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ABSTRACT

Legacy base station (BS) centric cellular archi-
tecture is marked by tight interlock between spec-
tral efficiency (SE) and energy efficiency (EE). That 
means, unless new degrees of freedom and intel-
ligent dynamic adaptability is added, any signifi-
cant gain in SE must come at the cost of EE. Even 
the most predominant approaches for capacity 
enhancement such as network densification yield 
gains in SE at the cost of increased energy con-
sumption. Moreover, in future mobile networks, 
the key challenge is not only the rampantly grow-
ing volume of traffic, but also the spatiotemporal 
variability of the traffic. These observations call 
for a paradigm shift in the way cellular networks 
are designed and operated. Therefore, in this 
work, we propose a new cellular architecture 
called SpiderNet: Spectrally Efficient and Ener-
gy Efficient Data Aided Demand Driven Elastic 
Architecture for 6G Wireless Networks. The key 
idea behind SpiderNet is to introduce additional 
degrees of freedom to relax the tight coupling 
between the SE and EE and database-aided intel-
ligence to enable dynamic adaptive operation for 
simultaneous enhancement of both SE and EE. 
This goal is achieved by shifting the pivot of oper-
ation from the rigid always ON BS centric cells to 
user centric (UC) on demand cells. The Spider-
Net architecture consists of a layer of low-densi-
ty large footprint and database aided control BS 
underlayed by high-density switchable data BS. 
This database enables artificial intelligence (AI) 
powered proactive dynamic orchestration of UC 
cells to maximize not only SE and EE, but quality 
of experience (QoE) as well. We also identify the 
challenges that arise in the practical realization of 
SpiderNet and propose solutions. Finally, we pres-
ent a case study that compares SpiderNet perfor-
mance with legacy HetNets. The results show that 
compared to current BS centric cellular architec-
ture, SpiderNet can substantially enhance both SE 
and EE without compromising QoE.

INTRODUCTION

The cellular industry undergoes a generational 
transition almost after every decade due to the 
growing number of new applications and their 
advanced requirements. With the recent rollout 
of Fifth Generation (5G), the research commu-
nity has already turned its attention toward Sixth 

Generation (6G) and its targeted applications. 
Unlike 5G which focused on tradeoffs to provide 
enhanced Mobile Broadband (eMBB), Ultra Reli-
able Low Latency Communications (URLLC), and 
massive Machine Type Communications (mMTC), 
6G is envisioned to jointly meet strict network 
demands (e.g., high energy- and spectral-efficien-
cy, high throughput, ultra-high reliability, and 
ultra-low latency) [1]. Both user-centric network 
architecture and ultra-dense deployment of small 
base stations (BSs) are considered as key enablers 
for 6G.

In ultra-dense deployment, the density of BSs 
plays a crucial role in achieving the best perfor-
mance. Recent studies, for example, [2], show 
that there exists an optimal BS density that max-
imizes network energy efficiency (EE) defined 
as area spectral efficiency (ASE) divided by BS 
power consumption per unit area. However, a 
different, often much higher cell density is need-
ed to maximize spectral efficiency (SE) or ASE. 
This is illustrated in Fig. 1. Similarly, findings from 
the EARTH project [3] show that for a given BS 
density, traffic and BS type (and hence BS power 
consumption model), there exists an optimal set 
of BS transmission powers that maximizes SE, but 
a different set of optimal transmission powers is 
needed to maximize network EE. This is because 
depending on BS type, the EE of BS varies differ-
ently with traffic load. Measured data in [3] also 
show that BS overall power consumption can be 
a linear or non-linear function of load depending 
on the type of the BS that in turn dictates load 
dependency of component level power consump-
tion. Another dimension is added to the problem 
of jointly maximizing SE and overall EE (including 
that of network and user equipment (UE)) when 
we take into account the fact that though increas-
ing BS density increases the network energy con-
sumption, it decreases energy consumption of 
UE for uplink (UL) transmission by bringing the 
BSs closer to the UE on average. Yet another 
SE-EE interplay dimension is analyzed in [4], which 
shows that though increased BS density decreases 
UE battery consumption for data transmission, 
it increases the UE battery consumption for cell 
discovery, signaling and handovers. The analysis 
in [4] also proves that there exists an optimal cell 
discovery periodicity that optimizes UE EE and it is 
non-linearly related to a number of factors includ-
ing cell density, UE mobility pattern and cell loads.
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These observations clearly suggest that exist-
ing cellular architecture’s rigid cell-centric always 
ON modus operandi simply does not have the 
degrees of freedom and adaptability to simultane-
ously maximize both SE and EE. Therefore, a new 
elastic architecture with higher degrees of free-
dom is needed to enable a simultaneous increase 
in SE and EE.

Building on these findings, in this article we 
propose a novel architecture called SpiderNet, 
that is, Spectrally Efficient and Energy Efficient 
Data Aided Demand Driven Elastic Architecture 
for 6G Wireless Networks. Instead of just trading 
SE with EE and vice versa as is the case with BS 
switch ON/OFF schemes in legacy architecture, 
the SpiderNet architecture exploits user centric 
elastic cells in conjunction with historic databas-
es at control base stations (CBSs) to intelligent-
ly maximize both SE and EE while taking into 
account spatiotemporally varying demand. The 
introduction of user centric elastic cell is a new 
degree of freedom which breaks the tight SE-EE 
interplay, and hence makes it possible to max-
imize both SE and EE at the same time by con-
trolling and dynamically changing the radius of 
this user centric cell. Thus, this architecture can be 
a possible candidate for 6G. The goal of this arti-
cle is to explicate, analyze and evaluate SpiderNet 
architecture.

The article’s main contributions can be sum-
marized as follows. We propose the SpiderNet 
architecture to intelligently maximize both SE and 
EE in future cellular networks. We identify key 
challenges that can arise when realizing Spider-
Net in practice and present potential solutions. 
We present a comparative study that shows the 
performance improvement achieved with the pro-
posed SpiderNet architecture compared to legacy 
HetNets.

SPIDERNET OVERVIEW

In this section, we explain the SpiderNet architec-
ture as well as the unique features it off ers. Figure 
2 illustrates the proposed SpiderNet architecture. 
It consists of a minimum two layers of BS deploy-
ments with at least two distinct bands. The top 
layer consists of low-density macro BSs hereaf-
ter called CBSs, while a lower layer consists of 
low energy consumption ultra-dense small remote 
radio heads hereafter called data base stations 
(DBSs). This two-layer coverage allows orches-
tration between diff erent active DBS densities by 
switching DBSs ON/OFF as needed without cre-
ating coverage holes.

The idea of switching ON/OFF for saving 
energy is not new; however, switching ON/OFF 
schemes suff er from two key problems: discover-
ing OFF DBSs is a challenge, and it exploits only 
one degree of freedom in the multidimensional 
SE-EE interplay explained in the last section, that 
is, BS density . Therefore, current BS ON/OFF 
schemes can only increase EE at the cost of SE 
and quality of experience (QoE) and vice versa. 
The SpiderNet architecture is designed to solve 
the latter problem through the introduction of a 
new degree of freedom, that among other ben-
efi ts, relaxes the tight SE-EE tradeoff  relationship, 
thereby allowing enhancement of both SE and 
EE substantially beyond what current architecture 
can off er. This new degree of freedom called ser-

vice zone (S-Zone) is defi ned as follows. During 
every transmission time interval (TTI), each sched-
uled UE or a set of UEs (referred to as a UE clus-
ter (UEC)) acts as a center of a virtual cell and 
this cell constitutes the S-Zone. The most suitable 
DBS within that S-Zone is then activated to serve 
the UE/UEC in that TTI. The rest of DBSs inside 
the S-Zone remain OFF. UEs/UECs are scheduled 
each TTI based on their QoE requirements.

The S-Zone concept ensures no interfering 
DBSs within the distance dictated by the size of 
the S-Zone is activated. However, this idea can 
be extended to activate multiple DBSs within 
an S-Zone by exploiting coordinated multi-point 
transmission (CoMP) [5], thus retaining the key 
benefit of the S-Zone, that is, UEs within the 
S-Zone do not face interference from any other 
DBS within its S-Zone. The UEs with no DBS 
within their S-Zones are served by a CBS. Larger 
S-Zones enables better link-level SE due to lower 
interference, better DBS selection, or enhanced 
cooperation diversity, and higher EE in network 
but lower system level spectrum reuse effi  ciency 

FIGURE 1. Spectral effi  ciency and energy effi  ciency vs. base stations density.

FIGURE 2. SpiderNet architecture with four diff erent S-Zones, that is, S-Zone 1 
created by a cluster of scheduled UEs to be served by a single DBS, S-Zone 
2 created around a scheduled UE to be served by two DBSs simultaneously 
using cooperation, S-Zone 3 is a larger S-Zone created around a scheduled 
UE for higher EE in the network, and S-Zone 4 is a smaller S-Zone created 
around a UE for better ASE.
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and higher energy consumption in the UE. In con-
trast, smaller S-Zones result in decreased network 
level EE due to larger number of active DBSs in 
given TTI, but increased UE battery life by select-
ing the serving DBS closer to the UE.

The rationale for the S-Zone centric, instead 
of classic BS centric, architecture stems from the 
insights gained from our earlier work [2]. Joint 
SE-EE analysis in [2] shows that S-Zone controls SE 
and EE in a way oppositive of that of active DBS 
density . While SE increases monotonically with 
 and EE has a highly gainful optimal point in , 
with S-Zone size, SE has a highly gainful optimal 
point and EE increases monotonially. The size of 
the S-Zone is thus a new degree of freedom that 
offers unprecedented leverage in SE-EE tradeoff 
that is distinct from that attainable by simply 
switching ON/OFF base stations to change  in 
legacy BS centric architecture. When optimized 
in conjunction with other design parameters in 
SpiderNet such as , S-Zone based orchestration 
in SpiderNet has the potential to achieve high-
er gains in SE and EE simultaneously (as shown 
later). The resultant gains are not possible in cur-
rent architecture where typically BSs are switched 
ON/OFF to adapt  only and thus always trade 
SE with EE along a unidirectional pareto optimal 
front. It is important to highlight that S-Zone also 
introduces new challenges including an increase 
in optimization complexity in the case of dynamic 
S-Zone selection, scheduling delay with non-over-
lapping S-Zones, and fronthaul control load 
increase due to continuous control information 
exchange between CBS and DBSs. These chal-
lenges can be addressed by intelligently choos-
ing the S-Zone size and that also from a carefully 
designed finite sample space.

To address the former problem, that is, discov-
ering an OFF BS, the SpiderNet architecture incor-
porates a database of selected measurements that 
includes reference signal received power (RSRP), 
physical resource block (PRB) usage, and mobility 
traces among others for proactively orchestrat-
ing S-Zones leveraging Artificial Intelligence (AI). 
Exploiting a database and AI not only addresses 
the OFF DBS discovery challenge, but can also 
address several issues in the practical deploy-
ment of SpiderNet: dynamically defining opti-
mal S-Zones, DBs activation/deactivation delay, 
spectrum as well as energy resource allocation 
in DBSs and UEs for jointly optimizing SE and EE. 
Moreover, AI based models may be employed 
to enable real-time adjustments to operating 
parameters and yield optimal SE-EE tradeoffs. For 
instance, a deep neural network (DNN) may be 
trained with an aggregated network generated 
and simulation generated dataset to learn the 
mapping between operating parameters (such 
as S-Zone size, ), network counters (such as 
user distribution density, EE-SE tradeoff factor, 
traffic distribution, propagation terrain) and the 
SE-EE tradeoff optimization utility function. A well 
trained DNN would take the real-time network 
counters as input and yield near-optimal operating 
parameters for an operator desired SE-EE tradeoff. 
The utility obtained from AI-based network wide 
automation can then be compared against sim-
ulator-based measurements and passed through 
ensemble classifiers for continuous updating of 
DNN weights. 

KEY CHALLENGES AND SOLUTIONS

In order to successfully realize SpiderNet archi-
tecture in practical networks, the first step would 
be to derive analytical models to characterize the 
SE and EE of SpiderNet and determine the key 
design parameters that can be used to optimize 
its performance such as S-Zone size, DBS density, 
and other system parameters. Moreover, simula-
tion-based models need to be developed to test 
the performance empirically against legacy Het-
Net architecture. In the following, we identify the 
key challenges that must be addressed before the 
SpiderNet can be transformed from an idea into a 
functional network and hint on potential ways to 
tackle these challenges.

EXPLOITING FIRST DEGREE OF FREEDOM FOR  

OPTIMALLY TRADING SE AND EE
Challenge: Earlier studies show that the SE and 

EE are the tractable functions of BS density  [2]. 
The expression for ASE (i.e., SE averaged over an 
area) as a function of  is derived using stochastic 
geometry tools, if DBS deployment is approxi-
mated as a Poisson point process (PPP) with  , 
whereas EE is defined as the ASE over power con-
sumption per unit area. The power consumption 
per unit area is usually calculated from a very sim-
ple model that depends on fixed power consump-
tion of an active DBS, expressed as a constant 
that sums together frequency dependent power 
amplification, active UE density load dependent 
DBS transmit power, and several other factors. 
To overcome the limitation of this simple model, 
there is a need for a method to accurately cap-
ture power consumption at DBS as well as CBS 
in the SpiderNet. A key challenge is to model 
the power as function of load, bandwidth, and 
frequency of operation. Additionally, it is also 
important to consider the user device perspective 
in this EE analysis. Moreover, the PPP assumption 
considered for ASE calculation does not accu-
rately model the repulsion that exists in the actual 
deployment of BSs.

Potential Solutions: To analyze the Spider-
Net architecture accurately, the load dependent 
power consumption can be modeled at the com-
ponent level for more accurate representation. 
This is possible with the help of component data-
sheets that constitute different types of DBS and 
CBS as well as with the help of literature such 
as [3]. The obtained values can then be fed into 
regression or deep neural network (DNN) based 
models for overall power consumption estima-
tion.

By changing , in addition to changing SE and 
network EE, the EE of an UE is affected in two 
ways: it changes the average distance to the serv-
ing DBS, and it changes the UE energy consump-
tion in the cell discovery process. Therefore, the 
analytical model for energy consumption during 
cell discovery derived in [4] can be extended 
for SpiderNet by including the user-centric cells 
instead of BS-centric cells. Hence, resulting in 
developing a new metric for evaluating the EE of 
UE to be considered in the overall EE estimation.

Finally, b-Ginibre point process (GPP) that cap-
tures repulsion in practical BSs deployments can 
be considered instead of PPP. However, once 
a repulsion-based point process and non-linear 
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power consumption model are used to charac-
terize ASE and overall EE (including that of UE), 
unlike the results shown in Fig. 1, the resultant 
EE-ASE optimization problem is not likely to be 
convex. In this case, the problem can be solved 
by leveraging the fact that the feasible range of  
is small enough to allow the use of many non-con-
vex optimization tools suitable for small scale 
non-convex optimization problems. One such 
tool is sequential quadratic programming that has 
already been used successfully in the literature for 
other similar small-scale non-convex problems [6].

EXPLOITING HIGHER DEGREES OF FREEDOM FOR 

JOINTLY MAXIMIZING SE AND EE
Challenge: As can be seen from Fig. 1, the 

DBS density   that yields optimal SE is not the 
same that yields optimal EE. Therefore, it is impos-
sible to enhance both SE and EE beyond a limit 
without compromising one of them. This rein-
forces the need for the proposed introduction 
of a second degree of freedom for maximizing 
both ASE and EE. The previous section introduced 
S-Zone as a new degree of freedom to tackle this 
challenge. However, finding optimal user-centric 
S-Zone size especially under Spatio-temporally 
varying QoE constraints is significant. Moreover, 
it is challenging to group multiple UEs as a single 
point to create S-Zones. Finally, modeling network 
power consumption in the S-Zone based opera-
tion is another challenge.

Potential Solutions: In the scope of SpiderNet, 
the ASE and EE can be characterized as the func-
tion of S-Zone that involves QoE measure and, 
hence, makes it possible to find optimal S-Zone 
size by solving it as an optimization problem. The 
optimization here considers the operator’s priority 
between SE and EE, and quality of service (QoS) 
outage criteria. Previously in [2], we have shown 
that for each UEC (or UE) density as well as DBS 
density , there exists an optimal S-Zone size that 
maximizes the ASE under fixed network parame-
ters. Similarly, the investigation of EE in SpiderNet 
showed that i) EE has a monotonically increasing 
trend with S-Zone size; ii) higher path loss expo-
nents result in lower mean interference and con-
sequently a more energy efficient network. These 
findings demonstrate that optimization of S-Zone 
size when performed in conjunction with  (and 
other design parameters including DBS trans-
mission power and scheduling schemes) has the 
potential to substantially enhance both SE and EE.

In the literature, clustering based algorithms 
are used for combining users to act as a single 
point to simplify the antenna parameter optimi-
zation solution [5]. In a similar way, UEs can be 
merged here to be served by CoMP for creating 
S-Zone. Since multiple UEs are clustered into a 
single UEC, they can be approximated with a trac-
table point process.

Finally, the active DBS density  can be mod-
eled as a stationary process that stays constant 
throughout the network. With service centric 
elasticity introduced by S-Zone based operation, 
the number of active DBSs can change every TTI, 
depending on the size of the S-Zone, that in turn 
depends on spatiotemporally changing service 
requirements. The average number of activated 
DBSs within each S-Zone can then be derived 
considering only a single DBS activated per clus-

ter for downlink (DL) transmission. Furthermore, 
to enable spatial elasticity to further maximize 
SE-EE while ensuring UE/UEC specific QoE, dis-
tributed solution approaches, for example, game 
theory, can be targeted.

DESIGNING THE DATABASE

Challenge: For a successful operation of Spi-
derNet to optimally orchestrate  and S-Zone size 
for maximum SE and EE, switching DBS ON/OFF 
without compromising QoE is crucial. Howev-
er, cell switching is difficult to implement as OFF 
cells do not transmit pilot signals, making them 
impossible to be discovered by incoming UEs. In 
the literature, proposed solutions to this problem 
fall into two categories: i) a UL signaling based 
approach in which an RF receiver module of small 
cell is kept active even when in sleep mode and 
only starts transmitting pilot signals after receiv-
ing a wake-up signal from incoming UEs [7]; ii) 
a DL signaling based approach is an alternative 
approach in which small cells in sleep mode send 
pilots to remain discoverable by the UEs, but at 
a much-reduced rate compared to when in the 
ON state [8]. Even if the cell discovery problem 
is solved by any of the approaches, the delay in 
switching cells ON and OFF increases service 
latency. Such connection establishment latency 
may be acceptable for legacy services but is not 
acceptable for emerging ultra-low latency use 
cases.

Potential Solution: SpiderNet can address the 
aforementioned challenges by equipping each 
DBS/CBS with a database that stores maps of 
various channel quality measurements and other 
training data within its coverage. For example, the 
database can also include call detailed records 
(CDR) that can be easily harnessed to predict traf-
fic patterns and user mobility traces that in turn 
can be leveraged to predict traffic in space and 
time. The key idea is to exploit these databas-
es to proactively switch ON DBSs anticipating 
incoming traffic load and user mobility, thereby 
eliminating the DBS switching ON/OFF delay. 
The SpiderNet performance can then be analyzed 
with the assumption of unlimited (and infinite) 
database storage capacities and perfect data qual-
ity which can provide the upper bound on the 
performance of SpiderNet.

However, as in practice the storage and pro-
cessing cannot be infinite particularly at low cost 
DBS, it is important to identify the exact data that 
should be stored at DBS/CBS. Moreover, even 
when some data is available, it is often not enough 
to train an AI engine adequately. Finally, data 
inaccuracies can impact the overall performance, 
therefore, it is important to devise methods to 
deal with imperfect data. Thus, realizable per-
formance gains of SpiderNet hinge on the type, 
quantity, and quality of the data to be stored and 
mined. Candidate data streams include RSRP, ref-
erence signal received quality (RSRQ), signal-to-
noise ratio (SNR), signal-to-interference-plus-noise 
ratio (SINR), channel quality indicator (CQI), PRB 
usage, CDR index, radio link failure (RLF), and 
handover (HO) reports. For data such as RSRP, 
recent work [9] shows that there exists an optimal 
spatial resolution that minimizes the impact of 
reporting UE positioning error and quantization 
error. Therefore, realizing the optimal spatial reso-
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lution and temporal update frequency associated 
with each of the data streams is important. It is 
also worth noting that out of the aforementioned 
data, measuring and storing actual SINR might not 
be practically feasible as it changes rapidly with 
traffic load variations. To circumvent this issue, 
the SNR (which can be estimated via RSRP) can 
be logged and then translated into SINR using 
approximations of total number of active cells and 
devices.

The database for SpiderNet can be designed 
by extending the principle recently adopted by 
the Third Generation Partnership Project (3GPP) 
for minimization of drive test (MDT) reports. This 
certainly means that UE reported measurements 
along with their location coordinates can be used 
to create a map/database of coverage/service 
quality without performing extensive drive tests. To 
reduce the complexity of this database, the cov-
erage area can be divided into virtual data bins. 
Ideally, we want measurements from each spatial 
bin for each temporal interval to have an entry. 
However, in practice, it is highly likely that most 
of the bins would be empty due to the absence 
of users in those bins. To address this problem, a 
tri-pronged approach can be leveraged.

Intelligent Interpolation: By analyzing the 
underlying features of particular data streams, 
for example, spatiotemporal auto-correlation 
and stationarity, suitable interpolation methods 
such as moving average, nearest neighbor, spline 
method, inverse distance weighted, natural neigh-
bor, Kriging, and matrix completion (MC) (e.g., 
fi xed point continuation (FPC) and singular value 
thresholding (SVT)) can be used to address the 
sparsity challenge. Complex approaches such as 
Kriging yields better accuracy compared to simple 
approaches such as moving average. Therefore, a 
suitable approach can be selected based on the 
accuracy vs. complexity tradeoff .

Interpolation using DBSs: DBSs in SpiderNet 
are very densely deployed (by virtue of switch-
ing OFF DBSs to keep energy consumption and 
interference at a minimum), measurements for 
bins with no UE reports can be estimated using 
the geometry shown in Fig. 3. These additional 
measurements, after appropriate transformation, 
can be used to increase the accuracy of intelligent 
interpolation methods proposed previously. How-
ever, this approach can complement only simple 

measurements such as received signal strength 
(RSS). Therefore, a different approach, such as 
identifi ed next, are needed for measurements that 
feature UE specific idiosyncrasies such as RLF, 
mobility traces, and traffi  c pattern.

Addressing the Sparsity Challenge through 
Generative Adversarial Networks (GAN): The 
power of using GANs to generate synthetic yet 
realistic new data has been demonstrated recently 
in many fi elds. A recent study [10] has shown that 
GANs can also be used successfully for diff erent 
types of data generation to improve training of 
an AI model, for example, autonomous wireless 
channel model, in advanced wireless networks. 
Building on this fi nding, GANs and other genera-
tor methods can be used to overcome the afore-
mentioned challenges of sparsity and scarcity of 
training.

The resultant SpiderNet database can then 
have two types of data, that is, perfect and imper-
fect. Perfect data represents the data which 
is 100 percent accurate. Analysis using perfect 
data can provide upper bounds on SpiderNet 
performance, while the imperfect data reflects 
estimated data obtained by training or interpola-
tion which can have some degree of uncertainty. 
In the case of perfect database aided SpiderNet, 
many interference modeling approaches available 
in the literature such as stochastic geometry [11] 
or geometric probability [12] can be extended 
to characterize ASE and ultimately EE. However, 
for imperfect database aided SpiderNet, these 
approaches lack the capability to capture the 
impact of uncertainty in the data. A feasible meth-
odology toward this end can be the fluid mod-
el-based approach, as shown in our earlier work 
[13]. Finally, the database can be used to train ML 
based models to determine an optimal confi gura-
tion for SpiderNet to achieve maximum SE and EE 
for a given state.

CASE STUDY: SPIDERNET ARCHITECTURE 

COMPARISON WITH A DENSE HETNET DEPLOYMENT

In this section, we target user-centric Stienen cell 
based SpiderNet architecture for joint perfor-
mance analysis in terms of ASE, EE and scheduling 
latency for comparison with a traditional HetNet 

FIGURE 3. Approach to enrich the database.

TABLE 1. Simulation parameters.

Parameter Value

Simulation area dimensions (|A|) 100 m  100 m

CBS, DBS frequency bandwidth 800 MHz

Mean PPP density: UE|A|; DBS|A|; CBS|A| 400;400;16

pUE [0.25 0.5 0.75 1]

CBS separation Ro 50 m

Pathloss exponent:  3

Tx Power: PCBS,Tx; PDBS,Tx 10 W; 1 W

CBS Power consumption (always ON) 64.17 W

DBS activated state power consumption 25.15 W

DBS OFF state power consumption 1.932 W

No. of Monte Carlo realizations 100000
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deployment. We evaluate the performance mea-
sures at different values of network design vari-
ables and discuss the QoE enhancement as well 
as inherent tradeoff s for a network operator. 

We consider the downlink of a two-tier ultra-
dense network consisting of sparse CBS deploy-
ment and dense small cell DBSs, both operating 
at distinct frequency bands. The spatial distribu-
tions for CBSs, DBSs and UEs are modelled using 
three independent homogeneous Poisson point 
processes with intensities CBS, DBS and UE, 
respectively. To model realistic CBS deployment, 
we distribute it according to a type II Matern 
hardcore process [14], which induces repulsion 
between the points in the CBS tier. Downlink 
resources are granted to requesting UEs on a 
priority-based mechanism. This means that high 
priority UEs demanding connectivity through 
DBSs will be first assigned a S-Zone around its 
geographical location. The S-Zone around each 
scheduled UE is formed by constructing a circular 
disk around each UE with a fl exible radius which is 
less than or equal to half of the distance between 
the UE and its closest neighbor. This Stienen 
cell geometry not only ensures non-overlapping 
S-Zones but also guarantees a larger spatial sepa-
ration between an arbitrary UE and an interfering 
DBS as compared to the UE-serving DBS link [15]. 
While the Stienen based SpiderNet architecture 
activates a single DBS within a UE’s S-Zone as 
explained in preceding sections, the benchmark 
HetNet deployment considers a non-UE-centric 
always ON DBS network. For both network sce-
narios, we assume perfect channel state informa-
tion (perfect CSI database) at the CBSs and small 
cell DBSs. In the case of SpiderNet, the channel 
measurement database, as elaborated previously, 
is assumed to be available at the CBS. The CBS 
calculates a moving time average of recent chan-
nel quality measurements between a UE and all 
DBSs within its S-Zone, and activates a single DBS 
that provides the highest SINR. Rayleigh fading is 
assumed for both the UE-CBS and UE-DBS links. 
The small-scale Rayleigh fading is complemented 
by a large-scale path loss modeled by power-law 
function. The fading channel gains are assumed to 
be mutually independent and identically distribut-
ed (i.i.d.). Finally, omni directional transmission is 
assumed at both CBSs and DBSs to provide uni-
form antenna gain pattern in all directions.

SIMULATION SCENARIO

In this article, our emphasis is on network wide 
effi  ciency analysis for an ultra-dense deployment 
of DBSs having same order of deployment density 
as UE population. The analysis is performed for 
variation in three key design parameters, namely: 
the active UE population (pUE), Stienen cell size 
factor (), and DBS deployment density (DBS). 
The active UE population denotes the percentage 
of UEs that participate in the downlink scheduling 
process, hence determining the average geome-
try of the SpiderNet network. If this percentage 
of participating UEs is low, the average separation 
between UEs is increased, thereby also increas-
ing the mean of Stienen cell sizes (or S-Zones) 
around UEs. Another consequence is the increase 
in probability for an arbitrary UE to be sched-
uled via DBSs in a fixed DBS deployment. The 
Stienen cell size factor is simply a parameter that 

varies between 0 and 1. A factor of 1 indicates 
that the S-Zones are at the largest allowable size 
and touching (but not overlapping) the closest 
neighboring S-Zones. Variations in this parame-
ter affect the UE load distribution between the 
CBS and DBS tiers, and consequentially impact 
the ASE and EE. Finally, a higher DBS deployment 
density also causes a larger number of UEs to be 
connected to the DBSs, which increases the SE 
but reduces EE owing to increased DBS power 
consumption. Unless otherwise specifi ed, the key 
simulation parameters are summarized in Table 1.

RESULTS AND DISCUSSION

We fi rst analyze the performance in terms of SINR 
cumulative distribution function (cdf) between 
UEs that are connected at different tiers in the 
network in Fig. 4. SINR is chosen as the fi rst met-
ric of comparison because it dictates several KPIs 
of interest such as coverage quality, link SE, ASE, 
QoS and QoE. We observe a clear distinction 
between the SINR of the UEs connected to the 
CBS and DBS tiers. More specifi cally, two distinct 
regions can be identifi ed from the multi-tier SINR 
distribution plot in Fig. 4:
• The majority of UEs are served via CBS tier 

having SINR less than 15 dB SINR for all the 
simulation cases.

• About 20 percent of UEs connected with 
the DBS tier have SINR over 20 dB for  = 
0.25. Doubling the DBS density has marginal 
impact on the SINR distribution. Doubling 
the S-Zone size increases the SINR by about 
5 dB for 60 percent of UEs.

The proposed architecture clearly outperforms 
the traditional non-user-centric HetNet deploy-
ment. Another insight from the fi gure is the abil-
ity of the network operator to tune the design 
parameters, in particular the S-Zone size, and vary 
the load sharing between the CBS and DBS tiers. 
Consequentially, through efficient self-organiza-
tion, the network operator may fl uctuate the per-
centage of UEs that avail extremely high user QoE 
at the cost of higher power consumption of the 
DBS-tier.

FIGURE 4. User quality of experience (QoE) comparison between SpiderNet and 
traditional HetNet deployment.
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Next, in Fig. 5, we plot network wide ASE 
and EE with variations in the design parameters 
, pUE, and DBS. We observe greater than 10x 
increase in network-wide ASE and greater than 
1000x enhancement in network wide EE when 
compared to the benchmark non-user-centric 
HetNet. In Fig. 5a, we observe a monotonic 
increase in ASE with an increase in the S-Zone 
size. This is because a higher S-Zone size corre-
sponds to more activated DBSs which enhances 
the network sum throughput. However, when 
analyzing the network wide EE in Fig. 5b, we 
observe that peak EE for pUE =1/2 scenarios is 
at  =0.2, while for pUE = 1, there is a marginal 
decrease in EE from  = 0.1 to  = 0.2, followed 
by a rapid decline to   = 0.5. While the ASE 
maximizes for largest DBS deployment density 
and UE density, the EE maximizes for largest UE 
population but lower DBS deployment densi-
ty. Similar trends are observed in Figs. 5c and 
5d where the ASE increases monotonically with 
DBS deployment density. On the other hand, EE 
increases with an initial increase in DBS due to 
an increase in sum throughput, but with a fur-
ther increase in DBS, the additional power con-
sumption due to both active and inactive (due 
to signaling) DBSs kicks in causing a decline in 
EE (Fig. 5d). The network operator therefore has 
the option of dynamically adjusting the network 
parameters , pUE and DBS to balance between 
a high ASE or EE depending upon its spatiotem-
poral business model.

CONCLUSION

In this article, motivated by the fundamental lim-
itation of the legacy cellular architecture in 
terms of simultaneously yielding gain in SE and 
EE, we present a novel SpiderNet architecture 
for future cellular networks vis-a-vis 6G. Spider-
Net exploits the concept of user centric elas-
tic and on demand cells and databases at the 
base stations to intelligently maximize both SE 
and EE in response to spatiotemporally vary-
ing demands. We have also identifi ed key chal-

lenges that need to be addressed in realizing 
the SpiderNet architecture in practice and dis-
cussed potential solutions. Preliminary results 
show that the SpiderNet architecture can sig-
nifi cantly improve SE as well as EE compared to 
legacy HetNets and thus has the potential to be 
further investigated and adapted as an alterna-
tive architecture for future cellular technology 
and standardization.
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