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Abstract—We present a 380-approximation algorithm for
the Nash Social Welfare problem with submodular valuations.
Our algorithm builds on and extends a recent constant-factor
approximation for Rado valuations [15].
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I. INTRODUCTION

Nash Social Welfare is the following optimization prob-
lem.

Nash Social Welfare (NSW): Given m indivisible items
and n agents with valuation functions v; : 2™ — R, we
want to allocate items to the agents, that is find a partition of
the m items (S1,So,...,S,) that maximizes the geometric
average of the valuations,

n 1/n
aSn) = (H Ui(Si)> .

i=1

NSW(S1, So, . ..

Among the possible objectives considered in allocation of
indivisible goods, it can be viewed as a compromise be-
tween Maximum Social Welfare (maximizing the summation
> vi(S;), which does not take fairness into account),
and Max-Min Welfare (maximizing min <;<,, v;(:S;), which
focuses solely on the least satisfied agent and ignores the
possible additional benefits to others). The notion of Nash
Social Welfare goes back to John Nash’s work [20] on
bargaining in the 1950s. It also came up independently in
the context of competitive equilibria with equal incomes [21]
and proportional fairness in networking [17]. An interesting
feature of Nash Social Welfare is that the problem is
invariant under scaling of the valuations v; by independent
factors \;; i.e., each agent can express their preference in a
“different currency” and this does not affect the problem.
The difficulty of the problem naturally depends on what
class of valuations v; we consider. Unlike the (additive)
Social Welfare Maximization problem, the Nash Social
Welfare problem is non-trivial even in the case where the v;’s
are additive, that is v;(S) = >, 5 vi; where vi; = v;({j})
is agent ¢’s valuation for item j. It is NP-hard in the
case of 2 agents with identical additive valuations (by a
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reduction from the Subset Sum problem), and APX-hard
for multiple agents [18]. A constant-factor approximation
for the additive case was discovered in a remarkable work
by Cole and Gatskelis [11], and subsequently via a very
different algorithm by Anari et al. [3]. The algorithm of [11]
is based on consideration of market equilibria and market-
clearing prices. The algorithm of [3] uses a convex relaxation
inspired by Gurvits’s work on the permanent of doubly
stochastic matrices, which relies on properties of real stable
polynomials. Inspired by these exciting breakthroughs, a
series of follow-up work has been developed along these two
lines [2], [5], [71, [10], [16]. The best approximation factor
for additive valuations currently stands at el/e ~1.45 [5].

A particularly compelling question is whether a constant-
factor approximation is possible for submodular valuations
(where a constant-factor approximation is known for (addi-
tive) social welfare maximization [13], [22], and submodular
valuations are the largest natural class for which such a
result is known, assuming only value-oracle access to the
valuations). Some progress has been made for Nash Social
Welfare with valuations beyond additive ones: a constant
factor for concave piece-wise linear separable utilities [2],
and for budget-additive valuations [7], [14]; in fact the
approximation factor for budget-additive valuations now
matches the el/¢ for additive valuations [7]. Recently, [19]
designed an algorithm to estimate the optimal value within a
factor of ﬁ ~ 6.8 for certain subclasses of submodular
valuations, such as coverage and summations of matroid
rank functions, by extending the techniques of [3] using
stable polynomials. And most recently, [15] designed a
constant-factor (772) approximation algorithm for the class
of “Rado valuations”, which includes matroid rank functions
and more generally valuations defined by a certain matching
problem with a matroid constraint. [15] presents another
significantly different approach to the problem: Instead of
market/pricing-inspired techniques or techniques based on
stable polynomials, this paper uses a combination of com-
binatorial matching techniques and a convex programming
relaxation.

For general submodular valuations, the best result prior
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to this work was an O(n)-approximation which also applies
to subadditive valuations [4], [16]. However, for subadditive
or even fractionally subadditive valuations we cannot expect
a constant factor in the value oracle model [4], for the
same reasons that this is impossible for the Social Welfare
Maximization problem [12]. In the special case of a con-
stant number of agents n with submodular valuations, [16]
presents a (1 — 1/e — €)-approximation for any € > 0; this
algorithm uses an extensive enumeration which makes the
running time exponential in 7.

Our result and techniques:

Theorem 1 (Main Result). There exists a polynomial-time
constant-factor approximation algorithm for the Nash So-
cial Welfare problem with monotone submodular valuation
functions, accessible by value queries.

The approximation factor that we obtain is 380. We made
only modest effort to optimize the constant. We believe that
the best constant achievable with the techniques of this paper
would still be a triple-digit number.

Our techniques can be viewed as a natural extension
of the approach in [15]. In hindsight, the strength of the
approach of [15] is that it is rather modular and isolates
the issue of providing at least some nonzero value to
each agent as a separate matching problem. The question
then remains how to deal with the remaining items and
for this we develop some new techniques. The approach
of [15] relies on the existence of a tractable Eisenberg-
Gale relaxation with useful polyhedral properties for Rado
valuations; this approach might be possibly extended to
gross substitutes valuations, but probably not beyond that.
The main new components that we introduce are: (i) a new
non-convex relaxation of the problem (the Mixed Multilinear
Relaxation), (ii) an algorithm to solve it approximately, and
(iii) a randomized rounding technique using concentration
of submodular functions to obtain an integer solution. We
present a more detailed overview at the beginning of Sec-
tion III.

II. PRELIMINARIES

Nash Social Welfare (NSW): Given a set of m indivisi-
ble items G and a set of n agents A, with valuation functions
v; 129 = R, for each i € A, we want to allocate the items
to the agents, that is find a partition (S, Sa,...,S,) of G in
order to maximize the geometric average of the valuations,

n 1/n
NSW(Sl,,Sn) = (H ’Ul(Sl)> .

Monotone Submodular Functions: Let G be a finite
ground set and v : 29 — R.

e v is submodular if for any S,T C G,
v(S)+o(T)>v(SNT)+v(SUT).

26

« v is monotone if v(S) < v(T') whenever S C T.

Multilinear Extension: For a set function v : 29 — R,
we define its multilinear extension V : [0,1]9 — R by

Vi)=Y o) [T TT (1 —ay).

Scg i€S  jeG\s

The following is well-known and used in prior work (e.g.,

[6D.

Lemma 2. Let V : [0,1]9 — R be the multilinear extension
of a set function v : 29 — R. Then

o If v is monotone non-decreasing, then V is non-
decreasing along any line with direction d > 0.

o If v is submodular, then V is concave along any line
with direction d > 0.

We use the following shorthand notation: For a singleton
set {j}, we write v(j) to denote v({j}). For a set .S (either
containing or not containing j), we write v(S+ j) to denote
v(SU{j}) and v(S —j) to denote v(S\ {j}). We denote by
1g the indicator vector of S, i.e. (1g); =1if j € Sand 0
otherwise. We also write 1; instead of 1;, to simplify the
notation.

III. OUR ALGORITHM AND ANALYSIS

Algorithm 1 Nash Social Welfare algorithm
1: procedure NSW(A, G, v1,...,v,):
2: Find a matching 7 A — G maximizing
HieA vi(7(7))
3: H:=71(A),G =G\ H, A ={ic A:v(G)>
0}

4; y := IteratedContinuousGreedy(A', G’, v, ..., v,)
5: (R, ..., Ry,) := RandomizedRounding(y)
6: Find a matching o A — H maximizing

[Licavi(Ri +0(i))
Return (Ry +0(1),R2 +0(2),..., Ry, + 0(n))
8: end procedure

e

Our algorithm at a high level is described in Algorithm 1.
We are strongly inspired by the algorithm of [15] for Rado
valuations and follow their high-level structure. We preserve
some of the components of their algorithm but replace
components which previously relied on special properties
of Rado valuations. The new components are: a new relax-
ation of the Nash Social Welfare problem, and the subrou-
tines IteratedContinuousGreedy and RandomizedRoud-
ing, which are described and analyzed in Sections III-C
and III-D, respectively. The analysis can be summarized as
follows (with a numbering of phases analogous to [15]).

Phase I: Initial Matching: We find an optimal assign-
ment of 1 item for each agent, i.e. a matching 7: A — G
maximizing [ ], , vi(7(4)). This is also the starting point in
[15]. H denotes the items allocated in this matching.

Authorized licensed use limited to: Stanford University. Downloaded on August 31,2022 at 00:21:10 UTC from IEEE Xplore. Restrictions apply.



Phase 11: Mixed Multilinear Relaxation: We formulate
an optimization program which aims to assign the items
in ‘H integrally and the remaining items fractionally under
a certain relaxed objective. However, we do not have a
concave relaxation at our disposal, such as the Eisenberg-
Gale program in [15]; no such tractable relaxation is known
for general submodular functions. Instead, we propose a new
relaxation involving a product of multilinear polynomials.

max H Vi(x;)

(Mixed-Multilinear)

icA
st Y @i <1 vjeg
i€ A
T >0
vy € {0,1} Vie AjeH

Here, V;(x;) = ngg vi(S) Hjes Lij Hj’EQ\S(]' - xij’)
is the multilinear extension of v;.

Although the items in H could be allocated arbitrarily, we
will use a matching in the end. Similarly to [15], we prove
that this does not hurt the solution significantly. In the next
phase, we deal with the question of solving the fractional
part of the relaxation.

Phase III: Iterated Continuous Greedy Algorithm: We
ignore the items in H for a moment and try to solve the
optimization problem restricted to the item set G’ = G\ H
and the subset of agents A’ who have positive value for
these items.

max H Vi(yi) (MultilinearProduct)
e A’

s.t. Z yi; <1 vViedg
e A’
Yij > 0

A natural idea is to apply the continuous greedy algorithm
of [6]. However, a direct application doesn’t work since
the objective function is not concave even in nonnegative
directions (a product of concave functions is not necessarily
concave). We can obtain an objective function concave in
nonnegative directions, if we take a logarithm of the ob-
jective function: The logarithm of a non-decreasing concave
function is non-decreasing concave, and we get a summation
instead of a product.

27

max Z log Vi(y:) (LogMultilinear)
icA!
s.t. Z Yij S 1 VJ S g/
i€ A’
Yij; =0
Nevertheless, the continuous greedy algorithm still

doesn’t work as such, because it gives a multiplicative
approximation; but we require an additive approximation on
the logarithmic scale.

Our solution is an iterated version of the continuous
greedy algorithm, where we run the continuous greedy
algorithm, scale the solution by a factor of 1/2, and repeat
as long as there is some tangible gain. The intuition is that as
long as our solution has low value, the continuous greedy
process makes progress at a high rate and hence we gain
more in the continuous greedy process than what we lose
in the scaling step. The output of the iterated continuous
greedy algorithm is a solution y satisfying

Viy?)

Vi(yi)

O(n)

i€ A’

for any feasible solution y*. This is a stronger guarantee than
just approximating the optimum of (LogMultilinear) which
will be useful in the analysis.

Phase IV: Randomized Rounding: Our next goal is to
round or at least sparsify the fractional solution y. Since our
relaxation doesn’t have polyhedral properties which were
used for sparsification in [15], we resort to a more ele-
mentary approach: randomized rounding. We simply allocate
each item j to agent ¢ with probability y;;.

Ideally, we would like to argue that the contribution to
each agent is strongly concentrated, and thus the value of
the assignment is close to the value of the fractional solution.
It is known that submodular functions satisfy concentration
bounds which can be useful here; the only problem is that the
concentration bounds work well only for items with small
contributions.

Hence, we partition the items for each agent into “large”
and “small”: Large items are defined greedily by choosing
the maximum marginal profit, as long as the total fractional
mass of large items does not exceed some constant ¢ > 0.
In the analysis, we apply randomized rounding only to the
small items. Since their marginal contributions are bounded,
we can apply the Efron-Stein inequality and prove that we
lose only a constant factor by rounding the small items. The
result is a sparsified fractional solution, where only large
items are assigned fractionally and their total fractional mass
is bounded for each agent.
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Phase V: Matching Recombination: The last piece
of the puzzle is what to do with large items. Luckily,
[15] contains a component which is useful exactly for this
purpose. A key lemma in [15] shows that for any fractional
solution y and any matching 7 : 4 — H (imagine the
optimal matching on top of y), there is another matching
p : A — H such that the value of (y,p) is comparable
to the value of (y,n), and for each agent, either the item
matched in p has a significant value, or there is no item
outside of H which has a significant value. The matching
is obtained by an alternating-cycle procedure applied to the
matching 7 and the initial matching 7.

We adapt this lemma and apply it in our setting: After
switching to the matching p, either the matching item p(%)
itself provides a constant fraction of agent i’s value, or the
large items contribute at most a constant fraction of agent
1’s value. Hence, in both cases we can simply discard the
large items in the analysis and lose only a constant factor.

We remark that in the algorithm, we apply randomized
rounding to all items in G \ H, without distinguishing large
and small items. This does not hurt and the algorithm is
more natural this way. Also, we do not find the particular
matching p described here; we simply find the most prof-
itable matching at the end. This provides a solution at least
as good as the one we analyze in our proof.

In the following, we describe each phase in detail.

A. Phase I: Initial Matching

First, we solve the Nash Social Welfare problem under
the restriction that we only allocate at most one item to each
agent. To achieve this, consider the complete bipartite graph
between A and G and assign an edge weight w;; = log v;(j)
to every edge (i,j) € A x G. We can find an optimal
assignment 7 : A — G by computing the maximum-weight
matching in this bipartite graph; i.e., 7(¢) is the item matched
to agent i. We define H = 7(.A) to be the set of matched
items. We note that each item in the matching has positive
value v;(7(2)) > 0 for the respective agent, otherwise
there is no matching of positive value, which means that
OPT = 0.

B. Phase II: Mixed Multilinear Relaxation

In this section, we describe our new “Mixed Multilinear”
relaxation for the Nash Social Welfare Problem, and a
restricted “Matching+Multilinear” version of it, which we
show to be within a constant factor of each other. Although
these relaxations are new, they are naturally analogous to
the relaxations in [15].

Mixed Multilinear Relaxation: For each valuation v; :
29 — R, we define its multilinear extension V; : [0,1]9 —

R, as
Zvi(s)nyij H (1= yijr)-

5¢g JES  j'EGN\S

Vi(yi)

28

We propose the following relaxation of the Nash Social
Welfare problem.

max H Vi(x;)

(Mixed-Multilinear)

i€A
s.t. ZIU S 1 VJ S g
€A
T >0 VZEA,]EQ\H
iI?ijG{O,].} Vie A,jeH

Note that although H was chosen by matching one item
to each agent, this might not be the case in the optimal
solution. Indeed in (Mixed-Multilinear), we allow 7 to be
allocated arbitrarily; but the assignment cannot be fractional.
(If we allowed all items to be assigned fractionally, the relax-
ation would have an infinite integrality gap, for well-known
reasons.) This relaxation is difficult to deal with, because
it’s hard to find a good assignment of . Instead, just like
in [15], we consider a restricted version of this relaxation,
where H is required to be allocated by a matching.

max H Vi(yi + 150)) (Matching+Multilinear)

i€ A
st > yi <1 Vi€ G\H
i€ A
yij >0 Vie A,je G\H
yij:O ViEA,jGH
o : A — H is a matching.
Denote by OPT the optimum value of (Mixed-

Multilinear), and by OPTy the optimal value of the above
program (Matching+Multilinear). Similar to Theorem 3.2 in
[15], we have:

Lemma 3.

OPTy, > PT.

1

WO

Proof: Consider an optimum solution x* of (Mixed-
Multilinear), that is x} =y} + 1> where y* € [0,1]4%9 is
a fractional assignment of the items in G’ and (H7, ..., H})
is a partition of 7. We construct a feasible solution (y*, o)
for (Matching+Multilinear), where o : A — H is a matching
such that for H; # (0, o(i) is the most valuable item in H},
and the remaining items in H are matched arbitrarily to
agents such that H} = 0.

Let k; = |H}| be the number of H-items allocated
to agent ¢ in the optimal solution. If k; > 0, o(i)
is the most valuable of them, and by submodularity
vi(H*) < kivi(o(i)). This also implies Vi(y; + 1g:) <
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max{k;, 1}Vi(y; + 1,(;)). Hence, we can write

1/n
<H Vilyi + 1H;))

OPT =
icA
1/n
< <H max{ki, 1} Vily] + 10(0))
icA
1/n
< <H3’“/3 vi<yz+1a(i)>>
icA
1/n
3/ (H Vily; + 10@))
icA
< 3Y3 0PTy
where we used the AMGM inequality, the fact that

max{k, 1} < 3%/3 for every integer k > 0, and > k; =
n. |

We remark that the factor of 3'/3 is tight due to the
following instance: [H| = |G\ H| = n, n/3 agents have the
valuation v(S) = |S N H|, and the remaining 2n/3 agents
have the valuation v’(S) = min{|S|, 1}. The optimal Nash
Social Welfare is 3'/3, since n/3 agents can get value 3
from 3 items of H each, and the remaining agents get value
1 from items in G \ H. If H is allocated as a matching, we
get Nash Social Welfare 1, since each agent receives value
1.

C. Phase III: The Iterated Continuous Greedy Algorithm

In this section, we describe the details of Phase III where
we aim to find a fractional solution of our (LogMultilinear)
relaxation of Nash Social Welfare. We do this for a subset
of items G’ = G \ H, and a subset of agents A" who have
positive value for these items.

1
max — Z log V;(y:) (LogMultilinear)
n
i€ A’
s.t. Z yij S 1 \V/j € g/
€A’
yij:() ViEAI,jEH
y=>0

We recall that

Vi(yi)

douilS) [Tws IT 0 —vi

SCG jES Jj'e€G\S

is the multilinear extension of v;. In this section we assume
that the vector y; always has 0 in coordinates indexed by
j € H, so effectively we are working with vectors in [0, 1]9".

We design a variant of the continuous greedy algorithm
which approximates the optimal solution within an additive
error of 1.

29

The Iterated Continuous Greedy Algorithm:
1) Start with a feasible solution y(©), ygj(?) =
i€ A and j €G'.
2) Forr = 1,2, ..., given a feasible solution y("=1), initi-
ate y(3) = 2y"~Y and run the following continuous

greedy algorithm:

L for each
n

o Let z(?) be a feasible solution (satisfying z > 0 and
Z, z;5 < 1 for each j) which maximizes the linear
objective function

>

i€ A’

z; - VVi(yi(t))
Vi(yi(t))

« Evolve the solution y(¢) according to the equation

Ly(t) = (1),

for t € [1,1].

3) Set y(") = y(1), the solution obtained in this iteration.
4 If

1 1 X 1
=Y logVily™) = = Y logViy" V) + <,
n : n 8
i€ A’ €A’
let r < r 4+ 1 and repeat.
5) Otherwise, return y(r).

Theorem 4. Let y* denote any feasible solution of the opti-
mization program (LogMultilinear). Assuming that v;(G') >
0 and v; is monotone submodular for each 1 € A,
the Iterated Continuous Greedy algorithm terminates in
O(logn) iterations and returns a feasible solution y for
(LogMultilinear) such that
1
=D

i€ A’

Vi(y;)
Vi(yi) =

We note that by concavity of the logarithm, the conclusion
also implies % zieA' log ‘V/'((’;,l)) < 1, i.e. our solution
approximates the optimum of (LogMultilinear) within an
additive error of 1. The statement in the theorem is stronger
and more convenient, though, which we will use later in
several places.

Proof: As a starting point, we have yg)) % By
concavity of V; in positive directions, we have the simple
bound Vi(ygo)) > LV;(1). Hence, 37, 1 logVi(ygo)) >
L5 ealogVi(1) — logn. Now we apply the continu-
ous greedy algorithm as above, and we iterate as long
als after each iteriti?n W? ha}ve %Zie A IOg.;Vi(y(T)). >
L5 e log Vi(y™ 1)+ L. Since for any feasible solution,
>iea log Vily™) < 3. 4 log Vi(1), this means that we
cannot iterate more than O(logn) times. It remains to prove
that the solution satisfies the claimed inequality.

To prove this, assume at any time ¢ that

Vi(y;)
Vi(yi)

> en (*)

ic A’/
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A possible direction for the continuous greedy algorithm to
pursue is always z = y*. For this direction, we obtain

yz VVi(yi(?))
l;, V(Yz t))
Vilyi(t))

>y =

i ®)
Z( 1> (e—1)n

ic A’
using the monotonicity and concavity of V; in nonnegative
directions in the first inequality, and our assumption (*) in
the second inequality. Since the continuous greedy algorithm
chooses a direction z;(¢f) by optimizing the expression
D i %%(;)), we obtain the same bound for the
greedy direction z;(t), and finally by the chain rule we have

43 g Vilyi(t)

i€ A’

T Vi)

Hence the rate of increase in ), ,, log Vi(y;(t)) is at least
(e — 1)n as long as (*) is satisfied.

Each iteration starts by scaling the previous solution
by a factor of % and then running continuous greedy
for ¢ between % and 1. Again by concavity, we have
Vi(3y("=1) > 1V (y("~1). By integration over the course
of the continuous greedy process, we obtain

Z log Vi(y (T)

i€ A’
fZlogV < (T 1)> / ZlogV yi(t
i€ A’ ZE.A’
1
> Z log < (T 1))> / (e —1)n dt
i€ Al 1/2
. -1
:Zlogl/g(yg Uy 4+ <e2—log2>n
ic A’

log2 > . Hence we gain at least 1n in each 1terat10n as
long as (*) is satisfied, and we termmate otherwise. [ |
Discretization: As in the original continuous greedy
algorithm [6], we need to discretize the continuous process
to obtain an actual polynomial-time algorithm. This can be
done using standard methods.
First, for any given y;(t), we can estimate by random
sampling
v
yjlyi()

= E[vi(Ri(t) + ) — vi(Ri(t) — j)]

where R;(t) is a random set containing each item j in-
dependently with probability y;;(¢). Since v;(R;(t) + j) —

vi(Ri(t) — j) € [0,v;({j})], using poly(m,n) samples we
can obtain estimates w;; of gi‘ﬁ within an error of %

with high probability.
Then we find a direction z(t) by solving the linear
programming problem

max wiiZzii - Zii > 0, zii < 1Vj
Z Z j%ij + Zij Z J

ic A’ (}’1 JGQ’

(using w;; in place of 5;1) If the estimates w;; are correct
up to an error of ;’ly(éjn })n), the optimum is correct up

to a relative error of ——-ro—s. Note that Vily:(t)) >

m > icg vi({j}) since this is true for the initial
solution y(®) and the value can only decrease O(logn) times
by a factor of 2; apart from that it increases.
Then we make a step of size § = % where we set
poly(m,n)
y(t+9) =y(t) + ¢ - z(t). The guarantee we claim here is
that

> " log Vilyi(t +9))
ic A’

> " log Vi(yi(t))
e A’

+5 (1 polymn)ZYZ VV )).

’

This is true because we find the optimum of the linear pro-

gramming problem within a ——— relative error, and also
poly(m,n)

3V1

the values V;(y;) and the partial derivatives gy, can change

W between y; () and yi(t+9),
as long as ¢ < 0.99 (since V;(y;) and g;/? are nonnegative
and linear in each coordinate separately)]. Hence, we can
mimic the continuous analysis for ¢ € [0.5,0.99] within a
m relative error at every step, and we lose a factor
of 49/50 by ignoring the improvement between [0.99, 1].
These errors are easily absorbed for example in the gap
between 651 — log 2 and % which we ignore above. So the
theorem still holds for the discretized algorithm, with high
probability.

only by a factor of 1+

D. Phase IV: Randomized Rounding

In this section, our goal is to round the fractional solution
y from Section III-C. In the actual algorithm, we use the
following simple randomized rounding procedure.
RandomizedRounding(y ):

1) For each item j € G’ independently, select Z; €
{0,1,...,n} where Z; = ¢ with probability y;;, or
Zj; = 0 with probability 1 — . _ 1 ¥ij.

2) Define R; = {j € Q\H : Zj Zi}.

3) Return (Ry,...,Ry).
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However, in the analysis we will proceed more carefully,
separating the contributions of “large” and “small” items.
We first define what we mean by “large” and “small”. For
any y € [0,1)9 and S C G, define vector y¥) to be the
vector obtained by setting all the coordinates not in S to 0.

) _Jyi i€8
Yi {0i¢$
For each agent i € A’, we define the set L; of “large items”
as follows, for a given constant ¢ > 0. Let us assume in
the following that 3 jegr Yij = c for every agent . This
is without loss of generality, since we can always extend
the instance with dummy items of value O, which can be
allocated fractionally to any agent and it doesn’t change the
outcome of our algorithm in any way.

FindLargeSet(i, y):
1) Start with an empty set at time 0, Lgo) = 0.
2) At time t > 1, add the item with the largest marginal

value to Lf-til). More specifically, let LZ(-t) = Lgtil) U

{j+} where
(t-1) (t-1)
je = argmax OW%L )lﬁ%@fi)>
jeg,\Lgt—l)

3) As long as Y5, vij,, < c and G'\ LY £ 9, let
t<t+1and reg)eat step 2.
4) Return L; := L
We have two simple corollaries for the set L;.
o For any agent i € A’,

c < Zyij <c+1,
JEL;

e Foranyic A, j € G'\L;,

Viy™ 1) - Vi) < L Vi),

The first property follows from the stopping rule (includ-
ing our assumption that each agent gets Zjeg' Yij = C
in the fractional solution). As for the second one, if the
marginal value is 0 for any j € G’ \LZ(.t*l), it is trivially
true. Otherwise, consider any item j in L; that we did not
include in the procedure; (by submodularity) in every step
we included an item j; of marginal value

L(_t,—l) L(f—l) s .
Vi ) -vir ) 2 vt ) - viet)

and by multilinearity the total contribution of the included
items is
| L

y(E) Z%t

zc(V( SR P

(L(t 1)) (L,(.t_l))

+ ]'Jt) - Vl(yz

Vi(y")).

Now we can describe our modified rounding procedure.
We note that this procedure is used only in the analysis.

RestrictedRandomizedRounding(y ):

1) Compute the set L; (specified above) for each agent
ie A

2) For each item j € G’, assign j to a random player
according to y;;:
Let Z; = i with probability y;;, or Z;
probability 1 — >, 4 ¥ij-
Foreach i € A, let S; = {j € G'\L; : Z; = i} and

y® =y {1

3) Return y ().

Note that only “small items” are included in the sets
S1,...,5n, and large items are still assigned fractionally in
y(®). Thus the solution y(*) can be viewed as “sparsified”
rather than rounded. We note that the notion of sparsity
here is in terms of the summation of fractional variables
Qlica 2jer, yl(;) < (c+ 1)n) rather than the size of the
support of y(*)

The notion of large/small is agent-specific, so y*) might
not even be a feasible solution; an item could be allocated
fully as a small item and still fractionally as a large item
for other agents. We will show at the end that large items
can be in fact discarded. However, for now we analyze the
value of y(®).

= 0 with

Lemma 5. Suppose that

*Zv

i€ A’

Then with probability Q(¢), the solution y'*) obtained by
RestrictedRandomizedRounding(y) with parameter ¢ > 0
satisfies

(14+¢€)(2+4/c).

lz Vi(y7i) <
n (8)y —

jea Vilyi )
Proof: Using the notation from
RestrictedRandomizedRounding(y), for every
i € A’, we define a monotone submodular function

u; : 29\l — R, where u;(S) = Vi(yELi) + 1g). Recall
that ygs) = yZ(Li) + 1g,; that is, Vi(ygs)) = u;(S;). The
sets S1,...,S, are determined by the random variables
(Z; : j € G'). Our goal is to upper-bound

1 Vi(y?)
V(E)=V(Z;:jed
(B = Ve = gﬂ(yu

(s
%o

ie A’

By the definition of L; and by submodularity, we know that
forany i € A, j € G'\L; and S C G'\L;,

0 < ui(SU L)) — ui(S) < Vi(ychi,)) _ Uii@).

Authorized licensed use limited to: Stanford University. Downloaded on August 31,2022 at 00:21:10 UTC from IEEE Xplore. Restrictions apply.



Since w;(S;) is a function of the independent random
variables (Z; : j € G’), by the Efron-Stein inequality, we

have
Var[u;(S;)] < E jezg <ui(SZ-) - r%inui(si)>2
=E ; (ui(Si) — ui(Si\{j}))*
<4l g ZS (ui(S:) — wi(SAL)
< “if:@) -E[ui(S;)] = %ﬂ) Vily:)

where we used the submodularity of u; in the last inequality.
By Chebyshev’s inequality, we have

W(Y@)] < Yarfui(5;)

()
2 (Vi(yi)/2)?

cVilyi)

Pr [ui(Si) < <

Therefore,

= (i) =

Vi(yi) n Vi(yi)
Vilyi)/2 — ui(D)
vl

Combining this with % Y e “;((y)) < o, we can write

1 Vi(y?) |:Vi(Yi):|

EV(Z)] = - K < (2+44/c)a.
vl= - 2 Vil i) (2+4/c)
By Markov’s inequality, we conclude that with probability

Qe), V(Z) < (1+6)(2+ 4/c)a. n

E. Phase V: Matching recombination

Now we have a fractional solution y(*) with good prop-
erties; however, we ignored the fact that H should be also
allocated. Our goal in this section is to prove that there exists
a matching which works well with our fractional solution
y(*), and at the same time it has additional properties which
allow us round the large items (or in fact discard them!) and
still obtain a good value of Nash Social Welfare.

We proceed very much as in [15]. First, we prove that
there exists a matching o which obtains a good value
together with y (%),

Matching extension: Here we show that there exists a
matching o : A — H which complements well the fractional
solution y (%),

Lemma 6. Let x* be the optimal solution of (MixedMul-
tilinear), i.e. X; =y} + lg: where y* € [0,1]4%9 is a
feasible solution of (LogMultilinear) and (H7,...,H}) is a

partition of H. Let y' € [0,1]2%9 be an arbitrary fractional
solution, satisfying

ZG.A/

andy), =0 fori ¢ A'. Then there is a matching 7 : A — H
such that

1/n
NSW(y 7T <HV y,—i—lﬂ(l)))

i€A

Proof: Suppose that agent i receives k; = |H}| items
from H in the optimal solution, and let 7(i) € H} be the
most valuable item in H (as a singleton). We extend this
to a matching 7 : A — H, by allocating any remaining
items arbitrarily to agents such that H; = (). By the AMGM
inequality, we can write

1/n
NS H
NSW(y,n Vilyi + 1 i)
By submodularity, we have Vi(x
Vi(y]) + k:Vi(1

OPT
NSW(y,)

YZ + 17T(’L )

1) = Vily; +1m;) <
,,(1-)). Thus, we obtain

zeA Y1+17r(z))

1

<= +3 %
”<i§/v<%+1w<> §>
n i€ A’ ( i€ A

using monotonicity of V; in the denominator. Note that
Vi(y}¥) = 0 and v;(w(i)) > O for every agent ¢ ¢ A,
because these agents do not derive any value from G’ = G\'H
and hence v;(H}) > 0 for these agents; that’s why we
can switch to A’ in the first summation. Finally, using

the assumpt1on LS e “//‘((’;) < f and the fact that

> ZzeA n EleA |H}| =1, we obtain

OPT
NSW (y,n)

<B+1.

Corollary 7. The fractional solution y©® =
RestrictedRandomizedRounding(y) satisfies with constant
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probability

1

™) 2 751970

Proof: Since y from the Iterated Continuous Greedy
algorithm satisfies 1 =D e “//1((’;1 )) < e, we apply Lemma 5
with o = e. For ¢ = 3/e — 1, we get %ZieA, ‘)/(;y())) <
32+1 ) with constant probability Then, we apply Lemma 6
with y’ = y®) and 8 = 3(2 + ) We conclude that there
is a matching 7 such that NSW(y7 ) > 7+12 T OPT. m

Matching recombination: Now that we know a good
matching exists, we want to show that there exists another
matching p with some additional desirable properties. The
matching p should be such that each agent a either gets
significant value from the matching item p(a) alone, or
there is no item of very large value contributing to agent
a in the fractional solution. The solution is a procedure we
borrow almost verbatim from [15]: a careful combination
of the initial matching 7 and a matching 7 optimal with
respect to our fractional solution y. Our goal is to prove the
following lemma, analogous to Lemma 6.1 in [15]. Since
our setup here is somewhat different, we repeat the whole
argument in a self-contained manner. Also, we remark that
while this is an actual algorithmic step in [15], we only need
this procedure in the analysis.

max NSW(y*),

Lemma 8. Let d > 2. Let 7 : A — G be the matching
maximizing [],c 4 vi(7(a)), H = T(.A) the items allocated
in this matching. Let y € [0,1]A%9" and let 7 : A — H be
any matching. Then there is a matching p : A — H such
that

1
NSW > _——_NSW
(y,p)_dJr2 (y,m)

and for every agent a € A,

(i) either va(p(a)) > LVi(ya) (in which case the p-
matching item itself recovers a constant fraction of
agent a’s value)

(ii) or for every item j € G, v.(j) < éVa(ya) (in which
case there are no items with large contributions to
Va(Ya))~

Proof: Let T be the initial optimal matching and H =
7(A). Let y € [0,1]4%9" and let 7 : A — H be any
matching. (We will use the optimal matching with respect
to y but that is not relevant now.)

We will construct a new matching p which combines
7 and 7 in a certain way. First, whenever 7(a) = 7(a),
we set p(a) = 7(a) = w(a). Next, we consider the two
matchings as sets of edges (a,n(a)) and (a,7(a)) and
consider their symmetric difference, mA7. The symmetric
difference consists of alternating paths and cycles covering
the agents such that 7(a) # 7(a).

Let B ={a € A:vy(r(a)) < 7
a modified matching 7’ where 7’(a)

w(Ya)}. We define
( ) for a ¢ B and

1

7/(a) = 0 for a € B, meaning that agents a € B don’t get
any items in 7'. If 7(a) contributes less than 5V, (ya),
we have

Va(ya + 17r(a)) <V ( ) + Ua(ﬂ(a))
d

< 27 Valve) <

V a 17T’aa
T (Yo + 1a(a))

—d—

and so

1/n
NSW(y,n") = ( Va(ya + 1«@)))
ac A

d 1 1/n
(H g Velvat 1w<a))>

acA

Y

= %NSW(y7w).

Consider an alternating path/cycle C' in 7A7 and its set
of agents A(C'). We distinguish two cases.

1) BN A(C) = 0 (7 provides good value for all agents
in A(C)). In this case we set p(a) = m(a) for all a €
A(C).

2) BN A(C) # 0 (some agents in A(C) don’t get good
value from 7). We remove from C' every edge (a, 7(a))
such that @ € B (which means that 7'(a) = 0);
this breaks C' into alternating paths. Let us consider
one such alternating path, denoting the agents on it
ai,as,...,ar and the items 41,49, ...,4,. If K = 1, the
path consists of just one edge (a1,41). If k£ > 1, the path
consists of edges (a1,41), (i1, az2), (az,i2),. .., (ak, ix),
where i; = 7(a;) for j < k and i; = m(a;41) for
j < k. We also have a; € B (this is an agent who does
not get any item in 7') and ag, ..., ar ¢ B.

We use the following criterion to decide whether we
should use the 7m-edges or the 7-edges from this alter-
nating path: Let

olat, ... ax)
a] Yaj + ]_Tr(aj))
aJ yaj + 1"'(‘1_7))

k
_ al ylll
Val (yal + ]-T(al)) 1;[
k
Vi, (Yay) Va; (Ya; +14;_,)

_Val (yal + lil) j=2 Vaj (yaj + 11j) .

This is the factor incurred in the objective function if we
switch from 7’ to 7 on this alternating path. We call this
alternating path 7-favorable', if p(ay,...,a;) < d¥,
and we define p(a;) = 7(a;) =14, for 1 < j < k. Oth-
erwise, we call it w-favorable and we define p(a;) = 0,
p(aj) = 7T(Clj) = ij_l for 2 S] S k.

If we view the process as starting from the matching
7' and then applying a swap for each 7-favorable path,

l“reversible” in [15]
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we obtain a solution (y, p) of value

NSW(y, p)
_ 1
= H QO(G,l, .. 7ak) NSW(Y’ 71‘/)
(at,... ar)EPr
_1
> H d" NSW(y, )

(a1,...,ax)EP~

where P, is the set of 7-favorable alternating paths.
Since the alternating paths are disjoint in terms of the
agents they cover, H(al ____ ar)EPs d¥ < d", and we
obtain that

1
NSW(y, p) = SNSW(y, ')
d—1
(v, m)

1
>~ NSW
293 (y,m).

Now we turn to the guarantee for each agent a € A. If
p(a) = 7(a) (i.e. the agent receives an item from the initial
matching), then we have either v, (p(a)) > 2V, (y,) which
satisfies (i), or by the optimality of the initial matching, we
have for every j € G\ H, va(j) < vo(7(a)) = va(pla)) <

V (yo) which satisfies (ii).

If p(a) 7(a), then this means that ¢ was on a -
favorable alternating path, and also a ¢ B because otherwise
we would have set p(a) = 7’(a) = (. So this means that
va(p(a)) = va(m(a)) = 755 Va(ya) by the definition of B.
So we satisfy (i).

The last case is that p(a) = (. This means that a =
a1 € B is the starting point of a m-favorable path P, and
p(a) = 7’(a) = (). Consider any item j € G\H. In the initial
matching 7, we could replace the 7-edges on P by the -
edges, and in addition assign j to agent a;. However, this
would not result in an improvement since 7 was optimal (as
a stand-alone matching). Therefore, we have the following
inequality:

<1.

o I

w & B

Ual

Recall that as,...,a nd therefore v, (m(a;)) >

1 —Va, (yaj) for ] = ., k. This implies that
’Ua (71'((1])) a; (Ya; +1,r(a )) 1 Va; (Va;+1x(a)))
va; (7(ay)) = d Va, (T(a7)) Z AV, Vay T 1r(ay)) and also

ay (9) Va, (4)

0bv10usly (T(al)) 2 Vay (¥Yay +1r(ay))”

Therefore, we have

Va, ()
Va, (YG1 + 1T(a1))

34

Finally, since the path is 7-favorable, we have

akaik)
k

Combining the last two inequalities, we obtain

w(ay, i, .
Ytl] + 17r(aJ))
y(lj + 1T(aj))

V(l1 yal

= > d".
Va1 (ya1 + 17’((11)

1
3 Val (yal )

val(]) < d

which means that agent a = a; satisfies (ii).

F. Conclusion of the analysis

We conclude the analysis by showing that the matching
p we proved to exist in Section III-E provides a good
value with our fractional solution, even if we ignore the
contribution of large items. Hence we can obtain an integral
assignment which provides a constant-factor approximation
relative to OPT and thus prove Theorem 1.

Lemma 9. Ler (S1,...,Sy) be the assignment obtained by
RestrictedRandomizedRounding(y) with parameter
c > 0 and yis) = ygLi) + 1g, the sparsified fractional
solution. Then there exists a matching p : A — H such that

(H vi(Si + p(i))

i€ A

e N OPT
T (T+12/¢)(c+3)(c+4)

Proof: Given the sparsified solution y(®) and the match-
ing 7 provided by Corollary 7, satisfying
1

7) > ————OPT,

NSW (5)
SWly T T4+12/c

let p be the matching provided by Lemma 8 with parameter
d = ¢+ 2. This matching satisfies

1
c+4

NSW(y(™), p) > ——NSW(y(®), )
1

(T+12/¢)(c+4)

OPT

> 5V (st))

or (ii) for every item j € G’ = G\'H, v;(j) < C}FQV( )
For every agent i € A, if (i) is the case, then we know
that

and for every agent i € A, either (i) v;(p(i))

vi(Si + p(i)) =
>

vi(p(i))

—— (Vi) + ilo(i)

> V;(YEG) + 1p(i))
c+3 '
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Otherwise in case (ii), we have

vi(Si + p(0)) = Vil +1,)) =) wiuili
JjEL;
(s) Vily™)
> Vily; +1P(1))_(C+1)ﬁ

()
>V( +1p())
c+ 2

where the second inequality holds because ) jer; Yij < ¢+
1. In conclusion, we know that for any agent i € A,

)

vi(Si + p(i)) > TV( © 4 L))

Therefore, we obtain

(H vi(S; + p(

i€ A

\%

1/n
| 1 s
Z))) > 3NSW(y(‘ ), p)

S OPT
~(T+12/¢)(c+3)(c+4)°

Now we can prove the main theorem.
Proof of Theorem 1:

By Lemma 9, there is a matching p : A — H such that
even if we count only the contribution of the small items
S; allocated in RestrictedRandomizedRounding(y),
we have

1/n
. OPT
(g”i(5i+p(z))> 2 T 120+ et d)

This means that the same holds for the sets R; allocated in
our algorithm by RandomizedRounding(y), since S; C
R, (the sets R; include additionally the large items after
rounding). In the final step, we find a matching ¢ which is
at least as good as p. We choose ¢ = 1 which gives

1/n 1/n
(H vi(R, +U(i))) <Hvz—(52- +p(z‘))>

>
€A €A
OPT  OPT
~19-4.5 380 °

IV. CONCLUSION

We have shown a constant-factor approximation algorithm
for Nash Social Welfare with submodular valuations, which
is the largest natural class of valuations that allows a
constant-factor approximation (using value queries) even
for additive welfare maximization. However, there are still
several directions and open problems to explore. An obvious
one is to improve the approximation ratio which is rather
large. As we mentioned, we believe that a substantially
smaller (say double-digit) factor is hard to achieve with our
approach.

Another open problem is the asymmetric Nash So-
cial Welfare problem, where the objective function is a
weighted geometric mean of the agents’ valuation functions:
[T (vi(S;))« for some w; > 0 (the problem we consider
is w; = 1/n). The goal is to get a constant-factor approxi-
mation independent of the weights w;. We remark that [15]
gives an approximation guarantee dependent on the weights
w;; we do not pursue this direction here. For the asymmetric
problem, getting a universal constant factor is open even in
the the basic case of additive valuations.

Last but not least, solutions optimizing Nash Social
Welfare often have additional fairness properties like the
envy-free property, or envy-freeness up to one good (see
[1]). A line of work has been developed in trying to
achieve approximation guarantees for Nash Social Welfare
and certain fairness guarantees at the same time [5], [8], [9].
However, our solution does not seem to have such properties
and constant-factor approximations with additional fairness
guarantees are still unknown for valuation classes beyond
additive ones.
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