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We propose two optimal phase-estimation schemes that can be used for quantum-enhanced long-
baseline interferometry. By using distributed entanglement, it is possible to eliminate the loss of
stellar photons during transmission over the baselines. The first protocol is a sequence of gates
using nonlinear optical elements, optimized over all possible measurement schemes to saturate the
Cramér-Rao bound. The second approach builds on an existing protocol, which encodes the time
of arrival of the stellar photon into a quantum memory. Our modified version reduces both the
number of ancilla qubits and the number of gate operations by a factor of two.

Classical long-baseline interferometry has become a
widely accepted method of determining stellar distances
or imaging light sources [1, 2]. The central idea is to mea-
sure the coherence of the starlight incident at two or more
telescopes as a function of their separation, then use the
Van Cittert-Zernike theorem [3, 4] to extract informa-
tion about the source. This has led to many significant
advances, including the first observation of a black hole
using radio telescopes [5, 6], exoplanet angular diameter
estimation [7], and pulsar proper motion measurements
[8]. However, there are fundamental limits to such classi-
cal interferometric techniques in the optical frequencies,
such as quantum shot noise [9] and stellar photon loss
during transmission through the long baselines.

Quantum-enhanced telescopy aims to overcome these
difficulties by employing concepts from quantum infor-
mation theory [10], some of which have been implemented
in experiment, including long-distance entanglement dis-
tribution [11, 12], quantum logic gates [13, 14] and quan-
tum memories [15, 16]. Therefore, it became attrac-
tive to design interferometric setups using these quan-
tum resources. The development of quantum repeaters
[17, 18] motivated the exploration of non-local setups to
enable reliable, long-distance distribution of entangled
quantum states. A spatially local scheme for a pair of
telescopes does not allow bringing the light collected by
the telescopes physically together nor distributing entan-
gled quantum states between the telescope locations. For
weak thermal light sources like starlight, spatially local
schemes like heterodyne detection will always provide less
information about the source when compared to the non-
local proposals [19].

Gottesman et al. [20] suggested the pioneering proposal
of overcoming the problem of transmission losses in the
long baselines by establishing a quantum repeater link
[17] between the telescopes, but this scheme requires a
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high rate of entanglement distribution, making it experi-
mentally challenging. Essentially, one needs a distributed
photon ready to interfere with every possible spectral-
temporal mode of the starlight, which is extremely ineffi-
cient since nearly all these modes are unoccupied. Khabi-
boulline et al. [21, 22] showed that one can significantly
reduce the needed rate of entanglement generation by
implementing local quantum processing with appropri-
ate quantum memories [23]. In the conceptually sim-
plest scheme, they effectively proposed a quantum non-
demolition measurement that identifies which spectral-
temporal mode contains a stellar photon, without deter-
mining which telescope received the photon.

In this Letter, we introduce two optimal phase estima-
tion schemes that can be applied to long-baseline inter-
ferometry. We describe the general two-telescope setup
and define what makes a measurement scheme optimal.
We then show how the idea of Gottesman et al. can be
altered to improve the precision of the phase estimate
by a factor of two by using nonlinear gate operations.
We also consider a modification to the Khabiboulline et
al. scheme that reduces the number of required resources
and quantum operations by half. Both proposed proto-
cols can be used to determine the time of arrival of the
star photon while keeping the which-path information
ambiguous.

Setup.—To explain the basic principle of our proce-
dures, we will consider the case where there are two tele-
scopes that can receive the stellar photons. For weak
sources, the average photon number per mode ε is much
less than one, so we model the source as a weak thermal
state [19],

ρstar =(1− ε)|0L0R〉〈0L0R|

+
ε

2
(|1L0R〉〈1L0R|+ |0L1R〉〈0L1R|

+ν∗|1L0R〉〈0L1R|+ ν|0L1R〉〈1L0R|) +O
(
ε2
)
,

(1)

where |1L0R〉 corresponds to one photon coming to the
left (L) telescope and zero photons coming to the right
(R) telescope, and similar for the other terms.
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FIG. 1. Generalized setup for quantum-assisted telescopy.
Modes 1 and 3 couple the starlight to the left and right lab-
oratories, respectively.

Note that each mode is a single-rail optical qubit,
where the computational basis states are the absence (0)
and presence (1) of a photon. The protocol’s goal is to
determine the complex visibility ν, which depends on the
source intensity distribution and is a function of the base-
line connecting two telescopes. Given the visibility as a
function of baseline, one can use the van Cittert-Zernike
theorem to determine the intensity profile of the source
[3, 4]. For all protocols, we will consider both a point
source, for which ν = e−iΦ, as well as an extended source,
for which ν = ge−iΦ, where g is a real and positive am-
plitude.

The star photons can arrive at two distant telescopes
with separate laboratories at their locations, as shown in
Fig. 1. The laboratories are provided a known shared
ancilla quantum state |Ψa〉 as a resource. We allow local
operations and measurements within each laboratory, as
well as classical communication between the laboratories,
but we do not allow the distribution of stellar photons
between the two laboratories. By definition, this prevents
the loss of stellar photons that occurs during transmission
over long baselines.

Fisher Information.—To quantify and compare the in-
formation obtained by specific measurement schemes, we
use the Fisher information matrix [24]

f =
∑
k

1

pk


(
∂pk
∂Φ

)2
∂pk
∂Φ

∂pk
∂g

∂pk
∂g

∂pk
∂Φ

(
∂pk
∂g

)2

 , (2)

where pk is the probability of obtaining measurement
outcome k. According to the Cramér-Rao bound, the in-
verse of the Fisher information matrix sets a lower bound
on the covariance matrix describing the phase and am-
plitude estimation problem [25, 26]. The upper bound
on the Fisher information of a quantum measurement on
the stellar photon state (1), optimized over all possible
measurement schemes, is given by the quantum Fisher
information (QFI), which has matrix elements [27–29]

hij = Tr

[
ρstar

LiLj + LjLi
2

]
, i, j ∈ {g,Φ}, (3)

where Li is the symmetric logarithmic derivative (SLD)
corresponding to parameter i, defined by

Liρstar + ρstarLi
2

= ∂iρstar. (4)

This relation is satisfied by

LΦ = ig

(
0 −e−iΦ
eiΦ 0

)
Lg =

1

1− g2

(
−g e−iΦ

eiΦ −g

)
,

(5)

using the basis |1L0R〉 and |0L1R〉. For this calculation,
we focus only on single-photon events, which occur with
probability ε, so ρstar can also be written in this basis:

ρstar,1 =
ε

2

(
1 ν∗

ν 1

)
. (6)

We define any protocol whose Fisher information satu-
rates the QFI, f(Φ, g) = h(Φ, g), as an optimal mea-
surement scheme. It is not always possible to saturate
this bound in the multi-parameter case, as is the case
for this particular system since the SLD matrices do not
commute on the support of ρstar [30]. Therefore, we will
focus on estimating the phase Φ (by setting g = 1). We
will present two protocols that are optimal for this single-
parameter case.

The Gottesman et al. protocol presented in [20] has
a Fisher information of f = h/2, so although it has cer-
tain advantages over classical interferometry, it is not an
optimal scheme. This result reflects the fact that only
half the star photons are used for the estimation in that
particular scheme. We propose a protocol that uses all
the star photons, and thus gives twice the precision in
the estimate of Φ. The same improvement to the phase
resolution is achieved in the two-parameter case where
ν = ge−iΦ.

CNOT-based protocol.—The protocol of Gottesman et
al. [20] uses only linear optical elements to achieve half
of the quantum Fisher information. We show in the Sup-
plemental Material that this is the best it is possible to
do with the ancilla from their proposal and linear optical
elements. To achieve an optimal measurement scheme,
we propose the use of nonlinear components. In this case,
we make use of an optical CNOT gate in the Fock basis.
That is, if there is a photon in the control mode, then
the state of the target mode is flipped, i.e., a photon in
the target mode is either created or destroyed; otherwise,
nothing is done.

We consider a six-mode protocol and provide both lab-
oratories with the ancilla state

|Ψa〉 =
1√
2
|10〉 ⊗

(
|1204〉+ eiδ|0214〉)⊗ |15〉, (7)

where the modes 2 and 4 are supplied by a single-photon
entangled states, and δ is a tunable phase. In (7) we
supply two extra photons to both laboratories, one in
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IF ODD:
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IF EVEN:
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FIG. 2. Circuit representation of two versions of the non-local
phase estimation protocol. Note that the blue boxes in (A)
and (B) represent equivalent operations. We assume a phase
shift of i upon reflection at the beam splitter. It is possi-
ble to trade the CNOT sequence in (A) for the local parity
measurements in (B), followed by a conditioned NOT gate.
One can observe that the blue boxes perform a quantum non-
demolition measurement on the star photon and the ancilla,
which allows us to herald events corresponding to the arrival
of a star photon without localizing it to a particular telescope
mode (1 or 3).

mode 0 and one in mode 5. The subscripts indicate the
modes indicated in Figure 2A. The total state received
by both laboratories is then ρ0 = ρstar ⊗ |Ψa〉〈Ψa|.

The state ρ0 undergoes the series of operations shown
in Fig. 2, and is measured in the number basis. The
probabilities of possible outcomes are

p(101102130415) = p(100112031415) =
ε

8
[1− cos(Φ + δ)]

p(101102031415) = p(100112130415) =
ε

8
[1 + cos(Φ + δ)]

p(011102130405) = p(000112031405) =
ε

8
[1 + cos(Φ− δ)]

p(001102031405) = p(000112130405) =
ε

8
[1− cos(Φ− δ)] .

(8)
Equations (8) allow one to estimate the relative phase
shift Φ. Classical communication between the laborato-
ries is required only to to determine which coincidence oc-
curred after all the measurements are performed. For an
extended source, one replaces cos(Φ ± δ)→ Re

{
νe∓iδ

}
.

We can determine whether the protocol described in
this section is optimal by evaluating the Fisher informa-

tion f using (8) and then comparing it to the QFI. For
the phase estimation problem, the resulting Fisher in-
formation is f = ε, which saturates QFI. It shows that
this protocol is an optimal measurement of the relative
phase shift Φ, and gains twice as much information per
stellar photon as the protocol using only linear elements.
For the visibility estimation problem, we also achieve a
factor of 2 improvement in Fisher information over the
Gottesman et al. procedure.

In reality, the stellar photon is in a weak thermal
state [19], so there is a large probability that no photon
arrives at either telescope. Crucially, one can determine
whether or not a photon arrived by comparing the mea-
surement results of qubits 0 and 5. If they are the same,
then a stellar photon arrived; if they are different, then
no stellar photon arrived. More detailed calculations are
given in the Supplemental Material.

One possible error is the loss of the entangled ancilla
corresponding to |0204〉 in the input. Such an error can-
not be identified by a single detection event since it leads
to a set of results similar to the one corresponding to the
procedure without error, However, it can be identified by
examining the frequency of the (0005) and (1015) events:
if the error is introduced, the latter events occur more
often. This detection scheme works only if the error ap-
pears on a recurrent basis. We discuss this in more detail
in the Supplementary Material.

The CNOT-based protocol offers an improvement over
the proposal of Gottesman et al., but it requires CNOT or
NOT quantum gates for optimal performance. As shown
in [31, 32], these gates can be achieved with single rail
optics in a probabilistic way, while for our CNOT-based
protocol, deterministic gates are necessary for optimal
performance. Therefore, implementing the CNOT-based
protocol optically would require deterministic non-linear
optical gates, beyond what is currently available. An-
other approach, motivated by recent developments in
quantum transduction [33, 34], is to use non-photonic
ancilla qubits that are easier to manipulate, and to trans-
duce then to photonic qubits before the beam splitters in
figure 2.

Modified quantum memory protocol.—Even though our
CNOT-based protocol is an optimal phase measurement
scheme, it requires a copy of the ancilla state for each pos-
sible time-bin (more precisely, for each possible spectral-
temporal mode within the duration of the measurement
and over the bandwidth of the collected starlight); this re-
quires a large amount of resources and is experimentally
infeasible. Khabiboulline et al. [21] proposed an optimal
phase measurement scheme that encodes the arrival time
of the star photon in a quantum memory, for which the
amount of required resources scales logarithmically with
the number of time-bins. We propose a modification to
their scheme that both simplifies it and reduces the re-
quired resources by half, which is critical for the practical
implementation of these ideas.

Consider the modes provided by the star as single-rail
qubits, where the logical 0 and 1 denote the absence
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or presence of a single photon in a mode. Suppose we
can measure them in an arbitrary basis. If we know the
star provided a photon, then the optimal phase measure-
ment is achieved when we directly measure both stellar
modes. One measurement is done in the X basis spanned
by |±〉 = 1√

2
(|0〉 ± |1〉), and the other mode is measured

in the rotated basis spanned by |±δ〉 = 1√
2
(|0〉 ± eiδ|1〉).

Given the setup in Fig. 1, performing the X basis mea-
surement on mode 1 and rotated basis measurement on
mode 3 results in the probabilities conditioned on the
stellar photon arrival

P (+,+δ) = P (−,−δ) =
1

4
[1 + cos(Φ + δ)]

P (+,−δ) = P (−,+δ) =
1

4
[1− cos(Φ + δ)] .

(9)

Such measurements can be done on single-rail qubits in a
non-deterministic and heralded way [31], but the protocol
will suffer from a lower Fisher information. Another solu-
tion could be transducing the single-rail optical qubit to
another type of qubit for which the measurement would
be easier.

The Fisher information for this set of probabilities sat-
urates the QFI, so this is also an optimal phase mea-
surement scheme. For extended sources, one replaces
cos(Φ + δ)→ Re

{
νe−iδ

}
.

The measurement on the stellar photon has a timing
issue: we cannot tell if the star provided a photon, since
both |0〉 and |1〉 can return the same set of outputs. We
need to know whether or not the photon has arrived, and
if it has, then we must know when it happened. This is
achieved by the procedure shown in Fig. 3.

Suppose that within time T , we expect at most one
photon to arrive from the star. We divide T into N
short time-bins of length τ , corresponding to temporal
modes, so that T = Nτ . To perform binary encoding of
the time-bin, we need 2 log2(N − 1) ancilla qubits, each

prepared in the state |Φ+〉, where |Φ±〉 = (|00〉±|11〉)/
√

2
are maximally entangled Bell states. The first qubit from
each pair is distributed to laboratory L, and the second
qubit to R. The next step is to pass the ancilla through
a set of controlled phase gates (CZ) that depends on the
time-bin, where

|0c0t〉
CZ−−→ |0c0t〉, |0c1t〉

CZ−−→ |0c1t〉,

|1c0t〉
CZ−−→ |1c0t〉, |1c1t〉

CZ−−→ −|1c1t〉
(10)

performs a standard phase shift gate Z on a target qubit
when the state of the control qubit is 1. The index c
denotes the control qubit, and t denotes the target qubit.
A Z gate acting on one of the qubits in a Bell pair can
be used to switch between Bell states, Z|Φ±〉 = |Φ∓〉.
In our case, the star supplies the control qubits for the
gates, and the ancilla supplies the target qubits. If the
star photon arrives during the nth time-bin, then the

sequence of gates
⊗2 log2(N−1)

i=1 Zni is performed on the
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FIG. 3. Scheme of the modified version of Khabiboulline’s
protocol for N = 7 time-bins. A set of 2 log2(N − 1) Bell
states are generated and distributed to the two laboratories to
perform the time-bin encoding. CZk(i) indicates a sequence
of controlled phase gates with k target qubits (ancilla) corre-
sponding to the i-th time-bin.

locally available ancilla qubits, where ni is the ith digit
of the integer n written in binary (see the Supplemental
Material for an explicit example).

This encodes the time-bin information into the Bell
states. A similar process was used in [21], but using
an extra set of intermediary memory qubits which are
the targets of a similarly modified CNOT gate before
encoding the time-bin information into the Bell states.

As an example, if there are N = 7 total time bins as in
Fig. 3, the protocol requires three Bell states to perform
the binary encoding. If the star photon arrives within
the third time-bin, then the ancilla is modified to

|Φ+〉|Φ+〉|Φ+〉 → |Φ+〉|Φ−〉|Φ−〉, (11)

where the final two Bell states have been flipped in ac-
cordance with the binary representation of n = 3 (011).
The states |Φ+〉 and |Φ−〉 can be distinguished by local
measurements and classical communication by measuring
both qubits in the X basis; if the results are the same,
then the measured state is |Φ−〉, otherwise it is |Φ+〉.
Applying the same procedure to all ancilla pairs returns
the time-bin during which the star photon arrived. If
no photon arrived, then the ancilla remains unchanged.
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The final step is to measure the star photon modes in
the X and rotated bases in the time-bin during which
the stellar photon has arrived; the possible measurement
results are described by the probabilities (9). This mod-
ified protocol reduces the number of ancilla qubits and
gates by half when compared to the proposal given in
[21], by eliminating the intermediary memory qubits.

Conclusions.—We have proposed two quantum-
enhanced long-baseline interferometry schemes that offer
improvements over two prior proposals. The Gottesman
et al. protocol [20] cannot be improved if one is lim-
ited by the ancilla, linear optics and measurements in the
photon number basis, but the development of nonlinear
photonic gates or quantum transducers would enable us
to improve it and achieve an optimal phase estimation
scheme. Such a protocol achieves the maximum allowed
value of Fisher information, but (similar to the Gottes-
man et al. proposal) it consumes one copy of the ancilla
state for each time-bin. This linear scaling of resources
was improved to logarithmic by Khabibloulline et al. by
using binary encoding to store the time of arrival of the
stellar photon. We have modified their scheme to reduce
the number of ancilla qubits and gate operations by half.
This is done by encoding the time-bin information di-
rectly into the Bell state ancilla qubits, using controlled
phase gates instead of using intermediary memory qubits
with controlled NOT gates.
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SUPPLEMENTAL MATERIAL

Gottesman Protocol - Limitations of the Ancilla and
Linear Optics

Consider the setup given in Fig. 4. Modes 1 and 3 are
supplied by the star, and modes 2 and 4 are the ancilla
given by

|Ψa〉 =
1√
2

(|1204〉+ eiδ|0214〉), (12)

where the indices indicate the relevant modes. We re-
quire that the measurements are performed in the pho-
ton number basis, and that the manipulations of modes
are local, i.e., the black boxes evolve the input state ac-
cording to a unitary operation U = UL ⊗ UR. UL acts
only on modes 1 and 2, and UR acts on 3 and 4. Assume
that UL and UR represent sets of linear optical elements
that do not change the local number of photons, but are
otherwise arbitrary.
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MODE 1
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MODE 4

FIG. 4. Scheme of generalized Gottesman et al. protocol. The
ancilla and measurements are kept the same as in the original
proposal. We restrict this analysis to the local operations UL

and UR.

For simplicity, we will take the star to be a point source
that either supplies the vacuum or a single photon, in the
state

ρ = (1− ε)|0L0R〉〈0L0R|+ ε|Ψ1〉〈Ψ1|, (13)

where

|Ψ1〉 =
1√
2

(
eiΦ|1103〉+ |0113〉

)
. (14)

It is possible to filter out the vacuum events, since in
those cases the two meters will detect exactly one total
excitation, which comes from the ancilla, since the pro-
tocol preserves photon number. For the |Ψ1〉 events, we
can take the input state of the circuit to be

|Ψ1〉 ⊗ |Ψa〉 =
1

2

(
eiΦ|11120304〉+ eiδ|01021314〉

+ei(Φ+δ)|11020314〉+ |01121304〉
)
.

(15)

Applying the U operator gives

|Ψ〉 =
1

2

(
eiΦUL|1112〉 ⊗ |0304〉+ eiδ|0102〉 ⊗ UR|1314〉

+ei(Φ+δ)UL|1102〉 ⊗ UR|0314〉

+UL|0112〉 ⊗ UR|1304〉
)
,

(16)
where we assume that UL and UR leave the vacuum un-
changed. Regardless of the choice of UL and UR, the
set of results due to the first and second terms will not
overlap with the results due to the other terms because
of the different numbers of photons. Since eiΦ acts as a
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global phase shift for the first term, it will not affect the
probabilities of the measurement results. Therefore, the
first and second term will not provide any information
about Φ, and we can post-select on the final two terms
containing one photon. Note that it is possible to do so
because the first two terms correspond to observing two
excitations in one laboratory and no excitations in the
other one.

The final two terms in (16) can have Φ-dependent in-
terference fringes after performing UL and UR. Evalu-
ating the QFI from these terms results in h = 1, which
should be corrected for the fact that the probability of
observing the corresponding events is ε/2 (where ε is the
probability that the star supplies a single photon to the
receivers, and 1/2 is the probability of observing an event
due to the final two terms in (15) given that a photon has
arrived). Therefore, the upper bound on the Fisher in-
formation, corresponding to the best choice of UL and
UR, is ε/2. This is exactly the value obtained for the
Gottesman et al. protocol.

We conclude that the Gottesman et al. protocol can-
not be improved if we restrict ourselves to setups as in
Fig. 4, with an ancilla given by (12), using only linear
optics and measurements in the number basis. Any im-
provement to the Gottesman protocol requires breaking
one of these requirements in order to extract information
about Φ from all the terms in (16). In our first protocol
(Fig. 2, main article), we used nonlinear elements that
enable us to perform the NOT or CNOT gates. Even
though our scheme offers improvements over the Gottes-
man et al. protocol, it is a challenge to develop a physical
operation that applies these gates.

CNOT-Based Protocol: Example Calculation

Let us take the star to be a point source that either
sends a vacuum state or a single photon to the observer.
The ancilla is given by (7). If the star sends the vacuum,
then the input state is

1√
2

(
|100112030415〉+ eiδ|100102031415〉

)
, (17)

where the indices denote the qubits/modes as in Fig. 2A
of the main paper. Passing that state through the se-
quence of gates results in

1

2
√

2

(
|001102130415〉+ eiδ|101102130405〉

+ i|001102031415〉+ ieiδ|101102031405〉
+ i|000112130415〉+ ieiδ|100112130405〉

− |000112031415〉 − eiδ|100112031405〉
)
,

(18)

where we use a phase shift of i upon reflection at the
beam splitter.

If the star sends a photon, its state is

|Ψs〉 =
1√
2

(
eiΦ|1103〉+ |0113〉

)
, (19)

resulting in the input

1

2

(
eiΦ|101112030415〉+ eiδ|100102131415〉

+ ei(Φ+δ)|101102031415〉+ |100112130415〉
)
.

(20)

After the CNOT gates, we get

1

2

(
eiΦ|101102031415〉+ eiδ|100112130415〉

ei(Φ+δ)|001102031405〉+ |000112130405〉
)
.

(21)

Performing the measurement on qubits 0 and 5 returns
the state

1√
2

(
ei(Φ±δ)|11020314〉+ |01121304〉

)
, (22)

where (−) corresponds to the results |1015〉, and (+) to
|0005〉. After passing through the beam splitters, the
state becomes

1√
2

[
cos

(
Φ + δ

2

)
(|01120314〉+ |11021304〉)

+ sin

(
Φ + δ

2

)
(|01121304〉 − |11020314〉)

]
.

(23)

The resulting probabilities would be conditioned on the
stellar photon arrival. To recover the unconditioned
probabilities, one should multiply them by ε: the proba-
bility of the stellar photon arrival, resulting in

p(101102130415) = p(100112031415) =
ε

8
[1− cos(Φ + δ)]

p(101102031415) = p(100112130415) =
ε

8
[1 + cos(Φ + δ)]

p(011102130405) = p(000112031405) =
ε

8
[1 + cos(Φ− δ)]

p(001102031405) = p(000112130405) =
ε

8
[1− cos(Φ− δ)] .

(24)
Note that one can determine if the star supplied the vac-
uum or a single photon based on the results of the mea-
surements on qubits 0 and 5. If the star supplied a pho-
ton, these results agree as in (21). If the source supplied
the vacuum, the results disagree as in (18).

The protocol will not work properly if the entangled
ancilla photon is lost (corresponding to 0204 in the in-
put state). If both stellar and entangled ancilla pho-
tons have not arrived (corresponding to the input state
|100102030415〉), then the following results can occur with
equal probabilities

p(101102130415|0star,0ancilla)

= p(100112031415|0star,0ancilla)

= p(101102031415|0star,0ancilla)

= p(100112130415|0star,0ancilla) =
1− ε

4
.

(25)
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where by (0star,0ancilla) we have explicitly indicated that
these probabilities are conditioned on the stellar and an-
cilla photon not arriving. We observe that the set of
possible measurement results for the properly performed
procedure overlaps the set of possible results correspond-
ing to the error of the entangled ancilla photon not ar-
riving. We conclude that it is impossible to identify this
error based on a single detection event.

However, it should be possible to identify it if the error
occurs frequently within the measurement series. Sup-
pose that the procedure is performed correctly with prob-
ability η and the error of not supplying the entangled an-
cilla photon happens with probability (1 − η). Consider
the results of the measurements of the 0 and 5 qubits.
Based on (24) and (25) we have

p(0005) =
ηε

2

p(1015) =
ηε

2
+ (1− η)(1− ε).

(26)

The ηε/2 terms result from the proper operation of the
procedure. The (1 − η)(1 − ε) term results from intro-
ducing the error. We conclude that one can identify the
error of the loss of the entangled ancilla photon by com-
paring the frequency of (0005) and (1015): if the error
is introduced, then the frequency of the latter events is
higher.

Finally, we should consider the events for which the
stellar photon arrives and the entangled ancilla photon
is lost. In this case, the results of the measurement on
the 0 and 5 modes will be different from each other (one
gets either 0015 or 1005), and such events are not taken
into account when estimating the visibility. The protocol
still works, but it does not extract information about
the visibility from all the stellar photons. The Fisher
information is therefore reduced by a factor of η, which
is the probability that the arriving stellar photon will be
used for parameter estimation.

Unmodified Quantum Memory Protocol: Example
Calculation

We will summarize the protocol proposed by Khabi-
boulline et al. The ancilla state is

|Ψa〉 =|0...000〉M,L|0...000〉M,R⊗
⊗ |Φ+〉...|Φ+〉|Φ+〉|Φ+〉

(27)

Given that the total measurement time is T = Nτ , we
have 4 log2(N + 1) qubits. A quarter of them are pre-
pared in the state |0...000〉M,L and located in one of
the local laboratories denoted by L, and another quar-
ter |0...000〉M,R is located in laboratory R. We will call
them memory qubits. The Bell pairs |Φ+〉 (consisting of
2 log2(N + 1) qubits) are distributed to the laboratories,
each laboratory receiving one qubit from each pair. The
procedure for N = 3 is summarized in Fig. 5.

ST
AR

Φ
!

Φ
!

MEMORY L
00 ",$

𝐶𝑋

𝑍
𝑍 X-MEASUREMENT

X-MEASUREMENT

MEASUREMENT

MEASUREMENT

X-MEASUREMENT

MEMORY R
00 ",%

𝐶𝑋

𝑍
𝑍 X-MEASUREMENT

X-MEASUREMENT

MEASUREMENT

MEASUREMENT

X-MEASUREMENT

FIG. 5. Schematic representation of Khabiboulline’s protocol
for N = 3 time-bins.

We then use a modified controlled NOT CX gate,
whose action is dependent on the time-bin during which
the star photon arrived. The modes supplied by the star
act as control qubits, and the memory provides the target
qubits. The CX gate follows the pattern

No photon arrival :|0〉|0...000〉M → |0〉|0...000〉M
Time-bin 1 :|1〉|0...000〉M → |1〉|0...001〉M
Time-bin 2 :|1〉|0...000〉M → |1〉|0...010〉M
Time-bin 3 :|1〉|0...000〉M → |1〉|0...011〉M

...

Time-bin N :|1〉|0...000〉M → |1〉|1...111〉M.

(28)

This gate performs the encoding step: the arrival time-
bin is encoded in binary in the memory qubits.

For simplicity, suppose that the star emits a photon in
the third time-bin and is a point source, then ν = e−iΦ,
and the phase Φ is the parameter to be estimated. The
state of the emitted photon is given by

|Ψstar〉 =
1√
2

(eiΦ|1L0R〉+ |0L1R〉). (29)

The combined state of the stellar photon and the an-
cilla is |Ψstar〉 ⊗ |Ψa〉. Performing the CX gate results in
the state

|Ψ′〉 =
eiΦ√

2
|1L0R〉|0...011〉M,L|0...000〉M,R

⊗ |Φ+〉...|Φ+〉|Φ+〉|Φ+〉

+
1√
2
|0L1R〉|0...000〉M,L|0...011〉M,R

⊗ |Φ+〉...|Φ+〉|Φ+〉|Φ+〉.

(30)

The next step is to perform a set of standard CZ gates.
Each memory qubit acts as a control and is assigned a
corresponding Bell state as the target. Performing the
CZ gates results in the state
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|Ψ′′〉 =
eiΦ√

2
|1L0R〉|0...011〉M,L|0...000〉M,R

⊗ |Φ+〉...|Φ+〉|Φ−〉|Φ−〉

+
1√
2
|0L1R〉|0...000〉M,L|0...011〉M,R

⊗ |Φ+〉...|Φ+〉|Φ−〉|Φ−〉,

(31)

which transfers the time-bin information from the mem-
ory qubits to the Bell pairs. Note that the Bell pairs are
separable from the other qubits. One can distinguish be-
tween |Φ+〉 and |Φ−〉 by using local measurements and
classical communication, since they can be rewritten in
the X basis as

|Φ+〉 = (|+−〉+ | −+〉)/
√

2

|Φ−〉 = (|+ +〉+ | − −〉)/
√

2.
(32)

If the result of an X-measurement gives the same result in
both laboratories, then we have the state |Φ−〉, otherwise
we have |Φ+〉. This allows the parties to determine the
time-bin during which the photon arrived. It also allows
us to determine which memory qubits were affected by
the CX gate. The other memory qubits can be traced
out. After measuring the Bell pairs and tracing out the
irrelevant memory qubits, the analyzed state is

|Ψ′′′〉 =
1√
2

(
eiΦ|1L0R〉|11〉M,L|00〉M,R

+ |0L1R〉|00〉M,L|11〉M,R

)
.

(33)

The star photon mode is decoupled from the memories
by the measurement in the X basis. In any order, all but
one of the memory qubits are measured in the X basis,
and the final memory qubit is measured in the rotated
basis spanned by |±δ〉 = 1√

2
(|0〉 ± eiδ|1〉). If n− denotes

the number of times the X measurements return the |−〉

result, then the probabilities of the measurement results
in the rotated basis are

P (±δ) =
1

2
[1± (−1)n− cos(Φ + δ)] , (34)

and for an extended source,

P (±δ) =
1

2

[
1± (−1)n−Re

{
νe−iδ

}]
. (35)

Modified Quantum Memory Protocol: Example
Calculation

Suppose the star provides a photon in the state (29),
which arrives at the telescopes in the third time-bin. The
combined state of the star photon and the ancilla qubits
is

1√
2

(eiΦ|1L0R〉+ |0L1R〉)⊗ |Φ+〉...|Φ+〉|Φ+〉|Φ+〉. (36)

Performing the modified controlled phase gate results in

1√
2

(eiΦ|1L0R〉+ |0L1R〉)⊗ |Φ+〉...|Φ+〉|Φ−〉|Φ−〉. (37)

Both laboratories measure the ancilla qubits in the X
basis and establish the time-bin during which the star
photon arrived. After these measurements, the star pho-
ton is left in the state (29). The stellar photon provides
us with two single rail qubits which we can rewrite in
different bases. Rewriting the state of the qubit in labo-
ratory L in the X basis and the qubit in R in the rotated
basis gives

|Ψstar〉 =
1√
2

[
cos

(
Φ + δ

2

)
(|+,+δ〉 − |−,−δ〉)

+i sin

(
Φ + δ

2

)
(|+,−δ〉 − |−,+δ〉)

]
,

(38)

which results in the probabilities (9).
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