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Abstract9

Range-aggregate query is an important type of queries with numerous applications. It aims to obtain10

some structural information (defined by an aggregate function F (·)) of the points (from a point set11

P ) inside a given query range B. In this paper, we study the range-aggregate query problem in high12

dimensional space for two aggregate functions: (1) F (P ∩ B) is the farthest point in P ∩ B to a13

query point q in Rd and (2) F (P ∩ B) is the minimum enclosing ball (MEB) of P ∩ B. For problem14

(1), called In-Range Farthest Point (IFP) Query, we develop a bi-criteria approximation scheme: For15

any ϵ > 0 that specifies the approximation ratio of the farthest distance and any γ > 0 that measures16

the “fuzziness” of the query range, we show that it is possible to pre-process P into a data structure17

of size Õϵ,γ(dn1+ρ) in Õϵ,γ(dn1+ρ) time such that given any Rd query ball B and query point q, it18

outputs in Õϵ,γ(dnρ) time a point p that is a (1 − ϵ)-approximation of the farthest point to q among19

all points lying in a (1 + γ)-expansion B(1 + γ) of B, where 0 < ρ < 1 is a constant depending20

on ϵ and γ and the hidden constants in big-O notations depend only on ϵ, γ and Polylog(nd). For21

problem (2), we show that the IFP result can be applied to develop query scheme with similar time22

and space complexities to achieve a (1 + ϵ)-approximation for MEB. To the best of our knowledge,23

these are the first theoretical results on such high dimensional range-aggregate query problems. Our24

results are based on several new techniques, such as multi-scale construction and ball difference25

range query, which are interesting in their own rights and could be potentially used to solve other26

range-aggregate problems in high dimensional space.27
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1 Introduction34

Range search is a fundamental problem in computational geometry and finds applications in35

many fields like database systems and data mining [4, 27]. It has the following basic form:36

Given a set of n points P in Rd, pre-process P into a data structure so that for any query37

range B from a certain range family (e.g., spheres, rectangles, and halfspaces), it reports or38

counts the number of the points in P ∩B efficiently. Range search allows us to obtain some39

basic information of the points that lie in a specific local region of the space.40

In many applications, it is often expected to know more information than simply the41

number of points in the range. This leads to the study of range-aggregate query [2, 3, 6,42

10, 13, 20, 21, 23, 25, 26, 32], which is a relatively new type of range search. The goal of43

range-aggregate query is to obtain more complicated structural information (such as the44

diameter, the minimum enclosing ball, and the minimum spanning tree) of the points in45
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91:2 In-Range Farthest Point Queries in High Dimensions

the query range. Range-aggregate query can be generally defined as follows: Given a point46

set P , pre-process P into a data structure such that for any range B in a specific family, it47

outputs F (P ∩B), where F (·) is a given aggregate function that computes a certain type of48

information or structure of P ∩B like “diameter”,“minimum enclosing ball”, and “minimum49

spanning tree”. Range-aggregate queries have some interesting applications in data analytics50

and big data [16, 28, 29, 32], where it is often required to retrieve aggregate information of51

the records in a dataset with keys that lie in any given (possibly high dimensional) range.52

In this paper, we study the range-aggregate query problem in high dimensions for53

spherical ranges. Particularly, we consider two aggregate functions for any Rd query ball B:54

(1) F (P ∩B) is the farthest point in P ∩B to a query point q in Rd and (2) F (P ∩B) is the55

minimum enclosing ball (MEB) of P ∩B. We will focus in this paper on problem (1), called56

the In-Range Farthest Point (IFP) Query, and show that an efficient solution to IFP query57

also yields efficient solutions to the MEB problems. We start with some definitions.58

▶ Definition 1. (Approximate IFP (AIFP)) Let P be a set of n points in Rd, q be a point59

and B be a d-dimensional (closed) ball. A point p ∈ P is a bi-criteria (ϵ, γ)-approximate60

in-range farthest point (or AIFP) of q ∈ P in B, if there exists a point set P ′ such that61

the following holds, where ϵ and γ are small positive constants, and B(1 + γ) is the ball62

concentric with B and with radius (1 + γ)r: (1) P ∩ B ⊆ P ′ ⊆ P ∩ B(1 + γ); (2) p ∈ P ′;63

and (3) for any p′ ∈ P ′, (1− ϵ)∥p′ − q∥ ≤ ∥p− q∥.64

Defining AIFP in this way enables us to consider all points in B and exclude all points65

outside of B(1 + γ). Points in the fuzzy region B(1 + γ) \B may or may not be included in66

the farthest point query. Note that allowing fuzzy region is a commonly used strategy to deal67

with the challenges in many high dimensional similarity search and range query problems. For68

example, consider the classic near neighbor search problem, which is equivalent to spherical69

emptiness range search: Given a query sphere B in Rd, report a data point p that lies in B70

if such a data point exists. In high dimensional space, obtaining an exact solution to such a71

query is very difficult. A commonly used technique for this problem is the Locality Sensitive72

Hashing (LSH) scheme [12]. Given a query ball B, LSH could report a data point in B(1 + ϵ)73

for some given factor ϵ > 0. In other words, a fuzzy region B(1 + ϵ) \B is allowed. Similarly,74

we can define approximate MEB for points in a given range with a fuzzy region.75

▶ Definition 2. (Minimum Enclosing Ball (MEB)) Let P be a set of n points in Rd.76

A d-dimensional (closed) ball B is an enclosing ball of P if P ⊂ B and B is the minimum77

enclosing ball (MEB) of P if its radius r is the smallest among all enclosing balls. A ball B′
78

is a (1 + ϵ)-approximate MEB of P for some constant ϵ > 0 if it is an enclosing ball of P79

and its radius is no larger than (1 + ϵ)Rad(P ), where Rad(P ) is the radius of the MEB of P .80

▶ Definition 3. (Approximate MEB (AMEB)) Let P be a set of n points and B be any81

ball with radius r in Rd. A ball B′ with radius r′ is a bi-criteria (ϵ, γ)-approximate MEB82

(or AMEB) of P in range B, if there exists a point set P ′ such that the following holds,83

where γ and ϵ are small positive constants: (1) P ∩B ⊆ P ′ ⊆ P ∩B(1 + γ); and (2) B′ is a84

(1 + ϵ)-approximate MEB of P ′.85

In this paper, we will focus on building a data structure for P so that given any query86

ball B and a point q ∈ Rd, an AIFP of q in P ∩ B can be computed efficiently (i.e., in87

sub-linear time in terms of n). Below are the main theorems of this paper. Let ϵ > 0, γ > 0,88

0 < δ < 1 be any real numbers.89

▶ Theorem 4. For any set P of n points in Rd, it is possible to build a data structure90

of size Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) in Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) pre-processing time,91
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where 0 < ρ < 1 is a small constant depending on ϵ and γ. With this data structure,92

it is then possible to find a (ϵ, γ)-AIFP of any given query point q and query ball B in93

Oϵ,γ(dnρ log δ−1Polylog(nd)) time with probability at least 1− δ.94

Note: In the above result, the relationship between ρ and ϵ, γ has a rather complicated95

dependence on several constants of p-stable distribution, which is inherited from the underlying96

technique of Locality Sensitive Hashing (LSH) scheme [12]. This indicates that for any ϵ, γ,97

we have 0 < ρ < 1 and ρ approaches 1 as ϵ, γ approach 0.98

We will also show how to use the AIFP data structure to answer MEB queries efficiently.99

▶ Theorem 5. For any set P of n points in Rd, it is possible to build a data structure of size100

Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) in Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) pre-processing time, where101

0 < ρ < 1 is a small constant depending on ϵ and γ. With this data structure, it is then102

possible to find a (ϵ, γ)-AMEB for any query ball B in Oϵ,γ(dnρ log δ−1Polylog(nd)) time103

with probability at least 1− δ.104

To our best knowledge, these are the first results on such range-aggregate problems in105

high dimensions. Each data structure has only a near linear dependence on d, a sub-quadratic106

dependence on n in space complexity, and a sub-linear dependence on n in query time.107

Our Method: The main result on AIFP is based on several novel techniques, such as multi-108

scale construction and ball difference range query. Briefly speaking, multi-scale construction is109

a general technique that allow us to break the task of building an AIFP query data structure110

into a number of “constrained” data structures. Each such data structure is capable of111

correctly answering an AIFP query given that some assumption about the query holds (for112

example, the distance from q to its IFP is within a certain range). Multi-scale construction113

uses a number of “constrained” data structures of small size to cover all possible cases of a114

query, which leads to a data structure that can handle any arbitrary queries. Multi-scale115

construction is independent of the aggregate function, and thus has the potential be used116

as a general method for other types of range-aggregate query problems in high dimensional117

space. Another important technique is a data structure for the ball difference range query118

problem, which returns a point, if there is one, in the difference of two given query balls. The119

ball difference data structure is the building block for the constrained AIFP data structures,120

and is interesting in its own right as a new high dimensional range search problem.121

Related Work: There are many results for the ordinary farthest point query problem122

in high dimensional space [11, 17, 19, 24]. However, to the best of our knowledge, none123

of them is sufficient to solve the IFP problem, and our result is the first one to consider124

the farthest point problem under the query setting. Our technique for the IFP problem125

also yields solutions to other range-aggregate queries problems, including the MEB query126

problem.127

A number of results exist for various types of the range-aggregate query problem in fixed128

dimensional space. In [6], Arya, Mount, and Park proposed an elegant scheme for querying129

minimum spanning tree inside a query range. They showed that there exists a bi-criteria130

(ϵq, ϵw)-approximation with a query time of O(log n + (1/ϵqϵw)d). In [23], Nekrich and Smid131

introduced a data structure to compute an ϵ-coreset for the case of orthogonal query ranges132

and aggregate functions satisfying some special properties. Xue [30] considered the colored133

closest-pair problem in a (rectangular) range and obtained a couple of data structures with134

near linear size and polylogarithmic query time. Recently, Xue et. al. [31] further studied135

more general versions of the closest-pair problem and achieved similar results. For the MEB136

problem under the range-aggregate settings, Brass et al. are the first to investigate the137
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91:4 In-Range Farthest Point Queries in High Dimensions

problem in 2D space, along with other types of aggregate functions (like width and the138

size of convex hull) [10]. They showed that it is possible to build a data structure with139

O(n · polylog(n)) pre-processing space/time and O(polylog(n)) query time.140

All the aforementioned methods were designed for fixed dimensional space, and thus are141

not applicable to high dimensions. Actually, range aggregation has rarely been considered142

in high dimensions, except for a few results that may be viewed as loosely relevant. For143

example, Abbar et al. [1] studied the problem of finding the maximum diverse set for points144

inside a ball with fixed radius around a query point. Their ideas are seemingly useful to our145

problem. However, since their ball always has the same fixed radius, their techniques are not146

directly applicable. In fact, a main technical challenge of our problem is how to deal with147

the arbitrary radius and location of the query range, which is overcome by our multi-scale148

construction framework. Another related work by Aumüller et. al. [8] has focused on random149

sampling in a given range. The technique is also not directly applicable to IFP.150

1.1 Overviews of the Main Ideas151

Below we describe the main ideas of our approaches. For simplicity, in the following we ignore152

the fuzziness of the query range. We approach the AIFP query problem by first looking at153

an easier version: given ball B and point q, find an approximate farthest point in P ∩ B154

to q, with the (strong) assumption that the radius of B is a fixed constant rB > 0, and155

that the distance between q and its IFP in P ∩B is within a range of (dmin, dmax], where156

dmax > dmin > 0 are fixed constants. We call such a problem a constrained AIFP problem.157

We use a tuple (rB , dmin, dmax) to denote such a constraint.158

To solve the constrained AIFP problem, we develop a data structure for the ball difference159

(BD) range query problem, which is defined as follows: given two balls Bin and Bout, find160

a point that lies in P ∩Bin \Bout. With such a data structure, it is possible to reduce an161

AIFP query with constraint (rB , dmin, dmax) to a series of BD queries. Below we briefly162

describe the idea. Let r0 = dmin, and for i = 1, 2, 3 . . ., let ri = (1 + ϵ)ri−1, where ϵ > 0 is163

an approximation factor. For i = 0, 1, . . ., we try to determine whether there is a point in164

P ∩B whose distance to q is larger than ri. Note that this can be achieved by a BD query165

with Bin := B and Bout being the ball centered at q and with radius ri. By iteratively doing166

this, eventually we will reach an index j such that it is possible to find a point p ∈ B ∩ P167

that satisfies the condition of ∥p− q∥ > rj , but no point lies in P ∩B whose distance to q168

is larger than rj+1 = (1 + ϵ)rj . Thus, p is a (1−O(ϵ))-approximate farthest point to q in169

P ∩B. From the definition of constrained AIFP query, it is not hard to see that this process170

finds the AIFP after at most O(log1+ϵ
dmax

dmin
) iterations. Every BD data structure supports171

only Bin and Bout with fixed radii. This means that we need to build O(log1+ϵ
dmax

dmin
) BD172

data structures for answering any AIFP query with constraint (rB , dmin, dmax).173

With the constrained AIFP data structure, we then extend it to a data structure for174

answering general AIFP queries. Our main idea is to use the aforementioned multi-scale175

construction technique to build a collection of constrained data structures, which can176

effectively cover (almost) all possible cases of the radius of B and the farthest distance from177

q to any point in B ∩P . More specifically, for any AIFP query, it is always possible to either178

answer the query easily without using any constrained data structures, or find a constrained179

data structure such that the AIFP query satisfies the constraint (rB , dmin, dmax), and thus180

can be used to answer the AIFP query.181

For AMEB query, we follow the main idea of Badoiu and Clarkson [9], and show that an182

AMEB query is reducible to a series of AIFP queries. More discussions are left to Section 5.183
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2 Constrained AIFP Query184

In this section, we discuss how to construct a data structure to answer constrained AIFP185

queries. Particularly, given any ball B and point q satisfying the constraint (rB , dmin, dmax),186

the radius of B is rB ,187

the distance from q to its farthest point to P ∩B is within the range of (dmin, dmax],188

the data structure can find the AIFP to q in P ∩B in sub-linear time (with high probability).189

In the following, we let ϵ > 0 be an approximation factor, γ > 0 be a factor that controls190

the region fuzziness and 0 < δ < 1 be a factor controlling the query success probability. The191

main result of this section is summarized as the following lemma.192

▶ Lemma 6. Let P be a set of n points in Rd. It is possible to build a data structure for193

P with size Oϵ,γ(dn1+ρ log δ−1 log(dmax/dmin)) in Oϵ,γ(dn1+ρ log δ−1 log(dmax/dmin)) time,194

where 0 < ρ < 1 is a real number depending on ϵ and γ, and the constants hidden in the195

big-O notation depend only on ϵ, γ. Given any query (B, q) that satisfies the constraint of196

(rB , dmin, dmax), with probability at least 1− δ, the data structure finds an (ϵ, γ)-AIFP for q197

in P ∩B within time Oϵ,γ(dnρ log δ−1 log(dmax/dmin)).198

In the following, we consider an AIFP query that satisfies constraint (rB , dmin, dmax).199

As mentioned in last section, it is possible to reduce a constrained AIFP query to a series200

of ball difference(BD) range queries, which report a point in P that lies (approximately)201

in Bin \Bout for a given pair of Rd balls (Bin and Bout), or return NULL if no such point202

exists. Below, we describe the reduction using a ball-peeling strategy. We consider a series203

of balls B0, B1, B2, . . . concentric at q with an exponentially increasing radius. Let ξ > 0 be204

a to-be-determined approximation factor, and B0 := B(q, dmin) which is the ball centered at205

q with radius dmin. For integer i > 0, let Bi+1 = Bi(1 + ξ) which is the ball obtained by206

enlarging the radius of Bi by a factor of (1 + ξ). 1 For i = 0, 1, 2, . . ., repeatedly perform207

a BD query with Bin := B and Bout := Bi, until an index j is encountered such that the208

BD query reports a point pj that lies in P ∩B \Bj , but returns NULL when trying to find209

a point in P ∩ B \ Bj+1. If ξ is a small enough constant, it is not hard to see that pj is210

a good approximation of the IFP to q in P ∩ B. Note that in this process, no more than211

log1+ξ(dmax/dmin) BD queries are required. This is because the distance between q and any212

point in B is at most dmax. Thus, it is not necessary to increase the radius of Bout to be213

more than dmax in the BD range query. The bound on the number of BD range queries214

then follows from the facts that the series of BD range queries starts with a Bout ball of215

radius dmin and each time the radius of Bout is increased by a factor of 1 + ξ. This process is216

similar to peel a constant portion of Bin each time by Bout. See Figure 1 for an illustration.217

The above discussion suggests that a constrained AIFP data structure can be built218

through (approximate) BD query data structures, which have the following definition. Let219

ξ > 0 be an approximation factor. A data structure is called ξ-error BD for a point set P , if220

given any balls Bin and Bout, it answers the following query (with high success probability):221

1. If there exists a point in P ∩ (Bin \ Bout), the data structure returns a point in P ∩222

(Bin(1 + ξ) \Bout((1 + ξ)−1)).223

2. Otherwise, it returns a point in P ∩ (Bin(1 + ξ) \Bout((1 + ξ)−1)) or NULL.224

1 Throughout this paper we use similar notations. Let q be any point and x > 0 be real number. Then,
B(q, x) denotes the ball centered at q and with radius x. Let B be any ball. For real number y > 0, we
let B(y) denote the ball obtained by enlarging (or shrinking if y < 1) the radius of B by a factor of y.
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91:6 In-Range Farthest Point Queries in High Dimensions

Figure 1 An illustration of answering a constrained AIFP query using BD queries.

The details of how to construct a ξ-error BD data structure is left to the next subsection.225

Below is the main result of the BD query data structure for ξ > 0, fixed constant rin >226

0, rout > 0 and success probability controlling factor 0 < δ < 1.227

▶ Lemma 7. It is possible to build a ξ-error BD query data structure of size Oξ(dn1+ρ log δ−1)228

in Oξ(dn1+ρ log δ−1) time, where 0 < ρ < 1 depends only on ξ. The query time of this data229

structure is Oξ(dnρ log δ−1). For any pair of query balls Bin and Bout with radius rin and230

rout, respectively, the data structure answers the query with success probability at least 1− δ.231

Note that each BD query data structure works only for query balls Bin and Bout with232

fixed radii rin and rout, respectively. This means that the constrained AIFP data structure233

should consist of multiple BD data structures with different values of rin and rout.234

From the above discussion, we know that a constrained AIFP data structure can be235

built by constructing a sequence of log(dmax/dmin) BD data sturctures with rin := rB and236

rout being dmin, (1 + ξ)dmin, (1 + ξ)2dmin, . . .. Such a data structure will allow us to answer237

constrained AIFP queries using the ball peeling strategy.238

Given any constants ϵ > 0, γ > 0, 0 < δ < 1, and constraint (rB , dmin, dmax), the239

following Algorithm 1 builds a constrained AIFP data structure for a given point set P . The240

data structure is simply a collection of BD query data structures.241

With such a collection of BD query data structures, we can answer any constrained AIFP242

query satisfying (rB , dmin, dmax) by applying the ball peeling strategy mentioned before.243

The algorithm is formally described as the Algorithm 2 below.244

By some simple calculation, we know that the probability that all the BD queries in245

Algorithm 2 are successful is at least 1− δ, and when this happens, the output point pans is246

an (ϵ, γ)-AIFP of q in B ∩ P . This is summarized as the following lemma.247
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Algorithm 1 Build-CAIFP(P ; ϵ, γ, δ; rB , dmin, dmax)

Input: A Rd point set P with cardinality n. Constants ϵ > 0, γ > 0, 0 < δ < 1. Constraint
tuple (rB , dmin, dmax).
Output: A number of BD-Query data structures built with different parameters.

1: Let ξ = min{(1−ϵ)−1/2−1, γ}. Construct a sequence of real numbers r0, r1, r2, . . . , rm, by
letting r0 = dmin, m be the integer such that r0(1+ξ)m−1 < dmax and r0(1+ξ)m ≥ dmax,
ri = (1 + ξ)ri−1 for i = 1, 2, . . . , m, and δ′ = δ/m.

2: FOR i = 0, 1, 2, . . . , m, build a ξ-error BD query data structure for query balls with
radii rin = rB and rout = ri, with query success probability at least 1− δ′.

Algorithm 2 Query-CAIFP(B, q)
Input: A constrained AIFP query (B, q) with constraint (rB , dmin, dmax).
Output: A point pans that is an approximate farthest point in B ∩Q to p, or NULL if no
such point exists.

1: Initialize variable pans ← NULL.
Note: In the following, we use m and ri for i = 0, 1, . . . , m as in Algorithm 1.

2: For i from 0 to m: Make a query (B, Bout,i) to the BD-Query data structure BDi, by
letting Bout,i := B(q, ri). If the query answer is NULL, Return pans. Otherwise update
pans to be the query answer.

3: Return pans.

▶ Lemma 8. With probability at least 1− δ, Algorithm 2 outputs a point pans ∈ B(1 + γ)248

such that for any q ∈ B ∩ P , ∥pans − p∥ ≥ (1− ϵ)∥q − p∥.249

Next we analyze the space/time complexity of the AIFP scheme. The query data structure250

is a combination of m = Oϵ,γ(log(dmax/dmin)) BD data structures. From the discussion of251

BD data structures (see Lemma 7), every BD query data structure we build has space/time252

complexity Oϵ,γ(dn1+ρ log δ−1) where 0 < ρ < 1 depends only on ϵ, γ. Each BD query takes253

Oϵ,γ(dnρ log δ−1) time. Lemma 6 then follows.254

2.1 The BD Query Scheme255

In this subsection we present the BD query scheme. To our best knowledge, this is the first256

theoretical result to consider the BD range search problem. A very special case of BD query257

called the “annulus queries” where the two balls are co-centered is studied in [7]. Nonetheless,258

the technique is not directly applicable to general BD queries. Our BD range query scheme259

is based on the classic Locality Sensitive Hashing (LSH) technique [15, 5, 12] which has been260

a somewhat standard technique for solving the proximity problems in high dimensional space.261

The main idea of LSH is to utilize a family of hash functions (called an LSH family) that262

have some interesting properties. Given two points p and q in Rd, if we randomly pick a263

function h from the LSH family, the probability that the event of h(p) = h(q) happens will264

be high if ∥p− q∥ is smaller than a threshold value, and the probability for the same event265

will be lower if ∥p − q∥ is larger. Such a property of the LSH family allows us to develop266

hashing and bucketing based schemes to solve similarity search problems in high dimensional267

space. Below is the definition of an LSH family.268

▶ Definition 9. Let 0 < r1 < r2 and 1 > P1 > P2 > 0 be any real numbers. A family269

H = {h : Rd → U}, where U can be any set of objects, is called (r1, r2, P1, P2)-sensitive, if270

for any p, q ∈ Rd.271
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1. if ∥p− q∥ ≤ r1, then PrH[h(p) = h(q)] ≥ P1,272

2. if ∥p− q∥ > r2, then PrH[h(p) = h(q)] ≤ P2.273

It was shown in [12] that for any dimension d and any r > 0, c > 1, an (r, cr, P1, P2)-274

sensitive family H exists, where 1 > P1 > P2 > 0 depends only on c. Every hash function275

h(p) : Rd → Z maps a point p in Rd to an integer, and h(p) has the form h(p) = ⌊a·p+b
r ⌋ for276

some Rd vector a and integers b, r. It takes O(d) time to sample a hash function h from such277

a family and compute h(p). Our data structure will make use of two such families. Let Hin be278

an (rin, (1+ξ)rin, P1, P2)-sensitive family, and Hout be a ((1+ξ)−1rout, rout, P1, P2)-sensitive279

family, where 0 < P1, P2 < 1 are constants depending only on ξ, as described in [12].280

Given any BD-query (Bin, Bout) with the centers of the balls being oin, oout respectively, the281

family Hin helps us to identify points that are close enough to oin (and therefore lie in Bin),282

and Hout helps us to identify points that are far away enough from oout (and therefore lie283

outside of Bout).284

High level idea: Our approach is based on a novel bucketing and query scheme that utilizes285

the properties of the LSH family. Before presenting the technical details, We first illustrate286

the high level idea. For convenience, we assume for now that the functions in Hin and Hout287

have range {0, 1} (this is achievable by some simple modification to these hash function288

families). We use a randomized process to create a hybrid random hash function S(·) that289

maps any point in Rd to a bit string. Such a function S(·) is a concatenation of a number of290

hash functions drawn from Hin and Hout. Given p ∈ Rd, S(·) applies the aforementioned291

hash functions (drawn from Hin and Hout) on p to obtain a bit-string. With such a function292

S(·), consider comparing the bit-strings of S(p), S(q) for points p, q ∈ R. Intuitively, based on293

the properties of Hin and Hout, we know that if p, q are close enough, S(p) and S(q) should294

have many common bits in positions that are determined by functions from Hin. Contrarily,295

if p, q are far away, S(p) and S(q) should have only a few common bits in positions that are296

determined by functions from Hout.297

For every point p ∈ P , we use S(p) to compute a bit-string label for p, and put p into298

the corresponding buckets (i.e., labeled with the same bit-strings). To answer a given BD299

query Bin, Bout with centers of the balls being oin, oout, respectively, we compute S(oin) and300

S(oout). Note that, based on the above discussion, we know that if a point p satisfies the301

condition of p ∈ Bin \ Bout, then S(p) and S(oin) should have many common bits in the302

positions determined by Hin, and S(p) and S(oout) should have few common bits in the303

positions determined by Hout. Thus, by counting the number of common bits in the labels,304

we can then locate buckets that are likely to contain points close to oin and far away from305

oout, i.e., points are likely to be in Bin \Bout. To achieve the desired outcome, we will create306

multiple set of buckets using multiple random functions S(p).307

Details of the Algorithms: After understanding the above general idea, we now present308

the data structure and the query algorithm along with the analysis. Let P′
1 = (1+P1)/2, P′

2 =309

(1+P2)/2, η = (P′
1−P′

2)/3, a = ⌈(2P′
1 ln 3)/η2⌉. P′′

1 = 2−2a·4/9, P′′
2 = 2−2a/3, b = ⌈log1/P′′

2
n⌉,310

ρ = ln 1/P′′
1

ln 1/P′′
2

, and c = ⌈nρ/P′′
1⌉. Let FZ be a function that maps every element in Z randomly311

to 0 or 1, each with probability 1/2. The following Algorithm 3 shows how to construct a312

ξ-error BD range query data structure for any point set P and radii rin and rout. The data313

structure consists of c groups of buckets, each created using a random function S(p) that314

maps a point to a bit-string of total length 2ab.315

With the BD range query data structure created by the Algorithm 3, we can use the316

Algorithm 4 below to answer a BD range query for any given pair of balls (Bin and Bout).317

The main idea of the algorithm compute a bit-string label S for the query, then examine318

points in buckets with labels that satisfy certain properties (e.g. should have enough common319
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Algorithm 3 CreateBuckets(P, ξ, rin, rout)
Input: A point set P . Parameters ξ > 0, , rin > 0, rout > 0.
Output: G1,G2, . . .Gc. Each Gi is a collection of buckets (i.e., sets of points of P ). Each
bucket G ∈ Gi is labeled with a bit-string, which is a concatenation of sub-bit-strings
labin(G, 1), labout(G, 1), labin(G, 2), labout(G, 2), . . ., labin(G, b), labout(G, b). For
every p ∈ P and i = 1, 2, . . . , c, p appears in one of the buckets in Gi.

1: Initialize Gi, i = 1, 2, . . . , c, as empty sets. Each Gi will be used as a container for
buckets.

2: Randomly sample abc functions from family Hin, and also abc functions from family
Hout. Denote these functions as hin,i,j,k and hout,i,j,k, for integers 1 ≤ i ≤ a, 1 ≤ j ≤
b, 1 ≤ k ≤ c. For every hin,i,j,k, hout,i,j,k and every p ∈ Q, compute FZ(hin,i,j,k(p)) and
FZ(hout,i,j,k(p)).

3: FOR k from 1 to c:
For every point p ∈ P , we create a bit-string S(p) that concatenates
labin(p, 1), labout(p, 1), labin(p, 2), labout(p, 2), . . . , labin(p, b), labout(p, b): For j

from 1 to b, let labin(p, j), labout(p, j) be a pair of bit-strings of length a, each with
the i-th bit being FZ(hin,i,j,k(p)), FZ(hout,i,j,k(p)), respectively, for i = 1, 2, . . . a.
IF there is already a bucket G in Gk with label S(G) = S(p), DO: Put p into G.
ELSE, DO: Create a new bucket G and put G into Gk, set the label of G as
S(G) = S(p). Put p into G.

bits with S). Due to the fact that we label these buckets using functions from two LSH320

families, it can be shown that the chance for us to find a point in Bin(1 + ξ) \Bout((1 + ξ)−1)321

from one of the examined buckets will be high if there exists a point in Bin \Bout.322

In the following we show the correctness of Algorithm 4. Consider the for loop in Step 1323

of Algorithm 4 when answering a query (Bin, Bout). Using the notations from Algorithm 4,324

for any k from 1 to c in Step 1, we have the following lemma, which shows that if a point325

in P lies in (or outside of) the query range, the number of common bits between its bucket326

label and the label computed from the query would likely (or unlikely) be high, respectively.327

▶ Lemma 10. Let p ∈ P be a point that lies in Bin\Bout, and q ∈ P be a point that does NOT328

lie in Bin(1+ξ)\Bout((1+ξ)−1). Let S(p) = labin(p, 1), labout(p, 1), labin(p, 2), labout(p, 2),329

. . . , labin(p, b), labout(p, b) and S(q) = labin(q, 1), labout(q, 1), labin(q, 2), labout(q, 2), . . .,330

labin(q, b), labout(q, b) be the labels of the bucket in Gk that contains p and q, respectively.331

For any j = 1, 2, . . . , b, the following holds.332

Pr[COM(labin(p, j), labin(oin, j)) ≥ t1 ∧ COM(labout(p, j), labout(oout, j)) ≥ t2] ≥333

4/9.334

Pr[COM(labin(q, j), labin(oin, j)) ≥ t1 ∧ COM(labout(q, j), labout(oout, j)) ≥ t2] ≤335

1/3.336

Proof. Since p ∈ Bin \ Bout, we have ∥p− oin∥ ≤ rin and ∥p− oout∥ ≥ rout. For any hash337

function h1 ∈ Hin and h2 ∈ Hout, Pr[h1(p) = h1(oin)] ≥ P1 and Pr[h2(p) = h2(oout)] ≤338

P2. Thus, we have Pr[FZ(h1(p)) = FZ(h1(oin))] ≥ (P1 + 1)/2 and Pr[FZ(h2(p)) = 1 −339

FZ(h2(oout))] ≤ (1− P2)/2. This means that for any i = 1, 2 . . . , a, the probability that the340

i-th bit of labin(p, j) is the same as that of labin(oin, j) is at least P′
1 = (P1 + 1)/2. Since341

the hash functions to determine each of the bits are drawn independently, an estimation342

of X = COM(labin(p, j), labin(oin, j)) can be obtained by Pr[FZ(h1(p)) = FZ(h1(oin))] ≥343

(P1 + 1)/2 using the concentration inequalities for binomial distributions. Using a variant of344
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Algorithm 4 BD-Query(Bin, Bout)

Input: Two Rd balls: Bin with center oin and radius rin, and Bout with center oout and
radius rout. Assume that collections G1,G2, . . .Gc have already been generated by algorithm
CreateBucket.
Output: A point p ∈ Q, or NULL.
Note: The algorithm probes a number of points in the buckets of G1,G2, . . .Gc until a suitable
point is found as the output, or terminates and returns NULL when no such point can be
found or the number of probes exceeds a certain limit.

1: Do the following, but terminate and return NULL when 3c points are examined: FOR
k from 1 to c:

Create a bit string S that concatenates labin(oin, 1), labout(oout, 1), labin(oin, 2),
labout(oout, 2), . . ., labin(oin, b), labout(oout, b): For j from 1 to b, let labin(oin, j),
labout(oout, j) be a pair of bit strings of length a, with the i-th bit of each string
being FZ(hin,i,j,k(oin)), 1− FZ(hout,i,j,k(oout)), respectively, for i = 1, 2, . . . a.
Create a bit string S′ that concatenates lab′

in(1), lab′
out(1), lab′

in(2), lab′
out(2), . . . ,

lab′
in(b), lab′

out(b): Each of these sub bit strings is a random bit string of length a,
drawn uniformly randomly from {0, 1}a.
If there exists some integer j such that COM(labin(oin, j), lab′

in(j)) < t1 or
COM(labout(oout, j), lab′

out(j)) < t2, where COM(x, y) counts the number of com-
mon digits of 2 bit strings x, y, t1 = P′

1a− ηa, t2 = (1− P2)a/2− ηa CONTINUE.
If there is no bucket in Gk that is labeled with S′, CONTINUE.
Examine all the points in the bucket G in Gk that is labeled with S′. Stop when there
a point p ∈ G such that p ∈ Bin(1 + ξ) \Bout((1 + ξ)−1). Return p.

2: Return NULL if no point is returned in the above process.

the Chernoff inequalities from [22], we have345

Pr[X ≤ P′
1a− ηa] ≤ e−(ηa)2/(2P′

1a).346

From the definition of the parameters, we know that Pr[X ≤ P′
1a − ηa] ≤ 1/3 (by simple347

calculation). Thus, we have Pr[X ≥ t1] ≥ 2/3.348

Let Y = COM(labout(p, j), labout(oout, j)). From Pr[FZ(h2(p)) = 1− FZ(h2(oout))] ≤349

(1 − P2)/2 and using a similar argument as above, we can also obtain Pr[Y ≥ t2] ≥ 2/3350

(the details are omitted). Since the hash functions are drawn independently, we have351

Pr[X ≥ t1 ∧ Y ≥ t2] ≥ 4/9.352

In the following we discuss the case that q ̸∈ Bin(1 + ξ) \Bout((1 + ξ)−1). This means353

either ∥q − oin∥ ≥ (1 + ξ)rin or ∥q − oout∥ ≤ (1 + ξ)−1rout. We first consider the case354

∥q − oin∥ ≥ (1 + ξ)rin. For any hash function h1 ∈ Hin, Pr[h1(q) = h1(oin)] ≤ P2. Thus,355

we have Pr[FZ(h1(q)) = FZ(h1(oin))] ≤ (P2 + 1)/2. This means that for any i = 1, 2 . . . , a,356

the probability that the i-th bit of labin(q, j) is the same as that of labin(oin, j) is at357

most P′
2 = (P2 + 1)/2. Again, we use a concentration inequality to obtain an estimation of358

X = COM(labin(q, j), labin(oin, j)). Using a variant of the Chernoff inequalities from [22],359

we have360

Pr[X ≥ P′
2a + ηa] ≤ e−(ηa)2/(2P′

2a+ηa/3).361

Note that a = (2P′
1 ln 3)/η2 ≥ ((2P′

2 + η/3) ln 3)/η2, which implies that e−(ηa)2/(2P′
2a+ηa/3) ≤362

1/3 (by simple calculation). Thus, we have Pr[X ≥ P′
2a + ηa] ≤ 1/3. Also, since363

P′
2a + ηa < P′

1a − ηa = t1, we get Pr[X ≥ t1] ≤ 1/3. This immediately implies that364

Pr[COM(labin(q, j), labin(oin, j)) ≥ t1 ∧ COM(labout(q, j), labout(oout, j)) ≥ t2] ≤ 1/3.365



Z. Huang and J. Xu 91:11

The argument for the case ∥q − oout∥ ≤ (1 + ξ)−1rout is similar. Thus, we omit it here.366

This completes the proof. ◀367

From the above lemma, we can conclude the following by basic calculation. For any k368

from 1 to c in Step 1 of Algorithm 4 (if the loop is actually executed), let p ∈ P be a point369

that lies in Bin \Bout, and q ∈ P be a point that does NOT lie in Bin(1+ξ)\Bout((1+ξ)−1),370

we have the following.371

▶ Lemma 11. Let Gp and Gq be the buckets in Gk that contain p and q, respectively. The372

probability for Gp to be examined is no smaller than 2−2ab(4/9)b = (P′′
1)b, and the probability373

for the event “ALL such Gp for k from 1 to c are NOT examined” is at most (1−(P′′
1)b)c ≤ 1/e.374

The probability for Gq to be examined is no larger than 2−2ab(1/3)b = (P′′
2)b ≤ 1/n.375

With the above lemma, we can obtain the following lemma using an argument similar to376

[15] for near neighbor search with LSH. This proves the correctness of the query scheme.377

▶ Lemma 12. If there exists a point in P that lies in Bin \ Bout, with probability at least378

1/4, Algorithm 4 reports a point in P that lies in Bin(1 + ξ) \Bout((1 + ξ)−1).379

The complexity of the data structure is O(dabcn), which is Oξ(dn1+ρ log n) from a =380

Oξ(1), b = Oξ(log n) and c = Oξ(nρ), and ρ and the constant hidden in the big-O notation381

depends only on ξ. The query time is O(abcd), which is Oξ(dnρ log n). To achieve 1 − δ382

success probability, it suffices to concatenate O(log δ) such data structures together.383

Due to space limit. we leave the proof of the above 2 lemmas and the full proof of Lemma384

7 to the full version of the paper.385

3 Multi-scale Construction386

In this section, we present the multi-scale construction method, which is a standalone technique387

with potential to be used to other high dimensional range-aggregate query problems.388

The multi-scale construction method is motivated by several high dimensional geometric389

query problems that share the following common feature: they are challenging in the general390

settings, but become more approachable if some key parameters are known in advance. The391

AIFP query problem discussed in this paper is such an example. In the previous section, we392

have shown how to construct an AIFP data structure if we fix the size of the query ball and393

know that the farthest distance lies in a given range.394

The basic ideas behind multi-scale construction are the follows. Firstly, we know that if395

a problem is solvable when one or more key parameters are fixed, a feasible way to solve the396

general case of the problem is to first enumerate all possible cases of the problem defined by397

(the combinations of) the values of the parameters. Then, solve each case of the problem,398

and finally obtain the solution from that of all the enumerated cases. The multi-scale399

construction method follows a similar idea. More specifically, to obtain a general AIFP query400

data structure, the multi-scale construction method builds a set of constrained AIFP query401

data structures that cover all possible radii of B and farthest distance value. Secondly, since402

it is impossible to enumerate the infinite number of all possible values for these parameters,403

our idea is to sample a small set of fixed radii (based on the distribution of the points in P )404

and build constrained AIFP data structures only for the set of sampled values. This will405

certainly introduce errors. However, good approximations are achievable by using a range406

cover technique.407

Below we first briefly introduce two key ingredients of our method, Aggregation Tree and408

Range Cover, and then show how they can be used to form a multi-scale construction.409
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3.1 Aggregation Tree and Range Cover410

In this subsection, we briefly introduce the two components of the multi-scale construction411

scheme: the aggregation tree and the range cover data structure. We first introduce aggreg-412

ation tree, which is used in [18] as an ingredient of the range cover data structure. It is413

essentially a slight modification of the Hierarchical Well-Separated Tree (HST) introduced414

in [14]. Below is the definition of an aggregation tree: (1) Every node v (called aggregation415

node) represents a subset P (v) of P , and the root represents P ; (2)Every aggregation node v416

is associated with a representative point re(v) ∈ P (v) and a size s(v). Let Dia(P (v)) denotes417

the diameter of P (v), s(v) is a polynomial approximation of Dia(P (v)): Dia(P (v)) ≤ s(v),418

and s(v)
Dia(P ) is upper-bounded by a polynomial function PHST (n, d) ≥ 1 (called distortion419

polynomial); (3) Every leaf node corresponds to one point in P with size s(v) = 0, and each420

point appears in exactly one leaf node; (4) The two children v1 and v2 of any internal node v421

form a partition of v with max{s(v1), s(v2)} < s(v); and (5) For every aggregation node v422

with parent vp, s(vp)
rout

is bounded by the distortion polynomial PHST (n, d) ≥ 1, where rout is423

the minimum distance between points in P (v) and points in P \ P (v).424

The above definition is equivalent to the properties of HST in [14], except that we have425

an additional distortion requirement (Item 5). See Figure 2 for example of an aggregate tree.426

Figure 2 An illustration of an aggregation tree built for 6 points.

An aggregation tree can be constructed in O(dn log2 n) time using the method in [14]. It427

is proved in [14] that the distortion polynomial is PHST (n, d) = dn. In the rest of the paper,428

we always assume that the distortion of an aggregation tree is PHST (n, d) = dn.429

Algorithm 5 RangeCover(TP ; λ, ∆)

Input: An aggregation tree TP built over a set P of n points in Rd; controlling factors
0 < λ < 1 and an integer ∆ ≥ 4PHST (n, d).
Output: A number of buckets, where each bucket stores a number of tree nodes. Each
bucket Bt is indexed by an integer t and associated with an interval ((1 + λ)t, (1 + λ)t+1].

1: For every integer t create an empty bucket Bt associated with interval ((1+λ)t, (1+λ)t+1].
(Note that Bt will not be actually created until some tree node v is inserted into it.)

2: For every non-root node v of TP , let vp be its parent in TP , rH be s(vp)/λ, and rL be
max{s(v)/λ, s(vp)/∆}. Do

For every integer t satisfying inequality rL ≤ (1 + λ)t < rH , insert v into bucket Bt.
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In the following, we briefly introduce range cover. Range cover is a technique proposed in430

[18] for solving the truth discovery problem in high dimensions. We utilize it in a completely431

different way to form a multi-scale construction for the AIFP query problem. Below is the432

algorithm (Algorithm 5). Given an aggregation tree Tp and real number parameters ∆ ≥ 8n433

and 0 < λ < 1 (whose values will be determined later), the range cover algorithm creates a434

number of buckets for the nodes of TP . Each bucket Bt is associated with an interval of real435

number ((1 + λ)t, (1 + λ)t+1]. If a value r lies in the interval of a bucket Bt, it can be shown436

that the diameter of every aggregation node v is small compared to r, and thus all points437

in P (v) can be approximately viewed as one “heavy” point located at the representative438

point re(v). Intuitively, every bucket from the range cover algorithm provides a view of P439

when observed from a distance r in the range of the bucket, where each node in the bucket440

represents a “heavy” point that is formed by the aggregation of a set of close (compared to441

the observing distance) clusters of points in P . Thus, the buckets of the range cover provides442

views of the input point set at different scales of observing distances (see Figure 3 for an443

illustration). The size of the output data structure is only O(n log n∆), as shown in [18].444

Figure 3 An illustration of range cover. The nodes in every bucket can be viewed as “heavy”
points yielded by the aggregation of a set of close points. Every bucket provides a view of the input
point set when observed from a certain distance. All the buckets jointly form a complete set of
views of the input points at all possible scales.

Note that for many problems, fixing some key parameters also means fixing the “observing445

distance” of P from the perspective of solving the problem. This allows us to solve the446

problem based on the view of P provided by the bucket associated with the corresponding447

observation distance. We will show that this idea also applies to the AIFP problem.448

3.2 Multi-scale Construction for AIFP449

In this subsection, we use AIFP problem as an example to show how to implement multi-scale450

construction using the range cover data structure.451

We first observe that every bucket of the range cover can be used to solve a constrained452

AIFP problem (with the proof given later). Given an AIFP query (B, q), if the (approximate)453

distance from q to a point in P ∩B is known and falls in the interval of ((1 + λ)t, (1 + λ)t+1],454

then the (approximate) distance from q to a point of Bt ∩B (where every node v in Bt is455

viewed as a “heavy” point located at re(v)) is an AIFP of q in P ∩B. This means that Bt456

provides a good “sketch” of P that allows more efficient computation of the AIFP of q in457

P ∩B. This observation leads to the main idea of the multi-scale construction method. To458

obtain a general AIFP query data structure, for every bucket Bt, we construct a constrained459

AIFP data structure for Bt (viewed as a set of “heavy” points), exploiting the assumption460
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that the farthest distance is in the interval of ((1 + λ)t, (1 + λ)t+1]. To answer a general461

AIFP query, we can find the AIFP for every bucket by querying the constrained AIFP data462

structures associated with the bucket. In this way, we can compute AIFPs for all possible463

radii. When answering a general AIFP query, we first determine an approximate farthest464

distance of q to P ∩B, and then query the appropriate constrained AIFP data structures.465

Despite the necessity of building multiple constrained data structures, the complexity of the466

multi-scale construction is not high, as the total number of nodes in all buckets is only Õ(n).467

However, the above idea is hard to implement, because each bucket Bt is only responsible468

for a small range ((1 + λ)t, (1 + λ)t+1] of the possible farthest distance from q to P ∩P . This469

means that we need an accurate estimation of this distance when answering the query, which470

is almost as hard as the query itself. We resolve this issue by merging multiple consecutive471

buckets into a larger one. The resulting bucket can account for a larger range of the possible472

farthest distances. We then build a constrained data structure for each bucket.473

This leads to the following Multi-Scale algorithm. Let Γ ≥ 1 be an integer constant to be474

determined, andA be an algorithm for building a constrained data structure. In this algorithm,475

for each integer t, we try to merge the aggregation nodes in buckets Bt, Bt+1, . . . , Bt+Γ from476

the range cover (recall that these buckets are associated with farthest distance ranges477

((1 + λ)t, (1 + λ)t+1], ((1 + λ)t+1, (1 + λ)t+2] . . . , ((1 + λ)t+Γ, (1 + λ)t+Γ+1], respectively) into478

one bucket B+
t that could account for a larger range ((1 + λ)t, (1 + λ)t+Γ+1]. We then use A479

to build a data structure St for every bucket B+
t (by viewing every node in B+

t as a point).480

Algorithm 6 Multi-Scale(TP ; λ, ∆, Γ; A)

Input: An aggregation tree TP built over a set P of n points in Rd; controlling factors
0 < λ < 1, integer ∆ ≥ 4PHST (n, d) = 4dn, and integer Γ ≥ 1. A routine A which builds a
constrained data structure for any given bucket Bt and point set re(B+

t ) := {re(v) | v ∈ B+
t }.

Output: A number of buckets, with each storing a number of tree nodes. Each bucket B+
t is

indexed by an integer t and associated with an interval ((1 + λ)t, (1 + λ)t+Γ+1]. Each bucket
B+

t is associated with data structure St built by A.
1: Create a collection of buckets {Bt} by calling RangeCover(TP ; λ, ∆(1 + λ)Γ).
2: For each integer t create an empty bucket B+

t associated with ((1 + λ)t, (1 + λ)t+Γ+1].
3: For every non-root node v of TP , enumerated in a bottom-up manner in TP so that the

children of a node is always visited earlier than the parent node, put v into B+
t for every

t such that the following is satisfied:
s(v) ≤ λ(1 + λ)t, v appears in Bt′ ∈ {Bt} for some t ≤ t′ ≤ t + Γ, and none of v’s
descendants are put in B+

t previously.
4: For every non-empty bucket B+

t , create a data structure St using A for the point set
re(B+

t ) := {re(v) | v ∈ B+
t }.

For better understanding of this scheme, we first briefly discuss the geometric properties481

of the buckets created by Algorithm 6. Intuitively speaking, the aggregation nodes of every482

bucket provide a sketch of almost the whole input point set P , with the exception being483

points that satisfying some special isolation property. This can be briefly described as follows:484

(1) The diameter of each the aggregation node (viewed as a point set) should be small to the485

observation distances; (2) The aggregation nodes are mutually disjoint; and (3) Every point486

p ∈ P is either in one of the nodes in the bucket, or it is in an aggregation node (not in the487

bucket) whose distance to other nodes is large. These properties are formalized as follows.488

(We leave the proofs of all the following claims and lemma to the full version of the paper.)489

▷ Claim 13. Let v be any aggregation node v in a created bucket B+
t . Then, s(v) ≤ λ(1+λ)t.490
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▶ Lemma 14. For any p ∈ P and and bucket B+
t created by Algorithm 6, one of the following491

holds:492

1. There exists exactly one aggregation node v ∈ B+
t such that p ∈ P (v).493

2. Either B+
t is empty or there exists no aggregation node v ∈ B+

t such that p ∈ P (v). There494

exists an aggregation node v′ in TP such that s(v′)/λ ≤ (1 + λ)t. Furthermore, let q be495

any point in P \ P (v′), then ∥p− q∥ > (∆/dn)(1 + λ)t+Γ.496

Although the sketch does not fully cover P , in many problems (including AIFP) these497

points are either negligible or easy to handle by other means due to their special properties.498

From [18], we know that the running time of Algorithm 5 and the space complexity of499

the output data structure is Oλ(n log n∆) (where the hidden constant in the big-O notation500

depends only on λ). Algorithm 6 essentially merges Γ + 1 consecutive buckets Bt, Bt+1, . . .,501

Bt+Γ created by Algorithm 5 into one bucket B+
t . Thus, we have the following lemma.502

▶ Lemma 15. Excluding the time it takes for A to process each B+
t in Step 4, the running503

time of Algorithm 6 and the total number of nodes in all buckets is Oλ(Γ2n log n∆), where504

the hidden constant in big-O notation depends only on λ.505

We conclude this subsection by providing a key lemma showing that, given a constrained506

AIPF query (B, q) satisfying constraint (rB , dmin, dmax) with dmin ≤ rB ≤ dmax, if there507

is a bucket B+
t such that (1 + λ)t+1/(1 − λ) < dmin < dmax ≤ (1 + λ)t+Γ − (2 + 2/λ)rB508

(i.e. the range [dmin, dmax] falls in interval ((1 + λ)t, (1 + λ)t+Γ+1] with some gap), then,509

with an easy-to-handle exception, an AIFP to q in B+
t (by viewing every node of B+

t as510

one point) in (slightly enlarged) range B is also an AIFP of q to P ∩ B. Formally, let511

re(B+
t ) := {re(v) | v ∈ B+

t }. Let pt be the farthest point to q in re(B+
t ) ∩ B(1 + λ) if512

re(B+
t ) ∩B(1 + λ) ̸= ∅, and p be a (λ/6, λ/6)-AIFP of q in re(B+

t ) ∩B(1 + λ) 2. Let pN be513

a (1 + λ)-approximate nearest neighbor of q in P .514

▶ Lemma 16. One of the following holds: (1) pN is a (2λ, 2λ)-AIFP of q in P ∩B, or (2)515

pt exists and (1 + λ)t ≤ ∥q − pt∥ ≤ (1 + λ)t+Γ+1, and p is a (2λ, 2λ)-AIFP of q in P ∩B.516

The above lemma implies that, in Algorithm 6, if routine A builds a constrained AIFP517

data structure for farthest distance lies in interval [(1 + λ)t, (1 + λ)t+Γ+1], then either this518

data structure can be used to answer any query with constraint (rB , dmin, dmax) (with other519

parameters, like rB and the approximate factors for constrained AIFP, set properly), or the520

AIFP query can be solved easily using a nearest neighbor search. In the following section, we521

will show how to build a general AIFP query data structure through multi-scale construction522

by selecting appropriate parameters. With the multi-scale data structure (together with some523

auxiliary data structures), we can answer an AIFP query by (1) obtaining a rough estimation524

of the farthest distance, and (2) querying the bucket corresponding to the estimated range.525

4 General AIFP Query526

In this section, we present a general (ϵ, γ)-AIFP query scheme. In the following, let B be a527

closed ball with radius rB > 0 and q be an arbitrary point. Let 0 < ϵ < 1 and 0 < γ < 1528

be any pair of constants and λ := min(ϵ, γ)/512. We assume that rB is λ-aligned, which529

means that rB = (1 + λ)t for some integer t. The alignment assumption makes it easier530

to implement the multi-scale construction. Note that if rB is not λ-aligned, we can always531

2 Note p could be NULL here. This could happen when bucket B+
t is empty or re(B+

t ) ∩ B(1 + λ) = ∅.
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enlarge B a little to make rB λ-aligned and still obtain a good approximation with carefully532

chosen parameters.533

Our main idea is to convert each query (B, q) into one or more AIFP queries (B′, q) such534

that it is possible to find a lower bound dmin and an upper bound dmax on the farthest535

distance between q and a point in B′∩P . With such bounds, the AIFP can then be found by536

querying a pre-built constrained AIFP data structure. To ensure efficiency, the gap between537

dmin and dmax cannot be too large, i.e., dmax/dmin should be bounded by a polynomial of n538

and d. Since the complexity of a constrained data structure depends on dmax/dmin, a small539

gap will also enable us to control the size of the data structure. We start with a simple claim.540

▷ Claim 17. If the distance between q and the center oB of B is very large compared to rB ,541

i.e. ∥q − oB∥ ≥ (3 + γ)ϵ−1rB , then any point in B(1 + γ/2) is an (ϵ, γ)-AIFP of q in P ∩B.542

This claim suggests that we can safely assume that the farthest distance between q and543

P ∩B is not too large (compared to rB), as otherwise the AIFP can be easily found with544

a nearest neighbor query. This helps us establish an upper bound on the farthest distance.545

In the following, we let dmax := (4 + 2γ)ϵ−1rB, and assume that ∥q − oB∥ ≤ (3 + γ)ϵ−1rB.546

From simple calculation, this implies that for any p ∈ P ∩B(1 + γ), we have ∥p− q∥ ≤ dmax.547

Next, we try to find a lower bound for the farthest distance. Since the full argument will548

be rather complicated, we will thus describe only the general idea here, and leave the details549

to the full version of the paper. We start with a simple case.550

Case 1: ∥q − oB∥ ≥ (1 + γ/64)rB, i.e. q does not lie in B and is not very close to the551

boundary of B. Then, clearly the farthest distance from q to any point in P ∩B is at least552

(γ/64)rB . Recall that we have obtained an upper bound dmax := (4 + 2γ)ϵ−1rB . The ratio553

dmax/(γrB/64) is clearly bounded by a polynomial of n, d.554

In the following, we assume that ∥q − oB∥ ≤ (1 + γ/64)rB , which means that q lies in B555

or is very close to the boundary of B. Let pN ∈ P be a 2-nearest neighbor of q in P (i.e. for556

any p′ ∈ P , ∥pN − q∥ ≤ 2∥p′ − q∥) , and denote rN := ∥pN − q∥. We discuss another simple557

case.558

Case 2: rN > γrB/64. Since pN is a 2-approximate nearest neighbor, we conclude559

that the distance from q to any point in P ∩ B is at least γrB/128. Again, the ratio560

dmax/(γrB/128) is well bounded.561

In the following, we assume that rN ≤ γrB/64. In order to find a good lower bound on562

the farthest distance, our general strategy is to examine points around pN and see whether563

there exists a point p′ whose distance to q is sufficiently large, but still upper bounded by564

(γ/64)rB . The upper bound (γ/64)rB ensures that p′ ∈ B(1 + γ/16), i.e. p′ “approximately”565

lies in B, and because of the fuzziness of the region, ∥p′ − p∥ can be used as a lower bound566

on the farthest distance. To efficiently implement this idea, we make use of an aggregation567

tree TP with distortion polynomial PHST (n, d) = nd. Later, we will use this TP to construct568

the query data structure. Let vN denote the leaf node of TP that correspond to singleton569

set {pN}. We walk along the tree path from vN to the root of TP , and examine the nodes570

(and their associated point sets) on this path. Denote by v the highest (closest to the root)571

node of TP such that pN ∈ P (v) and s(v) + rN ≤ γrB/64. Note that since rN ≤ γrB/64 and572

s(vN ) = 0, such a node v must exist. Since s(v) is an upper bound on the diameter of P (v),573

every point p′ ∈ P (v) satisfies inequality ∥p′ − q∥ ≤ γrB/64, and thus p′ ∈ B(1 + γ/16). See574

Figure 4 for a illustrations of the relations between q and points in P (v). We consider two575

more cases, depending on the value of s(v) + rN .576

Case 3: s(v) + rN > γrB/512n2d2. This means that s(v) + rN is at least rB divided by577

a polynomial of n, d. Note that from the low distortion property of TP , s(v) is a polynomial578
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Figure 4 An illustration of points in P (v), P \ P (v) and q.

approximation of the diameter of P (v). It is possible to show by standard inequality579

arguments that, s(v) + rN is a polynomial approximation of q’s farthest distance to any point580

in P (v). Since P (v) ⊂ B(1 + γ/16), we conclude that the farthest distance from q to any581

point in B(1 + γ/16) ∩ P is lower bounded by rB divided by a polynomial of n, d. A careful582

calculation gives us an estimated lower bound rB/2048n3d3. Since an upper bound for the583

farthest distance is dmax = (4 + 2γ)ϵ−1rB, the quality of this lower bound is satisfactory584

because the gap between it and dmax is a polynomial of n, d.585

Case 4: s(v) + rN ≤ γrB/512n2d2. We show that in this case, either there is a lower586

bound on the farthest distance, or the query can be reduced to another AIFP query where587

the range of farthest distances can be bounded. Let vp be the parent of v (if v is the root588

of TP , the following result still holds), then s(vp) + rN ≥ γrB/64. This means that s(vp) is589

much larger than s(v). From the property of TP , we know that for any pout ∈ P \ P (v), the590

ratio s(vp)/∥pout − pN∥ is upper bounded by the distortion polynomial PHST (n, d) = nd.591

In the current case, s(vp)/s(v) is indeed much larger than nd. Thus ∥pout − pN∥ is very592

large compared to s(v), which gives us a lower bound on ∥pout − q∥. In fact, by a careful593

calculation, it is possible to show that ∥q − pout∥ ≥ γrB/256nd for any pout ∈ P \ P (v).594

Furthermore, since the distance between q and any point in P (v) is at most γrB/512n2d2,595

which is much smaller than γrB/256nd. This implies that it is possible to use a ball centered596

at q to separate P (v) and P \ P (v). In fact, if let rsep := [s(v) + rN ]λ, where [x]λ denote the597

smallest real number that can be written as (1 + λ)t for some integer t such that (1 + λ)t ≥ x,598

then it can be shown that for every p ∈ P (v), p ∈ B(q, rsep) and for every p ∈ P \ P (v),599

p ̸∈ B(q, (1 + γ)rsep).600

With the above argument, we divide Case 4 into 2 sub-cases. Let pF be the actual601

farthest point to q in P ∩ B. We first discuss Case 4a, where pF ∈ P \ P (v). From the602

above discussion, we have ∥q − pF ∥ ≥ γrB/256nd, which gives a good lower bound on the603

farthest distance. For Case 4b where pF ∈ P (v), we know that the query reduces to a604

problem of finding the farthest point in p ∩ B(q, rsep). For this problem, it is possible to605

prove a rsep/8nd lower bound and rsep upper bound on the farthest distance. The ratio of606

the two bounds is satisfactory.607

To summarize, for Case 1,2 and 4a, let d
(1)
max := (4 + 2γ)ϵ−1rB, d

(1)
min := γrB/256nd608

and r
(1)
B := rB , the AIFP query satisfies constraint (r(1)

B , d
(1)
min, d

(1)
max); for Case 3, the AIFP609

query can be answered from constraint query (B(oB , [(1 + γ/16)rB]λ), q), which satisfies610

constraint (r(2)
B , d

(2)
min, d

(2)
max), where d

(2)
min := γrB/2048n3d3, d

(2)
max := (4 + 2γ)ϵ−1rB and611
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r
(2)
B := [(1 + γ/16)rB]λ; for Case 4a, the AIFP query reduces to query (B(q, rsep), q), with612

constraint (r(3)
B , d

(3)
min, d

(3)
max) where d

(3)
max := r

(2)
B := rsep, d

(3)
min := d

(3)
max/8nd. Any AIFP613

query can be answered from one of the three constraint queries, and we have d
(i)
max/d

(i)
min no614

larger than 2048(4 + 2γ)n3d3/ϵ for any i = 1, 2, 3.615

4.1 Multi-scale Construction for General AIFP Query616

In this subsection, we show how to build a Multi-Scale data structure to answer general AIFP617

queries. Our goal is to choose the appropriate parameters Γ ≥ 1, 0 < λ < 1 and ∆ ≥ 4nd618

for Algorithm 6 so that for every AIFP query with constraint (r(i)
B , d

(i)
min, d

(i)
max), there exists619

a bucket B+
t whose range ((1 + λ)t, (1 + λ)t+Γ+1] wholly covers the interval [d(i)

min, d
(i)
max],620

and the constrained AIFP data structure built for the bucket with dmin := (1 + λ)t and621

dmax := (1 + λ)t+Γ+1 can be used to answer the query. Note that we have already defined622

λ := min(ϵ, γ)/512 and ∆ := 4nd. The remaining task is to determine the value of Γ.623

Observe that d
(i)
max/d

(i)
min is bounded by a polynomial Pgap(n, d) := 2048(4 + 2γ)n3d3/ϵ.624

Let Γ′ := ⌈log1+λ Pgap(n, d)⌉, and ΓL ≥ Γ′ and ΓR ≥ Γ′ be integer parameters to be625

determined later. Denote by Γ the sum of ΓL and ΓR, i.e., Γ := ΓL + ΓR. For every integer t,626

define rmid(t) := (1 + λ)t+ΓL . Therefore, we have rmid(t)/(1 + λ)t ≥ (1 + λ)ΓL ≥ Pgap(n, d)627

and (1+λ)t+Γ+1/rmid(t) ≥ (1+λ)ΓR ≥ Pgap(n, d). For any AIFP query (B, q) with constraint628

(r(i)
B , d

(i)
min, d

(i)
max), it is always possible to find a bucket B+

t such that r
(i)
B = rmid(t). Clearly,629

interval ((1+λ)t, (1+λ)t+Γ+1] wholly covers the interval [d(i)
min, d

(i)
max]. If a constrained AIFP630

data structure is constructed for B+
t with constraint ((1 + λ)rmid(t), (1 + λ)t, (1 + λ)t+Γ+1),631

it can be used to answer the AIFP query (B, q). (See Lemma 16.)632

To summarize the above discussions, we set the parameters of Algorithm 6 as the following.633

The algorithm then produces the data structure for (ϵ, γ)-AIFP query. Assume that a real634

number 0 < δ < 1 is given and we would like to achieve 1− δ query success probability.635

λ := min(ϵ, γ)/512, ΓL := Γ′ + ⌈log1+λ 8⌉, ΓR := Γ′ + ⌈log1+λ 8⌉, Γ := ΓL + ΓR, ∆ := 4nd.636

Routine A: Given a non-empty bucket B+
t , A, it uses Algorithm 1 to creates a constrained637

(λ/6, λ/6)-AIFP data structure for point set re(B+
t ) for constraint ((1 + λ)rmid(t), (1 +638

λ)t, (1 + λ)t+Γ+1), with success probability at least 1− δ/4.639

Note that we let ΓL := ΓR := Γ′ + ⌈log1+λ 8⌉. This allows more gap when fitting the640

interval [d(i)
min, d

(i)
max] in ((1 + λ)t, (1 + λ)t+Γ+1], which is required by Lemma 16.641

With the multi-scale data structure constructed by Algorithm 6 using the above paramet-642

ers, we are able to answer any general AIFP query by reducing it to at most three constrained643

(λ/6, λ/6)-AIFP queries (where λ = min(ϵ, γ)/512) with constraints (r(i)
B , d

(i)
min, d

(i)
max), i =644

1, 2, 3. From Lemma 6 and the fact that the ratio dmax/dmin satisfies dmax/dmin =645

(1 + λ)t+Γ+1/(1 + λ)t = (1 + λ)Γ+1, which is bounded by a polynomial of n, d, we know that646

log dmax/dmin is Oϵ,γ(log nd) and the query time is Oϵ,γ(dnρ log δ−1Polylog(nd)) for some647

ρ < 1 depending on ϵ, γ. The multi-scale data structure consists of multiple AIFP structures648

built on buckets of points with total size Oλ(Γ2n log(n∆)) (from Lemma 15). From Lemma649

6, we know that the complexity of the data structure is Oϵ,γ(dn1+ρ log δ−1Polylog(nd)). We650

leave the detailed analysis to the full version of the paper.651

5 MEB Range Aggregate Query652

Given any query ball B, we find the AMEB of P ∩B using an iterative algorithm by Badoiu653

and Clarkson [9]. Their algorithm was originally designed for finding an approximate MEB654
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for a fixed point set P . With careful analysis we show that their approach, after some655

modifications, can still be used to find AMEB in any given range B. Briefly speaking,656

our idea is to construct a small-size coreset of P ∩ B. The MEB of the coreset is then a657

(ϵ, γ)-approximate MEB of P ∩B. The algorithm selects the coreset in an iterative fashion.658

It starts with an arbitrary point p from P ∩B. At each iteration, it performs the following659

operation to add a point to the coreset: (1) Compute an (approximate) MEB of the current660

coreset (directly using the algorithm in [9]); (2) Identify the AIFP in P ∩B to the center of661

the current MEB, and add it to the coreset. We can show that after Oϵ,γ(log n) iterations,662

the MEB of the coreset is then a (ϵ, γ)-AMEB of P ∩B.663

To answer an (ϵ, γ)-AMEB query with success probability at least 1 − δ, we will need664

only one (ϵ′, γ′)-AIFP data structure with success probability 1− δ/Oϵ′(log n) (where ϵ′, γ′
665

depends on ϵ, γ polynomially), whose size is Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) for some ρ < 1666

depending on ϵ, γ. Every AMEB query is reduced to Oϵ′(log n) AIFP queries (the time for667

computing the MEB every iteration is negligible compared to AIFP queries). Thus, the668

query time is Oϵ,γ(dnρ log δ−1Polylog(nd)). The detailed analysis is left to the full version of669

the paper.670
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