each bidder 𝑖 > 1 gets a multiple of 𝑞, bidder 1 gets the

remaining bundles of size 𝑞 and the single bundle of size 𝑙 ).

We now analyze the social welfare of the allocation (𝑜 ′
1
, . . . , 𝑜 ′𝑛).

By the monotonicity of the valuations, for each bidder 𝑖 ′ > 1 it

holds that 𝑣𝑖 (𝑜 ′𝑖 ) ≥ 𝑣𝑖 (𝑜𝑖 ). As for bidder 1, it holds that: 𝑜1 − 𝑜 ′
1
=

𝑚 − ∑
𝑖>1 𝑜𝑖 −𝑚 + ∑

𝑖>1 𝑜
′
𝑖
≤ 𝑛 · 𝑞 = 𝑛 · ⌊ 𝜀 ·𝑚

𝑛2
⌋ ≤ 𝜀 ·𝑚

𝑛 . Recall that

𝑜1 ≥ 𝑚
𝑛 and that 𝑣1 exhibits decreasing marginal utilities, so by

taking away at most 𝜖 fraction of the items of player 1, his utility

decreases by at most 𝜖 · 𝑣1 (𝑜1). Thus, 𝑣1 (𝑜 ′
1
) ≥ (1 − 𝜀) · 𝑣1 (𝑜1) and

we have that

∑
𝑖 𝑣𝑖 (𝑜 ′𝑖 ) ≥ (1 − 𝜀) · ∑𝑖 𝑣𝑖 (𝑜𝑖 ), as needed. □
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