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ABSTRACT 
This paper develops a predictive collision detection 

algorithm for enhancing safety while respecting productivity in 
a Human Robot Collaborative (HRC) setting that operates on 
outputs from a Computer Vision (CV) environmental monitor. 
This prediction can trigger reactive and proactive robot action. 
The algorithm is designed to address two key challenges: 1) 
outputs from CV techniques are often highly noisy and 
incomplete due to occlusions and other factors, and 2) human 
tracking CV approaches typically provide a minimal set of points 
on the human. This noisy set of points must be augmented to 
define a high-fidelity model of the human’s predicted spatial and 
temporal occupancy. A filter is applied to decrease sensitivity of 
the algorithm to errors in the CV predictions. Kinematics of the 
human are leveraged to infer a full model of the human from a 
set of, at most, 18 points, and transform them into a point cloud 
occupying the swept volume of the human’s motion. This form 
can then quickly be compared with a compatible robot model for 
collision detection. Timed tests show that creation of human and 
robot models, and the subsequent collision check occurs in less 
than 30 ms on average, making this algorithm real-time capable. 

Keywords: Predictive Collision Detection, Human Robot 
Collaboration, Skeleton Tracking  

NOMENCLATURE 
𝑈𝑖  General direction vector in 𝑖𝑡ℎ direction 
𝑢𝑖  𝑖𝑡ℎ direction vector of torso frame  
ℎ𝑖   𝑖𝑡ℎ direction vector of head frame  
𝑃𝑛  The 𝑛𝑡ℎ joint from the Skeleton Tracking SDK 
𝐵𝑃𝑛  The 𝑛𝑡ℎ point on a human’s boundary curve  
𝑇𝑏

𝑎  Transformation matrix from system b to a  
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1. INTRODUCTION 
Trends in Industry 4.0 show human robot collaboration 

(HRC) becoming ever prevalent in pushing manufacturing 
towards greater flexibility and intelligence. HRC can pave the 
way for humans and robots to work in highly collaborative teams 
which possess both the humans’ capacity for creativity and 
flexibility and the robot’s speed and precision. A key focus in 
HRC is augmenting robots’ intelligence with the necessary 
“situational awareness” so they can safely interact with humans. 
For HRC to be viable for more industries, depth cameras and 
computer vision (CV) techniques can be used to permit 
workspace monitoring at a lower cost than laser scanners or 
motion capture systems. A challenge is fusing data from a sensor 
suite and augmenting this data, riddled with noise, occlusion, and 
sparsity, to transform it into more complete environmental data 
a robot can use to make decisions and ensure safety of humans.  

The work presented in this paper develops a predictive 
collision detection algorithm to serve as a real-time watchdog 
process during robot execution and preemptively predict 
collisions with a human, enhancing safety while respecting 
productivity in an HRC workspace. First, a human skeleton 
tracking algorithm is implemented to provide live positional data 
of up to 18 points on a sensed human. This data is highly noisy 
and often missing important keypoints of the skeleton under 
suboptimal measurement conditions. To ensure this skeleton data 
is reliable for use in HRC algorithms, a filter is applied to the 
skeleton tracking output to ensure that only realistic and 
physically relevant predictions are used. Next, human dynamics 
and kinematics are leveraged to define boundary curves around 
the estimated human. By completing this process for every new 
frame of camera data, a sequence of boundary curves defining 
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the human’s poses at multiple time steps is defined. The 
boundary curves between each pose are then connected by 
surfaces, each populated with a point cloud including temporal 
information indicating the time each point is occupied. These 
surfaces model the human, interpolating motion of the human 
between sensed poses. The resulting point cloud encodes spatial 
and temporal data of the human’s swept volume. After 
completing a similar process for the robot’s trajectory, the two 
volumes can be overlaid and checked for spatial and temporal 
intersection, i.e., a predicted collision.  
 
2. RELATED WORKS 

In the context of HRC, one of the primary goals of 
integration of a suite of sensed data is to enhance the robot’s 
situational awareness. One essential application of this 
situational awareness is collision detection, a necessary ability of 
a robot if any sort of interaction with a human is to be permitted. 
A fast method for collision detection is to select a representative 
set of human and robot poses throughout time and check them 
for instantaneous collision, as done in [1]. This approach is risky 
in that collisions can be missed if sampling frequency is not 
sufficient. Much work has been done to learn how to best define 
this sampling frequency. In [2], a Gaussian process was used to 
determine the reachable space of a modeled body to adaptively 
set the sampling frequency. This type of collision check is fast 
for simple models. For complex models, computational costs can 
be prohibitive, and collisions can still be missed. 

The primary alternative to interference detection is swept 
volume interference. When first implemented, computation of 
swept volumes was too expensive for real-time application. 
Since then, developments have been made to ameliorate the 
costs. In [3], a Neural Network was trained to approximate the 
swept volume of an articulated body between two poses resulting 
in quick run times but decreasing accuracy for increasing 
complexity of the articulated body. Another attempt to simplify 
computation has been to represent bodies with a set of spheres 
and perform a Minkowski sum of the spheres between successive 
poses [4, 5, 6]. This swept volume approach has been extended 
to convex hulls for which distance computations are cheap. In 
[7], convex hulls are used to encapsulate point clouds, such that 
distance between the hull and other nearby convex objects can 
be found quickly. This approach, however, provides overly 
conservative estimates of the volume. In [8], spheres were used 
to model end effecters of a humanoid robot. As the robot moved, 
each sphere was projected in the direction of motion far enough 
that it gave the robot the lookahead required to completely stop 
before future collisions. The area swept out between the current 
position and the projected position was encompassed with a 
convex hull. The GJK algorithm was used to identify collisions 
with other convex hulls. In [9], this work was extended to model 
the entire humanoid robot. Detailed application of this algorithm 
for revolute and prismatic joints is outlined in [10]. These 
methods only look far enough ahead to encompass the required 
braking distance, which can be a complex parameter to 
determine. One approach for doing so is outlined in [11]. 

A disadvantage of using convex hulls is limitation in model 
accuracy of geometrically complex volumes. Also, applications 
with convex hulls are typically only applied to the fully known 
robot traversing a determined trajectory. Modeling the human 
with this approach is much more challenging. Point clouds are 
desirable, as environmental data in this form can easily be 
ascertained with depth sensing devices. While brute force 
methods in comparing sets of point clouds for collisions are 
computationally prohibitive, much work has been done to 
optimize this computation. GPU programming to remove 
computational load from the CPU has met successes. In [12] 
GPU programming was implemented on a collision checker to 
find collisions between voxel maps in real-time. In [13] this 
approach was used to perform online collision checking between 
an environment and a robot’s precomputed swept volume in 
voxel form. Efficiency was improved by removing unnecessary 
depth points (e.g., static objects) [14]. A resource that integrates 
many of these approaches is the Flexible Collision Library 
(FCL).  The FCL provides a framework that can check various 
forms of modeled objects, (bounding volumes, mesh models, 
point clouds, etc.). The FCL, however, notably performs poorly 
in terms of computational speed on point clouds [15].  

What many of these methods omit, is the temporal aspect of 
motion. For swept volumes, true collision occurs when volumes 
intersect in locations on the respective sweeps that represent the 
same time. Without checking spatial and temporal information, 
collision detection algorithms become excessively conservative. 
Temporal information is often ignored when 1) sweeps represent 
a short enough time window, or 2) collecting, modeling, and 
comparing this information is computationally prohibitive. As 
human sensing and prediction abilities are improved by advances 
in computer vision and sensing, predicted motion corresponding 
to longer future time windows will require temporal information. 
Additionally, most works in this field operate on fully 
deterministic models, which don’t typically exist in dynamic 
environments. Predictive collision detection methods must be 
designed to accommodate noisy sensor data and longer-term 
forecasts of this data. In this paper, long-term noisy predictions 
of human motion are used. An approach is proposed by which 
noisy minimal environmental data is received, repaired, and used 
to model a human with point cloud data that closely 
approximates the true human’s motion. 
  
3. METHODS 

The proposed method for dynamic environment monitoring 
for the purpose of preemptively identifying collisions is an 
integration of multiple techniques. First, a robust CV method is 
used to generate basic data about the environment. The Skeleton 
Tracking SDK for Intel ® RealSense™ Depth Cameras Software 
(denoted herein ST SDK) is implemented to track key points on 
the human. Next, a filtering technique is applied to the data to 
evaluate key distances between consecutive sensed points and 
reject frames of data that suggested impossible orientations of 
the human. This filtering step is necessary to provide clean 
human data as input to a human motion prediction algorithm. 
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A key assumption of this paper is that the future locations of 
key points on the human for a short time horizon can be 
predicted. This assumption is not baseless in that already, 
collaborating researchers have developed a Recurrent Neural 
Network (RNN) that is capable of such predictions for a human 
head and arm [16]. Such algorithms rely on a clean and accurate 
real-time human skeleton to make accurate predictions. Until 
integration with the RNN is possible, the most recent frame read 
in by the ST SDK herein constitutes an emulation of predicted 
motion, while the previous frame is held to be the current state 
of the human. This assumption leaves the algorithm in this paper 
open to future integration with the motion prediction RNN [16].  

After the human motion prediction is generated, kinematics 
of the tracked points on the human are leveraged to draw a 
minimal set of boundary curves around the human to define the 
human’s volume at each new pose sensed by the ST SDK. 
Finally, a previously developed surface sweep algorithm is 
implemented to patch together the boundary curves at each pose 
with Coons patches [17]. This procedure effectively augments 
the information sensed from the ST SDK, transforming 18 key 
points on the human tracked throughout time into a temporal 
point cloud closely approximating the swept human volume 
throughout the entire runtime (Fig. 1). This point cloud can be 
directly used in predictive collision detection with any other 
temporal point cloud by locating spatio-temporal intersections. 

3.1 Human Skeleton Tracking 
       The Skeleton Tracking (ST) SDK for Intel ® RealSense™ 
Depth Cameras software is a deep-learning based computer 
vision tool for full body tracking of humans. This software can 
perform real-time tracking of up to 18 points on the human: the 
ankles, feet, knees, hands, elbows, shoulders, eyes, ears, nose, 
torso, and hips. These key points are shown in the left side of 
Fig. 2 as blue dots along with the respective point nomenclature. 
As with all CV approaches, weaknesses exist. The primary 
challenge is occlusions. When key points on the human are not 
visible to the ST SDK, it can’t track them and will inaccurately 
set their positions. A more difficult challenge, however, is when 
key points are just beginning to leave the line of sight. These 
points are difficult for the ST SDK to process and are often 
assigned highly inaccurate positions. This issue motivates the 

filtering technique presented in this paper.  Another challenge is 
that, while the ST SDK can track up to 18 points, the points 
tracked from frame to frame can be inconsistent depending on 
human orientation, lighting, etc. For generation of boundary 
curves, a consistent number of points is necessary for continuity. 
 

3.2 Filtering 
As with most CV applications, error in the predicted 

location of sensed points drastically increased when occlusions 
began to occur. In these situations, the ST SDK would attempt to 
ignore occluded points but would run into difficulties when a 
point was just leaving the camera’s line of sight. It would 
interpret these points on the human to be located far from the 
actual human. Such points caused the swept surface to stretch 
drastically to reach these unrealistic points.  

These situations needed to be identified and avoided. To do 
this, a filter was designed to evaluate a number of key distances 
between points on the sensed human. The human’s neck, arms, 
forearms, torso, thighs, and shins for each frame of data were 
investigated. The predicted measurements for each of these 
distances were compared to nominal dimensions on the tested 
human. If the error between these measurements was too large 
for any joint, the entire data frame for that instant in time was 
discarded. The allowable error was determined by investigating 
the algorithm’s performance. This was done to represent a 
tradeoff between the desire to use only the best data to create the 
most accurate model, and the necessity of accepting some less-
than-ideal data so that the algorithm could run in real-time.  

To define this acceptable error, the ST SDK was run for a 
large number of poses under ideal conditions. For each pose, the 
distances between points were computed. The averages of these 
distances were compared to the actual human to ensure the data 
was good. The standard deviations of the measurements for each 
distance were used to select the acceptable error. Histograms in 
Fig. 3 show this analysis for five different measurements. The 
histograms suggest that some of the points on the extremities, 
such as the hands, feet, and head, had much more variability. 

 
 
 

 
 
FIGURE 1: HUMAN MODELING PROCESS 
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FIGURE 2: ANNOTATED DRAWING OF SKELETON WITH 
BOUNDARY POINTS (LABELED BY INDEX) 
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This variability was generally far from a normal distribution and 
was the result of the sensed points approaching occlusions.        

In order for the algorithm to be successful, it was necessary 
to allow greater error tolerance for these sensed points than for 
some of the more reliable points, like the torso, or, as seen in Fig. 
3, points on the leg. Due to points like the hands and feet, 
sacrifices in data quality had to be made in order to strike a 
tradeoff between model perfection and real-time capability. It is 
expected that in future works, when an additional camera is 
integrated from a different perspective, the number of occluded 
points will decrease, allowing tolerances to become tighter. 
 
3.3 Definition of Human Boundaries 
      Given a good set of points on the human, the next step was 
to determine a boundary around the human in two orthogonal 
directions to approximate the human’s volume. Orthogonal 
curves were defined such that regardless of the direction of 
motion of the human, some component of the curves would be 
orthogonal to the direction of motion. The following discussion 
focuses on the definition of the primary boundary curve (the one 
in plane with the human’s orientation). This curve provides the 
most information about the human’s occupied volume. A visual 
is given on the right side of Fig. 2 as a red curve along with 
associated nomenclature for each point. The other orthogonal 
curves are explained by extension of the approach used for the 
primary boundary curve.  
  

First, the human’s general orientation was defined as the 
direction orthogonal to the chest and calculated from the 
locations of the detected torso and waist points. This direction 
was selected as 1) chest orientation was usually a strong indicator 
of direction of motion, and 2) it relies on detection of the torso 
and waist, which were the most reliably detected. To establish 
this direction, two vectors, 𝑈1−8 (1) and 𝑈1−11 (2) were created 
between the torso, 𝑃1, and the two waist points respectively, 𝑃8 
and 𝑃11, where subscript indicates index value in a storage array. 
Then, 𝑈1−8 and 𝑈1−11 were crossed to obtain 𝑢𝑧, the normal 
vector of the torso plane (3). In this work, all direction vectors 
were unitized immediately after their calculation. 

 
 𝑈1−8 = 𝑃8  −  𝑃1 (1) 
 𝑈1−11 = 𝑃11  − 𝑃1 (2) 
 𝑢𝑧 = 𝑈1−8  ×  𝑈1−11 (3) 

 
Next, 𝑢𝑥 was defined as the vector going from the torso to the 
midpoint of the waist, 𝑃𝑚𝑝 (4-5). A third orthonormal direction 
was found using 𝑢𝑧 and 𝑢𝑥 (6). The origin of this coordinate 
system was placed at the torso. Finally, a transformation matrix 
between the camera and the torso was defined (7). 
 

 𝑃𝑚𝑝 = (𝑃8  +  𝑃11)/2 (4) 
 𝑢𝑥 = 𝑃𝑚𝑝  − 𝑃1 (5) 
 𝑢𝑦 = 𝑢𝑧  ×  𝑢𝑥 (6) 
  

𝑇𝑡𝑜𝑟𝑠𝑜
𝑐𝑎𝑚𝑒𝑟𝑎 = [

𝑈𝑥

0

𝑈𝑦

0

𝑈𝑧

0
𝑃1

1
] (7) 

 
      Within this coordinate system, three boundary points were 
defined, in units of meters: the left and right side of the neck, 
𝐵𝑃10 and 𝐵𝑃7 respectively, and the pelvis, 𝐵𝑃22. Dimensions 
were selected to define general human body sizes. These points 
were made homogeneous and pre-multiplied by 𝑇𝑡𝑜𝑟𝑠𝑜

𝑐𝑎𝑚𝑒𝑟𝑎  to place 
them in the camera’s coordinate system (8-10). 
 

 𝐵𝑃7 = 𝑇𝑡𝑜𝑟𝑠𝑜
𝑐𝑎𝑚𝑒𝑟𝑎[−0.07, −0.08, 0, 1]𝑇 (8) 

 
 𝐵𝑃10 = 𝑇𝑡𝑜𝑟𝑠𝑜

𝑐𝑎𝑚𝑒𝑟𝑎[−0.07, 0.08, 0, 1]𝑇 (9) 
 

 𝐵𝑃22 = 𝑇𝑡𝑜𝑟𝑠𝑜
𝑐𝑎𝑚𝑒𝑟𝑎[0.6, 0, 0, 1]𝑇 (10) 

 
      Next, a similar approach was taken to calculate the head 
boundary points. A coordinate system was established in the 
center of the head. To do this, a decision structure was designed 
to pick two appropriate detected points on the head with which 
to define the system because, in most cases, some head points 
were not detected. Five different sets, ordered by preferable 
choice, were considered: both eyes, both ears, the nose and left 
ear, the nose and right ear, or the neck points previously defined. 
If the nose, 𝑃𝑛, was not detected, it was approximated by the 
neck, ear, and eye points. If this approximation was not possible, 
the data from the current camera coordinate system was deemed 
insufficient and discarded for the next data frame. Next, two 
direction vectors were established between the nose and the 
torso, ℎ𝑖 , and between the leftmost point, 𝑃𝐿 , and the rightmost 
point, 𝑃𝑅 , (from the human’s perspective), ℎ𝑥 (11-12). These 
were crossed to find the direction normal to the head, ℎ𝑧 (13).  
The ℎ𝑧 and ℎ𝑥 were crossed to obtain ℎ𝑦 (14). The origin of the 
coordinate system placed at the nose, along with the direction 
vectors, were used to transform boundary points defined on the 
head, 𝐵𝑃8 and 𝐵𝑃9, to the camera coordinate system with the 
transformation matrix 𝑇ℎ𝑒𝑎𝑑

𝑐𝑎𝑚𝑒𝑟𝑎  (15-17). 
 

 ℎ𝑖 = 𝑃1  − 𝑃𝑛 (11) 
 ℎ𝑥 = 𝑃𝐿  −  𝑃𝑅 (12) 

 
FIGURE 3: HISTOGRAMS OF BODY PART DIMENSIONS 
MEASURED BY THE ST SDK  
 



 

 5 © 2021 by ASME 

 ℎ𝑧 = ℎ𝑖  ×  ℎ𝑥 (13) 
 ℎ𝑦 = ℎ𝑧  ×  ℎ𝑥 (14) 
 

𝑇ℎ𝑒𝑎𝑑
𝑐𝑎𝑚𝑒𝑟𝑎 = [

ℎ𝑥

0

ℎ𝑦

0

ℎ𝑧

0
𝑃𝑛

1
] (15) 

 𝐵𝑃8 = 𝑇ℎ𝑒𝑎𝑑
𝑐𝑎𝑚𝑒𝑟𝑎[−0.2, 0.15, 0, 1]𝑇 (16) 

 
 𝐵𝑃9 = 𝑇ℎ𝑒𝑎𝑑

𝑐𝑎𝑚𝑒𝑟𝑎[ 0.2, 0.15, 0, 1]𝑇 (17) 
        
      Next, the boundary points around the arms and legs were 
calculated. This calculation had two flavors: calculating the 
boundary points for 1) a joint (shoulder, elbow or knee) and 2) 
an end effector (hand or foot). Only the calculations for the joints 
are presented since end effectors represent a simplifying special 
case. For each joint, 𝑃𝑗, first the joint’s parent and child were 
established. The parent/child structure is outlined in section 3.4 
but can be thought of as the joint’s two neighboring points, 𝑃− 
and 𝑃+, which refer to the preceding and following joints in the 
human’s kinematic chain, respectively. Direction vectors 𝑈− and 
𝑈+ were found between the joint and its neighbors (18-19). 
 

 𝑈− = 𝑃𝑗+1  −  𝑃𝑗 (18) 

 𝑈+ = 𝑃𝑗−1  −  𝑃𝑗 (19) 

 
      These vectors were then projected into the torso plane (Fig. 
4). This was necessary because two consistently orthogonal 
boundary curves were required. In order to establish the first 
direction, a common reference was needed. The torso plane was 
the most fitting and convenient choice to use for a reference 
direction since 1) it was the most likely to indicate the human’s 
direction of motion and 2) it was formed from the most reliably 
sensed points. For the primary boundary curve, the in-plane 
direction was specified. The remaining orthogonal curves were 
found by dotting vectors with the normal of the torso plane. The  
projection of each vector, 𝑈, was computed by subtracting out 
the portion of the vector perpendicular to the plane of projection 
(20), where 𝑈′ represents the vector 𝑈 after projection into the 
plane defined by its perpendicular 𝑢𝑧.  The 𝑈− and 𝑈+ were 
projected into the torso plane and used to determine a line of 
action that ran though the joint. The boundary points for the joint 
were to be placed along this line. The ideal placement of these 
points such that the two neighbor joints were accommodated was 
along the vector, 𝑏, that bisected 𝑈′− and 𝑈′+ (21). This choice 
is shown in the section blow up in Fig. 4. 
 

 
𝑈′ = 𝑈 −  

𝑑𝑜𝑡(𝑈, 𝑢𝑧)

‖𝑢𝑧‖2
∗ 𝑢𝑧 (20) 

 
𝑏 =

𝑈′−

‖𝑈′−‖
+

𝑈′+

‖𝑈′+‖
 

(21) 

 
      In the special case of the end effector, only the parent joint 
was needed, and rather than a bisection vector, only a vector 
normal to the direction to the parent projected into the torso plane 
was needed. This is because the boundary points on the end 
effector only needed to accommodate the preceding joint’s 

boundary points. With this procedure, all remaining boundary 
points were calculated such that no matter the configuration of 
the human’s joints, the boundary points were positioned such 
that they were indicative of the actual shape of the human. 
 
      To accommodate lateral motion of the sensed human with 
sets of orthogonal boundary curves, five different curves were 
defined: a left leg, right leg, left arm, right arm, and one curve 
around the torso, head, and neck. The boundary curves for the 
arms and legs use the same approach as above, only instead of 
projecting the direction vectors into the torso plane, they were 
dotted with the normal of the torso plane. The orthogonal 
boundary curve outlining the side profile of the human’s torso, 
neck, and head was also found in the same way as done for the 
primary boundary curve. The only difference was that the points 
defined in the torso and head systems had only Z components 
rather than X and Y components. A series of boundary curves 
can be seen in Fig. 1 (left). For the ideal case, this is how each 
boundary point can be assigned for each set of data. This 
approach fails when there is/are missing joint(s) in the data. The 
next section outlines an approach defined to handle this issue.   
 

3.4 Occlusion Handling with Child and Parent Joints 
      Continuity of each tracked point on the human was vital for 
determination of the boundary curves and subsequent swept 
surface generation. This proved problematic when occlusions 
and other factors made it impossible for the ST SDK to assign a 
meaningful position to a joint. When a tracked point, the right 
hand for example, disappeared for a few frames, the boundary 
curve definition and surface sweep steps would not know how to 
patch together sequential poses of the human. Additionally, the 
boundary point definition of the missing joint’s neighbors 
depended on determining the direction to this point. This issue is 
demonstrated in Fig. 5 (left), where the right hand is lost for a 
frame. The black dotted lines represent the connections that were 
expected to be made when connecting sequential poses. When 
this connection was not possible, the connection could not 
simply be terminated. If the joint showed up again, it needed to 
be patched to the previous pose so that the poses could be 
continuously connected. The green line in this image represents 

 
FIGURE 4: JOINT AND END EFFECTOR BOUNDARY POINTS 
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the desirable best alternative connection. This solution was 
desirable because when a joint was lost, it was assigned to its 
closest neighbor, the preceding joint in the human’s kinematic 
chain. This mapping is codified with the child parent hierarchy 
shown in the center of Fig. 5.  

Each joint was assigned a default parent. Feet were mapped 
to knees, and knees to the waist. Hands were mapped to elbows, 
and elbows to shoulders. Finally, the shoulders and waist were 
mapped to the torso. Grandparent and great grandparent joints 
were also assigned such that if a missing joint’s parent was also 
missing, both missing joints would be mapped to the furthest 
existing point in the kinematic chain, the grandparent. A visual 
of this approach is shown on the right side of Fig. 5 for cases 
where a parent (a) and grandparent (b) go missing. The hierarchy 
was used to 1) reassign missing joint positions and 2) select the 
direction to a parent and child joint used to define the location of 
the boundary points. A child joint structure was also needed. The 
parent structure hierarchy was used here, except rather than work 
backwards along the kinematic chain, the next joint in the chain 
was used. Since it was more likely that joints further along in the 
kinematic chain would be missing, if a child could not be found, 
the parent joint would be located and used in place of the child. 

3.5 Surface Sweep and Collision Detection with Robot 
      The result of the previous steps was a set of boundary curves 
encapsulating the human at an instance in time. This process 
could be iterated for an arbitrary number of time steps or 
predictions of future times. These boundary curves could then be 
patched together to create a surface that encompassed the entire 
swept volume of the human. This operation was completed by 
invoking a previously developed algorithm presented in [17]. 
This algorithm created a composite surface by connecting each 
segment of a boundary curve at one time to the corresponding 
segment on a boundary curve at a future time, shown in Fig. 6a 
and Fig. 6b. The surface was stored in the form of a point cloud 
containing spatial and temporal occupancy data resolved to a 
standardized grid spacing. The algorithm iterated this process for 
an arbitrary number of poses. It finally applied boundary 

conditions at the first and last pose to create patches to close off 
the surface. This is shown in Fig. 6c with time encoded as color. 
In addition to human modeling, [17] outlines application of the 
algorithm to modeling a robot. 

 
4. INTEGRATION AND TESTING OF ALGORITHM 
      This algorithm was applied to an HRC setting in which a 
human and a serial link 6 DOF manipulator worked in close 
proximity. The overall structure of the algorithm incorporating 
all functions discussed in this work is as follows. First, in an 
offline setting, the robot’s task schedule, in terms of joint 
trajectories, was loaded and used to generate boundary curves at 
a representative set of poses along the trajectories. The boundary 
curves were used to generate spatial and temporal point clouds. 
In the online portion, the sweep for each robot task was loaded 
sequentially. During the execution of the robot’s tasks, a safety 
loop monitored and modeled human actions and compared them 
with the current robot’s task trajectory to identify collisions. To 
emulate the output of the prediction algorithm, incorporated in 
the future, real-time human locations were captured using the ST 
SDK and then a time shift was applied so the real-time human 
data emulated prediction for generating the surface sweeps. The 
presented approach, herein, was used to generate continually 
updated sweeps of the human’s motion, which were compared to 
the sweep for the robot’s current task to identify collisions via 
spatio-temporal intersections. 

      The overall goals of the algorithm were to 1) precisely 
identify collisions between the human and robot during dynamic 
tasks, 2) function successfully in the face of noisy and missing 
data, and 3) run in real-time. The following tests were completed 
to evaluate the effectiveness of the algorithm with respect to 
these goals and establish any, and all limitations. 

      As an initial test to determine efficacy of the algorithm, the 
simulated robot was overlayed on top of the real robot from 
which the simulation was modeled. This was done after 
positioning the depth camera. The fixed coordinate system of the 
simulated robot was modified until it coincided with the real 
robot. The simulation was programmed to hold the robot at home 

 

  

   
FIGURE 6: COONS PATCHES ARE GENERATED BETWEEN 
BOUNDARY CURVES OF THE HUMAN AT TWO TIME STEPS 
 

 
FIGURE 5: TIME SERIES OF HUMAN POSES WITH A POSE OF 
MISSING DATA, MAPPING HEIARCHY, AND VISUAL OF USE 
OF GRANDPARENT AND GREAT GRANDPARENT MAPPINGS 
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position for the duration of the run while the human was sensed. 
It was confirmed that collisions were detected whenever the 
human touched the robot. This process also served as calibration  
of the robot-camera set up.  Fig. 7 shows the swept volumes for 
the human and robot. The larger red points indicate collisions. 

      To understand the precision of this algorithm, it was desired 
to evaluate the region where the prediction of the algorithm 
began to dither. Dithering was defined as not making a solid 
prediction as to whether or not a collision was taking place and 
was due to variations in the perceived location of the human. The 
robot was set to remain still at its home position while the human 
moved. To evaluate this region for which dithering predictions 
took place, the following test was implemented. The human held 
a depth probe extended towards the nearest point on the robot. 
The human then moved their hand towards the robot until the 
algorithm began dithering in collision warnings. The depth probe 
was zeroed, and the human continued to move closer until a solid 
collision detection was made. The probe reading was noted. This 
procedure was completed for five locations on the robot (marked 
on Fig. 7), ten times each. Table I gives the mean and standard 
deviation of each location. The worst-case dither region indicates 
a 25.76 mm (location 4 mean plus standard deviation) thick 
region around the robot for which intermittent collision warnings 
were raised. This serves as the accuracy limit for an inexpensive 
collision detection system, only requiring a depth camera and 
processor. Increased error will yield more mis-triggers for close 
proximity HRC tasks. 
 

TABLE I   
PRECISION DATA FOR CAMERA PREDICTION  

Location of Robot Mean Error (mm) St Dev Error (mm) 
Location 1: Link 2 13.11 5.93 
Location 2: Joint 2 18.29 4.34 
Location 3: Joint 3 15.57 6.03 
Location 4: Joint 1 22.28 3.48 
Location 5: Joint 5 21.42 4.29 

     *St Dev is shorthand for standard deviation. 
       
      Next, to evaluate dynamic performance of the algorithm, 
robot trajectories were generated to complete a sequence of 
motions. Corresponding motions were planned for the human 
such that the human wouldn’t collide with the robot. For each set 

of tasks, two runs were taken: one where everything went as 
planned, and one where the human deviated from the plan in a 
way that caused collision. The goal was to prove that the 
algorithm was 1) able to accurately identify collisions and 2) was 
robust to false positives in collision detection. Figs. 8-10 
demonstrate either case, where the time scale on the right is the 
same time scale as in Fig. 1. Collisions are plotted in large red 
points. Each case indicated that the algorithm was effective in 
both identifying collisions and non-collisions accurately. Testing 
was not limited to this scenario, but this scenario was selected to 
highlight the evaluation approach.  

      For each scenario, execution of each submodule of the 
algorithm and the algorithm as a whole was timed to evaluate 
real-time capability. The algorithm is made up of four 
submodules. Submodule 1 is the ST SDK, submodule 2 is the 
boundary curve calculator, which is discussed in detail in section 
3.3, submodule 3 is the surface sweep generator, and submodule 

   
FIGURE 8: HRC TASK 1: HUMAN REACHES AROUND ROBOT 
WITHOUT COLLISION (LEFT) AND WITH COLLISION (RIGHT) 
 
 

 
 
FIGURE 7: OVERLAY OF SIMULATED AND PHYSICAL 
ROBOT TO EVALUATE COLLISION DETECTION CAPABILITY 
 
 

   
FIGURE 9: HRC TASK 2: HUMAN REACHES IN FRONT OF 
ROBOT WITHOUT COLLISION (LEFT) AND PAST ROBOT 
WITH COLLISION (RIGHT) 
 
 

   
FIGURE 10:  HRC TASK 3: HUMAN BACKS OUT OF THE WAY 
OF THE ROBOT WITHOUT COLLISION (LEFT) AND REMAINS 
IN THE WAY OF THE ROBOT WITH COLLISION (RIGHT) 
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4 is the collision detector. Submodule 4 is discussed in detail in 
[17]. Fig. 11 demonstrates this time data for submodules 2 and 3 
developed in this work. In the figure, the execution time for the 
ST SDK was not included because this module was run on a 
different thread and the ST SDK was a commercial product. On 
average, the ST SDK produced a new frame every 37 ms. The 
rest of the algorithm consumed data from a variable that was 
continuously updated by the ST SDK thread. Time data shown 
in Fig. 11 was typical of the execution times seen for other tests.  
 

TABLE II   
RUN TIME DATA FOR VARIOUS TESTS 

 Boundary 
Curve 

Surface 
Sweep 

Collision 
Check 

Total Time 
(Raw Data) 

Total Time 
(Outliers Removed) 

Metric Mean 
(ms) 

St Dev 
(ms) 

Mean 
(ms) 

St Dev 
(ms) 

Mean 
(ms) 

St Dev 
(ms) 

Mean 
(ms) 

St Dev 
(ms) 

Mean 
(ms) 

St Dev 
(ms) 

Test 1 1.39 2.75 1.59 3.16 5.44 4.49 12.60 55.27 8.69 6.39 
Test 2 1.25 2.74 1.35 3.12 5.61 4.80 13.95 82.08 8.56 4.90 
Test 3 1.12 2.40 1.40 2.92 5.42 4.44 14.47 59.39 8.02 4.50 
Test 4 1.45 2.85 1.57 3.09 5.58 4.42 15.61 64.08 8.74 4.31 
Test 5 1.44 2.84 1.35 2.89 5.94 4.61 13.79 46.81 8.81 4.58 
Mean 1.33 2.72 1.45 3.04 5.60 4.55 14.08 61.53 8.56 4.94 

*St Dev is shorthand for standard deviation. 
 
      Table II demonstrates time data for five runs of HRC tasks 
similar to the ones shown in Figs. 8-10. It provides the mean and 
standard deviation (St Dev) of five different tests in which both 
the robot and human were moving. Each reported value is taken 
over more than 500 iterations of the algorithm. These tests 
included a mix of runs with no collisions and runs with 
collisions. In all cases, the run’s standard deviation is either close 
to or greater than the mean of the time data. Variation in the 
execution time arose from the computer’s processing allocation 
between the algorithm and unrelated background processes. The 
computation time of the algorithm is low enough that the 
computer’s fluctuation in processing power produces a 
noticeable effect on computation. Even still the computation 
time was far under the real-time threshold, which is taken to be 
30 ms. The average total run time of the algorithm was typically 
more than sum of the submodules due to rejection of bad data by 
the filter. Fig. 12 shows a metric called “Frames Rejected” (right 

axis) along with its impact on the total run time (left axis). This 
metric tallied the total number of frames that had to be thrown 
out each iteration due to irreparable errors in the data. This was 
the function of the filter presented in section 3.2. Every frame 
rejected caused a runtime delay of, on average, 37 ms, the time 
required for the ST SDK to produce new data. Table II gives an 
estimate of what the average and standard deviation of the run 
time of each test would be if no frames were rejected in the Total 
Time (Outliers Removed) column. These values were found by 
removing from the “Total Time” data any recorded times greater 
than the mean plus three standard deviations of the raw Total 
Time data. Given the large relative size of the Total Time 
standard deviation with respect to the average total time, 
retaining all data within three standard deviations was a 
conservative estimate.  

      Generally, frames were rejected when the camera would 
begin to lose sight of a point, either due to occlusion or exiting 
of the sensed point from the camera line of sight. To combat this 
issue, attempts were first made to mend the data via the 
parent/child structure. If this was not possible, bad data was 
identified and rejected by the filter. Fig. 13 demonstrates the 
advantages of the parent/child mapping approach to mending the 
data. The output of the algorithm for a series of poses is shown 
on the left in red. Three instances of situations where the sensed 
data was highly inaccurate are shown on the right in the top row. 
These poses, as sensed, could not be used for construction of the 
model. Instead, the parent/child structure was used to map the 
highly inaccurate points to their closest accurate kinematic 
neighbor. The result of this procedure is shown on the right side 
of Fig. 13 on the bottom. Such repairs were able to mend a large 
number of poses produced by the ST SDK. Some frames, 
however, remained highly inaccurate even after mending. This 

 
FIGURE 11: TIME DATA BY SUBMODULE. RAW DATA IS 
PLOTTED TRANSLUCENT. A 30 SAMPLE MOVING AVERAGE 
IS PLOTED BOLD  
 
 
 

 
FIGURE 12: TOTAL TIME DATA OVERLAID ON THE 
SKIPPED FRAMES COUNT FOR EACH ITERATION  
 

      

                                    
 

FIGURE 13: EFFECT OF THE PARENT/CHILD MAPPING  
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is where the filter was applied. Fig. 14 demonstrates a few 
examples in the same sequence of data used in Fig. 13 of poses 
that were too inaccurate to use for the human model. In these 
cases, dimensions of the human were too far from reality to 
create an accurate representation of the human. The parent/child 
structure in conjunction with the filter made the algorithm far 
more robust to bad data.  

 
 
      Whenever the filter rejected a frame of data, the algorithm 
had to wait for the next frame. This was a necessary tradeoff of 
execution time for model fidelity. Without this, the model would 
be too inaccurate to make meaningful predictions. For occlusions 
or orientations of the human that are difficult to perceive, this 
could take many cycles of the ST SDK, resulting in the time 
spikes seen in Fig. 12. A common example is when portions of 
the human were occluded by the robot. It is expected that the 
remedy to this problem will be a second camera perspective that 
could augment the data that was “side profile” to the first camera. 
To substantiate this claim, Fig. 15 demonstrates a human 
orientation that has been repeated for two camera positions.  

      In this scenario, the human leaned towards the robot to reach 
around with the left arm while moving the right arm back. 
Camera 1, positioned on the human’s right, lost sight of the left 
arm as it extended behind the robot. Camera 2, positioned on the 
human’s left, lost sight of the right arm as it fell behind the 
human (indicated by loss of temporal swept position data). The 
true motion for the right arm is shown most clearly in cells 1 and 
2 of Fig. 15, while the true motion of the human’s left arm can 
be seen most clearly in cells 5 and 6. Cell 3, which shows a 
distorted and stretched left arm, demonstrates Camera 1’s 

inability to sense the human’s left arm. While cells 4 and 5, 
which show no temporal data for the right arm during the latter 
half of the motion (note that the lighter color portions of the arm 
which indicate positions at a later time are missing), show 
Camera 2’s inability to approximate the human’s right arm. 
Clearly, both camera positions offer valuable and complimentary 
information about the human. Future work will combine these 
perspectives to form a higher fidelity human model. 
 
5. CONCLUSION 

Run-time tests indicate that the algorithm could filter data to 
avoid ST SDK error, model the human’s swept volume, and 
check for collisions with the robot in approximately 14 ms, on 
average. Accuracy testing indicates that the algorithm can 
reliably predict collisions or non-collisions in dynamic 
situations, and that the region around the robot for which false 
positives can occur is limited to approximately 26 mm. This 
algorithm presents an efficient method by which a depth camera 
can provide reliable, real-time safety monitoring in an industrial 
work cell and enhance the robot’s situational awareness and 
ability to look ahead at its trajectory and predict collisions.  

Issues were noted for cases in which the human orientation 
caused occlusion with respect to the camera. In this case, points 
were highly inaccurate and had to be either repaired or filtered 
out, resulting in a temporary increase in run time. Future work 
will focus on resolving this issue by developing a sensor fusion 
algorithm to take data from another depth camera positioned 
such that its perspective is complementary to the first camera. A 
confidence measure will be associated with each sensed point, 
and between the two cameras’ perspectives, the points with the 
greatest confidence will be fed to the rest of the algorithm. 
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