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We study the communication complexity of dominant strategy
implementations of combinatorial auctions. We start with two do-
mains that are generally considered “easy”: multi-unit auctions with
decreasing marginal values and combinatorial auctions with gross
substitutes valuations. For both domains we have fast algorithms
that find the welfare-maximizing allocation with communication
complexity that is poly-logarithmic in the input size. This immedi-
ately implies that welfare maximization can be achieved in ex-post
equilibrium with no significant communication cost, by using VCG
payments. In contrast, we show that in both domains the commu-
nication complexity of any dominant strategy implementation that
achieves the optimal welfare is polynomial in the input size.

We then move on to studying the approximation ratios achiev-
able by dominant strategy mechanisms. For multi-unit auctions
with decreasing marginal values, we provide a dominant-strategy
communication FPTAS. For combinatorial auctions with general
valuations, we show that there is no dominant strategy mechanism
that achieves an approximation ratio better than m'~¢ that uses
poly(m, n) bits of communication, where m is the number of items
and n is the number of bidders. In contrast, a randomized dominant
strategy mechanism that achieves an O(+/m) approximation with
poly(m, n) communication is known. This proves the first gap be-
tween computationally efficient deterministic dominant strategy
mechanisms and randomized ones.

En route, we answer an open question on the communication
cost of implementing dominant strategy mechanisms for more than
two players, and also solve some open problems in the area of
simultaneous combinatorial auctions.
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1 INTRODUCTION

In his seminal 1961 paper [31], Vickrey considers single item auc-
tions: there is one item and n bidders, the value of each bidder i for
the item is v;. Vickrey defines the second-price auction: the highest
bidder wins the item and pays the second highest bid. It is shown
that in a second-price auction, bidding truthfully is a dominant
strategy for each bidder. However, observe that our definition of
a second-price auction was a bit careless. Bidding truthfully is in-
deed a dominant strategy when the second price auction is held
by asking the bidders to simultaneously submit their bids, or when
implemented iteratively, by conducting a (continuous) ascending
auction. However, this is not always the case. Consider a “serial”
implementation of a second price auction in which the bids of play-
ers 1,...,i — 1 are publicly revealed before player i makes a bid.
Truth-telling is no longer a dominant strategy for, e.g., player 1: if
the strategy of all other players is “bid 0 unless player 1 bids 10, in
which case bid 9”, then player 1 is better off bidding 11 when his
true value is 01 = 10.

The Setting. In this paper we analyze the hardness of dominant
strategy implementations in combinatorial auctions. Recall that in
a combinatorial auction there is a set M of heterogeneous items
(]M| = m) and a set N of bidders (|N| = n). The private information
of each bidder i is his value for every subset of the items: v; :
2M _s R. The standard assumptions are that the valuations are non-
decreasing (for each S € T, v(T) > v(S)) and normalized (v; (0) =
0), though we will sometimes impose additional restrictions on the
valuations. Our goal is to find an allocation of the items (Sy, . .., Sp)
that maximizes the social welfare: X;0;(S;).

We use communication protocols to model mechanisms. Specifi-
cally, we work in the blackboard model, so all messages sent are
observable by all players. The input of each player i is his valuation
v;. As usual, the communication protocol is represented by a tree
that dictates which players (simultaneously) speak at each node,
and the identity of the next node given the messages. The leaves
of the protocol specify the outcome: the allocation and payments.
We assume that each player is interested in maximizing his profit:
the value of his assignment minus his payment. We assume that all
mechanisms are normalized, i.e. that a player that wins the empty
bundle pays zero.

A strategy S; of player i dictates (given the valuation v;) which
messages player i sends at each node. We say that S; is dominant
for player i if for every set of possible strategies S”; of the other
players, every valuation profile (v, .. .,0,) and every strategy S/
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of player i it holds that:

i (fi(Si(0:), 8”;(v-4))) — pi(Si(vi), S”;(v=y)) =

0i (fi( S (0), 82;(v-1))) = pi(S; (v:). S.;(v-1))
where  fi(S;(v;),S”;(v-1)) and p;(S;(v;),S’;(0v-1)) specify
the allocation and payment of player i, respectively, given
that player i follows the actions specified by S;(v;) and
the other players follow the actions specified in the vector
87 (0-i) = (S{(v1),.... 8] (0i-1), 8], (vis1), ..., Sy (vn)). Con-
sider a mechanism in which each player i has a dominant strategy
S;. Let V; be the set of possible valuations of a player and let A is the
set of all possible allocations. Let f : V4 X+ - - XV}, — A be the social
choice function defined by f(v1,...,0,); = fi(Si(v;),S-i(v-;)).In
this case we say that the mechanism implements f in dominant
strategies.

The importance of the specifics of the implementation and how
they affect the solution concept are well known. The notion of ex-
post equilibrium, defined by Cremer and McLean [12], attempts in
a sense to get around this by ignoring the specifics of the implemen-
tation. A function f : Vi X - - XV, — A is implementable in ex-post
equilibrium if there are functions p1,...,pn : V1 X--- XV, > R
such that for every player i, valuations v; and o of player i, and
valuations v_; of the other players:

0; (fi (vi,v-)) — pi(vi,v-i) = v;(fi (v],v-4)) = pi(v],0-;)
Roughly speaking, in an ex-post equilibrium none of the players
regrets playing according to his true value, if the other players
are playing according to their true values as well. This rules out
“unreasonable” strategies like in the serial second price auction de-
scribed above. An alternative description would be that an ex-post
incentive compatible implementation of a function f is a commu-
nication protocol that computes a function f and the associated
payments, where f can be implemented in dominant strategies.
However, in this protocol the players might not have dominant
strategies. Clearly, every dominant-strategy implementation is also
an ex-post implementation. The other direction is not true, as the se-
rial implementation of a second price auction demonstrates.! Thus
the communication cost of ex-post implementations is potentially
much smaller than the cost of dominant-strategy implementations.

The goal of this paper is to determine whether the communica-
tion cost of implementations in dominant strategy is significantly
larger than the cost of ex-post implementations. Intuitively, one
might suspect that dominant-strategy mechanisms require signifi-
cantly more communication than ex-post mechanisms. However,
prior research can offer only mixed evidence to support this. First,
the revelation principle implies, in particular, that every ex-post
implementable function f is also dominant strategy implementable
(the implementation is simple: each player simultaneously reveals
his valuation, and the outcome is determined accordingly). How-
ever, as was already observed by Conitzer and Sandholm [11], this
naive implementation method might easily result in an exponential
blow-up in the communication complexity. Yet, this method works
well in domains in which the private information of the players can
be succinctly described, e.g., single-parameter domains.

! Admittedly, in some algorithmic mechanism design papers that analyze the commu-

nication complexity of incentive compatible mechanisms the distinction between the
two notions is less explicit than it should be.
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Our interest is in the more complicated multi-parameter domains.
Almost all known deterministic incentive compatible mechanisms?
[18, 20, 23, 29] are maximal-in-range mechanisms. Moreover, in
each of them each bidder sends in the first round his value of
all the (polynomially many) bundles he might win. Hence these
mechanisms are dominant strategy.

The evidence that implementation in ex-post equilibrium does
not buy much computational power comparing to dominant-
strategy implementation is more than anecdotal. In [14] it is
shown - perhaps counter-intuitively — that every two player
ex-post mechanism for combinatorial auctions in a rich enough
domain (in particular, one that includes all XOS valuations) can
be implemented in a dominant-strategy equilibrium with only a
polynomial blow-up in the communication complexity.’

In contrast, there is evidence supporting the idea that ex-post
mechanism design is significantly less costly, communication-wise.
Very recently, [30] presented a carefully crafted setting in which
there is a mechanism that implements a welfare maximizer in an
ex-post equilibrium with ¢ bits, but every dominant-strategy imple-
mentation requires exp(c) bits.

Our Results. We begin our explorations by considering the result
of [14] discussed above, that shows that every function f for two
players in a “rich enough” auction domain that can be implemented
in an ex-post equilibrium can also be implemented in dominant
strategies with only a polynomial blow-up in the communication.
The paper [14] leaves open the question of whether this result
holds also for mechanisms with more than two players. We answer
this question in the negative by showing that the equivalence in
implementations is unique for two player mechanisms: there is a
three-player social choice function for general valuations that has
an ex-post implementation that uses only c bits, but exp(c) bits are
required for any dominant-strategy implementation. The proof can
be found in the full version.

Next, in Section 3 we consider two auction domains that are
largely considered “easy” in the algorithmic mechanism design
literature: multi-unit auctions with decreasing marginal values
and combinatorial auctions with gross substitutes valuations (see,
e.g., the surveys [8, 27]). In multi-unit auctions with decreasing
marginal values, the welfare maximizing solution can be found
with poly(n,log m) communication, and in combinatorial auctions
with gross substitutes valuations, the welfare maximizing solution
can be found with poly(n, m) communication [28]. We thus get that
in both settings the function that outputs the welfare maximizing
allocation is implementable with low communication (since VCG
payments can be computed with only a polynomial blow up in the
communication).

However, these results hold only in an ex-post equilibrium. In a
sharp contrast, we show that an exponential blow up is required
for dominant strategy implementations (again, in the blackboard
model):

2The only exception is [7] which is the only known example of a mechanism that is
not maximal in range and achieves the state of the art results in a well-studied domain.
3In [14] an analogous result is proved also for domains that include all submodular
valuations, under certain constraints.
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Theorem:

(1) The communication complexity of every normalized mecha-
nism that finds a welfare-maximizing allocation for two play-
ers in dominant strategies in multi unit auctions when the
valuations exhibit decreasing marginal values is Q(m-log m).
In contrast, there is a mechanism with communication com-
plexity poly(log m) that finds the welfare-maximizing allo-
cation in an ex-post equilibrium.

(2) The communication complexity of every normalized mech-
anism that finds a welfare-maximizing allocation even for
two players in dominant strategies in combinatorial auctions
with gross substitutes valuations is exp(m). In contrast, there
is a mechanism with communication complexity poly(m)
that finds the welfare-maximizing allocation in an ex-post
equilibrium.

We note that these results echo the recent result of [30] which was
the first to show that the communication cost of dominant-strategy
implementations of welfare maximizers might be exponential com-
paring to the communication cost of ex-post implementations but
in an artificial domain. In contrast, our results prove an exponential
blow-up of welfare maximizers in well-studied auction domains.

Perhaps in contrast to the common perception, the theorem
demonstrates that these domains are not “easy” from the point of
view of dominant-strategy mechanism design. This immediately
raises the question of whether we can have good approximations
to the social welfare by low-communication dominant-strategy
mechanisms. For multi-unit auctions, we answer this question in
the affirmative:

Theorem: Let ¢ > 0. There is a dominant-strategy (1 + ¢)-
approximation mechanism for multi-unit auctions with valuations

"y . . 1
that exhibit decreasing marginal values that makes poly(n,logm, )
value queries.

Whether one can get good approximation ratios for combinato-
rial auctions with gross substitutes valuations remains an open
question. The maximal-in-range mechanism of [20] achieves an
approximation ratio of O(y/m) in dominant strategies for the much
larger class of subadditive valuations. However, we do not even
know whether dominant strategy maximal-in-range mechanisms
with polynomial communication can achieve a better approxima-
tion ratio (known impossibilities for maximal-in-range mechanisms
[13, 17] hold for ex-post mechanisms but not for gross-substitutes
valuations).

We then move on to analyzing the approximation ratios achiev-
able by dominant-strategy mechanisms in the standard domain of
combinatorial auctions with general (monotone) valuations. From
a pure optimization point of view, there is an O(+/m) approxima-
tion algorithm that is not incentive compatible and this is the best
achievable with polynomial communication [25, 26]. Whether this
is achievable with a deterministic ex-post incentive compatible
mechanism remains a major open question, but we are able to
answer this question in the negative for dominant-strategy mecha-
nisms (Section 4):
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Theorem: Fix ¢ > 0. The communication complexity of a mecha-
nism that provides an m!~¢ approximation for combinatorial auc-
tions with general valuations in dominant strategies is exp(m).

The best currently known mechanism (dominant-strategy or
ex-post incentive compatible) is the simultaneous maximal-in-
range algorithm of [23] that guarantees an approximation ratio of

O( Im ). To put the theorem in context, so far, following a long
ogm

line of research, the only separation between the approximation
ratios achievable by ex-post mechanisms and non incentive com-
patible algorithms for combinatorial auctions that use polynomial
communication was achieved in [4]. This separation applies to
two-player combinatorial auctions with XOS valuations, and
relies on the taxation framework [14]. Recall that [14] shows the
equivalence of ex-post and dominant strategy implementations for
two player settings, thus the result of [4] is also the first to separate
dominant-strategy mechanisms for combinatorial auctions and
their non-truthful counterparts.

However, a proof for our theorem requires more players, since
for two players a second-price auction on the bundle of all items
provides an approximation ratio of 2. Thus, new tools are required
to prove a bound that is worse than 2.

The proof consists of two mains steps. First, we prove in Section
5 that:

Theorem: Fix ¢ > 0. The communication complexity of a simulta-
neous algorithm that provides an m!~¢ approximation for combi-
natorial auctions with general valuations is exp(m).

Simultaneous combinatorial auctions were introduced by [19]: in
these (not necessarily incentive compatible) algorithms, all players
simultaneously send a message of length poly(n, m) and the alloca-
tion is determined based only on these messages. Previous work
(e.g., [1, 2,9, 10]) considered simultaneous combinatorial auctions
with restricted classes of valuations, e.g., subadditive valuations.

In the second step, we leverage the hardness result to dominant-
strategy mechanisms by showing that the existence of a determin-
istic dominant-strategies mechanism with approximation ratio ¢
implies a simultaneous algorithm with approximation ratio (close
to) c.

We note that for general valuations, there exists a randomized
dominant strategy mechanism that achieves an approximation ratio
of O(y/m) [21]. The mechanism is a probability distribution over
dominant-strategy mechanisms. Hence, we also obtain a separation
of the approximation ratio possible by polynomial communica-
tion randomized dominant-strategy mechanisms and deterministic
dominant-strategy mechanisms. An analogous separation for ex-
post mechanisms is not known.

Open Questions and Future Directions. We conclude with some
open questions. We showed that dominant-strategy mechanisms
cannot exactly maximize the welfare in polynomial communication
in combinatorial auctions with gross substitutes valuations. As
was already mentioned, it is an open question to determine the
approximation ratio achievable for this class or for other classes of

4The taxation framework [14] offers also a different path to proving bounds for more
than 2 players by providing lower bounds on the taxation complexity, but this path
was not applied successfully so far.
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valuations that were extensively studied in the literature, such as
subadditive, XOS, and submodular.

We do provide some evidence that good dominant-strategy mech-
anisms do not exist. Observe that all useful constructions of deter-
ministic dominant strategy mechanisms that we know are based
on simultaneous algorithms. In Section 5 we prove that:

Theorem: Fix ¢ > 0. The communication complexity of a simulta-

1
neous algorithm that provides an m 16 approximation for combina-
torial auctions with gross substitutes valuations is exp(m).

This answers an open question of [19]. Before our work, it was not
even known if there is a simultaneous algorithm for combinato-
rial auctions with submodular valuations that achieves a constant
approximation ratio.

Another exciting direction is proving impossibilities for random-
ized mechanisms. A recent line of work provides sub-logarithmic
approximation ratios for various classes of valuations [3, 5, 15]. All
these mechanisms are a probability distribution over dominant-
strategy mechanisms.”> Are randomized ex-post mechanisms more
powerful than dominant-strategy mechanisms?°

We end by noting that our mechanisms work in the blackboard
model and all messages sent are observable by all players. A more
relaxed model would allow private channels between the players
and the center. This assumes that the players trust the center not
to leak their messages and the private communication channel
itself is not leaky. We do not know how to take advantage of this
relaxed model, except for the case of combinatorial auctions with
k copies from each good, where the mechanism of [7] (the usual
outlier) cannot be implemented in dominant strategies but can be
implemented in the relaxed model. We leave studying this model
to future research.

2 FORMALITIES AND BASIC OBSERVATIONS

In this section we discuss some basic properties of dominant-
strategy mechanisms. These properties hold for every possible
domain, not only for combinatorial auctions. Thus, in this section
A is the set of alternatives (which are not necessarily allocations)
and the valuation of each player is v; : A — R.

Here and subsequently, when we talk about a fixed mechanism
M together with its dominant strategies Sy, . . ., Sp we will slightly
abuse notation: We say that player i with valuation v; sends a
message z at vertex r instead of saying that the dominant strategy
of player i with valuation v; is to send message z in at vertex r. We
also say that valuations v ..., v, reach a leaf of a protocol, instead
of saying that the strategy profile (S1(v1), ...,Sn(vn)) leads to it.

2.1 Minimal Dominant Strategy Mechanisms

In this section, we show that all dominant strategy mechanisms can
be simplified without harming their dominant strategy equilibria

5Only [15] claim explicitly that the mechanism is dominant strategy and not just
ex-post incentive compatible, but this is likely to be the case also for the other papers
as they follow the basic structure that was introduced in [15].

%In contrast, many of the truthful-in-expectation mechanisms in the literature are
based on solving an LP and are not dominant strategies [22, 24], though some dominant-
strategy truthful-in-expectation mechanisms do provide an optimal approximation
ratio [16]. Analyzing the power of dominant-strategy truthful-in-expectation mecha-
nisms is also a fascinating avenue for future research.

693

Shahar Dobzinski, Shiri Ron, and Jan Vondrak

and without any communication burden. Since our main interest in
this paper is in impossibility results, it implies that we can analyze
the power of “minimal” dominant strategy mechanisms without
loss of generality. Formally:

DEFINITION 2.1. We say that a mechanism M is minimal with
respect to the strategies (S, ...,Sy) and the valuations V = Vj X
-+« X Vp, if it satisfies the following properties:

(1) There are no useless messages in the protocol, i.e. if some player
i can send some message in some particular vertex, we assume
that it is a dominant strategy for some type v; to send this
message. It immediately implies that for every leaf in the pro-
tocol there exist valuations (v1, . . .,vn) such that the strategies
(S1(v1),...,Sn(vy) reach this leaf.

There is at least one player i that has two valuations v;,v] €
Vi such that the strategies S;(v;) and Si(vlf) dictate sending
different messages at the root of the protocol.

LEmMMA 2.2. Let M be mechanism and strategies (Su,...,Sn)
that realize a social choice function f : V. — A with payments
Pi,...,P, : V. — R" in dominant strategies with communication
complexity of ¢ bits. Then, there exists a minimal mechanism M’
and strategies (S1,...,S;,) that realize f with the payments schemes
Py, ..., Py in dominant strategies with at most c¢ bits.

Proor. Given a mechanism, we can assume that it has no useless
messages because otherwise we can simplify the protocol by not
letting player i send this message. Note that removing actions
that are dominant strategy for none of the players does not make
dominant strategies not dominant.

Similarly, if the second condition does not hold, then due to the
fact that there are no useless messages, the root r has only one
child. Then, we can delete the root and take his child to be the new
root. We continue with this iterative trimming until we reach a
vertex that has a player i with a “meaningful” message.

If no such vertex is found, it means that the social choice function
and payment schemes are constant for all valuations, so the empty
mechanism implements them (it has no root so it satisfies the second
condition trivially). O

2.2 Induced Trees of Mechanisms

We now introduce the notion of induced trees and prove a simple
property of them. Consider some vertex u in a minimal dominant
strategy mechanism. Let Zj,, denote the set of possible messages
that player j can send at node u (assume that Z;,, = @ if player
i does not send any message at node u). Fix some player i with
Ziu # @ and some message profile for the other players z¥,
(21,...,2i-1,Zi41, ..., 2n) Where each z; € Zj,. The induced tree
of player i at vertex u given z, is the tree that is rooted by u and
contains all subtrees that are connected to u by an edge (z;, z%;) for
every possible z; € Z; 4. Le., we fix the messages of all other players
except player i and think about each message z; as leading to the
subtree that the set of messages (z;, z;) leads to. For an illustration,
see Figure 1.

LEmMMA 2.3. Fix some player i, vertex u, and messages of the other
players z¥, in a minimal dominant strategy mechanism. Consider the
induced tree of player i at vertex u given z¥,. If alternative A € A
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(a) An illustration of the full tree protocol at vertex u.

@OQ@OOQO

(A, p1.p2) A

N2829)

(b) The induced tree of player 1 at vertex u given the message z; of player 2. The tree has two subtrees: a left subtree that contains node v and

its descendants and a right subtree with node v’ and its descendants.

© 00 @

(A, p1)

(A% p))

Figure 1: Illustration of the tree rooted at u of a two-player protocol and one of its induced trees. The vertex u satisfies that
Ziu = {z1, zi} and Z,,, = {zy, zé}, i.e. each player has two possible messages. The leaf | that is labeled with (A, p1, p2) satisfies
that the mechanism outputs alternative A, player pays p; and player 2 pays p,. The same holds for the leaf I’ with respect to
its outcome (A’, p7, py). The induced tree at Figure 1b describes how the protocol looks like from the point of view of player 1

when player 2 sends the message z;.

appears in two different subtrees, then all the leaves in this induced
tree that are labeled with A have the same payment for player i.

Proor. Let £ and ¢’ be two leaves labeled with (A, p4) and with
(A, p/,) that belong in different subtrees, t and ¢’. By the minimality
of the mechanism, every leaf in the protocol has valuations such that
(81 (v1), . Sn (vn)) reach this leaf. Thus, there exist valuations
0,0 eV,,v i»0; € V_j such that:

(Si(0), S-i(v-i)) = £, (Si(v"), S-i(v]) = ¢
Observe the following strategy profile S”’;: For every valuation v/,
choose the actions specified by S—;(v—;) until vertex u. Afterwards,
at the subtree t, pick the actions that S_;(v_;) specifies, and at the
subtrees ¢’ pick the actions that S_;(v”;) specifies. Since s—; and
s’ ; do not diverge until vertex u, we have that

(Si(0), 8% () = €. (Si(0"), S (%)) = ¢/

where the profit of player i with valuation v has to be larger than
her profit at ¢/, since S;(v) is a dominant strategy for her. Thus,
0(A)=pa > v(A)-p),s0p), > pa.By applying the same argument
for the valuation v’, we get that p4 > p/, = pa = p;. Thus,
we have that every two leaves labeled with alternative A in the
induced tree of player i given z¥; have the same payment for player
i, which completes the proof. O
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3 HARDNESS OF EXACT WELFARE
MAXIMIZATION

We now consider two domains that are generally considered “easy”
in the sense that the welfare maximizing allocation can be found
in time that is polylogarithmic in the representation size of the
valuations. For both domains we show that — in contrast to what
is perhaps a common misconception — incentive compatible mech-
anisms that maximize the welfare are incentive compatible only
in ex-post equilibrium. For dominant strategy mechanisms, we
show that the communication complexity is linear in the size of the
representation of the valuations.

Let us first recall how to obtain an ex-post incentive compatible
algorithm for combinatorial auctions with two players. Denote the
valuations by v1 and vz, and for every 1 < x < mleto](x) = v1(x)—
01(x —1) and v; (x) = v2(x) —v2(x — 1) be the marginal values. The
decreasing marginal values property guarantees that the welfare-
maximizing allocation (01, 02) is a point where v] and v} “cross”
each other, i.e. where 0] (01) 2 v;(02+1) and v] (01+1) < v} (02) (see
also Lemma 6.1). U; and vé are monotone, so we have to find where
two ordered arrays “cross” each other. Thus, a simple binary search
will find the optimal allocation with poly(log m) value queries. VCG
prices (player 1 pays vy (m) — v(02), player 2 pays v1(m) — v(01))
guarantee incentive compatibility in an ex-post equilibrium.
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For combinatorial auctions with gross-substitutes bidders the
optimal allocation can be found with communication poly(m, n)
for valuations that can be represented by exp(m) bits [28].

Despite the fact that in ex-post equilibrium the optimal wel-
fare can be achieved efficiently, if we require dominant strategies
equilibrium, we get an exponential blowup in the communication
complexity in both domains.

THEOREM 3.1. Fix a normalized mechanism which implements
in dominant strategies a welfare-maximizer for a multi-unit auc-
tion where the valuations have decreasing marginal utilities, and the
value of a bundle can be represented with O (log(m)) bits. Then, the
communication complexity of the mechanism is Q(mlog(m)).

THEOREM 3.2. Fix a normalized mechanism which implements in
dominant strategies a welfare-maximizer for a combinatorial auction
with gross substitutes valuations, where the value of each bundle can
be represented with poly(m) bits. Then, the communication complex-
ity of the mechanism is exponential in m.

The proof Theorem 3.1 can be found in Section 6.1, whilst the
proof of Theorem 3.2 can be found in the full version of the paper.
Both proofs share a similar structure.

We now give some intuition for the proof in the context of
multi-unit auctions with decreasing marginal values. Consider the
following scenario. We restrict ourselves to some (large) set of val-
uations. Suppose that Bob is decisive: for (almost) every allocation
(s, m—s), there exist two valuations of Bob ol 0127, such that for each
valuation v, of Alice that is in this set, the optimal allocation in the
instances (ua,vlly) and (vg, vi) is (s,m — s). Furthermore, assume
that the dominant strategy of Bob dictates a different message when
his valuation is 0117 than when it is ui.

Let 0}, 02 be two valuations of Alice that are in the set. Since we
are implementing a welfare maximizer, Bob must get m — s items
for every valuation v}, 02 of Alice. For simplicity, we assume for
now (but not in the proof) that we are using VCG payments, so
Bob’s payment might be different: it can be either v} (m) — vl (s) or
02 (m) — v2(s). Thus, if Bob sends a different message for 0117 than
that of 0127 and Alice sends the same message for both v}, 22, Bob
does not have a dominant strategy, since Alice can “force” him to
choose one such message by guaranteeing that his payment will be
higher otherwise.

To avoid this, Alice has to “commit” on her value for s items.
That is, if v} and 02 have a different value for s items, then the
message that the dominant strategy of Alice dictates cannot be the
same for both of them. In fact, we show that this implies, roughly
speaking, that Alice’s first message must be so informative that we
can fully reconstruct Alice’s valuation from her first message. Thus,
her first message is very big, and the proof is complete. The main
challenge of the proof'is to construct a big enough set of valuations
that satisfies all those properties.

To complement this hardness result, we show that for multi-unit
auctions with decreasing marginal values, arbitrarily good approx-
imations are possible in dominant strategies (a “communication
FPTAS”):

THEOREM 3.3. For every ¢ > 0, there is a dominant strategy algo-
rithm for multi-unit auctions with decreasing marginal values that
makes poly( % n) value queries and provides an allocation with social
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welfare at least (1 — €) - OPT, where OPT is the value of the optimal
social welfare.

In contrast, the only known upper bound on the approximation
ratio of efficient dominant strategy mechanisms for combinatorial
auctions with gross substitutes valuations is O(y/m) [20]. Deter-
mining the approximation ratio possible for this class remains an
open problem.

4 INAPPROXIMABILITY OF MECHANISMS
FOR GENERAL VALUATIONS

In this section we prove that no deterministic dominant strategy
mechanism with polynomial communication for general valuations
achieves an approximation ratio better than m'~%. In contrast, there
is a randomized dominant strategy mechanism that achieves an
approximation ratio of O(y/m) [21]. Note that an approximation
ratio of O(4/m) is the best possible with polynomial communication
even when ignoring incentives [28]. We refer the reader to the full
version for the exact statement.

The proof is composed of two main steps which we now describe.

Step I: A Lower Bound on Simultaneous Algorithms (Section 5). In
general, our approach is to show that dominant-strategy mecha-
nisms for combinatorial auctions with general valuations are as
powerful as simultaneous (non-incentive compatible) algorithms.
Recall that perhaps the “easiest” way to obtain a dominant strategy
mechanism is by designing an ex-post mechanism and making it
“simultaneous”. Indeed, almost all deterministic dominant-strategy
mechanisms in the literature are simultaneous. Thus, the first step is
done in Subsection 5.1: a proof that no simultaneous algorithm can
achieve an approximation ratio better than m!~¢ with polynomial
communication.

Step llI: Efficient Dominant Strategy Mechanisms Imply Efficient Si-
multaneous Mechanisms. Note that not all dominant strategy mech-
anisms are simultaneous. Consider the following example of a com-
binatorial auction with two players with additive valuations v4, vp.

All values are integers between 1 and (?) Split the items arbitrarily
to two equal sets A and B. Alice can win only items from A, and
Bob wins only items from B. We associate each possible value of
Alice v4 ({b}) for some item b € B with a distinct pair of items in
B, and similarly we associate Bob’s value vg({a}) for some item
a € A with a distinct pair of items in A. According to the social
choice function, Alice wins her more valuable item among the pair
that vg({a}) points to and Bob wins his more valuable item among
the pair that v4 ({b}) points to.

A protocol with O(log m) bits where they simultaneously send
v4({b}) and vp({a}) in the first round and then each reports the
preferred item among the possible two items is clearly truthful
in dominant strategies. However, it is not hard to show that any
simultaneous mechanism for this auction requires Q(m - log m)
bits. Thus, this instance exhibits a separation between dominant
strategy and simultaneous implementations.

On the other hand, we will show that if a mechanism provides
an approximation ratio better than m!~€ to the welfare for general
valuations, it can used to construct a simultaneous algorithm with
comparable approximation ratio. We relegate the proof of this step
to the full version of the paper.
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5 SIMULTANEOUS ALGORITHMS FOR
COMBINATORIAL AUCTIONS

In this section we consider simultaneous combinatorial auctions.
The hardness results that we obtain will be used to prove impossi-
bility result for dominant strategy mechanisms for combinatorial
auctions with general valuations.

The setup is as follows: as usual, there is a set of items M, |M| = m,
and n bidders with valuation functions v1,...,0, : 2M — R..
Each of them simultaneously sends a message s; to a central
authority; the messages all together are bounded by bit-length
L. The algorithm, given the messages, produces an allocation
A(s1,...,5n) (A1,A2,...,Ap). The goal is the maximize
the social welfare Y7, 0;(A;). We impose no computational
constraints on the bidders or the central authority.

THEOREM 5.1. Form items and n = Q(m?®~€) bidders with general

monotone (binary) functions as valuations, there is no simultaneous

€2

2m %

mechanism with messages of size at most which achieves an

n
approximation ratio better than m'=¢, for any fixed € > 0.

3 . . .
THEOREM 5.2. For m items and n = Q(m32) bidders with matroid
rank functions as valuations, there is no simultaneous mechanism
1

32
with messages of length % which achieves an approximation ratio

1
better than m71s .

The first theorem is used to prove a lower bound for domi-
nant strategy mechanisms. The second one solves an open prob-
lem of [19] that asks whether there is a simultaneous algorithm
that provides a constant approximation for submodular valuations.
Therefore, Theorem 5.2 answers this question negatively, even
for matroid rank functions (which are also gross substitutes val-
uations). We note that the result almost settles completely the
approximation ratio achievable in this setting, as a simultaneous
é(m% )-approximation algorithm for all subadditive valuations ex-
ists [19].

5.1 Proof of Theorem 5.1: An Impossibility for
General Valuations

The Hard Distribution. We prove our impossibility for random-
ized mechanisms by applying Yao’s principle. Thus, we now de-
scribe a distribution over instances and analyze the performance of
deterministic mechanisms on it.

Fix € > 0. Let the number of bidders be n = m?™€ — m, di-
vided into £ = m!™€ — 1 groups Gy, ..., Gp of m bidders each. Let
(A1, Az, ..., A, B) be a random partitioning of the m items, such
that for all j, |Aj| = |B| = m® (note that m€ (¢ + 1) = m). For each
group Gj, the set of relevant items is A; U B. Let A be a family of
t = 20(°m) qubsets of Aj U B of size m®, such that one of the sets
is always A; and the other sets are chosen uniformly at random. By
standard concentration bounds, with high probability, these sets
overlap pseudo-randomly in the sense that the intersection of any
two sets in A; has size (% +¢e)m€. In the following, we will only use
a weaker statement which is that for any two sets A € A, A’ € A
such that A # A;, A’ # Aj, we have AN A’ # 0 w.h.p. For any two
such sets A,A’, we have A C BUA; and A’ C BU Aj, and the
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probability that they are disjoint is at most e=2m since for every

b € B, the probability that b € ANA’ is 1/4 and these events are neg-
atively correlated. The number of such pairs of sets is 20(e'm®) e
by the union bound, all pairs of sets A € A;\{A;}, A" € Ay \{Aj}
intersect with probability 1 — e~ Qme)

For each bidder i in group Gj, the valuation is supported on the
set of items A; U B. For each bidder i € Gj, we choose a random
sub-family 8; C A; such that each set in A; appears in B; in-
dependently with probability % More specifically, we do this in
such a way that for each set A € A, we choose independently a
random bidder i € G; for whom A € B;; for the other bidders i’ #£1,
A¢ By

We define the valuation of bidder i as:

1 S2Bf Be 8B,
01(S) = {0 or some i

otherwise.
Le., a bidder i is satisfied if she gets the items of some set in B;. We
call each subset in B; a set that bidder i is interested in. In particular,
if Aj € B;, one way to satisfy a bidder in group G is to allocate the
set Aj. However, this set is valuable only for those bidders i € G;
such that A; € B;. We call such bidders special in group G;. Note
also that only a small number of non-special bidders can be satisfied
overall, since these bidders want random sets which intersect with
each other with high probability. This leads to the following lemma.

LEmMMA 5.3. With probability 1 — e~ M) the welfare of an allo-
cation is at most 1 plus the number of special bidders who receive the
respective set Aj.

Proor. Any player who is not special can get value 1 only if
she gets a set in B;, which does not include the special set A;. As
we argued above, all the sets in B; \ {A;}, for different values of
i, intersect pairwise with probability 1 — e~2(m%) Hence, at most
one bidder can be satisfied this way. Any additional value comes
from special bidders who receive the respective set Aj. O

LEMMA 5.4. The expected optimal welfare for this instance is
OPT > m'™€ —1.

Proor. Each group G; contains exactly 1 bidder who wants the
special set A;. Hence, a solution which allocates A; to the special

bidder in group G;, achieves value exactly £ = m!™€ - 1. O

We now analyze the expected welfare achieved by any mecha-
nism on the random instance described above. By Yao’s principle,
we assume that that the mechanism is deterministic. A good mech-
anism should ensure that many of the sets A go to some special
bidder in group G;. But how can it determine who the special bid-
ders are? For that, it would intuitively need to know the value of
Aj for each bidder, but the bidders do not know which of their sets
is special and there are too many sets to encode in a message. Our
goal is to prove that this indeed implies an impossibility result in
the simultaneous model.

We prove that the messages (s; : i € Gj) sent by the bidders in
group Gj typically do not give us much information about who
the special bidder is. Suppose that the messages (s; : i € Gj)
altogether have bit-length bounded by L. These messages are chosen
depending on the random valuations (v; : i € Gj), so each choice
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of messages appears with a certain probability. We distinguish
between “frequent” and “rare” message sets.

DEFINITION 5.5. We call a message set (s; : i € Gj) frequent if it

appears with probability at least -; otherwise it is rare.

i’

Observe that since the total number of messages is at most 2L,
all rare messages together appear with probability less than 2%
Next, we prove that a frequent set of messages cannot give us much
information about the distribution of high-value sets. Recall that
without any conditioning, for a particular bidder i € Gj, each set
in Aj is chosen to be in B; with probability IGLJI = % The key

lemma is the following.

LEMMA 5.6. Lets = (s; : i € Gj) be a frequent set of messages.
Then for every bidderi € Gj, there are fewer than L- |G| sets A € A;

such that conditioned on bidders in Gj sending 5, Pr[A € B; | 5] >
7

G,

ProoF. Suppose that § is a frequent set of messages and there is
afamily of L - |G| sets A € A; with Pr[A € B; | 5] > ﬁ denote
itby S c A -

Consider the choices whether A € B; for A € S. Without any
conditioning, each A is chosen to be in $B; independently with
probability |G;,| In expectation, the number of sets in S N B; is

IS1 _

G, = L. Hence, by the Chernoff bound,

L
el 1
5)1+5 < ﬁ
for § > 5. Consider now the conditioning on . Since Pr[5]

this conditioning cannot increase the probability of any event by
more than a factor of 4L Therefore,

Pr[[ISNB;i| > (1+5)L] < ((l

1
24—L,

L

4
< —

PSSl > (1+O)L 3] <

For 6 = 5, we get Pr[|SNB;| > 6L | 5] < SLL and the tail probability
decays exponentially beyond that. This implies that:
E[|ISNB;||5] < 7L
We assumed that Pr[A € B; | 5] >
IS =

‘ for every A € S, and

L -|Gj|, a contradiction. O
We are now ready to conclude the proof of Theorem 5.1 by
showing that for any simultaneous mechanism with messages of

total size at most L = 2”’62/2, executed on a random instance as
described above, the expected welfare is O(1), while the optimum
is OPT = Q(m'~¢).

We already showed above that OPT = Q(m!~€). Let us bound
the expected welfare achieved by bidders in group G, assuming that
their messages together are bounded by L bits. The contribution of
cases where § = (s; : i € Gj) is arare message set is small, because
they happen with total probability less than ;> hence the expected
contribution from these cases is negligible (less than Z_L)'

In the case of a frequent message set §, consider the partitioning
of the items BUA ; among the bidders in group G;. This partitioning
is determined by 3. Lemma 5.6 says that for each bidder i € Gj,
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fewer than L -|Gj| sets A € A;j have the property that Pr[A € B; |
si] > |G - Recall that |G;| =
atmost L - |Gj|2
is 1 for some bidder with conditional probability more than .
Considering group G; in isolation, the special set A; is uniformly
random among all sets in Aj, and this is true even conditioned
on the valuations in group G;, and hence also conditioned on the
message set 5. (Recall that given the set of items B U A; relevant
to group Gj, there is no way to distinguish the subset A;, which is
equally likely to be any of the sets in A;). Furthermore, unless the
special set A; is one of the at most Lm? biased sets discussed above,
however the items in A; are allocated, each bidder is the special

m. Hence, among all the sets in Aj,

= Lm? sets are “biased” in the sense that the value

bidder for it with conditional probability at most % If Aj is split
among multiple bidders, none of them receives all of A;. If A; goes
to a particular bidder, then this bidder is special with conditional
probability at most % Hence, conditioned on a message set §, we
satisfy a special bidder with conditional probability at most %
Finally, in case the special set A; is one of the biased sets, we

can assume that we derive value of 1 from it; however this happens
2

with probability at most T ﬂ =0(m-27™m T ). The contribution

of these cases is negligible.

We have ¢ = € — 1 groups of bidders. There are also the
items in B, which can contribute value at most 1 in total, with high
probability. Hence, the total expected welfare is at most 1 + % =
o(1).

5.2 Proof of Theorem 5.2: Simultaneous
Algorithms for Matroid Rank Functions

Here we combine the ideas of Section 5.1 with a construction of
matroids by Balcan and Harvey, which we recap here.

1
THEOREM 5.7 ([6]). Foranyk > 8 withk = 20073) there exists a
family of sets A C 21| and a family of matroids {Mg : B C A}
with the following properties:
o |A|l=kandl|A| = w3 for every A € A.
e Forevery B C A and every A € A, we have:

|Al, ifAe 8.
ifAe A\ B,

rank 1, (A) =

rankpq, (A) = 8logk,

For an instance of combinatorial auctions with m items, we
m% and k = 2”‘%;

rank pq, (A) is either mior8- mTlﬁ, depending on the choice of 8.

will use this construction with m hence

The Hard Distribution. We prove our impossibility for random-
ized mechanism by applying Yao’s principle. Thus, we now de-
scribe a distribution over instances and analyze the performance of
deterministic mechanisms on it. We define instances as follows.
Let the number of bidders be n = m3(ms — m2 + 1), divided
into £ = m% - m% + 1 groups Gy, ..., Gp of mé bidders each. Let
(A1, Ay, ..., Ap, B) be a random partitioning of the m items, such

1 3 1 1 3 1
that |[Aj| = m% and |B| = m4 —m1. (Note that m4 -£+ms—m* = m.)

"Note that compared to Balcan-Harvey, we switch the meaning of B and A \ B; we
find it more natural to use 8B to denote bases of the matroid. However, the reader
should keep in mind that there are also other bases in Mg.
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For each bidder i in group Gj, the valuation is supported on the set
of items A U B; it is a matroid rank function of a Balcan-Harvey

1 1

matroid on i = mi elements, with parameter k = 2™ | defined by
set families 8; € A; and embedded in A; U B so that a random one
of the sets in A; is mapped onto A}, and the remaining elements
are mapped randomly onto B. (Note that we use a j subscript for
Aj, because this family is shared among all the bidders in G;.)
The sub-family 8; C Aj of high-value sets for bidder i is chosen
randomly in the following way: For each set A € A, we choose in-
dependently and uniformly at random one bidder i in group G; such
that A € 8;. For all the other bidders i’ € G, we don’t include A in
= Al
=51
and |B;| is tightly concentrated. Exactly one bidder in group G;
has a high value for the set mapped to Aj, and we call this bidder
the special bidder in G;.

1 1
B;». Note that in expectation we have E[|B;]] T5.QmIc

LEMMA 5.8. The optimal welfare for this instance is OPT = m.

ProoF. In each group G, we allocate the special set A; to the
1
special bidder, who receives value |A;| = m4. The items in B can be
3
allocated arbitrarily to some non-special bidders (since |B| = m4 —

mi and the number of non-special bidders is Q (m% )), who get value
1 each. Hence, each item contributes exactly 1 and OPT =m. 0O

We analyze the expected welfare achieved by any mechanism
on the random instance described above. We make the following
simple claim.

LEMMA 5.9. If at most mj of the items in Aj are allocated to the
special bidder in group Gj, then the welfare of the allocation is at

15
most O(m1s) + 3 ; mj.

3 1
Proor. The items in B contribute at most |B| = m4 — m#4 alto-
1
gether. Any player who is not special can get value at most O(m1e)
from the items in A}, hence all these players together can get at
3 1 15
most m4 + O(n - mis) = O(m?1e). Finally, the special players can
get at most m; each from the items in Aj; hence },; m;. O

From here, the proof is similar to the proof of Theorem 5.1. We
complete the proof by showing that for any simultaneous mech-
1

anism with messages of total size at most L = 2™m% | executed
on a random instance as described above, the expected welfare is
O(m}%), while the optimum is OPT = m.

We already showed above that OPT = m. Let us bound the
expected welfare achieved by bidders in group Gj;, assuming that
their messages together are bounded by L bits. The contribution of
cases where § = (s; : i € Gj) is a rare message set is small, because
they happen with total probability less than ZLL; hence the expected
contribution from these cases is negligible (less than zﬂL).

In the case of a frequent message set §, consider the partitioning
of the items BUA ; among the bidders in group G;. This partitioning
is determined by 3. Lemma 5.6 says that for each bidder i € Gj,
fewer than L - |G| sets A € A; have the property that Pr[A € B; |

1
si] > ﬁ Here, we have |G| = m5. Hence, among all the sets in
J

1
Aj, at most L|Gj|2 = Lm1 sets are “biased” in the sense that the
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value is high for some bidder with conditional probability more
than #

The special set A; is uniformly random among all sets in Aj,
and this is true even conditioned on the valuations in group Gj,
and hence also conditioned on the message set 5. (Recall that given
the set of items B U A; relevant to group Gj, there is no way to
distinguish the subset A}, which is equally likely to be any of the
sets in A ;). Furthermore, unless the special set A; is one of the at
most L - m'/4 biased sets discussed above, however the items in A;
are split, each bidder is the special bidder for it with conditional
probability at most —. Suppose that bidder i receives k; items

m1/8 :
from Aj in this allocation. Then the expected value that the bidders
derive from A; is at most

7 7 1
Z m'ki+ Z (l—m)O(mlﬁ) <
i€G; i€G;

7 1A
ml/8

because a bidder who is special gets value 1 for each item received

+ O(ml/l(’lG]D — O(m?)/lé)

1
from Aj, |Aj| = m1, and a bidder who is not special receives value
1
at most O(m1¢) from A;. Finally, in case the special set A; is one of
1
the biased sets, we can assume that we derive full value |A;| = m1

1
m#4
[ Al

from it; however this happens with probability at most L -

O(mi . 2’"’é ). The contribution of these cases is negligible.

We have ¢ < m1 groups of bidders. There are also the items in
B,|B| < m%, which can contribute at most |B| in total. Hence, the
total expected welfare is at most |B| + O(¢ - m%) = O(m%).

6 MULTI-UNIT AUCTIONS WITH
DECREASING MARGINAL VALUATIONS

Consider a social choice function f that always outputs an alloca-
tion that maximizes the welfare. This social choice function can be
implemented in dominant strategies by the VCG mechanism. The
next theorem shows that even if we restrict ourselves to a subset
of the valuations such that each valuation can be represented by
O(m - log m) bits, any dominant-strategy normalized implementa-
tion of f requires Q(m - log m) bits, even when there are only two
players. In contrast, recall that an ex-post implementation of this
set with VCG payments requires only poly(log m) bits.

We also show an exponential blow up also in the implementa-
tion of dominant-strategy welfare maximizers for combinatorial
auctions with gross substitute valuations (Theorem 3.2). The two
hardness proofs share a very similar structure.

6.1 Hardness Result For Multi-Unit Auctions -
Proof of Theorem 3.1

Consider a multi-unit auction of m > 5 items and two players (Alice
and Bob). The valuations that we consider belong to three families:
“semi-decisive” valuations V2 , non-decisive valuations VND and
another set of valuations V¥ that we will use to show that payments
can be used as sketches of valuations.

Every semi-decisive and non-decisive valuation will have
a “weight” which is a scalar y € {1,...,m’} that captures its
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magnitude. We now define the set V2V of semi-decisive valuations
with the scalar y. Every v € VP has two parameters: a special
bundle x* € {2,...,m -2} and d,,, € {%, 1} such that:

0 x=0,
Y- 3m8 x=1,
o(x) ={y-(m? —m+1)+o(x-1) xe{1,...,x"},
y+o(x—1) xe{x*+1,...,m—1},
dm +uv(m—-1) x=m.
To define the set of non-decisive valuations, we define for every
number of items x € {2,...,m} its set of all its possible marginal
utilities:
Vxe{2,...,m—1},
Dy={m? —mx,m?> —mx+1,...,m*> —m(x — 1)}
1
Dp, = {55 1}
For every weight y € {1,...,m"}, every valuation in the set VND¥
is parameterized by a vector (dy, ...,dp) € Dy X - -+ X Dy, such
that:
0 x =0,
-3m8 x=1,
o(x)=1"
y-dx +o(x—1) xe{l,....m—1},
dm +o(m—-1) x=m.

5
Throughout the proof, we use the notations VNP = ICJ VNDY and
m’ "~
vD = |y vDr.
y=1
We are now going to define another set of valuations VF with
the purpose of guaranteeing that different valuations in VP u VNP
induce different payments. We use this fact later on to sketch val-
uations. Every v € VP has a valuation o’ € VNP U VP, a sign
sn € {0,1} and a special bundle t* € {1,...,m} such that:

0 x=0,
m® +o(x —1) x < t¥,
o(x) =1 , ) D" :
vim-x+1) -0’ (m-—x)+ i +o(x—-1) x=t%
o(x—1) x > t*.

It is easy to see that all the valuations in all three families are
normalized, monotone and have decreasing marginal utilities. Also,
the value of each bundle can be represented with O (log m) bits. We
begin with a simple observation regarding the properties of welfare
maximizing allocations:

LEMMA 6.1. Letva,vg : [m] — Ry be multi-unit valuations with
decreasing marginal values. Suppose thats € {1,...,m — 1} isa
number of items such that:

(1) vp(m—s) —og(m—s—1) >va(s+1) —va(s).

(2) va(s) —va(s—1) >ovg(m—s+1) —vg(m—s).

Then, (s,m — s) is the unique welfare maximizing allocation. If
vg(m) —ovg(m—1) > 0va(1) —vA(0), then the unique welfare max-
imizing allocation is (0, m). Equivalently, va(m) —va(m — 1) >
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vp(1) —vp(0) implies that the only welfare maximizing allocation is
(m,0).

Its proof is relegated to the full version. It is easy to see that the
following two propositions together imply Theorem 3.1:

PROPOSITION 6.2. Let M be a normalized mechanism with c bits
which implements in dominant strategies a welfare maximizer for a
multi-unit auction where the valuations have decreasing marginal
utilities and the value of a bundle can be represented with O (log m)
bits. Then, there exists y € {1, m>} such that every element of VND-Y
can be represented with at most ¢ + O(log(m)) bits.

PROPOSITION 6.3. For everyy € {1,...,m>}, The representation
size of a valuation in VNP is Q(mlog(m)).

PRrROOF OF PrROPOSITION 6.3. By definition, for every y €
{1,...,m>}, [VNDY| = 2. (m + 1) 2. Thus, by the pigeonhole
principle, the representation size of an element in VNPV s
Q(mlog(m)) bits. O

6.2 Proof of Proposition 6.2

Fix a dominant strategy normalized two-player mechanism
M, S4, Sp that implements a welfare-maximizer f® with payment
schemes P4, Pg for a multi-unit auction where the valuations
have decreasing marginal utilities and the value of a bundle
can be represented with O(logm) bits. Observe that M is in
particular dominant strategies when the domain of each player is
vP U VNP U VP Denote with ¢ the communication complexity of
the mechanism M.

Observe that M is incentive compatible, so by the taxation prin-
ciple every valuation v4 of Alice is associated with a menu of
prices to Bob, such that for every valuation vg of Bob the action
profile (Sa(va), Sp(vp)) reaches a leaf that is labeled with a profit-
maximizing bundle given this menu. The same can be said of Bob’s
valuation and the menu presented to Alice.

The proof idea is as follows. We begin by showing that the
payments in the menu associated with a valuation are closely related
to its values (Subsection 6.2.1). In Section 6.2.2, we show that there
exists a set of valuations of Bob such that he sends the price of some
bundle (e.g., the price of 1 item), or otherwise Alice’s strategy Sy is
not dominant. Consider now two valuations vg, v é from this set that
differ only in the price of 1 item. Assume towards a contradiction
that Alice has two valuations v4, v/, with the same message such
that the optimal solution in every one of the four possible instance
is (s,m—s) but Pg(m—s,v4) # Pg(m-s, 01'4) . In this case, the worry
is that Alice can determine Bob’s payment to be either Pg(m—s,v4)
or Pg(m — 5,0/, ) without changing Bob’s allocation, based only on
the price of v, v ]/3 for one item. Thus, Bob will not have a dominant
strategy in this case unless Alice commits on the price she displays
for m — s items (Subsection 6.2.3). However, if this happens for too
many bundles, we can reconstruct Alice’s valuation from her first
message (Subsection 6.2.4).

6.2.1 Payments Are Good Sketches. We now prove that the pay-
ments in the menu that each player presents to the other player are
tightly related to the valuation.

8There is more than one welfare-maximizer due to tie breaking.
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LEMMA 6.4. Letvy € VNP UVD gndletx € {1,...,m -1} bea
number of items. Then:

1
Pg(x,v4) € [UA(m) —va(m—x) £ %]
where Pg(x,v,) is the price of x items presented to Bob when Alice has
the valuation v 4. Similarly, every valuation of Bobvg € VNP u vP
and everyx € {1,...,m — 1} satisfy that:

PA(X’UB) € [UB(m) —Z]B(m _x) + #]

We relegate the proof of Lemma 6.4 to the full version.

COROLLARY 6.5. Fixvy € VNP U VP and a number of items
x € {1,...,m — 1}. Given every Pg(m — x,v4) and vs(m), the exact
value of v4 (x) can be deduced.

PrRoOOF. By Lemma 6.4, we have that v4(x) € [va(m) — Pg(m —
X,04)% ﬁ]. Thus, given Pg(m—x,v4) and v4 (m), we can construct
an interval of size % < % such that v4(x) belongs in it. Recall
that x < m so by definition v4(x) is an integer and an interval of
size at most }—1 has only one integer in it, so we can immediately

identify it. O

6.2.2  Bob Reveals Information That Does Not Affect the Allocation.
From now on, we focus on the following subsets of valuation sets
of Alice and Bob:

Va=Vp={ QIVND’Y} A Q vPr}

Observe that the mechanism M together with the strategies S4, S
is also a dominant strategy implementation of f, P4, P with respect
to V4 X Vg, since they have decreasing marginal values and the
value of a bundle can be described with O(log m) bits. By Lemma
2.2, given the valuations V4 X Vp there exists a minimal dominant
strategy mechanism M’ with strategies (S, Sg) that realize the
welfare-maximizer f with payment schemes Py, Pg with ¢’ < ¢
bits.

We remind that throughout the proof we slightly abuse notation:
we say that a player with valuation v sends a message z at vertex
r instead of saying that the dominant strategy of the player is to
send message z given the valuation v. We also use the notations V7,
V=Y or V=Y to denote all the valuations in V4 or Vg with weight y,
or the valuations with a weight which is smaller or larger than y.

Observe that there exists a player, without loss of generality
Alice, that sends different messages for different valuations in V4 at
the root vertex of the protocol, which we denote with r. The reason
for that is that M’ is minimal and there exist (v4, 0p), (v}, v5) €
Va X Vg such that the optimal allocation for them differs. We will
show that since she sends non-trivial message in the first round, she
has a dominant strategy in M’ only if Bob discloses very specific
information that, in certain situations, does not affect the allocation.
Formally:

CLAIM 6.6. One of the two conditions below necessarily holds:

(1) For everyol,v? e VD’Y:m5 such that Pa(1,0}) # P4(1,0%)

y B’“B B AlLUp AlLOB)s
Bob sends different messages at vertexr.

(2) For every vé,vg € V}?’y:l such that Po(m — 1, vé) # Py(m—
1, 0123), Bob sends different messages at vertexr.
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For the proof of Claim 6.6, we prove the following lemma, which
is the main working horse of this subsection:

LEMMA 6.7. Let 0114, 0124 € Vy be two valuations of Alice, and let

0}3, v% be two valuations of Bob such that:
; ; ; ; 1,1
(1) The unique optimal solution for the instances (v,,vg) and
(02, uJZB) is (x,m — x).
(2) Pa(x, 0113) # Py(x, 0123).
; ; 1
(3) Azllce sends different messages at the root vertex r forov, and
vy
Then, Bob sends different messages at the root vertexr for the valua-
tions 0113 and 0]23.

Proor. Denote with zi‘ and 2124 the messages that Alice sends
for 02, vi. Assume towards a contradiction that Bob sends the same
message zp for the valuations 0}3, 0]23 at the root vertex r. Let tq, ty
be the subtrees that the message profiles (2114, zg) and (22, zg) lead
to. Denote with [y, [ the leaves that (v}l, 1)113) and (vf‘, 0123) reach

(respectively). For an illustration, see Figure 2.

subtree t1 subtree tp

Figure 2: An illustration for the proof of Lemma 6.7. It de-
scribes two subtrees t1, t; in the tree that the message zg of
Bob induces for Alice at the root vertex r. The leaves [, [ are
the leaves that (0114, 0}3) and (02, zzlzg) reach, so by assumption
they are labeled with the allocation x items for Alice with a
price of Py(x, 0113) and Py (x, vé), respectively.

Note that the leaf [; is labeled with the allocation (x,m — x)
and with the payment Py (x, 0}3) for Alice, and similarly the leaf
I is labeled with the allocation (x, m — x) and with the payment
Py(x, 0123) for Alice. Observe that I3, Iz appear in different subtrees
t1, tz, so by Lemma 2.2, they are labeled with the same payment for
Alice. However, P4 (x, vllg) # Pa(x, vé) by assumption, so we reach
a contradiction.

O

The following two lemmas are immediate corollaries of Lemma
6.7:

2
LEMMA 6.8. Assume that there exist two valuations 0114, 0124 € VASm
2
5 B €
be two semi-decisive valuations of Bob such that P4 (1, 0113) *

; ; 1
that Alice sends different messages for at the root vertexr. Letvg, v

Dy=
v
Pa(1, 012;) Then, Bob sends different messages at the root vertex r for

. 1 2
the valuations vg and g
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ProoF. We begin by showing that for every v4 € VAsz and for

every ug € Vé) ’Yzms, the unique optimal allocation is (1, m — 1). By
Lemma 6.1, it suffices to prove the inequalities vg(m — 1) —vp(m —
2) >04(2)—va(1) andva (1) —v4(0) > vg(m) —ovg(m— 1), which
hold by definition:

op(m=1)—vg(m—=2)2m> >m?- (m?> =m+1) > 04(2) —v4(1)
= ovp(m—1) —op(m—2) >04(2) —va(1)
04(1) —04(0) > 1-3m® > 1> vg(m) —vg(m—1)
= v4(1) —va(0) > vg(m) —vp(m—1)

Thus, the unique optimal allocation for the instances
(o} ,0113), (02,0123) is (1,m — 1). Recall that by assumption Alice
sends different messages for 0114, Ui and that P4 (1, v}q) # Pa(1, U%),
so by Lemma 6.7, Bob sends different messages at the root vertex

for vé and v%, as needed. m]

2
LEMMA 6.9. Assume that there exist two valuations 0114, 0124 € VAzm

that Alice sends different messages for at the root vertexr. Let 0113, 0% €

V;’Fl be two semi-decisive valuations of Bob such that Py(m —

1, 0113) # Py(m—1, U%) Then, Bob sends different messages at the
root vertex r for the valuations 0}3 and 0123.

The proof of Lemma 6.9 is analogous to the proof of Lemma 6.8,
and can be found in the full version of the paper. We can now prove
Claim 6.6:

Proor oF CLaIM 6.6. Recall that we have assumed (without loss
of generality) that there exist two valuations of Alice that she sends
different messages for at the root vertex r. It implies that the mech-
anism M’ satisfies at least one of the following conditions: either

. . . . 2
Alice sends different messages for two valuations in VASm or she

. . . 2 .
sends different messages for two valuations in VAZ”‘ (otherwise,

2
<
‘I_VTL

she sends the same message for all valuations in Vy, since V;

<m? >m?
vEm U, 2
If she sends different messages for two valuations in V Aém at the

t vertex r, by L 6.8 t that f 12 ¢ yDr=m’
root vertexr, y emma .,Wege al oreverva,UB B

such that P4(1, 0113) # Pa(1, v%), Bob sends different messages at
vertex r. Similarly, if she sends different messages for two valua-

2
and VAZ”’ are intersecting and V4 =

2
tions in VAZJ;” , then by applying Lemma 6.9 we have that for every
1,2 y=1
0,0y € VB
different messages at vertex r.

with P4(m — 1,011;) # Pa(m — 1,0123), Bob sends
O

6.2.3 Alice Commits to Bob’s Payment. We now use the informa-
tion revealed by Bob about the semi-decisive valuations in Vg = or

in Vg =’ to show that there exists “large” set of valuations such
Alice has to commit to Bob’s payment for every possible allocation
in the first round of the mechanism. In Section 6.2.4, we will show
how to use the payment to reconstruct these valuations.

Observe that we now use the fact that M’ is dominant strategies
for Bob. For the statement of the claim, we define v},_s € VD
as the semi-decisive valuation parameterized with weight y, the
special bundle x* = m — s and dp, = %
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CraIM 6.10. The following holds for either y = 1 or fory = m°.
Letvy € Vi\m’y be a valuation, and let z4 be the message that
Alice sends for it at the root of the protocol. Fix a number of items
s €{2,...,m—2} and let zg be the message that Bob sends at the root
if his valuation is the decisive valuation v%,_, defined above. Denote
with t the subtree that the message profile (z4, zg) leads to. Then:

(1) There exists a leaf at subtree t labeled with the allocation
(s,m—s).

(2) Every leaf at subtree t that is labeled with the allocation (s, m—
s) satisfies that it is labeled with the payment Pg(m — s,v4)
for Bob.

Proor. We show that condition 1 of Claim 6.6 implies that Claim
6.10 holds for y = m®. The proof that condition 2 of Claim 6.6 implies
that Claim 6.10 holds for y = 1 is analogous. Claim 6.10 follows
since by Claim 6.6 at least one of the conditions specified in the

statement of Claim 6.6 holds.
ND,y=m®

Assume that condition 1 holds. Let vg € V, be a val-
uation, and let s € {2,...,m — 2} be a number of items. Define
—d
B, U € VBD’Y_m as follows. vp = vﬂs_s and
0 x =0,
m® - mé x=1,
vp(x) ={m’(m?* —m+1)+0'(x - 1) x€{2....,m—s},
m’ +0’(x - 1) xe{m-s+1,...,m—1},
o'(m-1)+1 x=m.

In words, vp and v are the two decisive valuations with weight
y = m® and special bundle x* = m — 5. Note that the only difference
between vp, vy, is the marginal value of the m’th item.

We begin by explaining why the unique welfare maximizing
allocation for the instance (v4,vp) is (s,m —s). By Lemma 6.1, it
suffices to prove that:

UB(m—s)—vB(m—s—l):ms-(mz—m+l) >
m® - (m* —m) = v4(2) —0a(1) = va(s +1) —va(s)
va(s) —oa(s —1) 2va(m—1) —oa(m=2) >m> -m >
m® > og(m—s+1) —og(m—s)

Thus, the leaf | that (va,vp = vms_s) reaches is labeled with the
allocation (s, m — s). By definition, this leaf belongs in the subtree
t, so we have part 1 of the claim. For the proof of the second part,
recall that by Lemma 6.4 we have that:

1
Py(1,0B) <vg(m) —vg(m—1)+ —,
8m

1
Pa(l, s o 7 1) - —
A ( UB)_UB(m) UB(m ) 8m
Therefore:

1
Pa(1,0g) <vg(m)—ovg(m—1)+ — <
8m
ol (m) —olh(m—1) — — < P4(1,0%)
B B sm = 4
= Pa(1,0p) < PA(l,Ué)

where the strict inequality holds because vl’g(m) —og(m) = % and
U]'B(m — 1) = vg(m — 1). Therefore, by condition 1 of Claim 6.6 we
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have that Bob sends different message z, for v}, than the message
zg he sends for vg at vertex r.

Denote with ¢’ the subtree that the messages (z4, zi;) lead to,
and denote the leaf in ¢’ that (va,0p) reaches with I”. Since vp
and Ulla are equal for all the coordinates in {1,...,m — 1}, we have
that the unique welfare-maximizing allocation for (v4, Ué) is also
(s,m —s), so I’ is labeled with it. For an illustration, see Figure 3.

Since the mechanism M’ realizes the welfare-maximizer f with
the payment schemes P4, Pg, we have that the leaf [ that is labeled
with the allocation (s, m — s) is labeled with the payment Pg(m —
s,04) for Bob. By Lemma 2.3 all the leaves in t and in ¢’ that are
labeled with the allocation (s, m—s) have the same price for Bob. By
combining these two facts, we get that all the leaves in the subtree
t labeled with the allocation (s, m —s) are labeled with the payment
Pg(m —s,v4) for Bob, which completes the proof. O

m—s,Pg(m—s,04)

subtree t subtree t’

Figure 3: An illustration for the proof of Claim 6.10. It de-
scribes the subtrees f,¢’ in the tree that the message z4 of
Alice induces for Bob at the root vertex r. The leaves [, I’ are
the leaves that (v4,0p) and (va, vy;) reach, so as we prove they
are labeled with the allocation (s, m — s).

6.2.4 Reconstructing Alice’s Valuation. We can now complete the
proof of Proposition 6.2. Let y € {1, m®} be the scalar that Claim
6.10 holds for. We will show how to represent every valuation
in VNDY with at most ¢’ + O(log(m)) < ¢ + O(log(m)) bits (we
remind that ¢, ¢’ stand for the communication complexity of the
mechanisms M, M’).

The representation of a valuation v is composed of the values
0(1),0(m —1),v(m) and the message z4 Alice sends at the root ver-
tex r given the valuation v. For every number of items x € [m], we
show how to compute v(x) without any additional communication.

v(1),0(m — 1) and v(m) are specified in the sketch. Let s €
{2,...,m — 2}. Let zp be the message that Bob sends at the root
vertex r when his valuation is the decisive valuation og = v},_.
Let ¢ be an arbitrary leaf in the subtree that (z4, zg) leads to that
is labeled with the allocation (s, m — s). By Claim 6.10, such a leaf
exists and it is labeled with the payment Pg(m — s,04) for Bob.
Recall that v(m) is included in the representation, so by Corollary
6.5 we can extract v(s).
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6.3 An FPTAS for Multi-Unit Auctions with
Decreasing Marginal Values- Proof of
Theorem 3.3

In Section 6.1 we showed that no mechanism finds the welfare
maximizing allocation in dominant strategies and poly(log m) com-
munication. In this section we show that this result is tight.

The mechanism is an adaptation of the maximal in range 2-
approximation algorithm for general multi unit auctions of [18].
A maximal in range algorithm (see [17],[18]) is an algorithm that
finds the welfare maximizing solution in some pre-defined set of
allocations. VCG payments are used to guarantee incentive com-
patibility.

Our maximal-in-range algorithm will split the items into ¢ = %
bundles of size q = LEI;—'Z"J, and (possibly) one additional bundle
of size | = m — t - q. The maximal-in-range algorithm will opti-
mally distribute these items among the bidders. We implement the
algorithm by asking each bidder i with valuation v; to send, simul-
taneously with the others, his values for all possible combinations
of the bundles: {v;(z - q)}z<; and {vj(z- ¢+ 1)}z <.

It is clear that the number of value queries that the algorithm
makes is poly(n, %). In fact, the running time of the algorithm is
also polynomial, the proof is essentially identical to that of [18].
The dominant strategy of each bidder is to send the true values,
since this is a simultaneous maximal-in-range algorithm. It remains
to prove the claimed approximation ratio.

LEMMA 6.11. The social welfare of the allocation that the algorithm
outputs is at least (1 — ¢) - OPT.

Proor. We will show that there is an allocation in the range with
social welfare at least (1 —¢) - OPT. Since the algorithm is maximal-
in-range, it must output a solution with at least that welfare.

Fix some optimal allocation of the items (o1, ..., 0,). Without
loss of generality assume that all items are allocated: }}; 0; = m.
Thus, there must be some bidder, without loss of generality bidder
1, such that oy > m/n.

For eachi > 1, obtain o] by rounding up o; to the nearest multiple
of g. Let 0] = m — ¥, 0}. Note that this allocation is indeed in
the range (each bidder i > 1 gets a multiple of g, bidder 1 gets the
remaining bundles of size g and the single bundle of size [).

We now analyze the social welfare of the allocation (o1, ..., op).
By the monotonicity of the valuations, for each bidder i’ > 1 it
holds that v;(0]) > v;(0;). As for bidder 1, it holds that: 01 — o] =

m=i>10i —m+ Ys0; <n-qg=n-|[£7] < &% Recall that
01 = T and that v; exhibits decreasing marginal utilities, so by

taking away at most € fraction of the items of player 1, his utility
decreases by at most € - v1(01). Thus, v1 (o{) > (1-¢)-v1(01) and
we have that };0;(0]) > (1 -¢) - ¥, 0i(0;), as needed. O
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