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Global Memory and Local Continuity for Video
Object Detection

Liang Han, Zhaozheng Yin

Abstract—To deal with the challenges in video object detection
(VOD), such as occlusion and motion blur, many state-of-the-
art video object detectors adopt a feature aggregation module
to encode the long-range contextual information to support the
current frame. The main drawbacks of these detectors are three-
folds: first, the frame-wise detection slows down the detection
speed; second, the frame-wise detection usually ignores the
local continuity of the objects in a video, resulting in temporal
inconsistent detection; third, the feature aggregation module
usually encodes temporal features either from a local video
clip or a single video, without exploiting the features in other
videos. In this work, we develop an online VOD algorithm,
aiming at a balanced high-speed and high-accuracy, by exploiting
the global memory and local continuity. In the algorithm, an
effective and efficient global memory bank (GMB) is designed
to deposit and update object class features, which enables us to
exploit the support features in other videos to enhance object
features in the current video frames. Besides, to further speed
up the detection, we design an object tracker to perform object
detection for non-key frames based on the detection results
of the key frame by leveraging the local continuity property
of the video. Considering the trade-off between detection ac-
curacy and speed, the proposed framework achieves superior
performance on the ImageNet VID dataset. Source codes will
be released on https://github.com/LiangHann/Global-Memory-and-
Local-Continuity-for-Video-Object-Detection.

Index Terms—video object detection, global memory bank,
feature aggregation, local continuity, object tracker

I. INTRODUCTION

DUE to the advancement of deep neural networks, sig-
nificant progress has been achieved on object detec-

tion in still images [1], [2], [3], [4], [5], [6], [7], [8],
[9]. With the development of storage and communication
technologies, video is becoming a popular media to convey
more abundant information, and video-based analysis becomes
pervasive nowadays, such as action recognition [10], [11],
sematic segmentation [12], [13], object tracking [14], [15] and
detection [16], [17], etc. Among them, video object detec-
tion (VOD), a fundamental task for numerous downstream
applications such as robotics and autonomous driving, has
revealed increasing importance. However, due to the dete-
riorated appearance caused by occlusion, motion blur, out-
of-focus cameras, or rare object poses in captured videos,
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Fig. 1: Comparison with state-of-the-arts. ⋄ indicates online detectors
(detection using the past and current frames without using the future
frame or post-processing), while ◦ denotes offline detectors.

directly applying those image-based object detectors on a
frame-by-frame basis to a video often leads to unsatisfactory
performance. The temporal information inherently encoded in
videos, as the rich cues of continuous object movement, can be
leveraged to boost the performance of VOD [18], [19], [20].

There are two metrics to consider when developing a VOD
algorithm: accuracy and speed. Many recent works have been
proposed to pursue the high accuracy such as FGFA [21],
MANet [22], SELSA [16], and MEGA [17]. However, these
algorithms have low detection speed due to their complexities.
Besides, they are not online algorithms since they use forward-
backward information in the temporal domain or some post
processing techniques. On the other hand, faster algorithms
have attracted attentions such as D&T [23], Faster-RCNN
[4], LSTS [24], and CenterNet-HP [25], but they generally
have lower accuracy. Our goal in this paper is to develop
an online framework (detection using the past and current
frames without using the future frame or post processing,
note that here the ‘online’ framework is also called ‘causal’
framework in signal processing community), aiming at a
balanced performance of high-speed and high-accuracy, as
shown in Figure 1.

Our community has been actively improving the VOD in
two directions. The first one aims at speeding up detection
by relying on temporal information for feature propagation
to avoid dense feature extraction [26], [25], [27], [28], [29],
[30], [24], [31]. Unfortunately, compared with the dense
feature directly extracted with networks, the quality of the
propagated feature is usually degraded, which leads to less
accurate detection. The other direction tries to boost the
detection accuracy by aggregating the features of adjacent
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(a) Local temporal information exploration.

(b) Global temporal information exploration.

(c) Global and local temporal information exploration.

(d) Our global memory and local continuity model.

Fig. 2: Feature aggregation comparison between our model and
others. Our model is able to combine all the features in the current
video and previous detected videos to perform feature aggregation.
Best viewed in color.

frames to improve the target frame feature, which consists
of three feature aggregation strategies: (1) local temporal
feature aggregation [21], [22], [32], [33], [34], [35], [36], [37]
(Figure 2 (a)), which aggregates proposal features in the target
frame only with the features of a few support frames sampled
from a very short time range around the target frame; (2)
global temporal feature aggregation [38], [16], [39], [40], [41],
[42] (Figure 2 (b)), which performs the feature aggregation for
the target frame with the features of some globally sampled
support frames from the whole video; and (3) both global and
local temporal feature aggregation [17], [24] (Figure 2 (c)).
Nevertheless, when aggregating features from support frames,
it is inevitable for those approaches to perform dense feature
extraction from support frames, which heavily slows down
the detection. Besides, there are two more drawbacks in the
feature aggregation works: 1) the local continuity information
in the spatio-temporal domain is not fully exploited, which
may lead to temporally inconsistent detection; 2) only the
current video is used for feature aggregation, while the related

object information in other videos is ignored.
Motivated by the above observations ignored by previous

works, we propose the Global Memory and Local Continuity
Network (GMLCN) for effective and efficient VOD. Firstly,
a Global Memory Bank (GMB) is designed to store object
class features, which enables to exploit the support features in
other videos to enhance object features in the current video
frame. The GMB further relieves the costly dense support
frame feature extraction in previous works, and thus greatly
speeds up the detection. Secondly, instead of performing object
detection in a frame-by-frame manner which is adopted by
most previous works, we propose to detect objects in a video
clip each time. Each video clip consists of several consequent
frames, in which the first frame is regarded as key frame
and our GMB-based object detector is applied onto it, while
the other frames are non-key frames and an object tracker
is designed to detect objects in these non-key frames based
on the detection result of the key frame by leveraging the
local continuity of the video. The object tracker mitigates the
temporally inconsistent detection due to motion blur or partial
occlusion, and also avoids the dense feature extraction for non-
key frames, which, as a side product, further speeds up the
detection. The main contributions of this work are as follows:

• We design the Global Memory and Local Continuity
Network (GMLCN) for Video Object Detection (VOD),
which can exploit the global memory and the local con-
tinuity information to boost both the detection accuracy
and speed.

• A Global Memory Bank (GMB) is designed to exploit
the global memory of the videos for higher detection
accuracy. Instead of storing pixel- or instance-level fea-
tures as some previous works did [43], [17], [40], [44],
our designed GMB stores object class features, which
enables to exploit support features in the current and also
other videos for feature aggregation. Besides, the GMB
speeds up the detection by exempting the time-consuming
support frame feature extraction and reducing the storage
of the memory bank.

• An object tracker is designed to track objects from key
frames to non-key frames by leveraging the local con-
tinuity of the video. Different from previous works that
regress an IoU score in the tracker head to estimate the
quality of the bounding box regression, in our designed
object tracker, we add a classification branch to directly
predict whether the tracked object disappears from the
current non-key frame. The object tracker mitigates the
temporally inconsistent detection, and also avoids the
dense feature extraction for non-key frames, which fur-
ther speeds up the detection.

• Evaluated on ImageNet VID dataset (Figure 1 and Ta-
ble I), our GMLCN model achieves better accuracy com-
pared to previous methods with the same/similar speed;
compared to previous methods with the same/similar ac-
curacy, our model is much faster with online performance.

II. RELATED WORK

In this section, we briefly review the previous papers related
to our work.
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A. Still Image Object Detection

There are two main branches for still image object detection:
one-stage object detector and two-stage object detector. One-
stage object detectors [3], [45], [46], [5], [47], [48] directly
predict the bounding box of interest based on the extracted
feature map from CNN, it is usually faster but generally
with worse performance than the two-stage counterpart. Two
stage detectors [4], [6], [49], [7], [50], [51] usually generate
region proposals with Region Proposal Network (RPN) [4]
first, followed by a RoI pooling or RoIAlign pooling [7] to
extract proposal features, and then each extracted proposal
feature is used to perform object detection by classifying a
label and regressing a bounding box. In this work, we perform
two-stage object detection in videos, aiming at solving both
detection accuracy and speed.

B. Video Object Detection (VOD)

There are two mainstream directions for VOD. One direc-
tion is to speed up the detection. Some works [29], [28], [26],
[27], [25], [30], [24], [31] leverage the information redundancy
in video frames to reduce the high feature extraction cost,
some [52], [53], [54] accelerate the detection by exploiting
the video compressing information, while some others adopt
light-weight networks, such as MobileNet [55], [56], and
Bottleneck-LSTM [57], [43]. Our work also aims at boosting
the detection speed but from a different way, as we design an
object tracker to perform object detection on non-key frame by
tracking detected objects from key frames. Besides, a designed
GMB also helps reduce the computational cost drastically by
avoiding extracting dense support frame features.

The other direction is to exploit the temporal information
in videos to improve the detection accuracy, which consists of
three sub-directions. In the first sub-direction (Figure 2(a)),
works exploit the local temporal information in videos to
enhance the target frame feature. Among these methods,
optical flow based feature warping [58] is widely used to
propagate the features across frames nearby [21], [29], [22].
However, works in this sub-direction only exploit the temporal
information between frames in a very short time range, and
ignore the global temporal information. Besides, the warping
does not work well for occlusion cases. To address these
shortcomings, many works in the second sub-direction [38],
[16], [39], [41], [42], [59] adopt the attention-based relation
models [60] to exploit the long-range, global temporal in-
formation (Figure 2(b)). Limited by the GPU memory and
computational cost, only some support frames in the current
video is randomly selected from the long range to enhance
the target frame feature. Unfortunately, the local continuity of
a video is neglected in these works. Works in the third sub-
direction [17], [24] try to solve these problems by exploiting
both the local and global temporal information (Figure 2(c)).
Inevitably, these feature aggregation works have to extract
dense support frame features, which heavily slows down
the detection. Besides, all these works only exploit temporal
information in the current video for VOD, while ignoring the
related object information in other videos. To better exploit
the long-range temporal information in the video to improve

the object detection accuracy, the memory mechanism is also
adopted in many works to store the pixel-level [43], [61], [62],
or instance-level [17] (i.e., feature of proposals generated by
region proposal network), or both pixel- and instance-level
temporal features [40], [44] to perform feature aggregation
for the target frame. However, the storage of the memory
mechanism can be very huge since the number of pixels
and proposals in each frame is usually very large, which
increases the computation cost of feature aggregation and thus
heavily slows down the detection. Besides, these memory-
based methods only exploit the temporal information in the
current video with the help of their proposed memory modules,
while are not able to leverage the information in other videos,
since pixels or proposals of different videos usually contain
different objects which can pollute the target feature rather
than enhancing it when performing feature aggregation. To
overcome these challenges, in our work, we design a Global
Memory Bank (GMB) to store object class features instead
of pixel- or instance-level features. This greatly reduces the
storage of the memory bank and thus accelerate the detection.
Besides, the design of GMB also enables us to exploit support
features in both the current video and other videos for better
feature aggregation.

Recently, some researchers also try to speed up the detection
while at the same time preserve a high detection accuracy. Xu
et al. [25] propose to propagate the previous reliable long-term
detection in the form of heatmap instead of features to boost
results of upcoming video frame based on a one-stage detector.
Luo et al. [63] present a strategy of predicting whether to
perform object tracking or detection for each video frame.
Our work falls in this direction but in a different way. To
obtain high speed and accuracy trade-off, we not only leverage
the detect-or-track strategy, but also improve the design of
memory bank to increase the detection accuracy while also
reduce time cost.

C. Video Salient Object Detection (VSOD)

Saliency is an important cue for object detection, which
has been widely exploited by many works to perform VSOD.
Fan et al. [64] present a baseline model for VSOD, which is
equipped with a saliency-shift-aware convLSTM to efficiently
capture video saliency dynamics by learning human attention-
shift behavior. Wang et al. [65] propose a fully convolutional
network for VSOD, with a novel data augmentation strategy
to learn diverse saliency information. Besides, similar to some
VOD methods which leverage the spatial and temporal infor-
mation to alleviate complicated motion and complex scene
challenge in videos, many works [66], [67], [68] also exploit
the spatiotemporal saliency for VSOD. VSOD aims to pop out
the most salient regions in each frame of a video in the form
of mask, while VOD tries to localize all the objects in a frame
with bounding boxes and classify them into different classes.

D. Detection with Tracking

To accelerate the detection by avoiding computing deep
features and also improve the detection accuracy by exploiting
temporal consistency in a video, many video object detection
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works [27], [63], [69] combine a detection module and an
object tracker [70], [71], [72] in their frameworks. Inspired
by this idea, we also include an object tracker in our detec-
tion framework for acceleration and accuracy improvement.
However, different from these previous works that regress
an IoU score in the tracker head to estimate the quality of
the bounding box regression, in our designed object tracker,
we add a classification branch to directly predict whether the
tracked object disappears from the current non-key frame.

III. GLOBAL MEMORY AND LOCAL CONTINUITY
NETWORK (GMLCN)

For models to perform accurate object detection on long-
term videos with complex scenes, they are expected to not
only leverage the long-range, global contextual information
for object detection in the current frame, but also perform
continuous and smooth object detection in the local spatial-
temporal domain of videos. Keeping these motivations in
mind, we propose the Global Memory and Local Continuity
Network (GMLCN) for Video Object Detection (VOD).

A. Framework Overview
Figure 3 depicts the framework of the proposed GMLCN.

The network takes a short video clip as input which consists of
a key frame and one or more neighboring non-key frames. For
the key frame, a deep backbone network (e.g., ResNet-101)
is adopted to extract frame feature. Then, a Region Proposal
Network (RPN) is used to generate object proposals for the key
frame, followed by an RoIAlign pooling operator to extract
feature for each generated object proposal. A self-attention
module is employed to perform feature aggregation for these
extracted proposal features with the global features reading
from the Global Memory Bank (GMB). Finally, two fully
connected layers are attached to each aggregated proposal
feature to predict the class label and bounding box of this
proposal, followed by a Non-Maximum Suppression (NMS)
to remove duplicates and generate the final detection results.
It is worth noting that after getting the final detection result
of the key frame, the aggregated proposal features and their
corresponding predicted class scores will be used to update
the features in GMB by a feature writing operation. For the
neighboring non-key frame, a shallow backbone network is
adopted to extract coarse low-level frame feature. The low-
level non-key frame feature, together with the intermediate
low-level feature of the key frame generated by the deep
backbone, are used to train an object tracker, which will then
perform object detection for the non-key frame by tracking
the detected objects from key frame to non-key frame. Dif-
ferent from previous two-stage video object detectors, our
proposed GMLCN avoids extracting support frame features
when performing object detection for the key frame with the
help of the designed GMB. Besides, our GMLCN only needs
to extract low-level features for the non-key frames when
detecting objects in these non-key frames with the proposed
object tracker, which can greatly reduce the computation cost.
With the designed GMB and object tracker, our GMLCN can
drastically speed up the detection while at the same time
pursuing high detection accuracy.

B. Global Memory Bank

To perform object detection on video frames with deterio-
rated object appearances caused by partial occlusion, motion
blur, etc., aggregating appearance features from other video
frames is a widely-used strategy. Some works also exploit
the external memory mechanism [17], [40] to increase the
support features. Generally, sampling more support features
or increasing the external memory storage can gain better
detection result. However, this will also increase the computa-
tion cost and computer memory demand, which requires more
powerful machines and even worse, slows down the detection.
Keeping this challenge in mind, in this subsection, we design
an efficient Global Memory Bank (GMB) to store object class
features instead of storing object proposal features, which not
only effectively lowers the memory demand, but also speeds
up the detection.

In the GMB, a class memory feature matrix Fmemory ∈
R(C+1)×D is restored, where C is the number of object
classes in the dataset, plus one class for the background,
i.e., each row of this matrix represents a feature vector for a
certain class (either object class or background), and D is the
dimension of each class feature vector. The feature memory
matrix is initialized with the detection result of the first key
frame. Suppose in the 1st key frame, N1 object proposals are
generated, each with a feature vector dimension of D. Let
F proposal ∈ RN1×D denote the stacked features of these N1

proposals, and S ∈ RN1×(C+1) be the final predicted class
score vectors of these proposals by the detection network. Each
row of the feature memory matrix (Fmemory

(i,·) ) is initialized
by weighted-summing the proposal vectors belonging to the
same class, with the predicted class scores as the summation
weights. Mathematically,

Fmemory
(i,·) =

(S(·,i))
T · F proposal∑N1

j=1(S(j,i))T
, i ∈ {1, 2, ..., C+1} (1)

where (S(·,i))
T denotes the transposed vector of the i-th

column of matrix S. Please note that before initializing the
memory matrix, we will first process the class score matrix
S with a thresholding operation (threshold value is 0.9 in our
case) to only reserve the high class scores, while the low class
scores are set to 0. By doing this, only the proposals with high
class scores are used to generate the class feature vectors,
which can make the class feature vectors more representative
and discriminated with each other.

1) Feature Reading: After the class memory feature matrix
in GMB is initialized with the detection result of the first
video clip, a feature reading operation is designed to read
these class memory features from GMB and use them to
perform feature aggregation for the following key frames. In
this work, a self-attention module is adopted to implement
the feature reading operation, which consists of three steps:
attention weight computation, memory feature alignment, and
memory feature aggregation.
Attention weight computation: Suppose for the current key
frame t, Nt proposals are generated in total, and the proposal
features form a feature matrix F proposal ∈ RNt×D by stacking
all proposals’ features together, where D is the dimension of
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Fig. 3: Framework of the proposed GMLCN. The input is a short video clip, which consists of a key frame and one or more non-key
frames. The key frame goes through a deep backbone to extract its feature, followed by a Region Proposal Network (RPN) to generate
proposals and RoIAlign pooling to extract proposal features. A feature reading operation is performed to aggregate features for generated
proposals with the class features in the Global Memory Bank (GMB) which consists of features for each object class and the background,
and each aggregated proposal feature is used to perform the final detection, followed by a Non-maximum Suppression (NMS) to remove the
duplicates. After detection, the aggregated proposal features along with their class scores are used to update the class features in GMB by
a feature writing operation. The low-level features of the key frame and the non-key frame, extracted by a shallow backbone, are input to
an object tracker, which detects objects for non-key frames based on the detection results of the key frame. Best viewed in color.

each proposal feature vector. The attention weights between
the proposal features F proposal and the class memory features
Fmemory can be computed as

W =ϕ(F proposal)·ψ((Fmemory)T ),W ∈RNt×(C+1) (2)

where ϕ and ψ are two embedding layers to reduce the feature
dimension when computing attention weights.
Memory feature alignment: In this step, the class memory
features are aligned with the computed attention weight matrix
W to fit the current proposal feature

Fmemory
aligned = ρ(W ) · Fmemory, Fmemory

aligned ∈ RNt×D, (3)

where ρ is a row-wise softmax operation to normalize the
attention weights so the aligned feature scale is unchanged.
Memory feature aggregation: In the last step, the aligned
class memory features are aggregated to the current proposal
features in a residual way to generate the aggregated proposal
feature F̃ proposal

F̃ proposal=F proposal+fc(Fmemory
aligned ), F̃ proposal ∈ RNt×D,

(4)
where fc is a fully connected layer.

2) Feature Writing: After performing object detection for
a new key frame t, the class memory features in GMB
will be updated with the newly detected result. This is to
guarantee that the class memory feature can contain more class
feature information and thus be more robust and representative.
The memory updating is implemented by a feature writing
operation, which is mathematically defined as

Fmemory
new,(i,·) =

Fmemory
old,(i,·) ·sold,(i)+Fmemory

cur,(i,·) ·
∑Nt

j=1 Scur,(j,i)

sold,(i) +
∑Nt

j=1 Scur,(j,i)

snew,(i) = sold,(i) +

Nt∑
j=1

Scur,(j,i), i ∈ {1, 2, ..., C + 1}

(5)

where Fmemory
new and snew are the updated class memory

features and the updated vector of accumulated class scores,
respectively; Fmemory

old and sold are the previous class memory
features and the vector of accumulated class scores in GMB
before updating; and Fmemory

cur and ST
cur are the class memory

features and class score matrix computed with the new detec-
tion result (proposal features and their predicted class scores)
of the current key frame t. Similar to the initialization, only
the proposal features with class scores higher than a predefined
threshold are used to update the GMB. Note that to update
the class memory feature constantly, the class scores are also
stored, along with the class memory features.

During training, the global memory bank is initialized only
once (after the detection of the first key frame), but it will
be updated constantly (after the detection of every new key
frame) until the end of the training. This enables our GMB
to update over the whole dataset, not just over a single video,
which is quite different from some previous works such as
[17], [40]. During inference, we use the GMB class features
generated in the train process as an initialization, and writing
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Fig. 4: Illustration of the object tracker. First, for a detected object pt on frame t, we define its corresponding search area st+1 on frame
t+ 1 by fixing the box center and expanding the width and height by k times (k = 3 in our case). RoIAlign pooling is applied to extract
regional features for the template object pt and the search area st+1. Then, a depth-wise cross convolution module is employed to encode
the object bounding box offsets by computing the channel-wise correlation between the template object feature and the search area feature,
i.e., the features of each channel from the template object branch is convolved with the features of the same channel from the search area
branch. Finally, the head of the tracker consisting of a classification branch and a bounding box offset regression branch is appended to
regress the bounding box offsets and predict an object existence score.

Best viewed in color.

operation is performed to update the class features in GMB
after performing detection for each key frame.

The benefits brought by the class memory features in GMB
are multi-folds. First, the class memory bank group features at
the class level, and the feature aggregation is performed from
the perspective of class, which makes the support features (i.e.,
class memory features) more robust than the ones used in some
previous works (e.g., instance feature in [40], [39], [41], [38],
[16]). Second, the class memory features reduce the computa-
tion cost and machine memory demand, since the number of
object classes C (in ImageNet VID dataset, C = 30) is usually
quite smaller than the number of sampled support proposals
(usually hundreds or even thousands of support proposals are
sampled to perform feature aggregation in previous works).
Third, the continuous update of the GMB over the whole
dataset enables the detection network to aggregate features
across different videos.

The detection branch for the key frame consists of a Region
Proposal Network (RPN) and a detection head (DH) which
predicts the class label and regresses the bounding box offset
for each positive proposal. We explicitly write the objective
function for RPN as follows [4]:

LRPN = LRPN
cls + λRPNLRPN

loc

=
1

Ncls

∑
i

Lbi−cls(p
RPN
i , p̂i

RPN )+

λRPN 1

Nreg

∑
i

piLloc(∆
RPN
i − ∆̂i

RPN
)

(6)

In this equation, i is the index of an anchor in a mini-
batch, Lbi−cls is the binary cross-entropy loss over two
classes (object vs. background), p̂i

RPN is the predicted
probability of anchor i being an object, pRPN

i is the
ground-truth label which is 1 if the anchor is positive (being

an object) and 0 otherwise (anchor being background),
∆̂i

RPN
= (∆̂i,x

RPN
, ∆̂i,y

RPN
, ∆̂i,w

RPN
, ∆̂i,h

RPN
)

and ∆RPN
i = (∆RPN

i,x ,∆RPN
i,y ,∆RPN

i,w ,∆RPN
i,h )

are the predicted and ground-truth parameterized
coordinates of the bounding box i [73] respectively,
Lloc =

∑
j=x,y,w,h L1,smooth(∆̂i,j

RPN
− ∆RPN

i,j ) is the
smooth L1 loss [1].

The loss function for the detection head is [1]

LDH = LDH
cls + λDHLDH

reg

= Lcls(p
DH , p̂DH)+

λDH [c ≥ 1]Lloc(∆
DH − ∆̂c

DH
)

(7)

in which p̂DH = (p̂DH
0 , p̂DH

1 , ..., p̂DH
C ) and pDH are the

predicted discrete probability distribution over C + 1 classes
and the ground-truth class label respectively, Lcls is the
cross-entropy loss, Lloc is defined the same as in Eq. 6,
∆̂c

DH
and ∆DH are the predicted parameterized coordinates

of the bounding box for a certain class c and the ground-
truth parameterized coordinates of the bounding box by the
detection head respectively, [c ≥ 1] is an indicator function
which evaluates to 1 if c ≥ 1 and 0 otherwise. By convention
the catch-all background class is labeled as c = 0.

The MM-Net [74] also aims to distill the intrinsic charac-
teristics of object classes by encoding images and aggregating
image features into different memory slot in their designed
memory module. However, compared to MM-Net, our Global
Memory Bank (GMB) only stores a class representation vector
in each memory slot, instead of a key-value pair which
respectively denotes the memory representation and class label
in the MM-Net. Besides, considering the object detection task
we conducted, our GMB initializes and updates the class
feature in the memory bank with proposal-level features, while
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the MM-Net uses the image-level features. Moreover, different
from MM-Net which encodes all the images and aggregate
their features into the memory slot, our GMB initializes and
updates the memory in a more picky way to guarantee the
class features more representative and discriminated with each
other, i.e., only the proposals that are with high predicted class
scores are selected to initialize and update the memory bank,
while others are ignored.

C. Object Tracker for Accelerated Detection
When performing object detection for key frames, the object

detection network requires powerful feature extraction and
object classification capabilities, thus the features extracted
are often from deep networks, which drastically slows down
the detection. Tracking could be an aid for the fast detection
by predicting object bounding boxes based on the detection
results in the previous frames. Instead of detecting objects
from scratches, an object tracker looks for similarity between
consecutive frames, and the features used for tracking are
usually shallower than those for detection [69]. To further
speed up the detection, we propose an object tracker to detect
objects in non-key frames by predicting the object bounding
box offsets from the key frame (frame t in Figure 3) to the
neighboring non-key frame (frame t + 1 in Figure 3) with
frame features extracted by a shallow backbone network (e.g.,
feature before conv4 3 of ResNet-101).

Figure 4 illustrates the process of the designed object
tracker. For a detected object pt on frame t, we denote its
bounding box bt with a 4-dimension vector (btx, b

t
y, b

t
w, b

t
h),

where btx and bty are the two coordinates of the box center,
btw and bth are the width and height of the bounding box,
respectively. Then, for this object, we define its corresponding
search area st+1 on frame t + 1 by fixing the box center
and expanding the width and height by k times (k = 3 in
our experiments), i.e., the search area can be represented by
(btx, b

t
y, 3 · btw, 3 · bth). RoIAlign pooling is applied to extract

regional features for the template object pt and the search
area st+1. To keep the same pooled feature scales, the pooled
feature size of the search area is also k times bigger than
the feature size of template proposal. After that, a depth-wise
cross convolution module [72], [69] is employed to encode the
proposal location offsets by computing the channel-wise corre-
lation between the template object feature and the search area
feature, as shown in the Depth-wise cross correlation module
of Figure 4. More specifically, the template object feature and
the search area feature generated by the RoIAlign pooling
operation first pass two non-shared convolutional layers to
suit the tracking task, then these two adjusted features with the
same number of feature channels are chunked along the feature
channel dimension to generate channel-wise features. After
that, the features of each channel from the template object
branch is convolved with the features of the same channel
from the search area branch to perform the cross-correlation
channel by channel, followed by a conv− bn− relu block to
fuse these different channel-wise outputs. Finally, the head of
the tracker consisting of a classification branch and a bounding
box offset regression branch is appended behind the depth-
wise correlation output. The classification branch is a fully

connected layer to classify whether there exists an object in the
search area, while the bounding box offset regression branch
is another fully connected layer to regress the bounding box
offsets. The classification is to deal with the case that an object
disappears from the neighboring non-key frames due to exiting
or occlusion.

The object tracker is supposed to predict the object bound-
ing box offsets between two adjacent frames and an object
existence score to indicate whether an object still exists in
the neighboring non-key frame. During training, the ground
truth objects are used to train the designed object tracker.
The regressing target ∆t+1 = (∆t+1

x ,∆t+1
y ,∆t+1

w ,∆t+1
h ) is

determined by the ground truth bounding box of the object
to be tracked b

t
= (b

t

x, b
t

y, b
t

w, b
t

h) on frame t and the
ground truth bounding box of the tracked object gt+1 =
(gt+1

x , gt+1
y , gt+1

w , gt+1
h ) on frame t+ 1, which is defined as

∆t+1
x =

gt+1
x − b

t

x

b
t

x

, ∆t+1
y =

gt+1
y − b

t

y

b
t

y

,

∆t+1
w = ln

gt+1
w

b
t

w

, ∆t+1
h = ln

gt+1
h

b
t

h

.

(8)

The ground truth label for the existence score is defined as:
if an object exists in the search area of the neighboring non-
key frame, the label is 1, otherwise, the label is 0. During
inference, if the predicted existence score is too small (less
than 0.5 in our case), the object is considered to disappear from
the non-key frame. For a detected object pt with bounding
box bt = (btx, b

t
y, b

t
w, b

t
h) in frame t, the predicted bounding

box bt+1 = (bt+1
x , bt+1

y , bt+1
w , bt+1

h ) of the tracked object pt+1

in frame t + 1 can be inferred through the bounding box
offsets ∆̂t+1 = (∆̂t+1

x , ∆̂t+1
y , ∆̂t+1

w , ∆̂t+1
h ) regressed by the

well-trained object tracker, which is computed as

bt+1
x = ∆̂t+1

x · btx + btx, bt+1
y = ∆̂t+1

y · bty + bty,

bt+1
w = exp(∆̂t+1

w ) · btw, bt+1
h = exp(∆̂t+1

h ) · bth.
(9)

Similar to the objective loss of the RPN, the tracking loss
is defined as

Ltrack = Ltrack
cls + λtrackLtrack

loc

= Lbi−cls(p
track, p̂track)+

λtrack[ptrack ≥ 0.5]Lloc(∆
t+1 − ∆̂t+1)

(10)

where p̂track is the predicted existence probability, ptrack is
the defined ground truth label for the existence score, Lbi−cls

is the binary cross-entropy loss over two classes (existing vs.
no existing), [ptrack ≥ 0.5] is an indicator function which
evaluates to 1 if ptrack ≥ 0.5 and 0 otherwise.

IV. EXPERIMENTS

The proposed video object detection network, Global Mem-
ory and Local Continuity Network (GMLCN), is evaluated
in this section. First, we briefly describe the implementation
details of the network, the dataset and metric used for evalu-
ation, and the training & testing settings. Then, the proposed
GMLCN is compared with state of the art to demonstrate
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its superiority. After that, ablation studies are performed to
evaluate the proposed global memory bank and object tracker
in GMLCN. Finally, we conduct some experiments to make
further analyses on the proposed modules.

A. Network Implementation

Backbone network: ResNet-101 [75] is adopted as the deep
backbone network to extract features for key frames, and the
subnet of ResNet-101 (i.e., network before conv4 3) is used
as the shallow backbone network.
Region feature extraction network: Region Proposal Net-
work (RPN) [4] is applied on the feature extracted by conv4 of
ResNet-101 to obtain the object proposals for the key frames.
Totally 9 anchors with 3 different scales and 3 different aspect
ratios are leveraged in RPN. During both training and infer-
ence stages, we first extract 6000 proposals with the highest
objectness scores for each key frame, then Non-Maximum
Suppression (NMS) is performed on these proposals with IoU
threshold of 0.7 to finally get 300 proposals. RoIAlign pooling
followed by a fully connected layer is applied on the conv5
feature to extract RoI feature for each object proposal.

B. Dataset and Evaluation Metric

The proposed framework is trained with an intersection of
the ImageNet DET and VID datasets [76] by taking their
shared 30 object classes, with the same training and validation
split settings as [21]. After training, the framework is evaluated
on the VID validation dataset with all 30 classes. The widely-
used mean average precision (mAP)@IoU=0.5 is adopted to
evaluate the detection accuracy, and the Frames Per Second
(FPS) is used to measure the detection speed.

C. Training and Testing

The proposed model is trained end-to-end by simultaneously
optimizing the detection loss and tracking loss. We first
initialize the backbone network with the pre-trained weights
on ImageNet classification, then all modules in the GMLCN
are trained and optimized simultaneously. A total of 120k
iterations are performed to train the model with a SGD
optimizer. Batch size is set to 4 with each GPU holds one
minibatch. We use an initial learning rate of 2e−4, which is
divided by 10 after 80k iterations. In both training and testing,
the video frames are resized to be with the shorter dimension
of 600 pixels.

D. Comparison with State of the Art

To evaluate the effectiveness of our proposed model, we
compare it with the state-of-the-arts, and summarize the results
in Table I.

The comparison is performed under the fair circumstance
that all models are with the same backbone ResNet-101.
As our proposed GMLCN is an online VOD method, we
first compare with some models that can perform online
detection. From Table I, we can conclude that our proposed
method outperforms these previous online detection models
considering the accuracy and speed trade-off. Specifically,

Method Online mAP (%) Runtime (FPS) Device
Faster-RCNN [4] ✓ 73.8 17.7 TESLA V100
DFF [29] ✓ 73.1 20.3 TITAN X
D (& T loss) [23] ✓ 75.8 7.8 TITAN X
DorT [63] ✓ 73.4 31.0 TITAN X
MMNet [52] ✓ 73.0 41.0 TITAN X
LWDN [31] ✓ 76.3 20.0 TITAN X
OGEM [40] ✓ 76.8 14.9 TITAN X
PSLA [36] ✓ 77.1 18.7 TITAN X
CenterNet-HP [25] ✓ 76.7 37.0 -
LSTS [24] ✓ 77.2 23.0 TITAN X
LSFA [53] ✓ 77.2 30.0 TITAN X
GMLCN (Ours) ✓ 78.6 25.2 TESLA V100
FGFA [21] % 76.3 1.3 TITAN X
MANet [22] % 77.6 7.8 TITAN X
STSN [32] % 78.9 - -
STMN [77] % 80.5 8.1 TITAN X
RDN [39] % 81.8 10.6 TITAN V
SELSA [16] % 80.3 1.7 TESLA V100
LRTRN [38] % 80.6 10.0 TITAN X
MEGA [17] % 82.9 4.2 TESLA V100
HVR [59] % 83.2 - -
DSFNet [78] % 84.1 1.1 TESLA V100
D & T + Viterbi [23] % 79.8 5.5 TITAN X
FGFA + Seq-NMS [21] % 78.4 1.2 TESLA V100
MANet + Seq-NMS [22] % 80.3 4.6 TITAN X
STSN + Seq-NMS [32] % 80.4 - -
RDN + BLR [39] % 83.8 - -
CenterNet-HP + Seq-NMS [25] % 78.4 34 -

TABLE I: Comparison with state-of-the-arts on ImageNet VID vali-
dation set. ‘X+Y’ means post-processing strategy Y is employed on
method X.

when comparing with the baseline detector Faster-RCNN, our
GMLCN achieves a much better detection both on accuracy
(+4.8% mAP) and speed (+7.5 FPS). Our model is also
much better than the detection with tracking baseline, D
(& T loss) [23] model, and some other state-of-the-art, e.g.,
PSLA [36] and LSTS [24], both on accuracy and speed.
Compared with DorT [63], and the latest state-of-the-art,
LSFA [53] and CenterNet-HP [25], our proposed GMLCN can
achieve a better detection accuracy (+5.2mAP%, +1.4mAP%,
and +1.9% mAP, respectively) while maintaining a real-time
detection. Moreover, if we further accelerate the detection
of our GMLCN by changing the key frame interval (i.e.,
Table III), we can see that our GMLCN can achieve better
detection performance than DorT [63] and LSFA [53] in form
of both speed and accuracy. Besides, our model obtains a better
result both on accuracy and speed compared to another latest
state-of-the-art, LSTS [24].

Then, we make a comparison with some offline video
object detectors. When comparing with FGFA [21] (76.3%
mAP) and MANet [22] (78.1% mAP), which both aggregate
features based on optical flow, our method greatly improves
the detection speed with a higher detection accuracy. The self-
attention based methods, e.g., SELSA [16] (82.7% mAP),
LRTRN [38] (81.0% mAP), MEGA [17] (82.9%)), obtain
better detection accuracy, however, the detection speed of these
methods is usually very slow as dense features from multiple
support frames are needed to perform feature aggregation. The
DSFNet [78] achieves the highest detection accuracy among
all of these methods by performing feature aggregation both
in the pixel level and instance level. However, this accuracy
boosting strategy makes the time cost for detecting object in
each frame quite high (i.e., only about 1 frame per second),
which is far from real-time detection. The detection speed
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GMLCN W/O GMB GMLCN W/O Tracker GMLCN
mAP (%) overall 72.0 80.8 78.6
mAP (%) slow 82.4 87.5 87.1

mAP (%) medium 68.1 78.9 76.0
mAP (%) fast 46.3 60.2 54.4

FPS 28.1 15.7 25.2

TABLE II: Ablation study on proposed modules. mAP
slow/medium/fast/overall represent the detection precision for
objects with slow/medium/fast motion and all objects, respectively.

of RDN in [39] is improved compared to DFSNet [78].
Unfortunately, it is still not real-time.

When some post-processing strategies are adopted, most
of these methods gain more or less on detection precision
(mAP). However, the post-processing will further decelerate
the detection speed. Moreover, with post-processing, only
offline detection can be performed.

It is worth noting that in this work, we aim at designing an
online and real-time video object detector, which can achieve a
good balance between high speed and high accuracy. MEGA
[17], which achieves the best detection precision, is neither
online nor real-time (only 4.2 FPS). When compared with
the state-of-the-art online and real-time detector CenterNet-
HP [25], our proposed detector achieves a better detection
precision (∼ +2%mAP) while reserving a real-time and online
inference.

In conclusion, the evaluation results on the ImageNet VID
dataset (Figure 1 and Table I) show that our GMLCN model
achieves better detection accuracy compared to previous meth-
ods with the same/similar speed, and achieves much faster
detection speed with online performance compared to previous
methods with the same/similar accuracy.

E. Ablation Study on Proposed Modules

In this subsection, we perform some ablation studies to eval-
uate the effectiveness of the proposed modules. The evaluation
results are summarized in Table II.

First, we delete the feature aggregation with GMB from the
proposed GMLCN to evaluate the designed GMB (“GMLCN
W/O GMB” in Table II), i.e., the faster-RCNN is used to
perform object detection for the key frames in the video, while
object tracker conducts the object detection for the non-key
frame. On the one hand, the overall detection accuracy drops
drastically (-6.6% mAP overall). Moreover, the accuracy drops
for all the objects with different motion speeds. This shows
that our designed GMB is beneficial for detection accuracy
improvement by enhancing the target proposal feature with
feature aggregation, which makes the target proposal feature
more representative and discriminative. On the other hand, the
detection speed is only slightly increased (+2.9 FPS) by delect-
ing the feature aggregation with GMB. This demonstrates that
the designed GMB only introduces a little computational cost.
In conclusion, the designed GMB is both effective and efficient
for VOD.

Then, we evaluate the proposed object tracker by removing
it from our GMLCN (“GMLCN W/O Tracker” in Table II),
i.e., all the video frames are regarded as key frames. The
table shows that the detection heavily slows down (-9.8 FPS)

when tracking is not adopted. This is reasonable because deep
features need to be extracted for all the frames if the object
tracker is deleted, which is quite time-costly. Unfortunately,
the object tracker harms the detection accuracy (-2.2% mAP
overall). If we take a closer look at the detection accuracy,
we can see that the accuracy of objects with slow motion only
drops slightly (-0.4% mAP), while the accuracy of objects with
fast motion is greatly influenced by the object tracker (-5.8%
mAP). The reason is that objects with slow motion usually
have small bounding box offsets and small pose variation
between consecutive video frames, thus this local continuity
makes it easy for tracking. However, for objects with fast
motion, the bounding box offsets between consecutive frames
are usually much larger. Moreover, fast-moving objects are
more likely to have drastic shape and pose variation in
neighboring frames, and are easier to be occluded. These all
challenge the object tracker by disobeying the assumption of
local continuity.

We further qualitatively demonstrate the effectiveness of the
proposed GMB and object tracker by presenting a detection
sample in Figure 5. In this example, the input video clip
consists of one key frame and one non-key frame. Three
consequent frames in a video are visualized. The first column
and the last column shows two key frames, while the middle
column is a non-key frame. The first row shows the detection
result of deleting the feature aggregation with GMB from the
proposed GMLCN, from which we can see that some objects
are missed (the white car in the first and second frames).
Besides, the classification confidence scores of the detected
objects are low. The reason is that without aggregating features
from GMB, the extracted features of some target objects are
not very representative and informative, especially for target
objects with occluded or unclear appearance. The second row
is the detection result of removing object tracker from our
proposed GMLCN. In this case, all the frames are regarded as
key frames and the object detection is performed in a frame-
by-frame manner. This row shows that without leveraging the
object tracker, the detection in two consequent frames (the first
and second frame, which are the key frame and non-key frame
in an input video clip) is not always continuous. The last row
shows the detection result of our proposed GMLCN, which
shows that we can obtain continuous detection for consequent
frames in an input video clip when the proposed object tracker
is included in the detection framework. Besides, with the GMB
included in the detection framework, detected objects can be
correctly labeled with higher confidence.

F. Further Analysis of Global Memory Bank

In our experiments, the GMB is updated both in the training
stage and the testing stage. To see how the GMB evolves
during training and testing, we perform experiments in which
the update of GMB is disabled in various stages, and the results
are summarized in Figure 6.
(a) GMB is disabled: We first disable the GMB in our
proposed GMLCN, i.e., we delete the GMB from the
GMLCN pipeline. In this case, the detection accuracy is only
72.0%mAP (column ‘GMLCN W/O GMB’ in Table II).
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Fig. 5: Visualization for qualitative ablation study. First row: result of GMLCN W/O GMB. Second row: result of GMLCN W/O tracker.
Third row: result of our proposed GMLCN. Ground truth is shown with red box in the third row.

(b) GMB is updated only in the current testing video:
Then, we include the designed GMB in our GMLCN, but
the update of GMB is only enabled in the current testing
video. Specifically, during testing, for each video, the GMB
is initialized with the detection result of the first key frame
in this video and updated with the detection results of the
following key frames. When detecting the next testing video,
the GMB will be emptied, and initialized and updated with the
information of this new video. Compared with deleting GMB
from the GMLCN, the detection accuracy of only updating
GMB in the current testing video increases by +3.9%mAP
(75.9%mAP). This comparison result demonstrates that the
object detection can benefit from leveraging the temporal
information in the current video.

(c) GMB is updated in all testing videos: During testing,
the GMB is initialized only once with the detection result of
the first key frame in the first testing video, and continuously
updated with all the following key frames in all the testing
videos. Compared to initializing and updating GMB in one
testing video, updating GMB in all tesing videos improves the
detection accuracy by +2.4%mAP (78.3%mAP). The reason
is that when we initialize GMB in each testing video and
update it with the information in this single video, the stored
class memory feature in GMB will not be so informative and
stable because of the limited representation information from
support frames, especially for the first few frames of each

video. When GMB is updated with all the testing videos,
the stored class memory features in GMB are much more
informative and stable to conduct feature aggregation for key
frames in the testing videos, except for the first few frames
in the first testing videos. This comparison verifies our claim
that exploiting the support object information in other videos
can benefit the object detection accuracy in the current video.
(d) GMB is updated only in all training videos: In the
training stage, the GMB is initialized only once with the
detection result of the first key frame in the first training video,
and then it is continuously updated with all the following
key frames in all the training videos. During testing, the
GMB built in the training stage is used for feature aggre-
gation, while no update is performed on the trained GMB.
The detection accuracy of updating GMB with all training
videos is 78.4%mAP. Updating GMB with all training videos
achieves comparative detection accuracy with updating GMB
with all testing videos. This is because the training dataset is
reasonably comprehensive (there are 3862 training videos and
555 testing videos in the dataset), the aggregated and stored
class memory features in the GMB after training are already
very robust.
(e) GMB is updated in all training and testing videos:
Different from (d) where GMB is updated only with all
training videos, in this scenario, the designed GMB is updated
with all the training and testing videos. Concretely, after
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Fig. 6: Analysis on the updating strategy of GMB. (a): GMB is
disabled, (b): GMB is updated only in the current testing video, (c):
GMB is updated in all testing videos, (d): GMB is updated only in
all training videos, (e): GMB is updated in all training and testing
videos.

M = 1 M = 2 (recursive) M = 2 (direct)
mAP (%) overall 78.6 77.7 77.3
mAP (%) slow 87.1 86.8 86.7

mAP (%) medium 76.0 73.9 73.1
mAP (%) fast 54.4 49.4 46.9

FPS 25.2 32.4 32.4

TABLE III: Ablation studies on the number of non-key frames in an
input video clip (M ) and tracking strategies on multiple continuous
frames (recursive and direct).

building the GMB in the training stage in (d), instead of fixing
the class memory features in GMB, the features are updated
with all the testing key frames. Compared to updating GMB
only with training vidoes, further updating GMB with testing
videos brings detection accuracy improvement of +0.2%mAP
(78.6%mAP). This also demonstrates our claim that collect-
ing object features from more videos can further boost the
detection accuracy.

Note that we do not use the forgetting mechanism in the
feature writing (Eq. 5), because we want to collect as much
as possible object information in each object class feature in
the GMB to make the features robust.

G. Further Analysis of Object Tracker
The input of our proposed GMLCN is a video clip consist-

ing of a key frame and one or more non-key frames. The
number of non-key frames in the input video clip can be
an important hyper-parameter to affect the detection. Besides,
different tracking strategies also make different influences on
the detection.

First, we conduct experiments to study the influence of the
number of non-key frames, M , in an input clip. From Table III
we can see that when we double the number of non-key frames
in an input clip, the detection speed is improved (+7.2 FPS),
because averagely we save more time on feature extraction.
However, the detection accuracy is negatively influenced (∼
-1% mAP), especially for the objects with fast motion. The
reasons are the same as we explained in the last paragraph of
Sec.IV-E.

Fig. 7: Failure case analysis. First row: miss detection of small
objects. Second row: wrong classification label. Third row: miss
detection of newly appeared object.

Then, different tracking strategies are investigated. Suppose
there are one key frame t and two non-key frames t+ 1 and
t+2 in the input video clip. When performing the tracking on
multiple continuous non-key frames with the designed object
tracker, there are two different options, (1) recursive: we
recursively track the objects from frame t to frame t + 1,
and then from frame t + 1 to frame t + 2; (2) direct: we
directly track the objects from frame t to frame t+1 and t+2,
separately. Table III presents the comparison between these
two different tracking strategies, from which we can conclude
that the recursive tracking performs better than the direct
tracking on detection accuracy, and the superiority increases
with the motion speed of the objects. The reason is that the
bounding box offsets and pose variation of fast-moving objects
between frame t and frame t + 2 are much larger than those
between frame t and frame t+1 and between frame t+1 and
frame t+ 2.

H. Failure Case Analysis

There are mainly three different kinds of failure cases for
our proposed GMLCN. (1) The GMLCN fails to detect some
very small objects in the video frames (as shown in the first
row of Fig. 7), which is a typical drawback of most RPN-
based two-stage detectors. (2) Some objects with confusing
appearance features are given wrong class labels, as shown in
the second row of Fig. 7. The reason is that the appearance
feature of the bear in these two frames is similar to the one of
a dog. Without exploiting the surrounding context information,
the model is with high possibility to wrongly classify the bear.
(3) A newly appeared object (e.g., the car bounded with the
red box in the third row of Fig. 7) in the non-key frame is
miss detected. This is because the proposed GMLCN can not
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detect this car in the key frame as only a very small part of this
car is appeared, and when we detect objects in the following
non-key frame with object tracker, the tracker is not able to
track this car. This is a drawback of our designed GMLCN,
which we will try to improve in our future work.

V. CONCLUSION

We propose a Global Memory and Local Continuity Net-
work (GMLCN) for video object detection (VOD). The de-
signed Global Memory Bank (GMB) in GMLCN deposits
and updates object class features, enabling us to exploit the
support features in other videos to enhance object features
in the current video frames. Besides, to further speed up
the detection, we design an object tracker to perform object
detection for non-key frames based on the detection result
of the key frame by leveraging the local continuity property
of the video. Experiments demonstrate the efficiency and
effectiveness of the proposed GMLCN for VOD both on
detection accuracy and speed.
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