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ABSTRACT

This paper develops a predictive collision detection
algorithm for enhancing safety while respecting productivity in
a Human Robot Collaborative (HRC) setting that operates on
outputs from a Computer Vision (CV) environmental monitor.
This prediction can trigger reactive and proactive robot action.
The algorithm is designed to address two key challenges: 1)
outputs from CV techniques are often highly noisy and
incomplete due to occlusions and other factors, and 2) human
tracking CV approaches typically provide a minimal set of points
on the human. This noisy set of points must be augmented to
define a high-fidelity model of the human's predicted spatial and
temporal occupancy. A filter is applied to decrease sensitivity of
the algorithm to errors in the CV predictions. Kinematics of the
human are leveraged to infer a full model of the human from a
set of, at most, 18 points, and transform them into a point cloud
occupying the swept volume of the human's motion. This form
can then quickly be compared with a compatible robot model for
collision detection. Timed tests show that creation of human and
robot models, and the subsequent collision check occurs in less
than 30 ms on average, making this algorithm real-time capable.

Keywords: Predictive Collision Detection, Human Robot
Collaboration, Skeleton Tracking

NOMENCLATURE
U; General direction vector in " direction
u; i*" direction vector of torso frame
h; it" direction vector of head frame
P, The n*" joint from the Skeleton Tracking SDK
BP, The n** point on a human’s boundary curve
T¢ Transformation matrix from system b to a
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1. INTRODUCTION

Trends in Industry 4.0 show human robot collaboration
(HRC) becoming ever prevalent in pushing manufacturing
towards greater flexibility and intelligence. HRC can pave the
way for humans and robots to work in highly collaborative teams
which possess both the humans’ capacity for creativity and
flexibility and the robot’s speed and precision. A key focus in
HRC is augmenting robots’ intelligence with the necessary
“situational awareness” so they can safely interact with humans.
For HRC to be viable for more industries, depth cameras and
computer vision (CV) techniques can be used to permit
workspace monitoring at a lower cost than laser scanners or
motion capture systems. A challenge is fusing data from a sensor
suite and augmenting this data, riddled with noise, occlusion, and
sparsity, to transform it into more complete environmental data
a robot can use to make decisions and ensure safety of humans.

The work presented in this paper develops a predictive
collision detection algorithm to serve as a real-time watchdog
process during robot execution and preemptively predict
collisions with a human, enhancing safety while respecting
productivity in an HRC workspace. First, a human skeleton
tracking algorithm is implemented to provide live positional data
of up to 18 points on a sensed human. This data is highly noisy
and often missing important keypoints of the skeleton under
suboptimal measurement conditions. To ensure this skeleton data
is reliable for use in HRC algorithms, a filter is applied to the
skeleton tracking output to ensure that only realistic and
physically relevant predictions are used. Next, human dynamics
and kinematics are leveraged to define boundary curves around
the estimated human. By completing this process for every new
frame of camera data, a sequence of boundary curves defining
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the human’s poses at multiple time steps is defined. The
boundary curves between each pose are then connected by
surfaces, each populated with a point cloud including temporal
information indicating the time each point is occupied. These
surfaces model the human, interpolating motion of the human
between sensed poses. The resulting point cloud encodes spatial
and temporal data of the human’s swept volume. After
completing a similar process for the robot’s trajectory, the two
volumes can be overlaid and checked for spatial and temporal
intersection, i.e., a predicted collision.

2. RELATED WORKS

In the context of HRC, one of the primary goals of
integration of a suite of sensed data is to enhance the robot’s
situational awareness. One essential application of this
situational awareness is collision detection, a necessary ability of
a robot if any sort of interaction with a human is to be permitted.
A fast method for collision detection is to select a representative
set of human and robot poses throughout time and check them
for instantaneous collision, as done in [1]. This approach is risky
in that collisions can be missed if sampling frequency is not
sufficient. Much work has been done to learn how to best define
this sampling frequency. In [2], a Gaussian process was used to
determine the reachable space of a modeled body to adaptively
set the sampling frequency. This type of collision check is fast
for simple models. For complex models, computational costs can
be prohibitive, and collisions can still be missed.

The primary alternative to interference detection is swept
volume interference. When first implemented, computation of
swept volumes was too expensive for real-time application.
Since then, developments have been made to ameliorate the
costs. In [3], a Neural Network was trained to approximate the
swept volume of an articulated body between two poses resulting
in quick run times but decreasing accuracy for increasing
complexity of the articulated body. Another attempt to simplify
computation has been to represent bodies with a set of spheres
and perform a Minkowski sum of the spheres between successive
poses [4, 5, 6]. This swept volume approach has been extended
to convex hulls for which distance computations are cheap. In
[7], convex hulls are used to encapsulate point clouds, such that
distance between the hull and other nearby convex objects can
be found quickly. This approach, however, provides overly
conservative estimates of the volume. In [8], spheres were used
to model end effecters of a humanoid robot. As the robot moved,
each sphere was projected in the direction of motion far enough
that it gave the robot the lookahead required to completely stop
before future collisions. The area swept out between the current
position and the projected position was encompassed with a
convex hull. The GJK algorithm was used to identify collisions
with other convex hulls. In [9], this work was extended to model
the entire humanoid robot. Detailed application of this algorithm
for revolute and prismatic joints is outlined in [10]. These
methods only look far enough ahead to encompass the required
braking distance, which can be a complex parameter to
determine. One approach for doing so is outlined in [11].

A disadvantage of using convex hulls is limitation in model
accuracy of geometrically complex volumes. Also, applications
with convex hulls are typically only applied to the fully known
robot traversing a determined trajectory. Modeling the human
with this approach is much more challenging. Point clouds are
desirable, as environmental data in this form can easily be
ascertained with depth sensing devices. While brute force
methods in comparing sets of point clouds for collisions are
computationally prohibitive, much work has been done to
optimize this computation. GPU programming to remove
computational load from the CPU has met successes. In [12]
GPU programming was implemented on a collision checker to
find collisions between voxel maps in real-time. In [13] this
approach was used to perform online collision checking between
an environment and a robot’s precomputed swept volume in
voxel form. Efficiency was improved by removing unnecessary
depth points (e.g., static objects) [14]. A resource that integrates
many of these approaches is the Flexible Collision Library
(FCL). The FCL provides a framework that can check various
forms of modeled objects, (bounding volumes, mesh models,
point clouds, etc.). The FCL, however, notably performs poorly
in terms of computational speed on point clouds [15].

What many of these methods omit, is the temporal aspect of
motion. For swept volumes, true collision occurs when volumes
intersect in locations on the respective sweeps that represent the
same time. Without checking spatial and temporal information,
collision detection algorithms become excessively conservative.
Temporal information is often ignored when 1) sweeps represent
a short enough time window, or 2) collecting, modeling, and
comparing this information is computationally prohibitive. As
human sensing and prediction abilities are improved by advances
in computer vision and sensing, predicted motion corresponding
to longer future time windows will require temporal information.
Additionally, most works in this field operate on fully
deterministic models, which don’t typically exist in dynamic
environments. Predictive collision detection methods must be
designed to accommodate noisy sensor data and longer-term
forecasts of this data. In this paper, long-term noisy predictions
of human motion are used. An approach is proposed by which
noisy minimal environmental data is received, repaired, and used
to model a human with point cloud data that closely
approximates the true human’s motion.

3. METHODS

The proposed method for dynamic environment monitoring
for the purpose of preemptively identifying collisions is an
integration of multiple techniques. First, a robust CV method is
used to generate basic data about the environment. The Skeleton
Tracking SDK for Intel ® RealSense™ Depth Cameras Software
(denoted herein ST SDK) is implemented to track key points on
the human. Next, a filtering technique is applied to the data to
evaluate key distances between consecutive sensed points and
reject frames of data that suggested impossible orientations of
the human. This filtering step is necessary to provide clean
human data as input to a human motion prediction algorithm.
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A key assumption of this paper is that the future locations of
key points on the human for a short time horizon can be
predicted. This assumption is not baseless in that already,
collaborating researchers have developed a Recurrent Neural
Network (RNN) that is capable of such predictions for a human
head and arm [16]. Such algorithms rely on a clean and accurate
real-time human skeleton to make accurate predictions. Until
integration with the RNN is possible, the most recent frame read
in by the ST SDK herein constitutes an emulation of predicted
motion, while the previous frame is held to be the current state
of the human. This assumption leaves the algorithm in this paper
open to future integration with the motion prediction RNN [16].

After the human motion prediction is generated, kinematics
of the tracked points on the human are leveraged to draw a
minimal set of boundary curves around the human to define the
human’s volume at each new pose sensed by the ST SDK.
Finally, a previously developed surface sweep algorithm is
implemented to patch together the boundary curves at each pose
with Coons patches [17]. This procedure effectively augments
the information sensed from the ST SDK, transforming 18 key
points on the human tracked throughout time into a temporal
point cloud closely approximating the swept human volume
throughout the entire runtime (Fig. 1). This point cloud can be
directly used in predictive collision detection with any other
temporal point cloud by locating spatio-temporal intersections.

Volume Approximation
with Fine Mesh

Volume Approximation
with Course Mesh

Boundary Curves

= M M w w
e in

Time (seconds)

FIGURE 1: HUMAN MODELING PROCESS

3.1 Human Skeleton Tracking

The Skeleton Tracking (ST) SDK for Intel ® RealSense™
Depth Cameras software is a deep-learning based computer
vision tool for full body tracking of humans. This software can
perform real-time tracking of up to 18 points on the human: the
ankles, feet, knees, hands, elbows, shoulders, eyes, ears, nose,
torso, and hips. These key points are shown in the left side of
Fig. 2 as blue dots along with the respective point nomenclature.
As with all CV approaches, weaknesses exist. The primary
challenge is occlusions. When key points on the human are not
visible to the ST SDK, it can’t track them and will inaccurately
set their positions. A more difficult challenge, however, is when
key points are just beginning to leave the line of sight. These
points are difficult for the ST SDK to process and are often
assigned highly inaccurate positions. This issue motivates the

filtering technique presented in this paper. Another challenge is
that, while the ST SDK can track up to 18 points, the points
tracked from frame to frame can be inconsistent depending on
human orientation, lighting, etc. For generation of boundary
curves, a consistent number of points is necessary for continuity.

FIGURE 2: ANNOTATED DRAWING OF SKELETON WITH
BOUNDARY POINTS (LABELED BY INDEX)

3.2 Filtering

As with most CV applications, error in the predicted
location of sensed points drastically increased when occlusions
began to occur. In these situations, the ST SDK would attempt to
ignore occluded points but would run into difficulties when a
point was just leaving the camera’s line of sight. It would
interpret these points on the human to be located far from the
actual human. Such points caused the swept surface to stretch
drastically to reach these unrealistic points.

These situations needed to be identified and avoided. To do
this, a filter was designed to evaluate a number of key distances
between points on the sensed human. The human’s neck, arms,
forearms, torso, thighs, and shins for each frame of data were
investigated. The predicted measurements for each of these
distances were compared to nominal dimensions on the tested
human. If the error between these measurements was too large
for any joint, the entire data frame for that instant in time was
discarded. The allowable error was determined by investigating
the algorithm’s performance. This was done to represent a
tradeoff between the desire to use only the best data to create the
most accurate model, and the necessity of accepting some less-
than-ideal data so that the algorithm could run in real-time.

To define this acceptable error, the ST SDK was run for a
large number of poses under ideal conditions. For each pose, the
distances between points were computed. The averages of these
distances were compared to the actual human to ensure the data
was good. The standard deviations of the measurements for each
distance were used to select the acceptable error. Histograms in
Fig. 3 show this analysis for five different measurements. The
histograms suggest that some of the points on the extremities,
such as the hands, feet, and head, had much more variability.
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This variability was generally far from a normal distribution and
was the result of the sensed points approaching occlusions.

Right Elbow/Wrist Hip/Knee
Mean: 0.2135 Mean: 0.4142 Mean: 0.443

Left Knee/Ankle Right Shoulder/Elbow  Head/Torso
5 § 2 30 Mean: 0.1997
_ St.Dev: 0.1634 St. Dev: 0.0395 St. Dev: 0.0542

: Mean: 0.4306
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FIGURE 3: HISTOGRAMS OF BODY PART DIMENSIONS
MEASURED BY THE ST SDK

In order for the algorithm to be successful, it was necessary
to allow greater error tolerance for these sensed points than for
some of the more reliable points, like the torso, or, as seen in Fig.
3, points on the leg. Due to points like the hands and feet,
sacrifices in data quality had to be made in order to strike a
tradeoff between model perfection and real-time capability. It is
expected that in future works, when an additional camera is
integrated from a different perspective, the number of occluded
points will decrease, allowing tolerances to become tighter.

3.3 Definition of Human Boundaries

Given a good set of points on the human, the next step was
to determine a boundary around the human in two orthogonal
directions to approximate the human’s volume. Orthogonal
curves were defined such that regardless of the direction of
motion of the human, some component of the curves would be
orthogonal to the direction of motion. The following discussion
focuses on the definition of the primary boundary curve (the one
in plane with the human’s orientation). This curve provides the
most information about the human’s occupied volume. A visual
is given on the right side of Fig. 2 as a red curve along with
associated nomenclature for each point. The other orthogonal
curves are explained by extension of the approach used for the
primary boundary curve.

First, the human’s general orientation was defined as the
direction orthogonal to the chest and calculated from the
locations of the detected torso and waist points. This direction
was selected as 1) chest orientation was usually a strong indicator
of direction of motion, and 2) it relies on detection of the torso
and waist, which were the most reliably detected. To establish
this direction, two vectors, U;_g (1) and U;_4; (2) were created
between the torso, P;, and the two waist points respectively, Pg
and P,;, where subscript indicates index value in a storage array.
Then, U;_g and U;_{; were crossed to obtain u,, the normal
vector of the torso plane (3). In this work, all direction vectors
were unitized immediately after their calculation.

U_g=Ps — P (1
U1 =P11 — P, 2)
u, =Ui_g X Uj_q4 3)

Next, u, was defined as the vector going from the torso to the
midpoint of the waist, Py, (4-5). A third orthonormal direction
was found using u, and u, (6). The origin of this coordinate
system was placed at the torso. Finally, a transformation matrix
between the camera and the torso was defined (7).

Pyp = (Pg + P11)/2 4)

Uy =By — Py (5)

Uy = Uy X Uy (6)

Tcamera — UnyUzpl (7)
torso 0 0 01

Within this coordinate system, three boundary points were
defined, in units of meters: the left and right side of the neck,
BP;, and BP; respectively, and the pelvis, BP,,. Dimensions
were selected to define general human body sizes. These points
were made homogeneous and pre-multiplied by TSa s ¢ to place
them in the camera’s coordinate system (8-10).

BP, = Tgamera[—0.07,—0.08,0,1]" (8)
BP,, = T£¥mera[—0.07,0.08, 0, 1]” 9)
BP,, = T£¥mera[0.6,0,0,1]" (10)

Next, a similar approach was taken to calculate the head
boundary points. A coordinate system was established in the
center of the head. To do this, a decision structure was designed
to pick two appropriate detected points on the head with which
to define the system because, in most cases, some head points
were not detected. Five different sets, ordered by preferable
choice, were considered: both eyes, both ears, the nose and left
ear, the nose and right ear, or the neck points previously defined.
If the nose, B,, was not detected, it was approximated by the
neck, ear, and eye points. If this approximation was not possible,
the data from the current camera coordinate system was deemed
insufficient and discarded for the next data frame. Next, two
direction vectors were established between the nose and the
torso, h;, and between the leftmost point, P;, and the rightmost
point, Pg, (from the human’s perspective), h, (11-12). These
were crossed to find the direction normal to the head, h, (13).
The h, and h, were crossed to obtain h,, (14). The origin of the
coordinate system placed at the nose, along with the direction
vectors, were used to transform boundary points defined on the
head, BPg and BP,, to the camera coordinate system with the
transformation matrix Tfery ¢ (15-17).

h,=P, — B, (11)
hy =P, — Py (12)
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h, =h; X hy (13)

hy, =h, X hy (14)

Tcamera hxhthPn (15)
head 0001

BPg = Tf¥meT[—0.2,0.15,0,1]" (16)

BPy = T£4me™2[0.2,0.15,0,1]7 (17

Next, the boundary points around the arms and legs were
calculated. This calculation had two flavors: calculating the
boundary points for 1) a joint (shoulder, elbow or knee) and 2)
an end effector (hand or foot). Only the calculations for the joints
are presented since end effectors represent a simplifying special
case. For each joint, P;, first the joint’s parent and child were
established. The parent/child structure is outlined in section 3.4
but can be thought of as the joint’s two neighboring points, P_
and P,, which refer to the preceding and following joints in the
human’s kinematic chain, respectively. Direction vectors U_ and
U, were found between the joint and its neighbors (18-19).

U.=Py — P (18)
Up=P_1 =P (19)

These vectors were then projected into the torso plane (Fig.
4). This was necessary because two consistently orthogonal
boundary curves were required. In order to establish the first
direction, a common reference was needed. The torso plane was
the most fitting and convenient choice to use for a reference
direction since 1) it was the most likely to indicate the human’s
direction of motion and 2) it was formed from the most reliably
sensed points. For the primary boundary curve, the in-plane
direction was specified. The remaining orthogonal curves were
found by dotting vectors with the normal of the torso plane. The
projection of each vector, U, was computed by subtracting out
the portion of the vector perpendicular to the plane of projection
(20), where U’ represents the vector U after projection into the
plane defined by its perpendicular u,. The U_ and U, were
projected into the torso plane and used to determine a line of
action that ran though the joint. The boundary points for the joint
were to be placed along this line. The ideal placement of these
points such that the two neighbor joints were accommodated was
along the vector, b, that bisected U'_ and U’ (21). This choice
is shown in the section blow up in Fig. 4.

dot(U,u,)
T ThgE (20)
P Q1)
GARRGA]

U=

In the special case of the end effector, only the parent joint
was needed, and rather than a bisection vector, only a vector
normal to the direction to the parent projected into the torso plane
was needed. This is because the boundary points on the end
effector only needed to accommodate the preceding joint’s

boundary points. With this procedure, all remaining boundary
points were calculated such that no matter the configuration of
the human’s joints, the boundary points were positioned such
that they were indicative of the actual shape of the human.

To accommodate lateral motion of the sensed human with
sets of orthogonal boundary curves, five different curves were
defined: a left leg, right leg, left arm, right arm, and one curve
around the torso, head, and neck. The boundary curves for the
arms and legs use the same approach as above, only instead of
projecting the direction vectors into the torso plane, they were
dotted with the normal of the torso plane. The orthogonal
boundary curve outlining the side profile of the human’s torso,
neck, and head was also found in the same way as done for the
primary boundary curve. The only difference was that the points
defined in the torso and head systems had only Z components
rather than X and Y components. A series of boundary curves
can be seen in Fig. 1 (left). For the ideal case, this is how each
boundary point can be assigned for each set of data. This
approach fails when there is/are missing joint(s) in the data. The
next section outlines an approach defined to handle this issue.

FIGURE 4: JOINT AND END EFFECTOR BOUNDARY POINTS

3.4 Occlusion Handling with Child and Parent Joints
Continuity of each tracked point on the human was vital for
determination of the boundary curves and subsequent swept
surface generation. This proved problematic when occlusions
and other factors made it impossible for the ST SDK to assign a
meaningful position to a joint. When a tracked point, the right
hand for example, disappeared for a few frames, the boundary
curve definition and surface sweep steps would not know how to
patch together sequential poses of the human. Additionally, the
boundary point definition of the missing joint’s neighbors
depended on determining the direction to this point. This issue is
demonstrated in Fig. 5 (left), where the right hand is lost for a
frame. The black dotted lines represent the connections that were
expected to be made when connecting sequential poses. When
this connection was not possible, the connection could not
simply be terminated. If the joint showed up again, it needed to
be patched to the previous pose so that the poses could be
continuously connected. The green line in this image represents
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the desirable best alternative connection. This solution was
desirable because when a joint was lost, it was assigned to its
closest neighbor, the preceding joint in the human’s kinematic
chain. This mapping is codified with the child parent hierarchy

shown in the center of Fig. 5.

(A) (B)

Black dashed line maps ‘ideal’ case
(no data loss), connecting all portions
of the pose. Green mapping, the next
best option, is case in which portions
of pose data is not detected (missing).

Blue dashed lines show mappings
when parents (a) and/or grandparents
(b) are not detected. The mapping
method sustains the human form
despite data loss.

FIGURE 5: TIME SERIES OF HUMAN POSES WITH A POSE OF
MISSING DATA, MAPPING HEIARCHY, AND VISUAL OF USE
OF GRANDPARENT AND GREAT GRANDPARENT MAPPINGS

Each joint was assigned a default parent. Feet were mapped
to knees, and knees to the waist. Hands were mapped to elbows,
and elbows to shoulders. Finally, the shoulders and waist were
mapped to the torso. Grandparent and great grandparent joints
were also assigned such that if a missing joint’s parent was also
missing, both missing joints would be mapped to the furthest
existing point in the kinematic chain, the grandparent. A visual
of this approach is shown on the right side of Fig. 5 for cases
where a parent (a) and grandparent (b) go missing. The hierarchy
was used to 1) reassign missing joint positions and 2) select the
direction to a parent and child joint used to define the location of
the boundary points. A child joint structure was also needed. The
parent structure hierarchy was used here, except rather than work
backwards along the kinematic chain, the next joint in the chain
was used. Since it was more likely that joints further along in the
kinematic chain would be missing, if a child could not be found,
the parent joint would be located and used in place of the child.

3.5 Surface Sweep and Collision Detection with Robot

The result of the previous steps was a set of boundary curves
encapsulating the human at an instance in time. This process
could be iterated for an arbitrary number of time steps or
predictions of future times. These boundary curves could then be
patched together to create a surface that encompassed the entire
swept volume of the human. This operation was completed by
invoking a previously developed algorithm presented in [17].
This algorithm created a composite surface by connecting each
segment of a boundary curve at one time to the corresponding
segment on a boundary curve at a future time, shown in Fig. 6a
and Fig. 6b. The surface was stored in the form of a point cloud
containing spatial and temporal occupancy data resolved to a
standardized grid spacing. The algorithm iterated this process for
an arbitrary number of poses. It finally applied boundary

(b) (c)

FIGURE 6: COONS PATCHES ARE GENERATED BETWEEN
BOUNDARY CURVES OF THE HUMAN AT TWO TIME STEPS

conditions at the first and last pose to create patches to close off
the surface. This is shown in Fig. 6¢ with time encoded as color.
In addition to human modeling, [17] outlines application of the
algorithm to modeling a robot.

4. INTEGRATION AND TESTING OF ALGORITHM

This algorithm was applied to an HRC setting in which a
human and a serial link 6 DOF manipulator worked in close
proximity. The overall structure of the algorithm incorporating
all functions discussed in this work is as follows. First, in an
offline setting, the robot’s task schedule, in terms of joint
trajectories, was loaded and used to generate boundary curves at
a representative set of poses along the trajectories. The boundary
curves were used to generate spatial and temporal point clouds.
In the online portion, the sweep for each robot task was loaded
sequentially. During the execution of the robot’s tasks, a safety
loop monitored and modeled human actions and compared them
with the current robot’s task trajectory to identify collisions. To
emulate the output of the prediction algorithm, incorporated in
the future, real-time human locations were captured using the ST
SDK and then a time shift was applied so the real-time human
data emulated prediction for generating the surface sweeps. The
presented approach, herein, was used to generate continually
updated sweeps of the human’s motion, which were compared to
the sweep for the robot’s current task to identify collisions via
spatio-temporal intersections.

The overall goals of the algorithm were to 1) precisely
identify collisions between the human and robot during dynamic
tasks, 2) function successfully in the face of noisy and missing
data, and 3) run in real-time. The following tests were completed
to evaluate the effectiveness of the algorithm with respect to
these goals and establish any, and all limitations.

As an initial test to determine efficacy of the algorithm, the
simulated robot was overlayed on top of the real robot from
which the simulation was modeled. This was done after
positioning the depth camera. The fixed coordinate system of the
simulated robot was modified until it coincided with the real
robot. The simulation was programmed to hold the robot at home
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position for the duration of the run while the human was sensed.
It was confirmed that collisions were detected whenever the
human touched the robot. This process also served as calibration
of the robot-camera set up. Fig. 7 shows the swept volumes for
the human and robot. The larger red points indicate collisions.

FIGURE 7: OVERLAY OF SIMULATED AND PHYSICAL
ROBOT TO EVALUATE COLLISION DETECTION CAPABILITY

To understand the precision of this algorithm, it was desired
to evaluate the region where the prediction of the algorithm
began to dither. Dithering was defined as not making a solid
prediction as to whether or not a collision was taking place and
was due to variations in the perceived location of the human. The
robot was set to remain still at its home position while the human
moved. To evaluate this region for which dithering predictions
took place, the following test was implemented. The human held
a depth probe extended towards the nearest point on the robot.
The human then moved their hand towards the robot until the
algorithm began dithering in collision warnings. The depth probe
was zeroed, and the human continued to move closer until a solid
collision detection was made. The probe reading was noted. This
procedure was completed for five locations on the robot (marked
on Fig. 7), ten times each. Table I gives the mean and standard
deviation of each location. The worst-case dither region indicates
a 25.76 mm (location 4 mean plus standard deviation) thick
region around the robot for which intermittent collision warnings
were raised. This serves as the accuracy limit for an inexpensive
collision detection system, only requiring a depth camera and
processor. Increased error will yield more mis-triggers for close
proximity HRC tasks.

TABLEI
PRECISION DATA FOR CAMERA PREDICTION

Location of Robot | Mean Error (mm) | St Dev Error (mm)
Location 1: Link 2 13.11 5.93
Location 2: Joint 2 18.29 4.34
Location 3: Joint 3 15.57 6.03
Location 4: Joint 1 22.28 3.48
Location 5: Joint 5 21.42 4.29

*St Dev is shorthand for standard deviation.

Next, to evaluate dynamic performance of the algorithm,
robot trajectories were generated to complete a sequence of
motions. Corresponding motions were planned for the human
such that the human wouldn’t collide with the robot. For each set

of tasks, two runs were taken: one where everything went as
planned, and one where the human deviated from the plan in a
way that caused collision. The goal was to prove that the
algorithm was 1) able to accurately identify collisions and 2) was
robust to false positives in collision detection. Figs. 8-10
demonstrate either case, where the time scale on the right is the
same time scale as in Fig. 1. Collisions are plotted in large red
points. Each case indicated that the algorithm was effective in
both identifying collisions and non-collisions accurately. Testing
was not limited to this scenario, but this scenario was selected to
highlight the evaluation approach.

ot

Huma ' . I

FIGURE 8: HRC TASK 1: HUMAN REACHES AROUND ROBOT
WITHOUT COLLISION (LEFT) AND WITH COLLISION (RIGHT)

Human

FIGURE 9: HRC TASK 2: HUMAN REACHES IN FRONT OF

ROBOT WITHOUT COLLISION (LEFT) AND PAST ROBOT
WITH COLLISION (RIGHT)

Human .
Human :g ks .
" Robot ' . Robot

FIGURE 10: HRC TASK 3: HUMAN BACKS OUT OF THE WAY
OF THE ROBOT WITHOUT COLLISION (LEFT) AND REMAINS
IN THE WAY OF THE ROBOT WITH COLLISION (RIGHT)

For each scenario, execution of each submodule of the
algorithm and the algorithm as a whole was timed to evaluate
real-time capability. The algorithm is made up of four
submodules. Submodule 1 is the ST SDK, submodule 2 is the
boundary curve calculator, which is discussed in detail in section
3.3, submodule 3 is the surface sweep generator, and submodule

7 ©2021 by ASME



4 is the collision detector. Submodule 4 is discussed in detail in
[17]. Fig. 11 demonstrates this time data for submodules 2 and 3
developed in this work. In the figure, the execution time for the
ST SDK was not included because this module was run on a
different thread and the ST SDK was a commercial product. On
average, the ST SDK produced a new frame every 37 ms. The
rest of the algorithm consumed data from a variable that was
continuously updated by the ST SDK thread. Time data shown
in Fig. 11 was typical of the execution times seen for other tests.

Surface Sweep
=— Collision Check
Boundary Curve Caleulation

14 Average Surface Sweep Tracking Time = 1,12 ms
Average Collision Check Time =4.76 ms
Average Boundary Curve Time = 1.38 ms

Run Time (ms)

PR ',bg“\";_a"\‘,'*"\;ﬂi.-aﬁV."J'\_V_ R oA \“"‘\_,-vh s A
[ 200 400 600 800 1000 1200

Tterations

FIGURE 11: TIME DATA BY SUBMODULE. RAW DATA IS
PLOTTED TRANSLUCENT. A 30 SAMPLE MOVING AVERAGE
IS PLOTED BOLD

TABLE II
RUN TIME DATA FOR VARIOUS TESTS
Boundary Surface Collision | Total Time | Total Time
Curve Sweep Check (Raw Data) (Outliers Removed)

Mean (St Dev| Mean |St Dev| Mean |St Dev| Mean |St Dev | Mean [St Dev
(ms) | (ms) | (ms) | (ms) | (ms) | (ms) | (ms) [ (ms) | (ms) | (ms)
Test1 | 1.39 [ 2.75 | 1.59 | 3.16 | 5.44 | 4.49 [12.60|55.27 | 8.69 | 6.39
Test2 | 1.25 [ 2.74 | 1.35 | 3.12 | 5.61 | 4.80 [13.95|82.08 | 8.56 | 4.90
Test3 | 1.12 | 2.40 | 1.40 | 2.92 | 5.42 | 4.44 {14.47|59.39| 8.02 | 4.50
Test4 | 1.45 [ 2.85 | 1.57 | 3.09 | 5.58 | 4.42 [15.61|64.08 | 8.74 | 4.31
Test5 | 1.44 | 2.84 | 1.35 | 2.89 | 5.94 | 4.61 [13.79]46.81 | 8.81 | 4.58
Mean | 1.33 | 2.72 | 1.45 [ 3.04 | 5.60 | 4.55 [14.08 |61.53| 8.56 | 4.94

Metric

*St Dev is shorthand for standard deviation.

Table II demonstrates time data for five runs of HRC tasks
similar to the ones shown in Figs. 8-10. It provides the mean and
standard deviation (St Dev) of five different tests in which both
the robot and human were moving. Each reported value is taken
over more than 500 iterations of the algorithm. These tests
included a mix of runs with no collisions and runs with
collisions. In all cases, the run’s standard deviation is either close
to or greater than the mean of the time data. Variation in the
execution time arose from the computer’s processing allocation
between the algorithm and unrelated background processes. The
computation time of the algorithm is low enough that the
computer’s fluctuation in processing power produces a
noticeable effect on computation. Even still the computation
time was far under the real-time threshold, which is taken to be
30 ms. The average total run time of the algorithm was typically
more than sum of the submodules due to rejection of bad data by
the filter. Fig. 12 shows a metric called “Frames Rejected” (right

axis) along with its impact on the total run time (left axis). This
metric tallied the total number of frames that had to be thrown
out each iteration due to irreparable errors in the data. This was
the function of the filter presented in section 3.2. Every frame
rejected caused a runtime delay of, on average, 37 ms, the time
required for the ST SDK to produce new data. Table II gives an
estimate of what the average and standard deviation of the run
time of each test would be if no frames were rejected in the Total
Time (Outliers Removed) column. These values were found by
removing from the “Total Time” data any recorded times greater
than the mean plus three standard deviations of the raw Total
Time data. Given the large relative size of the Total Time
standard deviation with respect to the average total time,
retaining all data within three standard deviations was a
conservative estimate.

Total Run Time Frames Skipped | 34000

_— 12000
@

10000
8000

400 | i 6000

Frames Skipped

4000

Total Run Time (1

200

2000

| | il
o i ' -

o 200 400 . 600 BOO 1000
Iterations

FIGURE 12: TOTAL TIME DATA OVERLAID ON THE
SKIPPED FRAMES COUNT FOR EACH ITERATION

Generally, frames were rejected when the camera would
begin to lose sight of a point, either due to occlusion or exiting
of the sensed point from the camera line of sight. To combat this
issue, attempts were first made to mend the data via the
parent/child structure. If this was not possible, bad data was
identified and rejected by the filter. Fig. 13 demonstrates the
advantages of the parent/child mapping approach to mending the
data. The output of the algorithm for a series of poses is shown
on the left in red. Three instances of situations where the sensed
data was highly inaccurate are shown on the right in the top row.
These poses, as sensed, could not be used for construction of the
model. Instead, the parent/child structure was used to map the
highly inaccurate points to their closest accurate kinematic
neighbor. The result of this procedure is shown on the right side
of Fig. 13 on the bottom. Such repairs were able to mend a large
number of poses produced by the ST SDK. Some frames,
however, remained highly inaccurate even after mending. This

FIGURE 13: EFFECT OF THE PARENT/CHILD MAPPING
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is where the filter was applied. Fig. 14 demonstrates a few
examples in the same sequence of data used in Fig. 13 of poses
that were too inaccurate to use for the human model. In these
cases, dimensions of the human were too far from reality to
create an accurate representation of the human. The parent/child
structure in conjunction with the filter made the algorithm far
more robust to bad data.

AT

FIGURE 14: EXAMPLE FRAMES THAT WERE CAUGHT BY
THE FILTER. HUMAN DIMENSIONS WERE IDENTIFIED AS
NOT TRUE TO REALITY AND THUS OMMITED

Whenever the filter rejected a frame of data, the algorithm
had to wait for the next frame. This was a necessary tradeoff of
execution time for model fidelity. Without this, the model would
be too inaccurate to make meaningful predictions. For occlusions
or orientations of the human that are difficult to perceive, this
could take many cycles of the ST SDK, resulting in the time
spikes seen in Fig. 12. A common example is when portions of
the human were occluded by the robot. It is expected that the
remedy to this problem will be a second camera perspective that
could augment the data that was “side profile” to the first camera.
To substantiate this claim, Fig. 15 demonstrates a human
orientation that has been repeated for two camera positions.

Back Side ‘ Left Side
Camera 1: iy

Best view of
the human’s

right side

Right Side

Camera 2:
Best view of
the human’s
left side

FIGURE 15: TWO CAMERA PERSPECITVES — RESULTING IN
DIFFERENT TEMPORAL AND/OR SPATIAL DATA LOSS

In this scenario, the human leaned towards the robot to reach
around with the left arm while moving the right arm back.
Camera 1, positioned on the human’s right, lost sight of the left
arm as it extended behind the robot. Camera 2, positioned on the
human’s left, lost sight of the right arm as it fell behind the
human (indicated by loss of temporal swept position data). The
true motion for the right arm is shown most clearly in cells 1 and
2 of Fig. 15, while the true motion of the human’s left arm can
be seen most clearly in cells 5 and 6. Cell 3, which shows a
distorted and stretched left arm, demonstrates Camera 1’s

inability to sense the human’s left arm. While cells 4 and 5,
which show no temporal data for the right arm during the latter
half of the motion (note that the lighter color portions of the arm
which indicate positions at a later time are missing), show
Camera 2’s inability to approximate the human’s right arm.
Clearly, both camera positions offer valuable and complimentary
information about the human. Future work will combine these
perspectives to form a higher fidelity human model.

5. CONCLUSION

Run-time tests indicate that the algorithm could filter data to
avoid ST SDK error, model the human’s swept volume, and
check for collisions with the robot in approximately 14 ms, on
average. Accuracy testing indicates that the algorithm can
reliably predict collisions or non-collisions in dynamic
situations, and that the region around the robot for which false
positives can occur is limited to approximately 26 mm. This
algorithm presents an efficient method by which a depth camera
can provide reliable, real-time safety monitoring in an industrial
work cell and enhance the robot’s situational awareness and
ability to look ahead at its trajectory and predict collisions.

Issues were noted for cases in which the human orientation
caused occlusion with respect to the camera. In this case, points
were highly inaccurate and had to be either repaired or filtered
out, resulting in a temporary increase in run time. Future work
will focus on resolving this issue by developing a sensor fusion
algorithm to take data from another depth camera positioned
such that its perspective is complementary to the first camera. A
confidence measure will be associated with each sensed point,
and between the two cameras’ perspectives, the points with the
greatest confidence will be fed to the rest of the algorithm.
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