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Our algorithm builds on and extends a recent constant-factor
approximation for Rado valuations [15].
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I. INTRODUCTION

Nash Social Welfare is the following optimization prob-

lem.

Nash Social Welfare (NSW): Given m indivisible items

and n agents with valuation functions vi : 2
[m] → R+, we

want to allocate items to the agents, that is find a partition of

the m items (S1, S2, . . . , Sn) that maximizes the geometric
average of the valuations,

NSW(S1, S2, . . . , Sn) =

(
n∏

i=1

vi(Si)

)1/n

.

Among the possible objectives considered in allocation of

indivisible goods, it can be viewed as a compromise be-

tween Maximum Social Welfare (maximizing the summation∑n
i=1 vi(Si), which does not take fairness into account),

and Max-Min Welfare (maximizing min1≤i≤n vi(Si), which

focuses solely on the least satisfied agent and ignores the

possible additional benefits to others). The notion of Nash

Social Welfare goes back to John Nash’s work [20] on

bargaining in the 1950s. It also came up independently in

the context of competitive equilibria with equal incomes [21]

and proportional fairness in networking [17]. An interesting

feature of Nash Social Welfare is that the problem is

invariant under scaling of the valuations vi by independent

factors λi; i.e., each agent can express their preference in a

“different currency” and this does not affect the problem.

The difficulty of the problem naturally depends on what

class of valuations vi we consider. Unlike the (additive)

Social Welfare Maximization problem, the Nash Social

Welfare problem is non-trivial even in the case where the vi’s
are additive, that is vi(S) =

∑
j∈S vij where vij = vi({j})

is agent i’s valuation for item j. It is NP-hard in the

case of 2 agents with identical additive valuations (by a

reduction from the Subset Sum problem), and APX-hard

for multiple agents [18]. A constant-factor approximation

for the additive case was discovered in a remarkable work

by Cole and Gatskelis [11], and subsequently via a very

different algorithm by Anari et al. [3]. The algorithm of [11]

is based on consideration of market equilibria and market-

clearing prices. The algorithm of [3] uses a convex relaxation

inspired by Gurvits’s work on the permanent of doubly

stochastic matrices, which relies on properties of real stable

polynomials. Inspired by these exciting breakthroughs, a

series of follow-up work has been developed along these two

lines [2], [5], [7], [10], [16]. The best approximation factor

for additive valuations currently stands at e1/e � 1.45 [5].

A particularly compelling question is whether a constant-

factor approximation is possible for submodular valuations

(where a constant-factor approximation is known for (addi-

tive) social welfare maximization [13], [22], and submodular

valuations are the largest natural class for which such a

result is known, assuming only value-oracle access to the

valuations). Some progress has been made for Nash Social

Welfare with valuations beyond additive ones: a constant

factor for concave piece-wise linear separable utilities [2],

and for budget-additive valuations [7], [14]; in fact the

approximation factor for budget-additive valuations now

matches the e1/e for additive valuations [7]. Recently, [19]

designed an algorithm to estimate the optimal value within a

factor of e3

(e−1)2 � 6.8 for certain subclasses of submodular

valuations, such as coverage and summations of matroid

rank functions, by extending the techniques of [3] using

stable polynomials. And most recently, [15] designed a

constant-factor (772) approximation algorithm for the class

of “Rado valuations”, which includes matroid rank functions

and more generally valuations defined by a certain matching

problem with a matroid constraint. [15] presents another

significantly different approach to the problem: Instead of

market/pricing-inspired techniques or techniques based on

stable polynomials, this paper uses a combination of com-

binatorial matching techniques and a convex programming

relaxation.

For general submodular valuations, the best result prior
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to this work was an O(n)-approximation which also applies

to subadditive valuations [4], [16]. However, for subadditive

or even fractionally subadditive valuations we cannot expect

a constant factor in the value oracle model [4], for the

same reasons that this is impossible for the Social Welfare

Maximization problem [12]. In the special case of a con-

stant number of agents n with submodular valuations, [16]

presents a (1 − 1/e − ε)-approximation for any ε > 0; this

algorithm uses an extensive enumeration which makes the

running time exponential in n.

Our result and techniques:

Theorem 1 (Main Result). There exists a polynomial-time
constant-factor approximation algorithm for the Nash So-
cial Welfare problem with monotone submodular valuation
functions, accessible by value queries.

The approximation factor that we obtain is 380. We made

only modest effort to optimize the constant. We believe that

the best constant achievable with the techniques of this paper

would still be a triple-digit number.

Our techniques can be viewed as a natural extension

of the approach in [15]. In hindsight, the strength of the

approach of [15] is that it is rather modular and isolates

the issue of providing at least some nonzero value to

each agent as a separate matching problem. The question

then remains how to deal with the remaining items and

for this we develop some new techniques. The approach

of [15] relies on the existence of a tractable Eisenberg-

Gale relaxation with useful polyhedral properties for Rado

valuations; this approach might be possibly extended to

gross substitutes valuations, but probably not beyond that.

The main new components that we introduce are: (i) a new

non-convex relaxation of the problem (the Mixed Multilinear

Relaxation), (ii) an algorithm to solve it approximately, and

(iii) a randomized rounding technique using concentration

of submodular functions to obtain an integer solution. We

present a more detailed overview at the beginning of Sec-

tion III.

II. PRELIMINARIES

Nash Social Welfare (NSW): Given a set of m indivisi-

ble items G and a set of n agents A, with valuation functions

vi : 2
G → R+ for each i ∈ A, we want to allocate the items

to the agents, that is find a partition (S1, S2, . . . , Sn) of G in

order to maximize the geometric average of the valuations,

NSW(S1, . . . , Sn) =

(
n∏

i=1

vi(Si)

)1/n

.

Monotone Submodular Functions: Let G be a finite

ground set and v : 2G → R.

• v is submodular if for any S, T ⊆ G,

v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ).

• v is monotone if v(S) ≤ v(T ) whenever S ⊆ T .

Multilinear Extension: For a set function v : 2G → R,

we define its multilinear extension V : [0, 1]G → R by

V (x) =
∑
S⊂G

v(S)
∏
i∈S

xi

∏
j∈G\S

(1− xj).

The following is well-known and used in prior work (e.g.,

[6]).

Lemma 2. Let V : [0, 1]G → R be the multilinear extension
of a set function v : 2G → R. Then

• If v is monotone non-decreasing, then V is non-
decreasing along any line with direction d ≥ 0.

• If v is submodular, then V is concave along any line
with direction d ≥ 0.

We use the following shorthand notation: For a singleton

set {j}, we write v(j) to denote v({j}). For a set S (either

containing or not containing j), we write v(S+j) to denote

v(S∪{j}) and v(S−j) to denote v(S \{j}). We denote by

1S the indicator vector of S, i.e. (1S)j = 1 if j ∈ S and 0
otherwise. We also write 1j instead of 1{j} to simplify the

notation.

III. OUR ALGORITHM AND ANALYSIS

Algorithm 1 Nash Social Welfare algorithm
1: procedure NSW(A,G, v1, . . . , vn):

2: Find a matching τ : A → G maximizing∏
i∈A vi(τ(i))

3: H := τ(A), G′ := G \ H, A′ := {i ∈ A : vi(G′) >
0}

4: y := IteratedContinuousGreedy(A′,G′, v1, . . . , vn)
5: (R1, . . . , Rn) := RandomizedRounding(y)
6: Find a matching σ : A → H maximizing∏

i∈A vi(Ri + σ(i))
7: Return (R1 + σ(1), R2 + σ(2), . . . , Rn + σ(n))
8: end procedure

Our algorithm at a high level is described in Algorithm 1.

We are strongly inspired by the algorithm of [15] for Rado

valuations and follow their high-level structure. We preserve

some of the components of their algorithm but replace

components which previously relied on special properties

of Rado valuations. The new components are: a new relax-

ation of the Nash Social Welfare problem, and the subrou-

tines IteratedContinuousGreedy and RandomizedRoud-
ing, which are described and analyzed in Sections III-C

and III-D, respectively. The analysis can be summarized as

follows (with a numbering of phases analogous to [15]).

Phase I: Initial Matching: We find an optimal assign-

ment of 1 item for each agent, i.e. a matching τ : A → G
maximizing

∏
i∈A vi(τ(i)). This is also the starting point in

[15]. H denotes the items allocated in this matching.
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Phase II: Mixed Multilinear Relaxation: We formulate

an optimization program which aims to assign the items

in H integrally and the remaining items fractionally under

a certain relaxed objective. However, we do not have a

concave relaxation at our disposal, such as the Eisenberg-

Gale program in [15]; no such tractable relaxation is known

for general submodular functions. Instead, we propose a new

relaxation involving a product of multilinear polynomials.

max
∏
i∈A

Vi(xi) (Mixed-Multilinear)

s.t.
∑
i∈A

xij ≤ 1 ∀j ∈ G

xij ≥ 0

xij ∈ {0, 1} ∀i ∈ A, j ∈ H

Here, Vi(xi) =
∑

S⊆G vi(S)
∏

j∈S xij

∏
j′∈G\S(1−xij′)

is the multilinear extension of vi.

Although the items in H could be allocated arbitrarily, we

will use a matching in the end. Similarly to [15], we prove

that this does not hurt the solution significantly. In the next

phase, we deal with the question of solving the fractional

part of the relaxation.

Phase III: Iterated Continuous Greedy Algorithm: We

ignore the items in H for a moment and try to solve the

optimization problem restricted to the item set G′ = G \ H
and the subset of agents A′ who have positive value for

these items.

max
∏
i∈A′

Vi(yi) (MultilinearProduct)

s.t.
∑
i∈A′

yij ≤ 1 ∀j ∈ G′

yij ≥ 0

A natural idea is to apply the continuous greedy algorithm

of [6]. However, a direct application doesn’t work since

the objective function is not concave even in nonnegative

directions (a product of concave functions is not necessarily

concave). We can obtain an objective function concave in

nonnegative directions, if we take a logarithm of the ob-

jective function: The logarithm of a non-decreasing concave

function is non-decreasing concave, and we get a summation

instead of a product.

max
∑
i∈A′

log Vi(yi) (LogMultilinear)

s.t.
∑
i∈A′

yij ≤ 1 ∀j ∈ G′

yij ≥ 0

Nevertheless, the continuous greedy algorithm still

doesn’t work as such, because it gives a multiplicative

approximation; but we require an additive approximation on

the logarithmic scale.

Our solution is an iterated version of the continuous

greedy algorithm, where we run the continuous greedy

algorithm, scale the solution by a factor of 1/2, and repeat

as long as there is some tangible gain. The intuition is that as

long as our solution has low value, the continuous greedy

process makes progress at a high rate and hence we gain

more in the continuous greedy process than what we lose

in the scaling step. The output of the iterated continuous

greedy algorithm is a solution y satisfying

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
= O(n)

for any feasible solution y∗. This is a stronger guarantee than

just approximating the optimum of (LogMultilinear) which

will be useful in the analysis.

Phase IV: Randomized Rounding: Our next goal is to

round or at least sparsify the fractional solution y. Since our

relaxation doesn’t have polyhedral properties which were

used for sparsification in [15], we resort to a more ele-

mentary approach: randomized rounding. We simply allocate

each item j to agent i with probability yij .

Ideally, we would like to argue that the contribution to

each agent is strongly concentrated, and thus the value of

the assignment is close to the value of the fractional solution.

It is known that submodular functions satisfy concentration

bounds which can be useful here; the only problem is that the

concentration bounds work well only for items with small

contributions.

Hence, we partition the items for each agent into “large”

and “small”: Large items are defined greedily by choosing

the maximum marginal profit, as long as the total fractional

mass of large items does not exceed some constant c > 0.

In the analysis, we apply randomized rounding only to the

small items. Since their marginal contributions are bounded,

we can apply the Efron-Stein inequality and prove that we

lose only a constant factor by rounding the small items. The

result is a sparsified fractional solution, where only large

items are assigned fractionally and their total fractional mass

is bounded for each agent.
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Phase V: Matching Recombination: The last piece

of the puzzle is what to do with large items. Luckily,

[15] contains a component which is useful exactly for this

purpose. A key lemma in [15] shows that for any fractional

solution y and any matching π : A → H (imagine the

optimal matching on top of y), there is another matching

ρ : A → H such that the value of (y, ρ) is comparable

to the value of (y, π), and for each agent, either the item

matched in ρ has a significant value, or there is no item

outside of H which has a significant value. The matching

is obtained by an alternating-cycle procedure applied to the

matching π and the initial matching τ .

We adapt this lemma and apply it in our setting: After

switching to the matching ρ, either the matching item ρ(i)
itself provides a constant fraction of agent i’s value, or the

large items contribute at most a constant fraction of agent

i’s value. Hence, in both cases we can simply discard the

large items in the analysis and lose only a constant factor.

We remark that in the algorithm, we apply randomized

rounding to all items in G \H, without distinguishing large

and small items. This does not hurt and the algorithm is

more natural this way. Also, we do not find the particular

matching ρ described here; we simply find the most prof-

itable matching at the end. This provides a solution at least

as good as the one we analyze in our proof.

In the following, we describe each phase in detail.

A. Phase I: Initial Matching

First, we solve the Nash Social Welfare problem under

the restriction that we only allocate at most one item to each

agent. To achieve this, consider the complete bipartite graph

between A and G and assign an edge weight ωij = log vi(j)
to every edge (i, j) ∈ A × G. We can find an optimal

assignment τ : A → G by computing the maximum-weight

matching in this bipartite graph; i.e., τ(i) is the item matched

to agent i. We define H = τ(A) to be the set of matched

items. We note that each item in the matching has positive

value vi(τ(i)) > 0 for the respective agent, otherwise

there is no matching of positive value, which means that

OPT = 0.

B. Phase II: Mixed Multilinear Relaxation

In this section, we describe our new “Mixed Multilinear”

relaxation for the Nash Social Welfare Problem, and a

restricted “Matching+Multilinear” version of it, which we

show to be within a constant factor of each other. Although

these relaxations are new, they are naturally analogous to

the relaxations in [15].

Mixed Multilinear Relaxation: For each valuation vi :
2G → R+, we define its multilinear extension Vi : [0, 1]

G →
R+ as

Vi(yi) =
∑
S⊆G

vi(S)
∏
j∈S

yij
∏

j′∈G′\S
(1− yij′).

We propose the following relaxation of the Nash Social

Welfare problem.

max
∏
i∈A

Vi(xi) (Mixed-Multilinear)

s.t.
∑
i∈A

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ A, j ∈ G \ H
xij ∈ {0, 1} ∀i ∈ A, j ∈ H

Note that although H was chosen by matching one item

to each agent, this might not be the case in the optimal

solution. Indeed in (Mixed-Multilinear), we allow H to be

allocated arbitrarily; but the assignment cannot be fractional.

(If we allowed all items to be assigned fractionally, the relax-

ation would have an infinite integrality gap, for well-known

reasons.) This relaxation is difficult to deal with, because

it’s hard to find a good assignment of H. Instead, just like

in [15], we consider a restricted version of this relaxation,

where H is required to be allocated by a matching.

max
∏
i∈A

Vi(yi + 1σ(i)) (Matching+Multilinear)

s.t.
∑
i∈A

yij ≤ 1 ∀j ∈ G\H

yij ≥ 0 ∀i ∈ A, j ∈ G \ H
yij = 0 ∀i ∈ A, j ∈ H
σ : A → H is a matching.

Denote by OPT the optimum value of (Mixed-

Multilinear), and by OPTH the optimal value of the above

program (Matching+Multilinear). Similar to Theorem 3.2 in

[15], we have:

Lemma 3.

OPTH ≥ 1

31/3
OPT.

Proof: Consider an optimum solution x∗ of (Mixed-

Multilinear), that is x∗
i = y∗

i +1H∗
i

where y∗ ∈ [0, 1]A×G is

a fractional assignment of the items in G′ and (H∗
1 , . . . , H

∗
n)

is a partition of H. We construct a feasible solution (y∗, σ)
for (Matching+Multilinear), where σ : A → H is a matching

such that for H∗
i �= ∅, σ(i) is the most valuable item in H∗

i ,

and the remaining items in H are matched arbitrarily to

agents such that H∗
i = ∅.

Let ki = |H∗
i | be the number of H-items allocated

to agent i in the optimal solution. If ki > 0, σ(i)
is the most valuable of them, and by submodularity

vi(H
∗) ≤ kivi(σ(i)). This also implies Vi(y

∗
i + 1H∗

i
) ≤

28
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max{ki, 1}Vi(y
∗
i + 1σ(i)). Hence, we can write

OPT =

(∏
i∈A

Vi(yi + 1H∗
i
)

)1/n

≤
(∏

i∈A
max{ki, 1} Vi(y

∗
i + 1σ(i))

)1/n

≤
(∏

i∈A
3ki/3 Vi(y

∗
i + 1σ(i))

)1/n

= 31/3

(∏
i∈A

Vi(y
∗
i + 1σ(i))

)1/n

≤ 31/3 OPTH

where we used the AMGM inequality, the fact that

max{k, 1} ≤ 3k/3 for every integer k ≥ 0, and
∑n

i=1 ki =
n.

We remark that the factor of 31/3 is tight due to the

following instance: |H| = |G \H| = n, n/3 agents have the

valuation v(S) = |S ∩ H|, and the remaining 2n/3 agents

have the valuation v′(S) = min{|S|, 1}. The optimal Nash

Social Welfare is 31/3, since n/3 agents can get value 3
from 3 items of H each, and the remaining agents get value

1 from items in G \ H. If H is allocated as a matching, we

get Nash Social Welfare 1, since each agent receives value

1.

C. Phase III: The Iterated Continuous Greedy Algorithm

In this section, we describe the details of Phase III where

we aim to find a fractional solution of our (LogMultilinear)

relaxation of Nash Social Welfare. We do this for a subset

of items G′ = G \ H, and a subset of agents A′ who have

positive value for these items.

max
1

n

∑
i∈A′

log Vi(yi) (LogMultilinear)

s.t.
∑
i∈A′

yij ≤ 1 ∀j ∈ G′

yij = 0 ∀i ∈ A′, j ∈ H
y ≥ 0

We recall that

Vi(yi) =
∑
S⊆G

vi(S)
∏
j∈S

yij
∏

j′∈G\S
(1− yij′)

is the multilinear extension of vi. In this section we assume

that the vector yi always has 0 in coordinates indexed by

j ∈ H, so effectively we are working with vectors in [0, 1]G
′
.

We design a variant of the continuous greedy algorithm

which approximates the optimal solution within an additive

error of 1.

The Iterated Continuous Greedy Algorithm:
1) Start with a feasible solution y(0), y

(0)
ij = 1

n for each

i ∈ A′ and j ∈ G′.
2) For r = 1, 2, . . ., given a feasible solution y(r−1), initi-

ate y( 12 ) =
1
2y

(r−1) and run the following continuous

greedy algorithm:

• Let z(t) be a feasible solution (satisfying z ≥ 0 and∑
i zij ≤ 1 for each j) which maximizes the linear

objective function∑
i∈A′

zi · ∇Vi(yi(t))

Vi(yi(t))
.

• Evolve the solution y(t) according to the equation

d

dt
y(t) = z(t),

for t ∈ [ 12 , 1].

3) Set y(r) = y(1), the solution obtained in this iteration.

4) If

1

n

∑
i∈A′

log Vi(y
(r)) ≥ 1

n

∑
i∈A′

log Vi(y
(r−1)) +

1

8
,

let r ← r + 1 and repeat.

5) Otherwise, return y(r).

Theorem 4. Let y∗ denote any feasible solution of the opti-
mization program (LogMultilinear). Assuming that vi(G′) >
0 and vi is monotone submodular for each i ∈ A′,
the Iterated Continuous Greedy algorithm terminates in
O(log n) iterations and returns a feasible solution y for
(LogMultilinear) such that

1

n

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
≤ e.

We note that by concavity of the logarithm, the conclusion

also implies 1
n

∑
i∈A′ log

Vi(y
∗
i )

Vi(yi)
≤ 1, i.e. our solution

approximates the optimum of (LogMultilinear) within an

additive error of 1. The statement in the theorem is stronger

and more convenient, though, which we will use later in

several places.

Proof: As a starting point, we have y
(0)
ij = 1

n . By

concavity of Vi in positive directions, we have the simple

bound Vi(y
(0)
i ) ≥ 1

nVi(1). Hence, 1
n

∑
i∈A′ log Vi(y

(0)
i ) ≥

1
n

∑
i∈A′ log Vi(1) − log n. Now we apply the continu-

ous greedy algorithm as above, and we iterate as long

as after each iteration we have 1
n

∑
i∈A′ log Vi(y

(r)) ≥
1
n

∑
i∈A′ log Vi(y

(r−1))+ 1
8 . Since for any feasible solution,∑

i∈A′ log Vi(y
(r)) ≤ ∑

i∈A′ log Vi(1), this means that we

cannot iterate more than O(log n) times. It remains to prove

that the solution satisfies the claimed inequality.

To prove this, assume at any time t that∑
i∈A′

Vi(y
∗
i )

Vi(yi)
> en. (*)
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A possible direction for the continuous greedy algorithm to

pursue is always z = y∗. For this direction, we obtain∑
i∈A′

y∗
i · ∇Vi(yi(t))

Vi(yi(t))

≥
∑
i∈A′

Vi(y
∗
i )− Vi(yi(t))

Vi(yi(t))

=
∑
i∈A′

(
Vi(y

∗
i )

Vi(yi(t))
− 1

)
> (e− 1)n

using the monotonicity and concavity of Vi in nonnegative

directions in the first inequality, and our assumption (*) in

the second inequality. Since the continuous greedy algorithm

chooses a direction zi(t) by optimizing the expression∑
i∈A′

zi·∇Vi(yi(t))
Vi(yi(t))

, we obtain the same bound for the

greedy direction zi(t), and finally by the chain rule we have

d

dt

∑
i∈A′

log Vi(yi(t))

=
∑
i∈A′

1

Vi(yi(t))
∇Vi(yi(t)) · dyi

dt

=
∑
i∈A′

zi(t) · ∇Vi(yi(t))

Vi(yi(t))
> (e− 1)n.

Hence the rate of increase in
∑

i∈A′ log Vi(yi(t)) is at least

(e− 1)n as long as (*) is satisfied.

Each iteration starts by scaling the previous solution

by a factor of 1
2 and then running continuous greedy

for t between 1
2 and 1. Again by concavity, we have

Vi(
1
2y

(r−1)) ≥ 1
2Vi(y

(r−1)). By integration over the course

of the continuous greedy process, we obtain∑
i∈A′

log Vi(y
(r)
i )

=
∑
i∈A′

log Vi

(
1

2
y
(r−1)
i

)
+

∫ 1

1/2

d

dt

∑
i∈A′

log Vi(yi(t))dt

≥
∑
i∈A′

log

(
1

2
Vi(y

(r−1)
i )

)
+

∫ 1

1/2

(e− 1)n dt

=
∑
i∈A′

log Vi(y
(r−1)
i ) +

(
e− 1

2
− log 2

)
n.

We note that all logarithms here are natural and e−1
2 −

log 2 > 1
8 . Hence we gain at least 1

8n in each iteration as

long as (*) is satisfied, and we terminate otherwise.

Discretization: As in the original continuous greedy

algorithm [6], we need to discretize the continuous process

to obtain an actual polynomial-time algorithm. This can be

done using standard methods.

First, for any given yi(t), we can estimate by random

sampling

∂Vi

∂yj

∣∣∣
yi(t)

= E[vi(Ri(t) + j)− vi(Ri(t)− j)]

where Ri(t) is a random set containing each item j in-

dependently with probability yij(t). Since vi(Ri(t) + j) −
vi(Ri(t) − j) ∈ [0, vi({j})], using poly(m,n) samples we

can obtain estimates ωij of ∂Vi

∂yj
within an error of

vi({j})
poly(m,n)

with high probability.

Then we find a direction z(t) by solving the linear

programming problem

max

⎧⎨
⎩

∑
i∈A′

1

Vi(yi(t))

∑
j∈G′

ωijzij : zij ≥ 0,
∑
i

zij ≤ 1 ∀j
⎫⎬
⎭

(using ωij in place of ∂Vi

∂yj
). If the estimates ωij are correct

up to an error of
vi({j})

poly(m,n) , the optimum is correct up

to a relative error of 1
poly(m,n) . Note that Vi(yi(t)) ≥

1
poly(m,n)

∑
i∈G′ vi({j}) since this is true for the initial

solution y(0) and the value can only decrease O(log n) times

by a factor of 2; apart from that it increases.

Then we make a step of size δ = 1
poly(m,n) , where we set

y(t+ δ) = y(t) + δ · z(t). The guarantee we claim here is

that ∑
i∈A′

log Vi(yi(t+ δ))

≥
∑
i∈A′

log Vi(yi(t))

+δ

(
1− 1

poly(m,n)

) ∑
i∈A′

y∗
i · ∇Vi(yi(t))

Vi(yi(t))
.

This is true because we find the optimum of the linear pro-

gramming problem within a 1
poly(m,n) relative error, and also

the values Vi(yi) and the partial derivatives ∂Vi

∂yj
can change

only by a factor of 1± 1
poly(m,n) between yi(t) and yi(t+δ),

as long as t ≤ 0.99 (since Vi(yi) and ∂Vi

∂yj
are nonnegative

and linear in each coordinate separately). Hence, we can

mimic the continuous analysis for t ∈ [0.5, 0.99] within a
1

poly(m,n) relative error at every step, and we lose a factor

of 49/50 by ignoring the improvement between [0.99, 1].
These errors are easily absorbed for example in the gap

between e−1
2 − log 2 and 1

8 which we ignore above. So the

theorem still holds for the discretized algorithm, with high

probability.

D. Phase IV: Randomized Rounding

In this section, our goal is to round the fractional solution

y from Section III-C. In the actual algorithm, we use the

following simple randomized rounding procedure.

RandomizedRounding(y):
1) For each item j ∈ G′ independently, select Zj ∈

{0, 1, . . . , n} where Zj = i with probability yij , or

Zj = 0 with probability 1−∑
i∈A′ yij .

2) Define Ri = {j ∈ G \ H : Zj = i}.

3) Return (R1, . . . , Rn).
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However, in the analysis we will proceed more carefully,

separating the contributions of “large” and “small” items.

We first define what we mean by “large” and “small”. For

any y ∈ [0, 1]G and S ⊆ G, define vector y(S) to be the

vector obtained by setting all the coordinates not in S to 0.

y
(S)
i =

{
yi i ∈ S
0 i /∈ S.

For each agent i ∈ A′, we define the set Li of “large items”

as follows, for a given constant c > 0. Let us assume in

the following that
∑

j∈G′ yij ≥ c for every agent i. This

is without loss of generality, since we can always extend

the instance with dummy items of value 0, which can be

allocated fractionally to any agent and it doesn’t change the

outcome of our algorithm in any way.

FindLargeSet(i, y):
1) Start with an empty set at time 0, L

(0)
i = ∅.

2) At time t ≥ 1, add the item with the largest marginal

value to L
(t−1)
i . More specifically, let L

(t)
i = L

(t−1)
i ∪

{jt} where

jt = argmax
j∈G′\L(t−1)

i

(
Vi(y

(L
(t−1)
i )

i + 1j)− Vi(y
(L

(t−1)
i )

i

)

3) As long as
∑t

t′=1 yijt′ < c and G′ \ L
(t)
i �= ∅, let

t ← t+ 1 and repeat step 2.

4) Return Li := L
(t)
i .

We have two simple corollaries for the set Li.

• For any agent i ∈ A′,

c ≤
∑
j∈Li

yij < c+ 1,

• For any i ∈ A′, j ∈ G′\Li,

Vi(y
(Li)
i + 1j)− Vi(y

(Li)
i ) ≤ 1

c
Vi(y

(Li)
i ).

The first property follows from the stopping rule (includ-

ing our assumption that each agent gets
∑

j∈G′ yij ≥ c
in the fractional solution). As for the second one, if the

marginal value is 0 for any j ∈ G′\L(t−1)
i , it is trivially

true. Otherwise, consider any item j in Li that we did not

include in the procedure; (by submodularity) in every step

we included an item jt of marginal value

Vi(y
(L

(t−1)
i )

i +1jt)−Vi(y
(L

(t−1)
i )

i ) ≥ Vi(y
(Li)
i +1j)−Vi(y

(Li)
i )

and by multilinearity the total contribution of the included

items is

Vi(y
(Li)
i ) =

|Li|∑
t=1

yijt(Vi(y
(L

(t−1)
i )

i + 1jt)− Vi(y
(L

(t−1)
i )

i ))

≥ c(Vi(y
(Li)
i + 1j)− Vi(y

(Li)
i )).

Now we can describe our modified rounding procedure.

We note that this procedure is used only in the analysis.

RestrictedRandomizedRounding(y):

1) Compute the set Li (specified above) for each agent

i ∈ A′.
2) For each item j ∈ G′, assign j to a random player

according to yij :

Let Zj = i with probability yij , or Zj = 0 with

probability 1−∑
i∈A′ yij .

For each i ∈ A′, let Si = {j ∈ G′\Li : Zj = i} and

y
(s)
i = y

(Li)
i + 1Si

.

3) Return y(s).

Note that only “small items” are included in the sets

S1, . . . , Sn, and large items are still assigned fractionally in

y(s). Thus the solution y(s) can be viewed as “sparsified”

rather than rounded. We note that the notion of sparsity

here is in terms of the summation of fractional variables

(
∑

i∈A′
∑

j∈Li
y
(s)
ij < (c + 1)n) rather than the size of the

support of y(s).

The notion of large/small is agent-specific, so y(s) might

not even be a feasible solution; an item could be allocated

fully as a small item and still fractionally as a large item

for other agents. We will show at the end that large items

can be in fact discarded. However, for now we analyze the

value of y(s).

Lemma 5. Suppose that

1

n

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
≤ α.

Then with probability Ω(ε), the solution y(s) obtained by
RestrictedRandomizedRounding(y) with parameter c > 0
satisfies

1

n

∑
i∈A′

Vi(y
∗
i )

Vi(y
(s)
i )

≤ (1 + ε)(2 + 4/c)α.

Proof: Using the notation from

RestrictedRandomizedRounding(y), for every

i ∈ A′, we define a monotone submodular function

ui : 2G
′\Li → R, where ui(S) = Vi(y

(Li)
i + 1S). Recall

that y
(s)
i = y

(Li)
i + 1Si

; that is, Vi(y
(s)
i ) = ui(Si). The

sets S1, . . . , Sn are determined by the random variables

(Zj : j ∈ G′). Our goal is to upper-bound

V (Z) = V (Zj : j ∈ G′) =
1

n

∑
i∈A′

Vi(y
∗
i )

Vi(y
(s)
i )

=
1

n

∑
i∈A′

Vi(y
∗
i )

ui(Si)
.

By the definition of Li and by submodularity, we know that

for any i ∈ A′, j ∈ G′\Li and S ⊆ G′\Li,

0 ≤ ui(S ∪ {j})− ui(S) ≤ Vi(y
(Li)
i )

c
=

ui(∅)
c

.
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Since ui(Si) is a function of the independent random

variables (Zj : j ∈ G′), by the Efron-Stein inequality, we

have

Var[ui(Si)] ≤ E

⎡
⎣∑
j∈G′

(
ui(Si)−min

Zj

ui(Si)

)2
⎤
⎦

= E

⎡
⎣∑
j∈Si

(ui(Si)− ui(Si\{j}))2
⎤
⎦

≤ ui(∅)
c

· E
⎡
⎣∑
j∈Si

(ui(Si)− ui(Si\{j}))
⎤
⎦

≤ ui(∅)
c

· E[ui(Si)] =
ui(∅)
c

· Vi(yi)

where we used the submodularity of ui in the last inequality.

By Chebyshev’s inequality, we have

Pr

[
ui(Si) ≤ Vi(yi)

2

]
≤ Var[ui(Si)]

(Vi(yi)/2)2
≤ 4ui(∅)

c Vi(yi)
.

Therefore,

E

[
Vi(yi)

ui(Si)

]
≤ Vi(yi)

Vi(yi)/2
+

Vi(yi)

ui(∅) · Pr
[
ui(Si) ≤ Vi(yi)

2

]

≤2 +
4

c
.

Combining this with 1
n

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
≤ α, we can write

E[V (Z)] =
1

n

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
E

[
Vi(yi)

ui(Si)

]
≤ (2 + 4/c)α.

By Markov’s inequality, we conclude that with probability

Ω(ε), V (Z) ≤ (1 + ε)(2 + 4/c)α.

E. Phase V: Matching recombination

Now we have a fractional solution y(s) with good prop-

erties; however, we ignored the fact that H should be also

allocated. Our goal in this section is to prove that there exists

a matching which works well with our fractional solution

y(s), and at the same time it has additional properties which

allow us round the large items (or in fact discard them!) and

still obtain a good value of Nash Social Welfare.

We proceed very much as in [15]. First, we prove that

there exists a matching σ which obtains a good value

together with y(s).

Matching extension: Here we show that there exists a

matching σ : A → H which complements well the fractional

solution y(s).

Lemma 6. Let x∗ be the optimal solution of (MixedMul-
tilinear), i.e. x∗

i = y∗
i + 1H∗

i
where y∗ ∈ [0, 1]A×G is a

feasible solution of (LogMultilinear) and (H∗
1 , . . . , H

∗
n) is a

partition of H. Let y′ ∈ [0, 1]A×G be an arbitrary fractional
solution, satisfying

1

n

∑
i∈A′

Vi(y
∗
i )

Vi(y′
i)

≤ β

and y′
i = 0 for i /∈ A′. Then there is a matching π : A → H

such that

NSW (y′, π) =

(∏
i∈A

Vi(y
′
i + 1π(i))

)1/n

≥ 1

β + 1

(∏
i∈A

Vi(x
∗
i )

)1/n

=
1

β + 1
OPT.

Proof: Suppose that agent i receives ki = |H∗
i | items

from H in the optimal solution, and let π(i) ∈ H∗
i be the

most valuable item in H∗
i (as a singleton). We extend this

to a matching π : A → H, by allocating any remaining

items arbitrarily to agents such that H∗
i = ∅. By the AMGM

inequality, we can write

OPT

NSW (y, π)
=

(∏
i∈A

Vi(x
∗
i )

Vi(yi + 1π(i))

)1/n

≤ 1

n

∑
i∈A

Vi(x
∗
i )

Vi(yi + 1π(i))

By submodularity, we have Vi(x
∗
i ) = Vi(y

∗
i + 1H∗

i
) ≤

Vi(y
∗
i ) + kiVi(1π(i)). Thus, we obtain

OPT

NSW (y, π)
≤ 1

n

∑
i∈A

Vi(y
∗
i ) + kiVi(1π(i))

Vi(yi + 1π(i))

≤ 1

n

(∑
i∈A′

Vi(y
∗
i )

Vi(yi + 1π(i))
+

∑
i∈A

ki

)

≤ 1

n

(∑
i∈A′

Vi(y
∗
i )

Vi(yi)
+

∑
i∈A

ki

)

using monotonicity of Vi in the denominator. Note that

Vi(y
∗
i ) = 0 and vi(π(i)) > 0 for every agent i /∈ A′,

because these agents do not derive any value from G′ = G\H
and hence vi(H

∗
i ) > 0 for these agents; that’s why we

can switch to A′ in the first summation. Finally, using

the assumption 1
n

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
≤ β and the fact that

1
n

∑
i∈A ki =

1
n

∑
i∈A |H∗

i | = 1, we obtain

OPT

NSW (y, π)
≤ β + 1.

Corollary 7. The fractional solution y(s) =
RestrictedRandomizedRounding(y) satisfies with constant
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probability

max
π

NSW(y(s), π) ≥ 1

7 + 12/c
OPT.

Proof: Since y from the Iterated Continuous Greedy

algorithm satisfies 1
n

∑
i∈A′

Vi(y
∗
i )

Vi(yi)
≤ e, we apply Lemma 5

with α = e. For ε = 3/e − 1, we get 1
n

∑
i∈A′

Vi(y
∗
i )

Vi(y
(s)
i )

≤
3(2+ 4

c ) with constant probability. Then, we apply Lemma 6

with y′ = y(s) and β = 3(2 + 4
c ). We conclude that there

is a matching π such that NSW(y, π) ≥ 1
7+12/cOPT .

Matching recombination: Now that we know a good

matching exists, we want to show that there exists another

matching ρ with some additional desirable properties. The

matching ρ should be such that each agent a either gets

significant value from the matching item ρ(a) alone, or

there is no item of very large value contributing to agent

a in the fractional solution. The solution is a procedure we

borrow almost verbatim from [15]: a careful combination

of the initial matching τ and a matching π optimal with

respect to our fractional solution y. Our goal is to prove the

following lemma, analogous to Lemma 6.1 in [15]. Since

our setup here is somewhat different, we repeat the whole

argument in a self-contained manner. Also, we remark that

while this is an actual algorithmic step in [15], we only need

this procedure in the analysis.

Lemma 8. Let d ≥ 2. Let τ : A → G be the matching
maximizing

∏
a∈A vi(τ(a)), H = τ(A) the items allocated

in this matching. Let y ∈ [0, 1]A
′×G′

and let π : A → H be
any matching. Then there is a matching ρ : A → H such
that

NSW(y, ρ) ≥ 1

d+ 2
NSW(y, π)

and for every agent a ∈ A,
(i) either va(ρ(a)) ≥ 1

dVa(ya) (in which case the ρ-
matching item itself recovers a constant fraction of
agent a’s value)

(ii) or for every item j ∈ G′, va(j) < 1
dVa(ya) (in which

case there are no items with large contributions to
Va(ya)).

Proof: Let τ be the initial optimal matching and H =
τ(A). Let y ∈ [0, 1]A

′×G′
and let π : A → H be any

matching. (We will use the optimal matching with respect

to y but that is not relevant now.)

We will construct a new matching ρ which combines

τ and π in a certain way. First, whenever τ(a) = π(a),
we set ρ(a) = τ(a) = π(a). Next, we consider the two

matchings as sets of edges (a, π(a)) and (a, τ(a)) and

consider their symmetric difference, πΔτ . The symmetric

difference consists of alternating paths and cycles covering

the agents such that π(a) �= τ(a).
Let B = {a ∈ A : va(π(a)) < 1

d−1Va(ya)}. We define

a modified matching π′ where π′(a) = π(a) for a /∈ B and

π′(a) = ∅ for a ∈ B, meaning that agents a ∈ B don’t get

any items in π′. If π(a) contributes less than 1
d−1Va(ya),

we have

Va(ya + 1π(a)) ≤ Va(ya) + va(π(a))

≤ d

d− 1
Va(ya) ≤ d

d− 1
Va(ya + 1π′(a)),

and so

NSW(y, π′) =

(∏
a∈A

Va(ya + 1π′(a))

)1/n

≥
(∏

a∈A

d− 1

d
Va(ya + 1π(a))

)1/n

=
d− 1

d
NSW(y, π).

Consider an alternating path/cycle C in πΔτ and its set

of agents A(C). We distinguish two cases.

1) B ∩ A(C) = ∅ (π provides good value for all agents

in A(C)). In this case we set ρ(a) = π(a) for all a ∈
A(C).

2) B ∩ A(C) �= ∅ (some agents in A(C) don’t get good

value from π). We remove from C every edge (a, π(a))
such that a ∈ B (which means that π′(a) = ∅);

this breaks C into alternating paths. Let us consider

one such alternating path, denoting the agents on it

a1, a2, . . . , ak and the items i1, i2, . . . , ik. If k = 1, the

path consists of just one edge (a1, i1). If k > 1, the path

consists of edges (a1, i1), (i1, a2), (a2, i2), . . . , (ak, ik),
where ij = τ(aj) for j ≤ k and ij = π(aj+1) for

j < k. We also have a1 ∈ B (this is an agent who does

not get any item in π′) and a2, . . . , ak /∈ B.

We use the following criterion to decide whether we

should use the π-edges or the τ -edges from this alter-

nating path: Let

ϕ(a1, . . . , ak)

=
Va1(ya1)

Va1
(ya1

+ 1τ(a1))

k∏
j=2

Vaj
(yaj

+ 1π(aj))

Vaj
(yaj

+ 1τ(aj))

=
Va1(ya1)

Va1(ya1 + 1i1)

k∏
j=2

Vaj
(yaj

+ 1ij−1
)

Vaj (yaj + 1ij )
.

This is the factor incurred in the objective function if we

switch from π′ to τ on this alternating path. We call this

alternating path τ -favorable1, if ϕ(a1, . . . , ak) ≤ dk,

and we define ρ(aj) = τ(aj) = ij for 1 ≤ j ≤ k. Oth-

erwise, we call it π-favorable and we define ρ(a1) = ∅,

ρ(aj) = π(aj) = ij−1 for 2 ≤ j ≤ k.

If we view the process as starting from the matching

π′ and then applying a swap for each τ -favorable path,

1“reversible” in [15]
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we obtain a solution (y, ρ) of value

NSW(y, ρ)

=

⎛
⎝ ∏

(a1,...,ak)∈Pτ

ϕ(a1, . . . , ak)

⎞
⎠

− 1
n

NSW(y, π′)

≥
⎛
⎝ ∏

(a1,...,ak)∈Pτ

dk

⎞
⎠

− 1
n

NSW(y, π′)

where Pτ is the set of τ -favorable alternating paths.

Since the alternating paths are disjoint in terms of the

agents they cover,
∏

(a1,...,ak)∈Pτ
dk ≤ dn, and we

obtain that

NSW(y, ρ) ≥ 1

d
NSW(y, π′)

≥ d− 1

d2
NSW(y, π)

≥ 1

d+ 2
NSW(y, π).

Now we turn to the guarantee for each agent a ∈ A. If

ρ(a) = τ(a) (i.e. the agent receives an item from the initial

matching), then we have either va(ρ(a)) ≥ 1
dVa(ya) which

satisfies (i), or by the optimality of the initial matching, we

have for every j ∈ G \ H, va(j) ≤ va(τ(a)) = va(ρ(a)) <
1
dVa(ya) which satisfies (ii).

If ρ(a) = π(a), then this means that a was on a π-

favorable alternating path, and also a /∈ B because otherwise

we would have set ρ(a) = π′(a) = ∅. So this means that

va(ρ(a)) = va(π(a)) ≥ 1
d−1Va(ya) by the definition of B.

So we satisfy (i).

The last case is that ρ(a) = ∅. This means that a =
a1 ∈ B is the starting point of a π-favorable path P , and

ρ(a) = π′(a) = ∅. Consider any item j ∈ G\H. In the initial

matching τ , we could replace the τ -edges on P by the π-

edges, and in addition assign j to agent a1. However, this

would not result in an improvement since τ was optimal (as

a stand-alone matching). Therefore, we have the following

inequality:

va1
(j)

va1(τ(a1))
·

k∏
j=2

vaj
(π(aj))

vaj (τ(aj))
≤ 1.

Recall that a2, . . . , ak /∈ B and therefore vaj
(π(aj)) ≥

1
d−1Vaj

(yaj
) for j = 2, . . . , k. This implies that

vaj
(π(aj))

vaj
(τ(aj))

≥ 1
d

Vaj
(yaj

+1π(aj)
)

vaj
(τ(aj))

≥ 1
d

Vaj
(yaj

+1π(aj)
)

Vaj
(yaj

+1τ(aj)
) , and also

obviously
va1 (j)

va1
(τ(a1))

≥ va1 (j)

Va1
(ya1

+1τ(a1))
. Therefore, we have

va1(j)

Va1
(ya1

+ 1τ(a1))
·

k∏
j=2

Vaj
(yaj

+ 1π(aj))

Vaj
(yaj

+ 1τ(aj))
≤ dk−1.

Finally, since the path is π-favorable, we have

ϕ(a1, i1, . . . , ak, ik)

=
Va1

(ya1
)

Va1
(ya1

+ 1τ(a1))

k∏
j=2

Vaj
(yaj

+ 1π(aj))

Vaj
(yaj

+ 1τ(aj))
> dk.

Combining the last two inequalities, we obtain

va1(j) <
1

d
Va1(ya1)

which means that agent a = a1 satisfies (ii).

F. Conclusion of the analysis

We conclude the analysis by showing that the matching

ρ we proved to exist in Section III-E provides a good

value with our fractional solution, even if we ignore the

contribution of large items. Hence we can obtain an integral

assignment which provides a constant-factor approximation

relative to OPT and thus prove Theorem 1.

Lemma 9. Let (S1, . . . , Sn) be the assignment obtained by
RestrictedRandomizedRounding(y) with parameter
c > 0 and y

(s)
i = y

(Li)
i + 1Si

the sparsified fractional
solution. Then there exists a matching ρ : A → H such that

(∏
i∈A

vi(Si + ρ(i))

)1/n

≥ OPT

(7 + 12/c)(c+ 3)(c+ 4)
.

Proof: Given the sparsified solution y(s) and the match-

ing π provided by Corollary 7, satisfying

NSW(y(s), π) ≥ 1

7 + 12/c
OPT,

let ρ be the matching provided by Lemma 8 with parameter

d = c+ 2. This matching satisfies

NSW(y(s), ρ) ≥ 1

c+ 4
NSW(y(s), π)

≥ 1

(7 + 12/c)(c+ 4)
OPT

and for every agent i ∈ A, either (i) vi(ρ(i)) ≥ 1
c+2Vi(y

(s)
i )

or (ii) for every item j ∈ G′ = G\H, vi(j) <
1

c+2Vi(y
(s)
i ).

For every agent i ∈ A, if (i) is the case, then we know

that

vi(Si + ρ(i)) ≥ vi(ρ(i))

≥ 1

c+ 3

(
Vi(y

(s)
i ) + vi(ρ(i))

)

≥ Vi(y
(s)
i + 1ρ(i))

c+ 3
.
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Otherwise in case (ii), we have

vi(Si + ρ(i)) ≥ Vi(y
(s)
i + 1ρ(i))−

∑
j∈Li

yijvi(j)

≥ Vi(y
(s)
i + 1ρ(i))− (c+ 1)

Vi(y
(s)
i )

c+ 2

≥ Vi(y
(s)
i + 1ρ(i))

c+ 2
,

where the second inequality holds because
∑

j∈Li
yij ≤ c+

1. In conclusion, we know that for any agent i ∈ A,

vi(Si + ρ(i)) ≥ 1

c+ 3
Vi(y

(s)
i + 1ρ(i)).

Therefore, we obtain(∏
i∈A

vi(Si + ρ(i))

)1/n

≥ 1

c+ 3
NSW(y(s), ρ)

≥ OPT

(7 + 12/c)(c+ 3)(c+ 4)
.

Now we can prove the main theorem.

Proof of Theorem 1:
By Lemma 9, there is a matching ρ : A → H such that

even if we count only the contribution of the small items

Si allocated in RestrictedRandomizedRounding(y),
we have(∏

i∈A
vi(Si + ρ(i))

)1/n

≥ OPT

(7 + 12/c)(c+ 3)(c+ 4)
.

This means that the same holds for the sets Ri allocated in

our algorithm by RandomizedRounding(y), since Si ⊆
Ri (the sets Ri include additionally the large items after

rounding). In the final step, we find a matching σ which is

at least as good as ρ. We choose c = 1 which gives(∏
i∈A

vi(Ri + σ(i))

)1/n

≥
(∏

i∈A
vi(Si + ρ(i))

)1/n

≥ OPT

19 · 4 · 5 =
OPT

380
.

IV. CONCLUSION

We have shown a constant-factor approximation algorithm

for Nash Social Welfare with submodular valuations, which

is the largest natural class of valuations that allows a

constant-factor approximation (using value queries) even

for additive welfare maximization. However, there are still

several directions and open problems to explore. An obvious

one is to improve the approximation ratio which is rather

large. As we mentioned, we believe that a substantially

smaller (say double-digit) factor is hard to achieve with our

approach.

Another open problem is the asymmetric Nash So-

cial Welfare problem, where the objective function is a

weighted geometric mean of the agents’ valuation functions:∏n
i=1(vi(Si))

ωi for some ωi ≥ 0 (the problem we consider

is ωi = 1/n). The goal is to get a constant-factor approxi-

mation independent of the weights ωi. We remark that [15]

gives an approximation guarantee dependent on the weights

ωi; we do not pursue this direction here. For the asymmetric

problem, getting a universal constant factor is open even in

the the basic case of additive valuations.
Last but not least, solutions optimizing Nash Social

Welfare often have additional fairness properties like the

envy-free property, or envy-freeness up to one good (see

[1]). A line of work has been developed in trying to

achieve approximation guarantees for Nash Social Welfare

and certain fairness guarantees at the same time [5], [8], [9].

However, our solution does not seem to have such properties

and constant-factor approximations with additional fairness

guarantees are still unknown for valuation classes beyond

additive ones.
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