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Abstract
As the scale of biological data generation has increased, the bottleneck of research has shifted from data generation to
analysis. Researchers commonly need to build computational work!ows that include multiple analytic tools and require
incremental development as experimental insights demand tool and parameter modi"cations. These work!ows can
produce hundreds to thousands of intermediate "les and results that must be integrated for biological insight. Data-centric
work!ow systems that internally manage computational resources, software, and conditional execution of analysis steps
are reshaping the landscape of biological data analysis and empowering researchers to conduct reproducible analyses at
scale. Adoption of these tools can facilitate and expedite robust data analysis, but knowledge of these techniques is still
lacking. Here, we provide a series of strategies for leveraging work!ow systems with structured project, data, and resource
management to streamline large-scale biological analysis. We present these practices in the context of high-throughput
sequencing data analysis, but the principles are broadly applicable to biologists working beyond this "eld.
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Introduction
Biological research has become increasingly computational.
In particular, genomics has experienced a deluge of high-
throughput sequencing data that has already reshaped our un-
derstanding of the diversity and function of organisms and com-
munities, building basic understanding from ecosystems to hu-
man health. The analysis work!ows used to produce these in-
sights often integrate hundreds of steps and involve a myriad of
decisions ranging from small-scale tool and parameter choices
to larger-scale design decisions around data processing and sta-
tistical analyses. Each step relies not just on analysis code writ-
ten by the researcher but on third-party software, its depen-
dencies, and the compute infrastructure and operating system

on which the code is executed. Historically, this has led to the
patchwork availability of underlying code for analyses, as well
as a lack of interoperability of the resulting software and analy-
sis pipelines across compute systems [1]. Combined with unmet
training needs in biological data analysis, these conditions un-
dermine the reuse of data and the reproducibility of biological
research, vastly limiting the value of our generated data [2].

The biological research community is strongly committed to
addressing these issues, recently formalizing the FAIR practices:
the idea that all life sciences research (including data and analy-
sis work!ows) should be Findable, Accessible, Interoperable, and
Reusable [3]. For computational analyses, these ideals are readily
achievable with current technologies, but implementing them in
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2 Streamlining data-intensive biology with work!ow systems

practice has proven dif"cult, particularly for biologists with lit-
tle training in computing [3]. However, the recent maturation of
data-centric work!ow systems designed to automate and facili-
tate computational work!ows is expanding our capacity to con-
duct end-to-end FAIR analyses [4]. These work!ow systems are
designed to handle some aspects of computational work!ows
internally: namely, the interactions with software and comput-
ing infrastructure, and the ordered execution of each step of an
analysis. By reducing the manual input and monitoring required
at each analysis juncture, these integrated systems ensure that
analyses are repeatable and can be executed at much larger
scales. In concert, the standardized information and syntax re-
quired for rule-based work!ow speci"cation makes code inher-
ently modular and more easily transferable between projects [4,
5]. For these reasons, work!ow systems are rapidly becoming
the workhorses of modern bioinformatics.

Adopting work!ow systems requires some level of up-front
investment, "rst to understand the structure of the system and
then to learn the work!ow-speci"c syntax. These challenges can
preclude adoption, particularly for researchers without signi"-
cant computational experience [6]. In our experiences with both
research and training, these initial learning costs are similar to
those required for learning more traditional analysis strategies
but then provide a myriad of additional bene"ts that both facili-
tate and accelerate research. Furthermore, online communities
for sharing reusable work!ow code have proliferated, meaning
that the initial cost of encoding a work!ow in a system is miti-
gated via use and reuse of common steps, leading to faster time-
to-insight [4, 7].

Building upon the rich literature of “best” and “good enough”
practices for computational biology [8–10], we present a series
of strategies and practices for adopting work!ow systems to
streamline data-intensive biology research. This article is de-
signed to help guide biologists towards project, data, and re-
source management strategies that facilitate and expedite re-
producible data analysis in their research. We present these
strategies in the context of our own experiences working with
high-throughput sequencing data, but many are broadly appli-
cable to biologists working beyond this "eld.

Work!ows Facilitate Data-Intensive Biology
Data-intensive biology typically requires that researchers exe-
cute computational work!ows using multiple analytic tools and
apply them to many experimental samples in a systematic man-
ner. These work!ows commonly produce hundreds to thou-
sands of intermediate "les and require incremental changes
as experimental insights demand tool and parameter modi"-
cations. Many intermediate steps are central to the biological
analysis, but others, such as converting between "le formats,
are rote computational tasks required to passage data from one
tool to the next. Some of these steps can fail silently, produc-
ing incomplete intermediate "les that imperceptibly invalidate
downstream results and biological inferences. Properly manag-
ing and executing all of these steps is vital but can be both time-
consuming and error-prone, even when automated with script-
ing languages such as bash.

The emergence and maturation of work!ow systems de-
signed with bioinformatics challenges in mind has revolution-
ized computing in data-intensive biology [11]. Work!ow systems
contain powerful infrastructure for work!ow management that
can coordinate runtime behavior, self-monitor progress and re-
source usage, and compile reports documenting the results of a

work!ow (Fig. 1). These features ensure that the steps for data
analysis are repeatable and at least minimally described from
start to "nish. When paired with proper software management,
fully contained work!ows are scalable, robust to software up-
dates, and executable across platforms, meaning that they will
likely still execute the same set of commands with little invest-
ment by the user after weeks, months, or years.

To properly direct an analysis, work!ow systems need to en-
code information about the relationships between every work-
!ow step. In practice, this means that each analysis step must
specify the input (or types of inputs) needed for that step, and
the output (or types of outputs) being produced. This struc-
ture provides several additional bene"ts. First, work!ows be-
come minimally self-documented because the directed graph
produced by work!ow systems can be exported and visualized,
producing a graphical representation of the relationships be-
tween all steps in a pipeline (see “Visualize your Work!ow” sec-
tion). Next, work!ows are more likely to be fully enclosed with-
out undocumented steps that are executed by hand, meaning
that analyses are more likely to be reproducible. Finally, each
step becomes a self-contained unit that can be used and reused
across multiple analysis work!ows, so scientists can spend less
time implementing standard steps and more time on their spe-
ci"c research questions. In sum, the internal scaffolding pro-
vided by work!ow systems helps build analyses that are gen-
erally better documented, repeatable, transferable, and scalable.

Getting Started with Work!ows
The work!ow system that you choose will be largely dependent
on your analysis needs. Here, we draw a distinction between two
types of work!ows: “research” work!ows, which are under itera-
tive development to answer novel scienti"c questions, and “pro-
duction” work!ows, which have reached maturity and are pri-
marily used to run a standard analysis on new samples. In par-
ticular, research work!ows require !exibility and assessment at
every step: outliers and edge cases may reveal interesting bio-
logical differences, rather than sample processing or technical
errors. Many work!ow systems can be used for either type, but
we note cases where their properties facilitate one of these types
over the other.

Using work!ows without learning work!ow syntax

While the bene"ts of executing an analysis within a data-centric
work!ow system are immense, the learning curve associated
with command-line systems can be daunting. It is possible to
obtain the bene"ts of work!ow systems without learning new
syntax. Websites such as Galaxy, Cavatica, and EMBL-EBI MG-
nify offer online portals in which users build work!ows around
publicly available or user-uploaded data [12–14]. On the com-
mand line, many research groups have used work!ow systems
to wrap one or many analysis steps (speci"ed in an underly-
ing work!ow language) in a more user-friendly command-line
application that accepts user input and executes the analy-
sis. These pipeline applications allow users to take advantage
of work!ow software without needing to write the work!ow
syntax or manage software installation for each analysis step.
Some examples include the nf-core RNA sequencing (RNA-seq)
pipeline [1, 15], the PiGx genomic analysis toolkit [16], the ATLAS
metagenome assembly and binning pipeline [17, 18], the Sun-
beam metagenome analysis pipeline [19, 20], and two from our
own laboratory, the dammit eukaryotic transcriptome annota-
tion pipeline [21] and the elvers de novo transcriptome pipeline
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Reiter et al. 3

Figure 1: Work!ow systems: bioinformatics work!ow systems have built-in functionality that facilitates and simpli"es running analysis pipelines. A. Samples: work-
!ow systems enable the user to use the same code to run each step on each sample. Samples can be easily added if the analysis expands. B. Software management:
integration with software management tools (e.g., conda, singularity, docker) can automate software installation for each step. C. Branching, D. parallelization, and E.
ordering: work!ow systems handle conditional execution, ensuring that tasks are executed in the correct order for each sample "le, including executing independent
steps in parallel if possible given the resources provided. F. Standard steps: many steps are now considered “standard” (e.g., quality control). Work!ow languages keep
all information for a step together and can be written to enable remixing and reuse of individual steps across pipelines. G. Rerun as necessary: work!ow systems keep
track of which steps executed properly and on which samples, and allow failed steps (or additional steps) to be rerun rather than re-executing the entire work!ow. H.
Reporting: work!ow languages enable comprehensive reporting on work!ow execution and resource utilization by each tool. I. Portability: analyses written in work!ow
languages (with integrated software management) can be run across computing systems without changes to code.

[22]. These pipeline applications typically execute a series of
standard steps, but many provide varying degrees of customiz-
ability ranging from tool choice to parameter speci"cation.

Choosing a work!ow system

If your use case extends beyond these tools, there are several
scriptable work!ow systems that offer comparable bene"ts for
carrying out your own data-intensive analyses. Each has it own
strengths, meaning that each work!ow software will meet an
individual’s computing goals differently (see Table 1). Our lab-
oratory has adopted Snakemake [23, 24], in part due to its in-
tegration with Python, its !exibility for building and testing
new analyses in different languages, and its intuitive integra-
tion with software management tools (described below). Snake-
make and Next!ow [25] are commonly used for developing new
research pipelines, where !exibility and iterative, branching de-
velopment are key features. Common Work!ow Language (CWL)
and Work!ow Description Language (WDL) are work!ow speci-
"cation formats that are more geared towards scalability, mak-
ing them ideal for production-level pipelines with hundreds of
thousands of samples [26]. WDL and CWL are commonly ex-
ecuted on platforms such as Terra [27] or Seven Bridges Plat-
form [28]. Language-speci"c work!ow systems, such as ROpen-
Sci’s Drake [29], can take full advantage of the language’s inter-
nal data structures, and provide automation and reproducibility
bene"ts for work!ows executed primarily within the language
ecosystem.

Table 1: Four of the most widely used bioinformatics work!ow sys-
tems (2020), with links to documentation, example work!ows, and
general tutorials.

Work!ow system Documentation
Example
work!ow Tutorial

Snakemake [30] [31] [32]
Next!ow [33] [34] [35]
CWL [36] [37] [38]
WDL [39] [40] [41]

In many cases, there may be tutorials online that are tailored for use cases in a
particular "eld. All of these systems can interact with tools or tasks written in
other languages and can function across cloud computing systems and high-
performance computing clusters. Some can also import full work!ows from
other speci"cation languages.

The best work!ow system to choose may be the one with
a strong and accessible local or online community in your "eld,
somewhat independent of your computational needs. The avail-
ability of "eld-speci"c data analysis code for reuse and modi-
"cation can facilitate the adoption process, as can community
support for new users. Fortunately, the standardized syntax re-
quired by work!ow systems, combined with widespread adop-
tion in the open science community, has resulted in a prolifer-
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4 Streamlining data-intensive biology with work!ow systems

ation of open access work!ow-system code for routine analy-
sis steps [42, 43]. At the same time, consensus approaches for
data analysis are emerging, further encouraging reuse of exist-
ing code [44–48].

The Getting Started Developing Work!ows section contains
strategies for modifying and developing work!ows for your own
analyses.

Wrangling Scienti"c Software
Analysis work!ows commonly rely on multiple software pack-
ages to generate "nal results. These tools are heterogeneous in
nature: they are written by researchers working in different cod-
ing languages, with varied approaches to software design and
optimization, and often for speci"c analysis goals. Each program
has a number of other programs it depends upon to function
(“dependencies”), and as software changes over time to meet
research needs, the results may change, even when run with
identical parameters. As a result, it is critical to take an orga-
nized approach to installing, managing, and keeping track of
software and software versions. On many compute systems,
system-wide software management is overseen by system ad-
ministrators, who ensure that commonly used and requested
software is installed into a “module” system available to all
users. Unfortunately, this system limits software version trans-
parency and does not lend itself well to exploring new work-
!ows and software because researchers do not have permission
to install software themselves. To meet this need, most work-
!ow managers integrate with software management systems
that handle software installation, management, and packaging,
alleviating problems that arise from complex dependencies and
facilitating documentation of software versions. Software man-
agement systems range from lightweight systems that manage
only the software and its dependencies to heavyweight systems
that control for all aspects of the runtime and operating system,
ensuring 100% reproducibility of results across computational
platforms and time.

On the lightweight end, the conda package manager has
emerged as a leading software management solution for re-
search work!ows (Fig. 2). Conda handles both cluster permis-
sion and version con!ict issues with a user-based software envi-
ronment system and features a straightforward “recipe” system
that simpli"es the process of making new software installable
(including simple management of versions and updates). These
features have led to widespread adoption within the bioinfor-
matics community: packages for new software become quickly
available and can be installed easily across platforms. However,
conda does not completely isolate software installations and
aims neither for bitwise reproducibility nor for long-term archiv-
ing of install packages, meaning that installations will not be
completely reproducible over time. Heavyweight software man-
agement systems package not only the software of interest but
also the runtime environment information, with the goal of en-
suring perfect reproducibility in software installation over time.
Tools such as singularity and docker [3, 11, 49, 50] wrap software
environments in “containers” that capture and reproduce the
runtime environment information. Container-based manage-
ment is particularly useful for systems where some dependen-
cies may not be installable by lightweight managers. However,
software installation within these containers can be limited by
similar reproducibility issues, including changes in dependency
installations over time. “Functional package managers” such as
GNU Guix and Nix strictly require all dependency and con"gura-

tion details to be encoded within each software package, provid-
ing the most comprehensively reproducible installations. These
have begun to be integrated into some bioinformatic tools [16]
but have a steeper learning curve for independent use. In addi-
tion, standard installation of these managers requires system-
wide installation permissions, requiring assistance from sys-
tem administrators on most high-performance computing
systems.

Getting Started with Software Management
Using software without learning software management
systems

First, there are a number of ways to test software before needing
to worry about installation. Some software packages are avail-
able as web-based tools and, through a series of data upload and
parameter speci"cations, allow the user to interact with a tool
that is running on a back-end server. Integrated development
environments (IDE) such as PyCharm and RStudio can manage
software installation for language-speci"c tools and can be help-
ful when writing analysis code. While these approaches do not
integrate into reproducible work!ows, they may be ideal for test-
ing a tool to determine whether it is useful for your data before
integration in your analysis.

Choosing a software management system

It is important to balance the time needed to learn to prop-
erly use a software management system with the needs of both
the project and the researchers. Software management systems
with large learning curves are less likely to be widely adopted
among researchers with a mix of biological and computational
backgrounds. In our experience, software management with
conda nicely balances reproducibility with !exibility and ease
of use. These trade-offs are best for research work!ows under
active development, where !exible software installation solu-
tions that enable new analysis explorations or regular tool up-
dates are critical. For production work!ows that require maxi-
mal reproducibility, it is worth the larger investment required to
use heavyweight systems. This is particularly true for advanced
users who can more easily navigate the steps required for utiliz-
ing these tools. Container-based software installation via docker
and singularity is common for production-level work!ows, and
Guix and Nix-based solutions are gaining traction. Importantly,
the needs and constraints of a project can evolve over time, as
may the system of choice.

Integrating software management within work!ows

Work!ow systems provide seamless integration with a number
of software management tools. Each work!ow system requires
different speci"cation for initiation of software management but
typically requires ∼1 additional line of code per step that re-
quires the use of software. If the software management tool is
installed locally, the work!ow will automatically download and
install the speci"ed environment or container and use it for the
speci"ed step.

In our experience, the complete solution for using scienti"c
software involves a combination of approaches. Interactive and
exploratory analyses conducted in IDEs and jupyter notebooks
(usually with local software installation with conda) are use-
ful for developing an analysis strategy and creating an initial
work!ow. This is then followed by work!ow-integrated software
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Reiter et al. 5

Figure 2: The conda package and environment manager simpli"es software installation and management. A. Conda recipe repositories: each program distributed via
conda has a “recipe” describing all software dependencies needed for installation using conda (each of which must also be installable via conda). Recipes are stored
and managed in the cloud in separate “channels,” some of which specialize in particular "elds or languages (e.g., the “bioconda” channel specializes in bioinformatics
software, while the “conda-forge” channel is a more general effort to provide and maintain standardized conda packages for a wide range of software) [11]. B. Use
conda environments to avoid installation con!icts: conda does not require root privileges for software installation, thus enabling use by researchers working on shared
cluster systems. However, even user-based software installation can encounter dependency con!icts. For example, you might need to use Python2 to install and run a
program (e.g., older scripts written by members of your laboratory), while also using snakemake to execute your work!ows (requires Python ≥3.5). By installing each
program into an isolated “environment” that contains only the software required to run that program, you can ensure that all programs used throughout your analysis
will run without issue. Using small, separate environments for your software, specifying the desired software version, and building many simple environments to
accommodate different steps in your work!ow is critical for reducing the amount of time it takes conda to resolve dependency con!icts between different software
tools (“solve” an environment). Conda virtual environments can be created and installed either on the command line or via an environment YAML "le, as shown. In
this case, the environment "le also speci"es which conda channels to search and download programs from. When speci"ed in a YAML "le, conda environments are
easily transferable between computers and operating systems. C. Most work!ow management software enables speci"cation of individual software environments
for each step. In this example, steps 1 and 3 rely on the same environment, while step 2 uses a different environment. Broad community adoption has resulted in a
proliferation of both conda-installable scienti"c software and tools that leverage conda installation speci"cations. For example, the Mamba package manager is an
open source reimplementation of the conda manager that can install conda-style environments with increased ef"ciency [51]. The BioContainers Registry is a project
that automatically builds and distributes docker and singularity containers for bioinformatics software packages using each package’s conda installation recipe [52].
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6 Streamlining data-intensive biology with work!ow systems

Figure 3: Consistent and informative "le naming improves organization and in-
terpretability. For ease of grouping and referring to input "les, it is useful to keep
unique sample identi"cation in the "lename, often with a metadata "le explain-
ing the meaning of each unique descriptor. For analysis scripts, it can help to
implement a numbering scheme, where the name of the "rst "le in the analysis
begins with “00,” the next with “01,” and so on. For output "les, it can help to add
a short, unique identi"er to output "les processed with each analysis step. This
particular "le is a RAD-seq fastq "le of a "sh species that has been preprocessed
with a fastq quality trimming tool.

management via conda, singularity, or nixOS for executing the
resulting work!ow on many samples. This process not linear:
we often cycle between exploratory testing and automation as
we iteratively extend our analyses.

Work!ow-Based Project Management
Project management, the strategies and decisions used to keep
a project organized, documented, functional, and shareable, is
foundational to any research program. Clear organization and
management is a learned skill that takes time to implement.
Work!ow systems simplify and improve computational project
management, but even work!ows that are fully speci"ed in
work!ow systems require additional investment to stay orga-
nized, documented, and backed up.

Systematically document your work!ows

Pervasive documentation provides indispensable context for
biological insights derived from an analysis, facilitates trans-
parency in research, and increases reusability of the analysis
code. Good documentation covers all aspects of a project, in-
cluding organization of "les and results, clear and commented
code, and accompanying explanatory documents for design de-
cisions and metadata. Work!ow systems facilitate building this
documentation because each analysis step (with chosen param-
eters) and the links between those steps are completely speci"ed
within the work!ow syntax. This feature streamlines code docu-
mentation, particularly if you include as much of the analysis as
possible within the automated work!ow framework. Outside of
the analysis itself, applying consistent organizational design can
capitalize on the structure and automation provided by work-
!ows to simplify the generation of high-quality documentation
for all aspects of your project. Below, we discuss project man-
agement strategies for building reproducible work!ow-enabled
biological analyses.

Use consistent, self-documenting names

Using consistent and descriptive identi"ers for your "les, scripts,
variables, work!ows, projects, and even manuscripts helps keep
your projects organized and interpretable for you and collabora-
tors. For work!ow systems, this strategy can be implemented by
tagging output "les with a descriptive identi"er for each analy-
sis step, either in the "lename or by placing output "les within
a descriptive output folder. For example, the "le shown in Fig. 3
has been preprocessed with a quality control trimming step. For
large work!ows, placing results from each step of your analysis

in isolated, descriptive folders can be essential for keeping your
project workspace clean and organized.

Store work!ow metadata with the work!ow

Developing biological analysis work!ows can involve hundreds
of small decisions: What parameters work best for each step?
Why did you use a certain reference "le for annotation as com-
pared with other available "les? How did you "nally manage to
get around the program or installation error? All of these pieces
of information contextualize your results and may be helpful
when sharing your "ndings. Keeping information about these
decisions in an intuitive and easily accessible place helps you
"nd it when you need it. To capitalize on the utility of version
control systems described below, it is most useful to store this
information in plain text "les. Each main directory of a project
should include notes on the data or scripts contained within,
so that a collaborator could look into the directory and under-
stand what to "nd there (especially because that “collaborator”
is likely to be you, a few months from now). Code itself can con-
tain documentation—you can include comments with the rea-
soning behind algorithm choice or include a link to online doc-
umentation or a solution that helped you decide how to shape
your differential expression analysis. Larger pieces of informa-
tion can be kept in “README” or notes documents kept alongside
your code and other documents. For example, a GitHub reposi-
tory documenting the reanalysis of the Marine Microbial Eukary-
ote Transcriptome Sequencing Project uses a README alongside
the code to document the work!ow and DOIs for data products
[53, 54]. While this particular strategy cannot be automated, it is
critical for interpreting the "nal results of your work!ow.

Document data and analysis exploration using
computational notebooks

Computational notebooks allow users to combine narrative,
code, and code output (e.g., visualizations) in a single location,
enabling the user to conduct analysis and visually assess the re-
sults in a single "le (see Fig. 4). These notebooks allow for fully
documented iterative analysis development and are particularly
useful for data exploration and developing visualizations prior
to integration into a work!ow or as a report generated by a work-
!ow that can be shared with collaborators.

Visualize your work!ow

Visual representations can help illustrate the connections in a
work!ow and improve the readability and reproducibility of your
project. At the highest level, !owcharts that detail relationships
between steps of a work!ow can help provide big-picture clar-
i"cation, especially when the pipeline is complicated. For indi-
vidual steps, a graphical representation of the output can show
the status of the project or provide insight on additional analy-
ses that should be added. For example, Fig. 5 exhibits a modi"ed
Snakemake work!ow visualization from an RNA-seq quanti"ca-
tion pipeline [59].

Version control your project

As your project develops, version control allows you to keep
track of changes over time. Several methods can be used to track
changes even without version control software, including fre-
quent hard drive backups or manually saving different versions
of the same "le—e.g., by appending the date to a script name or
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Reiter et al. 7

Figure 4: Examples of computational notebooks. Computational notebooks allow the user to mix text, code, and results in 1 document. A. RMarkdown document
viewed in the RStudio integrated development environment; B. rendered HTML "le produced by knitting the RMarkdown document [55]. C. Jupyter Notebook, where
code, text, and results are rendered inline as each code chunk is executed [56]. The second grey chunk is a raw Markdown chunk with text that will be rendered inline
when executed. Both notebooks generate a histogram of a metadata feature, number of generations, from a long-term evolution experiment with Escherichia coli [57].
Computational notebooks facilitate sharing by packaging narrative, code, and visualizations together. Sharing can be enhanced further by packaging computational
notebooks with tools like Binder [58]. Binder builds an executable environment (capable of running RStudio and jupyter notebooks) out of a GitHub repository using
package management systems and docker to build reproducible and executable software environments as speci"ed in the repository. Binders can be shared with
collaborators (or students in a classroom setting), and analysis and visualization can be ephemerally reproduced or altered from the code provided in computational
notebooks.

appending “version 1” or “version FINAL” to a manuscript draft.
However, version control systems such as Git or Mercurial can
both simplify and standardize this process, particularly as work-
!ow length and complexity increase. These systems can keep
track of all changes over time, even across multiple systems,
scripting languages, and project contributors (see Fig. 6). If a key
piece of a work!ow inexplicably stops working, consistent ver-
sion control can allow you to rewind in time and identify differ-
ences from when the pipeline worked to when it stopped work-
ing. Furthermore, backing up your version-controlled analysis
in an online repository such as GitHub, GitLab, or Bitbucket can
provide critical insurance as you iteratively modify and develop
your work!ow.

When combined with online backups, version control sys-
tems also facilitate code and data availability and reproducibility
for publication. For example, to preserve the version of code that
produced published results, you can create a “release”: a snap-
shot of the current code and "les in a GitHub repository. You can
then generate a DOI for that release using a permanent docu-
mentation service such as Zenodo [61] and make it available to
reviewers and beyond.

Share your work!ow and analysis code

Sharing your work!ow code with collaborators, peer reviewers,
and scientists seeking to use a similar method can foster dis-

cussion and review of your analysis. Sticking to a clear docu-
mentation strategy, using a version control system, and pack-
aging your code in notebooks or as a work!ow prepare them
to be easily shared with others. To go a step further, you can
package your code with tools like Binder, ReproZip, or Whole
Tale, or make interactive visualizations with tools like Shiny
apps or Plotly. These approaches let others run the code on
cloud computers in environments identical to those in which
the original computation was performed (Figs 4 and 7) [58, 62,
63]. These tools substantially reduce overhead associated with
interacting with code and data and, in doing so, make it fast
and easy to rerun portions of the analysis, check accuracy, or
even tweak the analysis to produce new results. If you also share
your code and work!ows publicly, you will also help contribute
to the growing resources for open work!ow–enabled biological
research.

Getting Started Developing Work!ows
In our experience, the best way to have your work!ow sys-
tem work for you is to include as much of your analysis as
possible within the automated work!ow framework, use self-
documenting names, include analysis visualizations, and keep
rigorous documentation alongside your work!ow that enables
you to understand each decision and entirely reproduce any
manual steps. Some of the tools discussed above will inevitably
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8 Streamlining data-intensive biology with work!ow systems

all

salmon_quantify

multiqc

quality_trim

fastqc_trimmed

salmon_index

fastqc_raw

download_reads
sample: ERR458493 download_trimmomatic_adapter_file download_yeast_transcriptome

Figure 5: A directed acyclic graph (DAG) that illustrates connections between all steps of a sequencing data analysis work!ow. Each box represents a step in the
work!ow, while lines connect sequential steps. The DAG shown in this "gure illustrates a real bioinformatics work!ow for RNA-seq quanti"cation that was generated by
modifying the default Snakemake work!ow DAG. This example of an initial work!ow used only to quality control and then quantify 1 FASTQ "le against a transcriptome
more than doubles the amount of "les in a project. When the number of steps are expanded to carry out a full research analysis and the number of initial input "les are
increased, a work!ow can generate hundreds to thousands of intermediate "les. Fortunately, work!ow system coordination alleviates the need for a user to directly
manage "le interdependencies. For a larger analysis DAG, see [60].

Hello world

This code is great

The best doce ever 

Here is my code

The best code ever 

Hello world

This code is great

Here is my code

The best doce ever The best code ever 

commit   4c38c2c commit   5c6c28d

Figure 6: Version control systems (e.g., Git, Mercurial) work by storing incremental differences in "les from 1 saved version (“commit”) to the next. To visualize the
differences between each version, text editors such as Atom and online services such as GitHub, GitLab, and Bitbucket use red highlighting to denote deletions and
green highlighting to denote additions. In this trivial example, a typographical error in version 1 (in pink) was corrected in version 2 (in green). These systems are
extremely useful for code and manuscript development because it is possible to return to the snapshot of any saved version. This means that version control systems
save you from accidental deletions, preserve code that you thought you no longer needed, and preserve a record of project changes over time.

change over time, but these principles apply broadly and will
help you design clear, well-documented, and reproducible anal-
yses. Ultimately, you will need to experiment with strategies
that work for you—what is most important is to develop a clear
set of strategies and implement them tenaciously. Below, we
provide a few practical strategies to try as you begin developing
your own work!ows.

Start with working code

When building a work!ow for the "rst time, start from work-
ing examples provided as part of the tool documentation or

otherwise available online. This functioning example code then
provides a reliable work!ow framework free of syntax errors
that you can customize for your data without the overhead
of generating correct work!ow syntax from scratch. Be sure
to run this analysis on provided test data, if available, to en-
sure that the tools and command-line syntax function at a ba-
sic level. Table 1 provides links to of"cial repositories contain-
ing tutorials and example biological analysis work!ows, and
work!ow tutorials and code-sharing websites such as GitHub,
GitLab, and Bitbucket have many publicly available work!ows
for other analyses. If a work!ow is available through Binder,
you can test and experiment with work!ow modi"cation on
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Figure 7: Interactive visualizations facilitate sharing and repeatability. A. Interactive visualization dashboard in the Pavian Shiny app for metagenomic analysis [64,
65]. Shiny allows you to build interactive web pages using R code. Data are manipulated by R code in real time in a web page, producing analysis and visualizations
of a dataset. Shiny apps can contain user-speci"able parameters, allowing a user to control visualizations or analyses. In (A), sample PT1 is selected, and taxonomic
ranks class and order are excluded. Shiny apps allow collaborators who may or may not know R to modify R visualizations to "t their interests. B. Plotly heat map of
transcriptional pro"ling in human brain samples [66]. Hovering over a cell in the heat map displays the sample names from the x and y axis, as well as the intensity
value. Plotting tools such as plotly and vega-lite produce single interactive plots that can be shared with collaborators or integrated into websites [67, 68]. Interactive
visualizations are also helpful in exploratory data analysis.

Binder’s cloud system without needing to install a work!ow
manager or software management tool on your local compute
system [58].

Test with subsampled data

Once you have working work!ow syntax, test the step on your
own data or public data related to your species or condition of
interest. First, create a subsampled dataset that you can use
to test your entire analysis work!ow. This set will save time,
energy, and computational resources throughout work!ow de-
velopment. If working with FASTQ data, a straightforward way
to generate a small test set is to subsample the "rst million
lines of a "le ("rst 250,000 reads) as follows: head -n 1000000
FASTQ FILE.fq > test fastq.fq.

While there are many more sophisticated ways to subsample
reads, this technique should be suf"cient for testing each step
of most work!ows prior to running your full dataset. In speci"c
cases, such as eukaryotic genome assembly, you may need to be
more intentional with how you subsample reads and how much
sample data you use as a test set.

Document your process

Document your changes, explorations, and errors as you de-
velop. We recommend using the Markdown language so your
documentation is in plain text (to facilitate version control) but
can still include helpful visual headings, code formatting, and
embedded images. Markdown editors with visual previewing,
such as HackMD, can greatly facilitate notetaking, and Mark-
down documents are visually rendered properly within your
online version control backups on services such as GitHub
[69].

Develop your work!ow

From your working code, iteratively modify and add work!ow
steps to meet your data analysis needs. This strategy allows you
to "nd and "x mistakes on small sections of the work!ow. Peri-
odically clean your output directory and rerun the entire work-
!ow to ensure that all steps are fully interoperable (using small
test data will improve the ef"ciency of this step). If possible, us-
ing mock or control datasets can help you verify that the anal-
ysis you are building actually returns correct biological results.
Tutorials and tool documentation are useful companions dur-
ing development; as with any language, remembering work!ow-
speci"c syntax takes time and practice.

Assess your results

Evaluate your work!ow results as you go. Consider what aspects
(e.g., tool choice, program parameters) can be evaluated rigor-
ously, and assess each step for expected behavior. Other aspects
(e.g., "ltering metadata, joining results across programs or anal-
ysis, software and work!ow bugs) will be more dif"cult to evalu-
ate. Wherever possible, set up positive and negative controls to
ensure that your analysis is being performed as desired. Once
you are certain that an analysis is executing as designed, track-
ing down unusual results may reveal interesting biological dif-
ferences.

Back up early and often

As you write new code, back up your changes in an online reposi-
tory such as GitHub, GitLab, or Bitbucket. These services support
both drag-and-drop and command-line interaction.

Scale up your work!ow

Bioinformatics tools vary in the resources that they require:
some analysis steps are compute-intensive, other steps are
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10 Streamlining data-intensive biology with work!ow systems

memory intensive, and still others will have large intermediate
storage needs. If using a high-performance computing system or
the cloud, you will need to request resources for running your
pipeline, often provided as a simultaneous execution limit or
purchased by your research group on a cost-per-compute basis.
Work!ow systems provide built-in tools to monitor resource us-
age for each step. Running a complete work!ow on a single sam-
ple with resource monitoring enabled generates an estimate of
computational resources needed for each step. These estimates
can be used to set appropriate resource limits for each step when
executing the work!ow on your remaining samples.

Find a community and ask for help when you need it

Local and online users’ groups are helpful communities when
learning a work!ow language. When you are "rst learning, help
from more advanced users can save you hours of frustration. Af-
ter you have progressed, providing that same help to new users
can help you cement the syntax in your mind and tackle more
advanced uses. Data-centric work!ow systems have been en-
thusiastically adopted by the open science community, and as
a consequence, there is a critical mass of tutorials and open ac-
cess code, as well as code discussion on forums and via social
media, particularly Twitter. Post in the relevant work!ow forums
when you have hit a stopping point that you are unable to work
through. Be respectful of people’s time and energy and be sure
to include appropriate details important to your problem (see
Strategies for troubleshooting section).

Data and Resource Management for
Work!ow-Enabled Biology
Advancements in sequencing technologies have greatly in-
creased the volume of data available for biological query [70].
Work!ow systems, by virtue of automating many of the time-
intensive project management steps traditionally required for
data-intensive biology, can increase our capacity for data anal-
ysis. However, conducting biological analyses at this scale re-
quires a coordinated approach to data and computational re-
source management. Below, we provide recommendations for
data acquisition, management, and quality control that have be-
come especially important as the volume of data has increased.
Finally, we discuss securing and managing appropriate compu-
tational resources for the scale of your project.

Managing large-scale datasets

Experimental design, "nding or generating data, and quality
control are quintessential parts of data-intensive biology. There
is no substitute for taking the time to properly design your anal-
ysis, identify appropriate data, and conduct sanity checks on
your "les. While these tasks are not automatable, many tools
and databases can aid in these processes.

Look for appropriate publicly available data

With vast amounts of sequencing data already available in pub-
lic repositories, it is often possible to begin investigating your re-
search question by seeking out publicly available data. In some
cases, these data will be suf"cient to conduct your entire anal-
ysis. In other cases, particularly for biologists conducting novel
experiments, these data can inform decisions about sequencing
type, depth, and replication and can help uncover potential pit-
falls before they cost valuable time and resources.

Table 2: References for experimental design and considerations for
common sequencing chemistries

Sequencing type Resources

RNA-seq [44, 83, 84]
Metagenomic sequencing [45, 85, 86]
Amplicon sequencing [87–89]
Microbial isolate sequencing [90]
Eukaryotic genome sequencing [91–94]
Whole-genome resequencing [95]
RAD-seq [96–100]
single-cell RNA-seq [101, 102]

Most journals now require data for all manuscripts to be
made accessible, either at publication or after a short mora-
torium. Furthermore, the FAIR data movement has improved
the data-sharing ecosystem for data-intensive biology [71–77].
You can "nd relevant sequencing data either by starting from
the “data accessibility” sections of papers relevant to your re-
search or by directly searching for your organism, environment,
or treatment of choice in public data portals and repositories.
The International Nucleotide Sequence Database Collaboration
(INSDC), which includes the SRA, European Nucleotide Archive
(ENA), and DNA DataBank of Japan (DDBJ), is the largest repos-
itory for raw sequencing data but no longer accepts sequenc-
ing data from large consortium projects [78]. These data are in-
stead hosted in consortium-speci"c databases, which may re-
quire some domain-speci"c knowledge for identifying relevant
datasets and have unique download and authentication proto-
cols. For example, raw data from the Tara Oceans expedition is
hosted by the Tara Ocean Foundation [79]. Additional curated
databases focus on processed data instead, such as gene ex-
pression in the Gene Expression Omnibus (GEO) [80]. Organism-
speci"c databases such as Wormbase (Caenorhabditis elegans)
specialize in curating and integrating sequencing and other data
associated with a model organism [81]. Finally, rather than fo-
cusing on certain data types or organisms, some repositories
are designed to hold any data and metadata associated with a
speci"c project or manuscript (e.g., Open Science Framework,
Dryad, Zenodo [82]).

Consider analysis when generating your own data

If you are generating your own data, proper experimental de-
sign and planning are essential. For cost-intensive sequencing
data, there are a range of decisions about experimental design
and sequencing (including sequencing type, sequencing depth
per sample, and biological replication) that affect your ability
to properly address your research question. Conducting dis-
cussions with experienced bioinformaticians and statisticians,
prior to beginning your experiments if possible, is the best way
to ensure that you will have suf"cient statistical power to de-
tect effects. These considerations will be different for different
types of sequence analysis. To aid in early project planning, we
have curated a series of domain-speci"c references that may be
useful as you go about designing your experiment (see Table 2).
Given the resources invested in collecting samples for sequenc-
ing, it is important to build in a buffer to preserve your experi-
mental design in the face of unexpected laboratory or technical
issues. Once generated, it is always a good idea to have multiple
independent backups of raw sequencing data, as they typically
cannot be easily regenerated if lost to computer failure or other
unforeseeable events.
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As your experiment progresses, keep track of as much infor-
mation as possible: dates and times of sample collection, stor-
age, and extraction; sample names; aberrations that occurred
during collection; kit lot used for extraction; and any other sam-
ple and sequencing measurements you might be able to obtain
(e.g., temperature, location, metabolite concentration, name of
collector, well number, plate number, machine on which your
data were sequenced). These metadata allow you to keep track
of your samples, to control for batch effects that may arise from
unintended batching during sampling or experimental proce-
dures, and make the data you collect reusable for future appli-
cations and analysis by yourself and others. Wherever possible,
follow the standard guidelines for formatting metadata for sci-
enti"c computing to limit downstream processing and simplify
analyses requiring these metadata (see [10]). We have focused
here on sequencing data; for data management over long-term
ecological studies, we recommend [103].

Getting Started with Sequencing Data
Protect valuable data

Aside from the code itself, raw data are the most important "les
associated with a work!ow because they cannot be regenerated
if accidentally altered or deleted. Keeping a read-only copy of
raw data alongside a work!ow, as well multiple backups, pro-
tects your data from accidents and computer failure. This also
removes the imperative of storing intermediate "les because
these can be easily regenerated by the work!ow.

When sharing or storing "les and results, data version con-
trol can keep track of differences in "les such as changes from
tool parameters or versions. The version control tools discussed
in the Work!ow-Based Project Management section are primar-
ily designed to handle small "les, but GitHub provides support
for Git Large File Storage, and repositories such as the Open Sci-
ence Framework, Figshare, Zenodo, and Dryad can be used for
storing larger "les and datasets [61, 82, 104–106].

In addition to providing version control for projects and
datasets, these tools also facilitate sharing and attribution by
enabling generation of DOIs for datasets, "gures, presentations,
code, and preprints. Because free tools often limit the size of "les
that can be stored, a number of cloud backup and storage ser-
vices are also available for purchase or via university contract,
including Google Drive, Box, Dropbox, Amazon Web Services,
and Backblaze. Full computer backups can be conducted to these
storage locations with tools like rclone [107].

Ensure data integrity during transfers

If you are working with publicly available data, you may be able
to work on a compute system where the data are already avail-
able, circumventing time and effort required for downloading
and moving the data. Databases such as the SRA are now avail-
able on commercial cloud computing systems, and open source
projects such as Galaxy enable working with SRA sequence "les
directly from a web browser [12, 108]. Ongoing projects such as
the NIH Common Fund Data Ecosystem aim to develop a data
portal to make NIH Common Fund data, including biomedical
sequencing data, more FAIR.

In most cases, you will still need to transfer some data—
either downloading raw data or transferring important interme-
diate and results "les for backup and sharing (or both). Transfer-
ring compressed "les (e.g., gzip, bzip2, BAM/CRAM) can improve

Figure 8: Use Checksums to ensure "le integrity. Checksum programs (e.g., md5,
sha256) encode "le size and content in a single value known as a “checksum.”
For any given "le, this value will be identical across platforms when calculated
using the same checksum program. When transferring "les, calculate the value
of the checksum prior to transfer, and then again after transfer. If the value is
not identical, there was an error introduced during transfer (e.g., "le truncation).
Checksums are often provided alongside publicly available "les so that you can
verify proper download. Tools like rsync and rclone that automate "le transfers
use checksums internally to verify that "les were transferred properly, and some
GUI "le transfer tools (e.g., Cyberduck [109]) can assess checksums when they are
provided [107]. If you generated your own data and receieved sequencing "les
from a sequencing center, be certain that you also receive a checksum for each
of your "les to ensure that they download properly.

transfer speed and save space, and checksums can be used to to
ensure "le integrity after transfer (see Fig. 8).

Perform quality control at every step

The quality of your input data has a major effect on the quality of
the output results, no matter whether your work!ow analyzes 6
samples or 600. Assessing data at every analysis step can reveal
problems and errors early, before they waste valuable time and
resources. Using quality control tools that provide metrics and
visualizations can help you assess your datasets, particularly as
the size of your input data scales up. However, data from differ-
ent species or sequencing types can produce anomalous qual-
ity control results. You are ultimately the single most effective
quality control tool that you have, so it is important to critically
assess each metric to determine those that are relevant for your
particular data.

Look at your !les
Quality control can be as simple as looking at the "rst few
and last few lines of input and output data "les, or checking
the size of those "les (see Table 3). To develop an intuition for
what proper inputs and outputs look like for a given tool, it
is often helpful to "rst run the test example or data that is
packaged with the software. Comparing these input and out-
put "le formats to your own data can help identify and address
inconsistencies.

Visualize your data
Visualization is another powerful way to pick out unusual or un-
expected patterns. Although large abnormalities may be clear
from looking at "les, others may be small and dif"cult to "nd.
Visualizing raw sequencing data with FastQC (Fig. 9A) and pro-
cessed sequencing data with tools like the Integrative Genome
Viewer and plotting tabular results "les using Python or R can
make aberrant or inconsistent results easier to track down [110,
111].

Pay attention to warnings and log !les
Many tools generate log "les or messages while running. These
"les contain information about the quantity, quality, and results
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12 Streamlining data-intensive biology with work!ow systems

Table 3: Some commands to quickly explore the contents of a "le

Command Function Example

ls -lh List "les with information in a human-readable format ls -lh ∗fastq.gz
head Print the "rst 6 lines of a "le to standard out head samples.csv
tail Print the last 6 lines of a "le to standard out tail samples.csv
less Show the contents of a "le in a scrollable screen less samples.csv
zless Show the contents of a gzipped "le in a scrollable

screen
zless sample1.fastq.gz

wc -l Count the number of lines in a "le wc -l ecoli.fasta
cat Print a "le to standard out cat samples.csv
grep Find matching text and print the line to standard out grep “>” ecoli.fasta
cut Cut columns from a table cut -d“,” -f1

samples.csv

These commands can be used on Unix and Linux operating systems to detect common formatting problems or other abnor-
malities.

from the run, or error messages about why a run failed. Inspect-
ing these "les can be helpful to make sure tools ran properly and
consistently or to debug failed runs. Parsing and visualizing log
"les with a tool like MultiQC can improve the interpretability of
program-speci"c log "les (Fig. 9 [113]).

Look for common biases in sequencing data
Biases in sequencing data originate from experimental design,
methodology, sequencing chemistry, or work!ows and are help-
ful to target speci"cally with quality control measures. The exact
biases in a speci"c dataset or work!ow will vary greatly between
experiments, so it is important to understand the sequencing
method that you have chosen and incorporate appropriate "l-
tration steps into your work!ow. For example, PCR duplicates
can cause problems in libraries that underwent an ampli"cation
step, and often need to be removed prior to downstream analysis
[114–118].

Check for contamination
Contamination can arise during sample collection, nucleotide
extraction, library preparation, or through sequencing spike-
ins like PhiX, and could change data interpretation if not re-
moved [119–121]. Libraries sequenced with high concentrations
of free adapters or with low-concentration samples may have
increased barcode hopping, leading to contamination between
samples [122].

Consider the costs and bene!ts of stringent quality control for your
data
High-quality data are essential for good downstream analysis.
However, stringent quality control can sometimes do more harm
than good. For example, depending on sequencing depth, strin-
gent quality trimming of RNA-seq data may reduce isoform dis-
covery [123]. To determine what issues are most likely to plague
your speci"c dataset, it can be helpful to "nd recent publications
using a similar experimental design or to speak with experts at
a sequencing core.

Because sequencing data and applications are so di-
verse, there is no one-size-"ts-all solution for quality con-
trol. It is important to think critically about the patterns
that you expect to see given your data and your biologi-
cal problem, and consult with technical experts whenever
possible.

Securing and Managing Appropriate
Computational Resources
Sequence analysis requires access to computing systems with
adequate storage and analysis power for your data. For some
smaller-scale datasets, local desktop or even laptop systems
can be suf"cient, especially if using tools that implement
data reduction strategies such as minhashing [124]. However,
larger projects require additional computing power or may
be restricted to certain operating systems (e.g., linux). For
these projects, solutions range from research-focused high-
performance computing systems to research-integrated com-
mercial analysis platforms. Both research-only and commercial
clusters provide avenues for research and educational propos-
als to enable access to their computing resources (see Table 4). In
preparing for data analysis, be sure to allocate suf"cient compu-
tational resources and funding for storage and analysis, includ-
ing large intermediate "les and resources required for person-
nel training. Note that work!ow systems can greatly facilitate
faithful execution of your analysis across the range of compu-
tational resources available to you, including distribution across
cloud computing systems.

Getting Started with Resource Management
As the scale of data increases, the resources required for analy-
sis can balloon. Bioinformatics work!ows can be long-running,
require high-memory systems, or involve intensive "le manipu-
lation. Some of the strategies below may help you manage com-
putational resources for your project.

Apply for research units if eligible

There are a number of cloud computing services that offer grants
providing computing resources to data-intensive researchers
(Table 4). In some cases, the resources provided may be suf"-
cient to cover your entire analysis.

Develop on a local computer when possible

Because work!ows transfer easily across systems, it can be use-
ful to develop individual analysis steps on a local laptop. If the
analysis tool will run on your local system, test the step with
subsampled data, such as those created in the Getting Started
Developing Work!ows section. Once working, the new work-
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Figure 9: Visualizations produced by MultiQC. MultiQC "nds and automatically parses log "les from other tools and generates a combined report and parsed data
tables that include all samples. MultiQC currently supports 88 tools. A. MultiQC summary of FastQC Per Sequence GC Content for 1,905 metagenome samples. FastQC
provides quality control measurements and visualizations for raw sequencing data from a single sample and is a near-universal "rst step in sequencing data analysis
because of the insights that it provides [110, 111]. FastQC measures and summarizes 10 quality metrics and provides recommendations for whether an individual
sample is within an acceptable quality range. Not all metrics readily apply to all sequencing data types. For example, while multiple GC peaks might be concerning in
whole-genome sequencing of a bacterial isolate, we would expect a non-normal distribution for some metagenome samples that contain organisms with diverse GC
content. Samples like this can be seen in red in this "gure. B. MultiQC summary of Salmon quant reads mapped per sample for RNA-seq samples [112]. In this "gure,
we see that MultiQC summarizes the number of reads mapped and percent of reads mapped, 2 values that are reported in the Salmon log "les.

!ow component can be run at scale on a larger computing sys-
tem. Work!ow system tool resource usage reporting can help
determine the increased resources needed to execute the work-
!ow on larger systems. For researchers without access to free or
granted computing resources, this strategy can save signi"cant
cost.

Gain quick insights using sketching algorithms

Understanding the basic structure of data, the relationship be-
tween samples, and the approximate composition of each sam-
ple can helpful at the beginning of data analysis and can often
drive analysis decisions in different directions than those orig-
inally intended. Although most bioinformatics work!ows gen-
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14 Streamlining data-intensive biology with work!ow systems

Table 4: Computing resources for bioinformatics projects

Provider Access Model Restrictions

Amazon Web Services Paid
Bionimbus Protected Data Cloud Research allocation Users with eRA commons account
Cyverse Atmosphere Free with limits Storage and compute hours
EGI federated cloud Access by contact European partner countries
Galaxy Free with storage

limits
Data storage limits

Google Cloud Platform Paid
Google Colab Free Computational notebooks, no

resource guarantees
Microsoft Azure Paid
NSF XSEDE Research allocation USA researchers or collaborators
Open Science Data Cloud Research allocation
Wasabi Paid Data storage solution only

Bioinformatics projects often require additional computing resources. If a local or university-run high-performance comput-
ing cluster is not available, computing resources are available via a number of grant-based or commercial providers.

erate these types of insights, there are a few tools that do so
rapidly, allowing the user to generate quick hypotheses that
can be further tested by more extensive, "ne-grained analyses.
Sketching algorithms work with compressed approximate rep-
resentations of sequencing data and thereby reduce runtimes
and computational resource use. These approximate represen-
tations retain enough information about the original sequence
to recapitulate the main "ndings from many exact but compu-
tationally intensive work!ows. Most sketching algorithms es-
timate sequence similarity in some way, allowing insights to
be gained from these comparisons. For example, sketching al-
gorithms can be used to estimate all-by-all sample similarity,
which can be visualized as a principal component analysis or a
multidimensional scaling plot, or can be used to build a phyloge-
netic tree with accurate topology. Sketching algorithms also dra-
matically reduce the runtime for comparisons against databases
(e.g., all of GenBank), allowing users to quickly compare their
data against large public databases.

Rowe [125] reviewed programs and genomic use cases for
sketching algorithms and provided a series of tutorial work-
books (e.g., Sample QC notebook: [126]).

Use the right tools for your question

RNA-seq analysis approaches like differential expression or
transcript clustering rely on transcript or gene counts. Many
tools can be used to generate these counts by quantifying the
number of reads that overlap with each transcript or gene. For
example, tools such as STAR and HISAT2 produce alignments
that can be post-processed to generate per-transcript read
counts [127, 128]. However, these tools generate information-
rich output, specifying per-base alignments for each read. If
you are only interested in read quanti"cation, quasi-mapping
tools provide the desired results while reducing the time and
resources needed to generate and store read count information
[129, 130].

Seek help when you need it

In some cases, you may "nd that your accessible computing sys-
tem is ill equipped to handle the type or scope of your analysis.
Depending on the system, staff members may be able to help di-
rect you to properly scale your work!ow to available resources,

or guide you in tailoring computational unit allocations or pur-
chases to match your needs.

Strategies for Troubleshooting
Work!ows, and research software in general, invariably require
troubleshooting and iteration. When "rst starting with a work-
!ow system, it can be dif"cult to interpret code and usage errors
from unfamiliar tools or languages [2]. Furthermore, the iterative
development process of research software means that function-
ality may change, new features may be added, or documentation
may be out of date [131]. The challenges of learning and inter-
acting with research software necessitate time and patience [6].

One of the largest barriers to surmounting these challenges
is learning how, when, and where to ask for help. Below we out-
line a strategy for troubleshooting that can help build your own
knowledge while respecting both your own time and that of re-
search software developers and the larger bioinformatics com-
munity. In the “Where to seek help” section, we also recommend
locations for asking general questions around data-intensive
analysis, including discussion of tool choice, parameter selec-
tion, and other analysis strategies. Beyond these tips, workshops
and materials from training organizations such as the Carpen-
tries, R-Ladies, and RStudio can arm you with the tools you need
to start troubleshooting and jump-start software and data liter-
acy in your community [132]. Getting involved with these work-
shops and communities provides not only educational bene"ts
but also networking and career-building opportunities.

How to help yourself: try to pinpoint your issue or error

Software errors can be the result of syntax errors, dependency
issues, operating system con!icts, bugs in the software, prob-
lems with the input data, and many other issues. Running the
software on the provided test data can help narrow the scope of
error sources: if the test data successfully run, the command is
likely free of syntax errors, the source code is functioning, and
the tool is likely interacting appropriately with dependencies
and the operating system. If the test data run but the tool still
produces an error when run with your data and parameters, the
error message can be helpful in discovering the cause of the er-
ror. In many cases, the error that you have encountered has been
encountered many times before, and searching for the error on-
line can turn up a working solution. If there is a software issue
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tracker for the software (e.g., on the GitHub, GitLab, or Bitbucket
repository), or a Gitter, Slack, or Google Groups page, perform-
ing a targeted search with the error message may provide addi-
tional context or a solution for the error. If targeted searches do
not return results, Googling the error message with the program
name is a good next step. Searching with several variants and
iteratively adding information such as the type of input data,
the name of the coding language or computational platform, or
other relevant information can improve the likelihood that there
will be a match. There are a vast array of online resources for
bioinformatics help, ranging from question sites such as Stack
Over!ow and BioStars to personal or academic blogs and even
tutorials and lessons written by experts in the "eld [133]. This
increases the discoverability of error messages and their solu-
tions.

Sometimes, programs fail without outputting an error mes-
sage. In cases like these, the software’s help (usually acces-
sible on the command line via tool-name –help) and of"cial
documentation may provide clues or additional example use
cases that may be helpful in resolving an error. Syntax er-
rors are extremely common, and typos as small as a single,
misplaced character or amount of whitespace can affect the
code. If a command matches the documentation and appears
syntactically correct, the software version (often accessible at
the command line via tool-name–version) may be causing the
error.

Best practices for software development follow “semantic
versioning” principles, which aim to keep the arguments and
functionality the same for all minor releases of the program
(e.g., version change from 1.1 to 1.2) and only change functions
with major releases (e.g., 1.x to 2.0).

How to seek help: include the right details with your
question

When searching for the error message and reading the docu-
mentation do not resolve an error, it is usually appropriate to
seek help either from the software developers or from a bioin-
formatics community. When asking for help, it is essential to
provide the right details so that other users and developers can
understand the exact conditions that produced the error. At
minimum, include the name and version of the program, the
method used to install it, whether the test data ran, the exact
code that produced the error, the error message, and the full
output text from the run (if any is produced). The type and ver-
sion of the operating system you are using is also helpful to in-
clude. Sometimes, this is enough information for others to spot
the error. However, if it appears that there may be a bug in the
underlying code, specifying or providing the minimum amount
of data required to reproduce the error (e.g., reproducible exam-
ple [134, 135]) enables others to reproduce and potentially solve
the error at hand. Putting the effort into gathering this informa-
tion both increases your own understanding of the problem and
makes it easier and faster for others to help solve your issue.
Furthermore, it signals respect for the time that these develop-
ers and community members dedicate to helping troubleshoot
and solve user issues.

Where to seek help: online and local communities of
practice

Online communities and forums are a rich source of archived
bioinformatics errors with many helpful community members.

For errors with speci"c programs, often the best place to post is
the developers’ preferred location for answering questions and
solving errors related to their program. For open source pro-
grams on GitHub, GitLab, or Bitbucket, this is often the “Issues”
tab within the software repository, but it could alternatively be a
Google Groups list, Gitter page, or other speci"ed forum. Usu-
ally, the documentation indicates the best place to ask ques-
tions. If question is more general, such as asking about program
choice or work!ows, forums relevant to your "eld such as Stack
Over!ow, BioStars, or SEQanswers are good choices because
posts here are often seen by a large community of researchers.
Before posting, search through related topics to double-check
that the question has not already been answered. As more re-
search software development and troubleshooting is happen-
ing openly in online repositories, it is becoming more important
than ever to follow a code of conduct that promotes an open and
harassment-free discussion environment [136]. Look for codes of
conduct in the online forums you participate in, and make sure
that you do your part to help ensure a welcoming community
for participants of all backgrounds and computational compe-
tencies.

While there is lots of help available online, there is no sub-
stitute for local communities. Local communities may come in
the form of a tech meetup, a users’ group, a hacky hour, or an
informal meetup of researchers using similar tools. While this
may seem like just a local version of Stack Over!ow, the local,
member-only nature can help create a safe and collaborative on-
line space for troubleshooting problems often encountered by
your local bioinformatics community. The bene"t to beginners is
clear: learning the best way to post questions and the important
parts of errors, while getting questions answered so they can
move forward in their research. Intermediate users may actually
"nd these communities most useful because they can also ac-
celerate their own troubleshooting skills by helping others solve
issues that they have already struggled through. While it can be
helpful to have some experts available to help answer questions
or to know when to escalate to Stack Over!ow or other commu-
nities, a collaborative community of practice with members at
all experience levels can help all its members move their science
forward faster.

If such a community does not yet exist in your area, build-
ing this sort of community (discussed in detail in [137]) can be
as simple as hosting a seminar series or starting meetup ses-
sions for data analysis coworking. In our experience, it can also
be useful to set up a local online forum (e.g., discourse) for group
troubleshooting.

Conclusion
Bioinformatics-focused work!ow systems have reshaped data-
intensive biology, reducing execution hurdles and empowering
biologists to conduct reproducible analyses at the massive scale
of data now available. Shared, interoperable research code is
enabling biologists to spend less time rewriting common anal-
ysis steps and more time on interesting biological questions.
We believe that these work!ow systems will become increas-
ingly important as dataset size and complexity continue to grow.
This article provides a directed set of project, data, and resource
management strategies for adopting work!ow systems to facil-
itate and expedite reproducible biological research. While the
included data management strategies are tailored to our own
experiences in high-throughput sequencing analysis, we hope
that these principles enable biologists both within and beyond
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our "eld to reap the bene"ts of work!ow-enabled data-intensive
biology.
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