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Supplemental Material

The addition of 108 infrasound sensors—a legacy of the temporary USArray Transportable
Array (TA) deployment—to the Alaska regional network provides an unprecedented
opportunity to quantify the effects of a diverse set of site conditions on ambient infra-
sound noise levels. TA station locations were not chosen to optimize infrasound perfor-
mance, and consequently span a dramatic range of land cover types, from temperate rain
forest to exposed tundra. In this study,we compute power spectral densities for 2020 data
and compile new ambient infrasound low- and high-noise models for the region. In addi-
tion, we compare time series of root-mean-squared (rms) amplitudes with wind data and
high-resolution land cover data to derive noise–wind speed relationships for several land
cover categories. We observe that noise levels for the network are dominated by wind,
and that network noise is generally higher in the winter months when storms are more
frequent and the microbarom is more pronounced. Wind direction also exerts control on
noise levels, likely as a result of infrasound ports being systematically located on the east
side of the station huts. We find that rms amplitudes correlate with site land cover type,
and that knowledge of both land cover type and wind speed can help predict infrasound
noise levels. Our results show that land cover data can be used to inform infrasound sta-
tion site selection, and that wind–noise models that incorporate station land cover type
are useful tools for understanding general station noise performance.

Introduction
Infrasound stations are typically located in sheltered areas to
minimize wind-generated noise. For example, many of the
International Monitoring System (IMS)’s infrasound array loca-
tions are carefully selected to use topographic features, such as
mountains and dense forests to minimize the effects of wind and
enhance their ability to detect faint signals generated by distant
low-yield explosions (Christie et al., 2001). Siting stations in
low-wind environments has long been recognized as an effective
way to reduce noise in other monitoring regimes as well, such as
in volcano infrasound (Fee and Matoza, 2013). In situations in
which stations must be installed in exposed areas, such as when
conforming to a geographic grid as with the IMS, the use of
wind–noise reduction systems (WNRS) is critical for controlling
ambient wind noise (Christie and Campus, 2009). These WNRS
are spatial filters, usually composed of a system of pipes with
multiple ports that incoherently average high-frequency noise
(Walker and Hedlin, 2010). Because most infrasound deploy-
ments use careful site placement or WNRS to attenuate noise,
there has been little opportunity to investigate the effects of sub-
optimal local site conditions and a lack of WNRS on infrasound

ambient noise. However, as of late 2020, over 100 infrasound
stations—a legacy of the USArray Transportable Array (TA)
—have been incorporated into the Alaska regional network
(AK) (Alaska Earthquake Center, University of Alaska
Fairbanks, 1987; IRIS Transportable Array, 2003). A regional
infrasound network that is relatively dense and has a spatial
extent on the order of thousands of kilometers is rare, although
they are becoming more popular as a result of the relatively low
costs associated with equipping existing seismic stations with
single infrasound sensors. The establishment of this new
regional infrasound network provides an opportunity to exam-
ine the infrasonic noise environment of a region with diverse
geography and extreme weather conditions.
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The TA was a temporary deployment of 400 stations
equipped with three-component broadband seismometers and
a number of ancillary sensors, with approximately 50 km spac-
ing and an aperture of 1000 km. The TA moved from west to
east across the contiguous United States before a final deploy-
ment to Alaska (Melter et al., 1999; Busby and Aderhold, 2020).
The Alaska TA deployment comprised 285 stations spaced
roughly every 85 km with subsets of stations operating between
2014 and 2021 (Busby and Aderhold, 2020). In addition to a
three-component broadband seismometer, each Alaska station
was equipped with a Hyperion IFS-4132 infrasound sensor
recording in real time at 20 samples per second (sps) and flat
from the 10.0 Hz Nyquist frequency down to 0.02 Hz
(Merchant, 2015). In addition, there was a 40.0 sps infrasound
channel that was not telemetered in real time, but these data do

not appear to be available at the
time of this writing. The infra-
sound sensor resided in the sta-
tion hut and was connected to a
single polyvinyl chloride dif-
fuser port installed on the east
side of the hut. Notably, the
TA infrasound configuration
did not include a WNRS. In
addition, 143 of the sites were
equipped with a Vaisala
WXT-520 or WXT-536
weather sensor. These weather
sensors recorded wind speed
and direction, humidity, tem-
perature, pressure, and rain
and hail intensity. For a detailed
schematic of a typical Alaska
TA station, we refer the reader
to Busby and Aderhold (2020).
We also include a detailed
image of a diffuser port in the
Appendix (see Fig. A1).

Although the final TA sta-
tion in Alaska ceased operation
in May 2021, in early 2019 the
Alaska Earthquake Center at
the University of Alaska
Fairbanks began adopting TA
sites into the permanent
regional AK network. By the
end of 2020, a total of 108 infra-
sound-equipped sites had either
been adopted into the AK net-
work or upgraded during the
TA project (Alaska Earthquake
Center, University of Alaska
Fairbanks, 1987). These stations

all retained their Hyperion infrasound sensor, but real-time sam-
pling rates were increased to 40.0 sps. Of these, 70 are equipped
with Vaisala weather stations. A network map showing the spa-
tial distribution of this new regional infrasound network, which
spans 16° of latitude from 55.3° to 71.3° and almost 40° of lon-
gitude from −169.6° to −131°, is shown in Figure 1.

In this study, we leverage data from the AK network to
evaluate the infrasound noise levels of sites in the Alaska
region (see Data and Resources). Because of the quasi-grid
nature of the TA deployment and original seismological
focus, sites were not chosen to optimize infrasound perfor-
mance. Therefore, we are able to investigate the effects of
a broad range of site conditions on noise levels. The absence
of WNRS allows us to evaluate the viability of such a simple
configuration in terms of ambient noise performance and

Figure 1. Map of Alaska showing all AK network stations equipped with infrasound sensors. Inset
map at the lower left shows Alaska highlighted in red. Stations with colocated weather stations are
marked with inverted triangles, whereas infrasound only sites are shown as circles. Also plotted are
the Interantional Monitoring System array I53 (hexagon) and the Global Seismographic Network
station KDAK (square). All symbols are colored by the average percentage of spectra below the
International Data Center (IDC) noise model (Brown et al., 2012) for 2020. Although most stations
have a very low percentage of spectra below the model, four stations exhibit a high percentage of
low-amplitude spectra. Stations mentioned explicitly in the Data Quality section, Results of Modeling
Noise as a Function of Wind Speed and Land Cover section, and Figure 8 are labeled. The color
version of this figure is available only in the electronic edition.
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provides direct, unfiltered, observations of the infrasonic
environment. Because of the low population density of
Alaska, sites are relatively free of cultural noise, and the
majority of such noise will be at frequencies above 8.0 Hz
(Bird et al., 2021). Furthermore, the presence of colocated
meteorological sensors at over half of the networks sites also
presents an opportunity to evaluate the effects of wind on
noise conditions and explore relationships between site place-
ment, wind, and ambient noise. This characterization of
ambient noise at such a diverse set of site conditions enhances
our general understanding of expected station performance in
less optimal locations.

Methods
Our primary tool for investigating the noise characteristics of
the network is power spectral densities (PSDs) organized into
probability density functions (PDFs). We compute PSD PDFs
for station quality control (QC), for compilation of a regional
ambient model, and for the calculation of time series of ampli-
tudes in several frequency bands. We compute PSD estimates
for all the 108 stations from hour-long segments of data
sampled every 4 hr between 1 January 2020 and 1 January
2021. Using an entire year of data includes seasonal effects
on noise characterization, whereas the 4 hr sampling rate
resolves any diurnal effects (de Groot-Hedlin et al., 2010).
We compute spectra using a method similar to McNamara
and Buland (2004), as implemented in the ObsPy Python pack-
age, with the exception that we do not employ an additional
differentiation step at the response removal stage that is con-
ventional for converting seismic velocity data to acceleration
(Beyreuther et al., 2010; Krischer et al., 2015). After conversion
to decibels (dB), our PSDs have units of Pascals squared per
Hertz (Pa2=Hz dB). To compute a single PSD for every hour
considered, we used the default ObsPy parameter of 3600 s seg-
ment length. Hours with outages or gaps were left out of our
PSD calculation. This strategy results in a dataset of over
210,000 PSDs.

Data quality
We use the PDFs for individual stations to conduct a data QC
check. Stations that have a significant percentage of their spec-
tra below a relevant ambient noise model are likely to have
either inaccurate response information or some physical issue
with the sensor (Casey et al., 2018). We compare PDFs to the
global ambient acoustic model compiled by Brown et al. (2012)
from IMS stations for the International Data Center (IDC).
Because those stations employ WNRS and are often sited in
low infrasonic noise areas, this is a conservative test for AK
stations. The average percentage of spectra below the IDC
noise model for 2020 is shown in Figure 1. This analysis iden-
tified clear problems with four stations, which exhibited
notable percentages of their spectra below the IDC low-noise
model for the year (see Fig. A2 for spectra of these stations).

We suspect that there are incorrect responses in the metadata
for these stations. Therefore, these four stations are removed
from further analysis.

Data QC checks are also applied to hour-long segments of
wind speed (channel code LWS) and direction (channel code
LWD) waveforms to remove absent or unrealistic data from
analysis. Values that are either too large or too small to
represent physical quantities, identically zero, or fluctuate
drastically from high to low values within a short time duration
are indicators of nonphysical data. Our wind data QC work-
flow identifies and removes these characteristics. Several steps
in these methods require thresholds, or other arbitrary time
windows of analysis, which were established through trial
and error. Given these methods are new, we expect a more rig-
orous investigation into optimizing these values in future work.

The first step of our wind QC workflow uses the common
seismic QC metric sample unique (SU), which is simply the
number of unique values in a data segment (Casey et al.,
2018). Although the metric is designed for higher sample
rates, we found, even for 1.0 sps weather data, a very low
SU value is a reliable indicator of a malfunctioning sensor.
Hour-long sengments of data are removed from analysis, if
SU is less than ten samples for LWD data or equal to one
point for LWS data—values that were determined by trial
and error. We also discard weather data segments with non-
physical amplitudes. If LWS data are less than zero or greater
than 100 m/s, or if LWD data are less than zero or greater
than 360°, those points are characterized as nonphysical
and are discarded.

Often, the wind data fluctuate from high to low values rap-
idly because of many repeating and physically unrealistic zero
points. We, therefore, replace data points that are equal to
zero with the average of the surrounding two data points.
Removing these zero points usually results in data that do
not fluctuate so rapidly and are, therefore, better suited for
averaging in later analysis. However, some of the data still
contain large fluctuations even after zeros are removed, as
shown in Figure 2a. In this example at station A19K, replac-
ing the zeros removes the large fluctuations from the wave-
form in March 2020, but there are still large swings in
January.

To address these data fluctuations, we calculate the standard
deviation (SD) on the zeros removed data to discard hours that
contain high SD values for either the LWS or LWD data. An
hour-long segment of data is kept if SD is less than 40.0 for
LWD data and less than 4.0 for LWS data. Like the thresholds
for SU, the SD thresholds were chosen experimentally, based
on their effectiveness at removing periods with large data
swings. Figure 2b shows a comparison between the raw data,
data with nonphysical values and zeros removed, and the data
retained after additionally removing hours of high SD, in
which data with large swings are not kept. This final step in
the QC process is important in removing time periods of high
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fluctuations, like those on 21 January. Figure 2c shows the
calculated SU and SD values throughout the month, and
how thresholding allows us to eliminate highly fluctuating data
and empty data time periods. This QC process results in a
physically reasonable, high-quality wind dataset that is utilized
for noise modeling described in the following.

Constructing ambient infrasound noise models
Noise models are useful for estimating station performance
and as inputs to network detection thresholds (Green and
Bowers, 2010; Le Pichon et al., 2012). Station operators can
quickly evaluate noise performance by comparing spectra
to the noise models to determine if a station is particularly
noisy, identify potential system response issues, or determine
if amplitudes are within the expected limits. Several studies
have used recordings from the globally distributed IMS sta-
tions to construct global ambient infrasound noise models.
Bowman et al. (2005) constructed low-, high-, and median-

noise models from one year of data from 2003 recorded at
10 WNRS-equipped stations. Their models were constructed
from PSDs computed between 0.03 and 7.0 Hz, and they
observed large seasonal variations in the noise spectra. A

Figure 2. Wind data quality control (QC) for station A19K from
January to March 2020. (a) Raw (black) and retained (tur-
quoise) waveforms after removing hourly time periods containing
nonphysically high or low values, and removing all zeros in the
data. (b) Final retained waveform (orange) after all stages of QC,
including removing hours of high standard deviation (SD) from
zero-removed data, along with data from panel (a). (c) Pink circles
show the average SD, and purple circles show the average
sample unique (SU) for the given hour. Dashed red and blue lines
show the high SD and low SU thresholds, 40 and 1, respectively.
Insets on each panel show a day-long period in January in which
the full QC process was necessary for eliminating noisy time
periods of wind data. The color version of this figure is available
only in the electronic edition.
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similar analysis by Brown et al. (2012) used hour-long sections
of data from 21 IMS stations sampled evenly across days dur-
ing 2010. The low- and high-noise curves from the Brown
model generally agree with the Bowman model. Recent models
compiled by Marty et al. (2021) used data from a subset of
the IMS network, and are unique in that they include very
low frequencies (down to 10−5 Hz) and remove the response
imposed by the WNRS.

We employed a method similar to Brown et al. (2012) to
construct ambient noise models for the Alaska region using
2020 data from the 104 properly functioning stations. We only
use data from time periods when stations were part of the
AK network for construction of the models to leverage the
higher sample rate of 40.0 sps. We combined all PSDs com-
puted from each station into a single PDF, resulting in a total
of 140,371 PSDs.

For 113 frequencies, evenly sampled in log space between
0.05 and 13.0 Hz, we found the 5th, 50th, and 95th percentiles
of all contributing PSDs. The curve for the new low-noise model
was extracted by finding the minimum of all the 5th-percentile
values for each frequency bin. Similarly, the high-noise model
curve is the maximum of all the 95th-percentile curves at
each frequency bin, and the median is the median of all the
50th-percentile values in each frequency bin.

Constructing time series of root-mean-squared
(rms) amplitudes
To develop year-long noise time series and to investigate
wind–noise relationships, we extract the rms amplitudes from
the PDFs for specific frequency domains. Parseval’s theorem
equates the integral of the square of a function with the integral
of the square of its transform, insuring that energy is constant
between the time and frequency domains (Gubbins, 2004).
Therefore, rms amplitude may be computed as

EQ-TARGET;temp:intralink-;df1;41;301rmsf 1 ;f 2 �
��������������������������Z

f 2

f 1

jPSDdf j
s
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in which f 1 and f 2 are the high- and low-frequency bounds,
respectively (Lecocq et al., 2020; Guenaga et al., 2021).
Because we are examining discrete data, we approximate
the definite integral in equation (1) using the SciPy imple-
mentation of the composite Simpsons’ rule. This implemen-
tation is able to accommodate an odd number of segments
using the average value of trapazoidal rules used on the first
and last intervals (Virtanen et al., 2020). We calculate rms
amplitudes for three separate passbands; the [0.01, 0.1] Hz
band explores frequencies in which the WNRS of IMS sta-
tions are less effective, allowing us to compare noise with
the I53 IMS array located in interior Alaska; the [0.1, 0.4]
Hz passband examines noise in the microbarom band,
whereas the [0.8, 6.6] Hz passband avoids the microbarom

peak of around 0.2 Hz and includes relatively high frequen-
cies (Christie and Campus, 2009). The low-pass cutoff of
6.6 Hz is chosen due to the fact that many stations were still
part of network TA for a portion of 2020, and so currently
available data employed a 20.0 sps sampling rate. The
McNamara and Buland (2004) method only considers
frequencies below Nyquist×(2/3) = 10.0×(2/3) to avoid effects
from digitizer finite impulse response filters, limiting our
maximum frequency to 6.6 Hz in the current analysis.

We also examine the ability of stations in the network to
observe the microbarom—a spectral peak around 0.2 Hz that
is generated by waves at the ocean–atmosphere interface
(Donn and Posmentier, 1967). We do this by fitting a line
to the PSD curve in the microbarom band of 0.1–0.4 Hz.
Linear fitting to spectra in the microseismic band is a standard
data quality metric that is typically used to identify seismic sen-
sors that are not recording ground motions (Casey et al., 2018).
For infrasound sensors that are experiencing a noisy period
due to elevated wind, the spectral segment will tend to be linear
and will return a low residual after fitting the line. However, if a
well-developed microbarom is present, the linear fit will be
poor, and a large residual will be returned. By plotting these
residuals with time, we are able to estimate time periods when
the microbarom was likely present using a simple and under-
standable fitting algorithm.

Developing relationships between noise, wind,
and land cover type
We determine the prevalent land cover type at each AK
infrasound station using the 2016 Alaska National Land
Cover Database (Dewitz, 2019) and use it to investigate
the effects of site conditions on rms amplitudes (see Data
and Resources). This land cover dataset was compiled using
change detection—a way to analyze the spectra of Landsat
image pairs, between 2011 and 2015, and consists of 19
distinct land cover types that are available as raster data at
30 m resolution. We sampled this raster at all station loca-
tions to assign land cover types to each. The station locations
span 12 distinct land cover types, representing very diverse
conditions from dense, deciduous forest to exposed tundra.
Comparing station land cover type with mean rms ampli-
tudes for 2020 indicates that land cover has a dramatic effect
on the noise characteristics of a station (see Fig. 3 for plot in
the [0.8, 6.6] Hz passband, and Fig. A3 for additional pass-
bands). More sheltered (forested) sites clearly experience
reduced wind speeds and consequently lower noise levels.
Inspection of Figure 3 also suggests that sites may be organ-
ized into three broad categories based on land cover type and
noise characteristics. We designate these three categories as
sheltered, partially sheltered, and exposed, and develop mod-
els for estimating rms as a function of wind speed for each
land cover category and passband. Partitioning the dataset
of hourly rms observations and hourly average wind speed
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into the three categories, we obtained 110,355 observations
for the exposed category, 66,282 for the partially sheltered
category, and 11,907 for the sheltered category. We extracted
the noise–wind models by organizing the average wind
speed–rms pairs into 2D histograms similar to Le Pichon et al.
(2009) and found the median values of the distribution (see
Fig. 4). The shape of the medians in log space is complex, with
several concavity changes apparent in most of the nine mod-
els. These medians are smoothed via a local polynomial filter.
Finally, we employ a nonlinear regression on the smoothed
median values to extract the coefficients for the best fitting
seventh-degree polynomial that describes rms as a function
of wind speed. The high-degree polynomial is necessary
to capture the complexity of the empirical relationship.
The nine noise–wind models from the three passbands and
three land cover categories are shown by the solid green lines
in Figure 4. The coefficients of the models are listed in
Table 1.

Results
In this section, we describe the results from the AK infra-
sound network PSD PDFs analysis. We present an ambient
infrasound model for the Alaska region, examine rms time
series for each station, investigate likely microbarom presence

in the spectra, and demonstrate the effectiveness of our
models for estimating rms as a function of wind speed and
land cover.

An ambient infrasound model for the Alaska
region
The models derived from the 2020 PSD PDFs are shown in
Figure 5, along with the IDC model from Brown et al. (2012)
for comparison. We term our model the “AK noise model.”
AK noise levels span a wide range: 50 dB at 0.05 Hz
and 120 dB at 10.0 Hz, and show similar trends as the
IDC noise models. The low-noise curve of the new ambient

Figure 3. Root-mean-squared (rms) infrasound amplitude
for 2020 binned by station land cover for the [0.8, 6.6] Hz
passband. The upper and lower edges of the boxes denote
the third and first quartiles, respectively. The horizontal
line in each box denotes the medians, whereas the means are
shown by white circles. The bars extend to 1.5 times the inter-
quartile range. For clarity, outliers are not plotted. Boxes are
colored by mean wind speed categories from the 2020 data. The
color version of this figure is available only in the electronic
edition.
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model is comparable to the IDC low-noise model, particularly
above about 0.1 Hz, although it does differ by up to 10 dB
at lower frequencies. Our new model exhibits a prominent
microbarom peak in the low-noise curve centered on
0.2 Hz, in agreement with the IDC model. As expected, given
the lack of WNRS and spatial distribution across a wide range
of environments, our high-noise model curve differs signifi-
cantly from the IDC model. These differences are the most
prevalent at higher frequencies, in which the AK noise model
is as much as 30 dB higher. This high-frequency noise is likely
imposed predominately by wind, and is subdued in the IDC
model due to the use of IMS stations equipped with WNRS
and sited in low-wind areas. The standard 18 m, 96-port
rosette pipe array at IMS stations reduce uncorrelated wind
noise by 20 dB (Alcoverro and Le Pichon, 2005). Therefore,
the AK infrasound network likely has a higher noise environ-
ment than the IMS by ∼10 db at both the high and low
frequencies. There is closer agreement between the two
high-noise models below around 0.1 Hz—frequencies in

which the IMS WNRS are less effective. Our new median–
noise curve has a general roll-off of 1=f and lies below but
relatively close to the IDC high-noise model. The new ambi-
ent infrasound models are available as a supplemental
material to this article.

Figure 4. Two-dimensional histograms showing relationships
between observed wind speed and rms noise for 2020. The bins
have been normalized to indicate the density of observations in
each bin, with warmer colors indicating more observations. The
top row is sites in the exposed land cover category, middle row
is partially exposed, and bottom row is sheltered sites. The
columns show the three passbands: [0.01, 0.1], [0.1, 0.4], and
[0.8, 6.6] Hz. The smoothed median for each dataset is shown
by cyan circles, the 5th and 95th percentiles are shown by cyan
crosses, and a solid green line denotes the noise–wind model
derived by a nonlinear regression of the smoothed median. The
color version of this figure is available only in the electronic
edition.
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Insights from rms time series
Mapping the 2020 average rms for each station provides a
general overview of the spatial distribution of rms amplitudes.
Maps of rms organized by season and passband are shown in
Figure 6. Stations are colored by average rms, whereas symbol
size is scaled by the mean wind speed, grouped into three
bins, for stations with available weather data. Seasons are

defined as November, December, and January for winter;
February, March, and April for spring; May, June, and
July, for summer; and August, September, and October for
fall. In the following, we focus our in-text discussion on
the the high-frequency passband, but all the three passbands
share similar temporal and spatial patterns. In general, the
summer experiences the lowest average wind speeds and
rms amplitudes, whereas winter exhibits the highest. The fall
and spring seasons not only generally exhibit an intermediate
level of average wind speeds and noise but also show some
interesting differences between the two seasons. The spring
season appears to be characterized by higher wind speed
and higher rms amplitudes in northern Alaska, whereas
the fall season sees higher values in the southwest of the state.
These patterns persist across all the three passbands, and this
is probably a result of the pink spectral nature of wind-
induced noise. The spatial pattern in the maps of the winter
season encouraged us to consider a correlation between rms
amplitude and distance to the nearest coastline, but we were
not able to observe any clear dependence between these two
parameters.

We use our rms time series with a four-hour sampling rate
at each AK station to investigate seasonal and geographical
effects at a higher temporal resolution. These time series
are shown in Figure 7a, with amplitudes normalized across
the network to highlight relative noise differences between
stations and with each trace organized by station latitude.
This view allows us to examine a year of rms amplitudes
across the entire network, and several notable features stand
out. The five stations located in southeastern Alaska are
consistently quiet, relative to the rest of the network for
the entire year (most traces below 58.3°). This may be a result
of the dense tree cover in that region of the state. Another

TABLE 1
Coefficients for the Nine Noise–Wind Models Described in the Developing Relationships between Noise, Wind,
and Land Cover Type section

Land Cover
Category Passband c1 c2 c3 c4 c5 c6 c7 c8

Exposed 0.01, 0.1 −0.049790 0.512101 −1.638147 2.622633 −2.853072 2.212958 0.772919 −1.031481

Exposed 0.8, 6.6 −0.214491 0.676345 −0.944853 1.797528 −3.466392 3.153009 1.294033 −1.854967

Exposed 0.1, 0.4 0.409300 −2.012155 2.914548 0.082785 −3.720081 3.149134 0.979763 −1.349478

Partially sheltered 0.01, 0.1 −0.165456 0.192382 0.312596 −0.147988 −0.832178 1.204086 0.968676 −0.898683

Partially sheltered 0.8, 6.6 0.954423 −2.881124 1.105712 3.811321 −4.095948 0.928698 2.620931 −2.017396

Partially sheltered 0.1, 0.4 0.299556 −1.026644 0.263271 2.243460 −2.432358 0.369177 2.133429 −1.352123

Sheltered 0.01, 0.1 −25.023587 17.512051 29.169293 −17.342279 −9.368972 3.515141 2.456428 −0.505570

Sheltered 0.8, 6.6 16.848436 −26.898163 1.761651 13.096786 −4.680737 −0.167992 2.646008 −1.846077

Sheltered 0.1, 0.4 −11.611438 5.978572 17.545307 −6.926464 −8.811607 2.482293 3.170563 −1.250451

There is a model for each of the three frequency bands and each of the three land cover categories. The columns c1–c8 denote each of the coefficients for the seventh-degree
polynomial.

Figure 5. Infrasound ambient noise model for the Alaska region.
Light blue curves are the 95th-percentile power spectral densities
(PSDs) from all the contributing stations, whereas 5th-percentile
curves are shown in gray. The new low- and high-noise models
are shown in solid dark blue, whereas the median is shown in
dashed dark blue. The International Data Center global ambient
noise model from Brown et al. (2012) is shown in dashed orange
for reference. The color version of this figure is available only in
the electronic edition.
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ubiquitous feature in the plots is large-amplitude spikes that
are fairly discrete in time but widely observed across the net-
work (e.g., there is an array-wide spike in mid-November
2020). We interpret these as wind-induced amplitude anoma-
lies associated with large storms moving across the region.
These spikes are more common in cold weather (October–
April) relative to summer months (May–September),
when there is a decreased storm activity in the northern

Figure 6. Maps of seasonal average infrasound rms for the entire
2020 study period. The four rows are organized by season,
whereas the three columns correspond to the three passbands:
[0.01, 0.1], [0.1, 0.4], and [0.8, 6.6] Hz. The three symbols sizes
correspond to average wind speed bins defined by cutoffs of 8
and 4 m/s. The color version of this figure is available only in the
electronic edition.
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hemisphere. Similar figures for the lower frequency pass-
bands are included in Figure A4.

There is also a strong seasonal signal affecting the presence
of the microbarom in the spectra. This is to be expected,
as seasonal variations in microbarom source zones have been
observed in previous studies (e.g., Landès et al., 2012; Landès
et al., 2014). At most of the sites, the amount of spectral cur-
vature in the microbarom band of 0.1–0.4 Hz (see Fig. 7b) is
larger in the winter months. There are many more linear

Figure 7. (a) RMS amplitude time series in the [0.8, 6.6] Hz
passband for all the 104 stations for 2020. Traces are organized
vertically by the latitude of each station. Similar figures for the
[0.01, 0.1], and [0.1, 0.4] Hz passbands are provided in the
Appendix, although general trends are similar. Amplitudes have
been normalized across the network. (b) Time series of circles
scaled by the residual of fitting a line to the hourly PSD in the [0.1,
0.4] Hz passband for 2020. Larger dots represent time periods
when the microbarom was more likely present. Dots are colored
by rms in the [0.1, 0.4] Hz passband. The color version of this
figure is available only in the electronic edition.
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spectra in the summer, indicating that the microbarom is
weaker despite the reduced rms amplitude. Stations in the
southeast that have consistently lower noise levels exhibit
many time periods in which the microbarom is likely present,
even throughout the summer months. One station, NEA2, was
removed from Figure 7b due to the fact that its microbarom
band is contaminated by a spectral peak imposed by a nearby
communications tower during periods of high wind (Smith
and Tape, 2019).

We also investigate the effect of wind direction on noise.
Although it is more difficult to draw general network-wide
conclusions about this parameter, we did observe a clear
dependence of rms amplitudes on wind direction at several sta-
tions, at which wind azimuths from the east imposed a higher
rms than azimuths from the west for comparable wind speeds
(see Fig. 8a for an example). To determine if this is a general
feature of the network, we plot rms as a function of average
wind speed for the [0.8, 6.6] Hz passband (Fig. 8b). This plot
reveals generally lower rms amplitudes for winds from westerly
directions. We believe this may be a result of the diffuser port
being mounted on the east side of the hut for all the stations, an
example of which can be seen in Fig. 8c on an exposed station
(Fig. 8d). This configuration puts the port on the lee side of the
hut when the wind is from the west, whereas easterly winds
interact with the port directly.

These network-wide observations illustrate that the rms
amplitudes are highly dependent on wind speed, which is
not surprising, given the absence of WNRS and the fact that
many stations are located in exposed environments (e.g.,
Fig. 8d). The generally lower rms for sites in dense foliage or

forest also indicates that noise performance is dependent on
land cover type.

Results of modeling noise as a function of wind
speed and land cover
Because rms is clearly dependent on site land cover type and
wind speed, models incorporating these parameters will be a
reliable method for predicting infrasound station noise. We
test the efficacy of our wind–noise relationships using wind
speed and land cover type to estimate the rms amplitudes
at several stations. We apply the models to a five-month period
from 2021, to avoid testing on data that was used to derive the
models. RMS is estimated at a sheltered site, M23K in south-
central Alaska, a partially sheltered site, J25K in interior
Alaska, and an exposed site, N19K, in the western Alaska range
(see Fig. 1). The observed rms, estimated rms, and smoothed
(low-pass Butterworth filter with a 12 hr corner) hourly aver-
age wind speeds for a five-month period of 2021 are shown in
Figure 9. There is a clear correlation between rms amplitude

Figure 8. (a) Average hourly rms as a function of hourly average
wind speed at station C26K—a station with a clear relationship
between wind direction and rms. Dots are colored by hourly
average wind direction. (b) Scatter plot showing relationship
between rms in the [0.8, 6.6] Hz passband and wind direction.
Dots are colored by hourly average wind speed. (c) Image of
station C26K showing configuration of the diffuser port.
(d) Local conditions at C26K showing station exposure. The
color version of this figure is available only in the electronic
edition.
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and wind speed, although the
accuracy varies between land
cover category. Each panel
shows the results for a particu-
lar passband, and waveform
similarities are quantified by
the Pearson’s correlation coef-
ficient, which is the normalized
covariance and indicates the
linear correlation between the
two quantities.

The results for both M23K
and J25K show that the models
accurately estimate the rms
amplitudes as a function of
wind speed in all the three fre-
quency bands. The models
are particularly effective in
the [0.8, 6.6] Hz band, with
Pearson’s correlation values
near 1.0 for the sheltered and
partially sheltered sites. Models
are somewhat less effective in
the low-frequency passband,
and this may indicate a signifi-
cant contribution of other
signals to amplitudes at these
periods. The least-robust
model performance is for the
exposed site, N19K, but we still
achieve Pearson’s values of
around 0.8. Wind data for
this and many of the exposed
sites are poor, and many data
were discarded as a result of
our QC process. During peri-
ods with high-quality data, in
early January, for example,
the model results agree closely
with the observations (see
Fig. 9).

Discussion
The ambient AK noise model
reflects the range of noise levels
imposed by Alaska’s diverse
geography. The noise–wind
models illustrate that wind is
the dominant source of back-
ground noise for the network,
as expected, given the station’s
lack of WNRS and the fact that
many of them are situated in

Figure 9. Comparison of observed (solid black lines) and modeled (dashed red lines) rms values at
three AK infrasound stations. (a) M23K, a sheltered site. (b) J25K, a partially sheltered site.
(c) N19K, an exposed site. Green line shows filtered hourly wind speed. Each station subpanel
shows results for a different passband. The rms amplitude from the IDC noise model for each band
is indicated by a dashed horizontal black line (if on scale). The color version of this figure is available
only in the electronic edition.
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high-wind areas. The models also demonstrate that site land
cover type is an important control on rms amplitudes and, con-
sequently, on station performance. Therefore, noise–wind mod-
els that incorporate land cover type have potential for evaluating
station performance. By monitoring model fits, operators can be
alerted to potential problems when rms deviates substantially
from model-predicted values. The models also have utilty

Figure 10. Comparison of observed and modeled rms values at
two non-AK stations. (a) I53H7, a sheltered site that is part of the
IMS. (b) KDAK, a sheltered site that is part of the GSN. Green line
shows filtered hourly wind speed. Each station subpanel shows
results for a different passband. The rms amplitude from the IDC
noise model for each band is indicated by a dashed horizontal
black line (if on scale). The color version of this figure is available
only in the electronic edition.
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for future site placement, as noise levels may be estimated at
potential sites if land cover and wind speed data are available.

To investigate if the rms–wind modeling relationship has
applicability beyond the Alaska region, we modeled noise at
an IMS site, I53H7 (Fairbanks, Alaska), and at a Global
Seismographic Network (GSN) station, KDAK (Kodiak,
Alaska) (see Fig. 1) (Scripps Institution of Oceanography,
1986). Both the stations are located in sheltered land cover
types and are equipped with WNRS. The comparison of mod-
eled to observed rms amplitudes is shown in Figure 10. For
I53H7, the model performs poorly at high frequencies but
improves substantially in the lower frequency bands. This
is to be expected, due to the fact that IMS WNRS systems
are effective primarily above approximately 0.1 Hz, below
which the length of the filter is comparable to the noise coher-
ence length (Raspet et al., 2019). The relatively good perfor-
mance of the models for the low-frequency bands indicates
that they are applicable beyond the AK regional network.
The model results for KDAK are more difficult to interpret.
The high-frequency model is the poorest performer, as
expected, but does not differ as drastically from other bands
as did the results for I53H7. This may be a result of
differences in WNRS equipment employed by the GSN
and IMS. Performance in the lowest frequency band for this
station is poor, with a Pearson’s correlation of 0.71, which is
unexpected and in contrast to the 0.83 value for the low-fre-
quency band at I53H7. Much of the misfit appears to be a
result of noise spikes that do not appear correlated with
increased wind speeds. This is, particularly, visible in the
time period from late September into October. Here, we
observe large-amplitude anomalies in rms in the low-fre-
quency bands, but with subdued wind speeds, whereas
there are relatively low rms amplitudes in the high-frequency
band. We conclude that poor model fits in this frequency
band are a result of the presence of noise from sources other
than wind.

While wind direction does not exhibit as dramatic control
on rms amplitudes as wind speed, we did observe a correla-
tion between higher amplitudes for a given wind speed for
westerly winds at exposed sites. We conclude that this is a
result of the diffuser being located on the lee side of the
hut during westerly winds. Stagnation pressure, caused by
interaction of wind-related turbulence on the hut itself
(Raspet et al., 2019), is likely causing the increased noise
when the diffuser is exposed directly to the wind. We observe
these results strongly suggest that infrasound station perfor-
mance may be affected by the location of the port on the hut,
and encourage future installations to port the sensor to the
atmosphere away from the hut and other obstacles, or install
multiple ports. We also observe that the diffuser is elevated
above the surface and suggest future installations be ported
closer to the ground where the wind noise will likely be lower
(Raspet et al., 2019).

Conclusions
We analyzed all available 2020 infrasound data from network
AK to characterize the ambient infrasonic environment of the
Alaska region, east of −170° longitude. The network encom-
passes a diverse range of environments, many of which are
suboptimal for infrasound data quality. We leveraged this
diversity along with the absence of WNRS at these stations
to build an ambient infrasound model for the Alaska region
and to quantify the effects of site conditions on infrasound
noise. Our low-noise model has a shape and amplitude sim-
ilar to the IDC model from Brown et al. (2012), but our
high-noise model deviates significantly, particularly at
frequencies above 0.1 Hz, in which the WNRS of the IMS
stations are effective. Infrasound models derived from sta-
tions without WNRS are rare, although recent work by
Marty et al. (2021) presented models from data with the
response of the WNRS removed during processing. Our
new models and those of Marty et al. (2021) are similar, even
at higher frequencies. Although models that contain unfil-
tered wind noise may be inappropriate for QC of IMS sta-
tions, they do provide a more general estimate of ambient
noise at low frequencies. This makes our new model highly
useful for evaluating noise performance of the growing num-
ber of infrasound stations that may not have as robust spatial
filtering as IMS stations.

Time series of rms noise for all the stations reveal a strong
seasonal signal, with the network exhibiting generally lower
amplitudes in the summer months than the winter months.
High-noise periods tend to be dominated by high-amplitude,
temporally discrete spikes that we interpret as being imposed
by high-wind speeds associated with large storms. We also
observe a stronger microbarom across the network during
the winter months, which is consistent with seasonal pattern
for northern latitude stations observed by Landès et al. (2012)
and Landès et al. (2014). We observe that some stations are
consistently noisy relative to the rest of the network (e.g.,
N19K), whereas others, such as those in southeast Alaska,
are consistently quieter, and this is likely due to the effect
of local land cover types attenuating wind.

Because we observed that rms noise amplitudes are depen-
dent on land cover type and wind speed, we developed models
for three broad land cover classifications that estimate rms
amplitude as a function of wind speed. We found that these
models accurately predict station noise levels for the three con-
sidered frequency bands. These models are also effective for
stations equipped with IMS-style WNRS at periods longer than
about 10 s. Models that incorporate wind speed and site land
cover class are effective tools for predicting future site noise
performance and for infrasound station site selection.

Although not incorporated into our models, we also observe
that wind direction can influence station noise levels. This
seems to be a result of the configuration of AK stations in
which the infrasound diffuser is mounted consistently on
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the east side of the hut, so that the structure attenuates wind
from westerly directions, while fully exposing the diffuser to
easterly gusts. We recommend future deployments position
the infrasound port as far from the hut or other structures
as is practicable. Another option would be to locate the diffuser
on the lee side of the hut, if prevailing wind direction is known.

We have constructed an ambient infrasound model for the
Alaska region that is broadly applicable for infrasound station
data QC. From this model, we developed robust relationships
between infrasound rms amplitudes, wind speed, and site land
cover type. These constitute effective tools and strategies that
may be leveraged for infrasound QC, noise prediction, and sta-
tion location selection.

Data and Resources
All Infrasound and wind data used in this study were produced by the
networks of the USArray Transportable Array project (DOI: 10.7914/
SN/TA), the Alaska Earthquake Center (DOI: 10.7914/SN/AK), the
Global Seismographic Network (DOI: 10.7914/SN/II), and the
International Miscellaneous Stations, and these data are available
from the Incorporated Research Institutions for Seismology (IRIS)
Data Management Center (DMC) (http://ds.iris.edu/ds/nodes/dmc/;
last accessed December 2021). Land cover classification data are from
the National Land Cover Database (DOI: 10.5066/P96HHBIE) and
were downloaded from the Multi-Resolution Land Characteristics
Consortium website (https://www.mrlc.gov/data/nlcd-2016-land-
cover-alaska; last accessed July 2021). This project relied heavily on
free and open-source software packages, including ObsPy (DOI:
10.5281/zenodo.3706479) and PyGMT (DOI: 10.5281/zenodo.
5607255) (Wessel et al., 2019). Supplemental material for this article
consists of new ambient infrasound low- and high-noise models in
comma-delimited text format.
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Appendix
This section provides additional figures not included in
the main text. There is a detailed image of a typical

Figure A1. Deatiled image of the diffuser port at station I23K in
Minto Alaska. This configuration is typical of Alaska
Transportable Array stations. The color version of this figure is
available only in the electronic edition.
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Figure A2. Power spectral density probability density function
(PDF) plots of the four stations identified to have response issues.
All four stations, (a) CAPN, (b) CHUM, (c) CUT, and (d) L20K have
unrealistically low amplitudes. The International Data Center

high- and low-noise models are plotted as black lines. Bar in
bottom of each plot shows the time ranges with data that
contributed to the PDF. The color version of this figure is available
only in the electronic edition.
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Figure A3. Root-mean-squared (rms) infrasound amplitude for
2020 binned by station land cover for the (a) [0.1, 0.4] and
(b) [0.01, 0.1] Hz passbands. The upper and lower edges of the
boxes denote the third and first quartiles, respectively. The
horizontal line in each box denotes the medians, whereas the

means are shown by white circles. The bars extend to 1.5 times
the interquartile range. For clarity, outliers are not plotted. Boxes
are colored by mean wind speed categories from 2020 data. The
color version of this figure is available only in the electronic
edition.
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Figure A4. Globally normalized rms infrasound amplitude time
series in the (a) [0.01, 0.1] and (b) [0.1, 0.4] Hz passbands for all
104 AK infrasound stations in 2020. Traces are organized

vertically by the latitude of each station. The color version of this
figure is available only in the electronic edition.
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Transportable Array infrasound diffuser port. There are power
spectral density probability density function plots of the
four poorly performing AK infrasound stations that were
removed from further analysis. There are also figures of
root-mean-squared (rms) time series and rms binned by land

cover type for all the stations for passbands not included in the
main text.
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