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ABSTRACT ARTICLE HISTORY

In this paper, we present a case study that performs an unmanned aerial Received 17 May 2021
vehicle (UAV) based fine-scale 3D change detection and monitoring of Accepted 5 August 2021
progressive collapse performance of a building during a demolition

event. Mult'i—temporal oblique photogrammetry images are collggted 3D change detection; multi-
with 3D point clouds generated at different stages of the demolition. temporal data registration;
The geometric accuracy of the generated point clouds has been oblique photogrammetry
evaluated against both airborne and terrestrial LiDAR point clouds,

achieving an average distance of 12 cm and 16 cm for roof and facade

respectively. We propose a hierarchical volumetric change detection

framework that unifies multi-temporal UAV images for pose estimation

(free of ground control points), reconstruction, and a coarse-to-fine 3D

density change analysis. This work has provided a solution capable of

addressing change detection on full 3D time-series datasets where

dramatic scene content changes are presented progressively. Our

change detection results on the building demolition event have been

evaluated against the manually marked ground-truth changes and have

achieved an F-1 score varying from 0.78 to 0.92, with consistently high

precision (0.92-0.99). Volumetric changes through the demolition

progress are derived from change detection and have been shown to

favorably reflect the qualitative and quantitative building demolition

progression.

KEYWORDS

1. Introduction

Unmanned Aerial Vehicles have found their ever-expanding use in a wide range of applications
through photogrammetric reconstruction and automated change detection (Yao, Qin, and Chen
2019; Colomina and Molina 2014). Given the relatively large relief difference with respect to the
image scale, image-based change detection as used in typical remote sensing satellite image-
based change detection (Tewkesbury et al. 2015) is no longer suitable for accurately identifying,
locating, and delineating changes of objects of interest (Qin, Tian, and Reinartz 2016). Most of
the existing work considered performing fine-grained change detection by utilizing standard photo-
grammetric products (i.e. digital surface models (DSM) and orthophoto) for various applications
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that range from crop growth analysis (Berni et al. 2009), illegal construction detection and waste
disposals (Yoo et al. 2017). However, the DSM is still regarded as a 2.5 dimensional (2.5D) product
such that the detected changes are often represented as height differences among multi-temporal
datasets, which needs to be accurately registered either through ground control points (GCP) or
reference tie points.

A greater advantage of oblique photogrammetric data is its ability to capture full three dimen-
sional (3D) objects, such that the change detection can be performed from a volumetric perspective
to understand complex changes in fine-scale. Although manifested as advantageous, there are much
fewer applications using 3D time-series datasets from UAV oblique images for change detection
reported than those based on 2D or 2.5D datasets. In this paper, a case study is performed that
utilizes UAV-oblique photogrammetry derived 3D data, to track a building demolition process
by quantitatively estimating the volumetric changes in full 3D. For this purpose, we developed a
fully automated change detection framework that performs a coarse-to-fine 3D density change
detection. To be more specific, our approach requires no ground control points or manually ident-
ified tie points for model registration, and the proposed coarse-to-fine strategy through the tem-
poral 3D dataset leverages well the noises and metric changes and is able to fully utilize the
temporal coherence along the time-series 3D data.

This research has led to two unique contributions: (1) we demonstrate through a full-scale case
study involving progressive building demolition event that was rarely reported through UAV-based
monitoring, which UAV-oblique photogrammetric 3D data can be particularly useful to track fine-
grained building damage progression or demolition; (2) we proposed an end-to-end workflow, with
a fully automated coarse-to-fine 3D volumetric change detection method that advances the typical
use of standard 2.5D geometric information to full 3D. Although our case study focuses on a build-
ing progressive demolition event, the proposed method can be readily used for any type of similar
event for fine-grained change analysis of multi-temporal 3D data.

The rest of this paper is organized as follows: Section 2 describes existing studies closely related
to our work; Section 3 introduces the proposed change detection framework, with subsections
describing details of the proposed approach. In Section 4, the case study and the collected data,
experiments, and result analysis are described in detail. Section 5 concludes the paper by suggesting
future improvements.

2. Related work

Applications using UAVs for inspection, detection, and surveillances are highly disparate (Gruen
and Beyer 2001), and our application involves the use of UAV for collecting and processing
multi-temporal 3D datasets, thus we briefly review related literature in the following two relevant
aspects: (1) 3D dataset registration, and (2) progressive change detection using multi-temporal or
time-series 3D dataset.

2.1. Multi-temporal UAV data registration

UAYV images for 3D applications are usually captured following photogrammetric blocks or certain
convergence patterns, i.e. (convergence image collection is centered at an object of interest). These
overlapping images are mostly tagged with Global Positioning System (GPS) and (optionally) Iner-
tial Measurement Unit (IMU) records that provide approximated geo-locational information and
camera poses. Therefore, if the GPS and/or IMU information is used, the resulting 3D photogram-
metric product (i.e. point clouds or 3D meshes) are considered to be approximately registered with
a derivation on the scale of 10-15 meters depending on the accuracy of the initial GPS data (Turner,
Lucieer, and Wallace 2014). These often constitute good starting points for explicit 3D registration
algorithms such as Iterative Closest Points (ICP) or its variants (Rusinkiewicz and Levoy 2001;
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Zhang, Yao, and Deng 2021) for precise 3D registration, since ICP algorithms require dense 3D
correspondences and iteratively estimate rigid or similarity transformation between 3D datasets.

In occasions without initial poses (e.g. no GPS and/or IMU records), existing approaches require
at least three corresponding points to start the algorithms. However, such registration algorithms
may be impacted by partial occlusions and outliers (or changes) when applied to UAV 3D datasets
(Yang, Shi, and Carlone 2021). These types of registration algorithms are developed to register
close-interval 3D scans and generally assume good content overlap and small outlier rates. Thus,
they are not suitable for applications where dramatic scene changes are observed between 3D data-
sets. Another line of method focuses on refining the pose estimation of the multi-temporal photo-
grammetric images, such that the estimated poses across multi-temporal acquisitions sit accurately
in the same datum, from which the derived 3D datasets are geometrically registered at the same
level of accuracy as the pose estimation, leading to implicit 3D registration. A common strategy
is to use GCPs that are assumed to be unchanged throughout the project, and separately geo-refer-
encing each UAV collection using these GCPs (Altuntas 2019), which requires manual measure-
ments in the image space. A few studies have identified that these manual efforts can be
dramatically reduced by utilizing the large number of feature points that tie the datum of all collec-
tions to the datum of one dataset (Qin 2014) or just simply place all images into a common bundle
adjustment (BA) (Li et al. 2017), herewith such an approach is denoted as feature-based 3D implicit
registration. As a result of successful BA, the resulting 3D datasets separately from each collection
with the refined poses can be precisely registered. This is regarded as a preferred approach since it
does not demand good initial poses or 3D correspondences as the feature extraction in the image
level is agnostic and can largely and automatically exploit unchanged regions through image con-
tent from multiple views, which can work under changes of the scene. However, potential draw-
backs of this type of methods are two folds: first, the feature point extraction across different
dates can be sensitive to illuminations and reflections (e.g. due to weather, rains, etc.). The chances
of such happening grow with the number of multi-temporal collections; Second, the paradigm pro-
posed by (Qin 2014) using one collection as the reference datum, or proposed by (Li et al. 2017)
using all multi-date collections in one single BA, can be challenged by the growing scene changes
resulting in growing outlier rates and consequently failure of the BA.

2.2, Time-series analysis and change detection in 3D

There are a plethora of change detection works using various types of remote sensing data and the
use of UAV images is simply regarded as an extension of them (Yao, Qin, and Chen 2019; Hechelt-
jen, Thonfeld, and Menz 2014). Given that UAV images are often collected through a photogram-
metric acquisition paradigm with potential derivable 3D data, here we focus on relevant work
primarily in 3D. Most of the work characterized applications through bi-temporal 3D change detec-
tion, in which height differencing (Altuntas 2019), voxel-based, view-based, or segment-based
methods (Pollard and Mundy 2007; Qin and Gruen 2014; Furukawa et al. 2020) were used to ident-
ify the presence of changes between 3D datasets, with post-refinement methods to improve the
resulting detection, among which application using oblique datasets are less reported, as well as
those using time-series 3D datasets. Bi-temporal 3D change detection often utilize voxel or volu-
metric presentations for change detection, and integrate sensor-specific properties, for example,
Hebel, Arens, and Stilla (2013) characterized change detection by identifying conflict of evidence
between airborne LiDAR (Light Detection and Ranging) data and the reference data in the laser
pulse propagation path for a voxel-based occupancy grid; Finer change detection methods focusing
on deformation modeling can be found in (Mukupa et al. 2017), under which the application is lim-
ited to small objects and building-facade and construction element levels (Kang and Lu 2011). A few
works are focusing on 3D multi-temporal analysis at wider regions using satellite-derived 3D time-
series data or DSMs, for example, Tian et al. (2016) used time-series DSMs generated from satellite
stereos to enhance the build construction/demolition dynamics across a few years, in which the
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time-series data added a continuity constraint (i.e. building demolition and construction at the
same location do not occur at high frequency), to improve the robustness of the change detection
results, and similar works can be found in Tian, Dezert, and Qin (2018). A notable line of work,
instead of modeling the changes and geometric measures, models the probability of voxels in occu-
pancy grid based on the radiometric consistencies of time-series images taken from multiple views
(Pollard et al. 2010; Ulusoy and Mundy 2014), which can take single image or views from a different
time as the input for change detection. However, since each image is tested against the radiometry
distributions in a 3D volumetric grid, the changes are essentially modeled in 2D and do not possess
information for 3D volume change extraction.

3. Methodology

Figure 1 presents the proposed workflow, in which we start with date 1 oblique images (data collec-
tion of the test site introduced in Section 4.1), and perform a classic BA and dense point cloud gen-
eration through dense matching. The computed poses are used as fixed observations and fed into a
successive BA for the oblique images captured from date 2, in which only the poses of the date 2
images are estimated. This is progressively performed as images of the new dates are collected
(introduced in Section 3.1). The estimation of image poses from each date comes along with

Oblique imagery Oblique imagery Oblique imagery

date 1 date 2 o date N
l BA 1 l BA2 l BAN

BA 2 BAN
Pose 1, i Pose 2, 3 Pose N,
Point cloud 1 Pose | Point cloud 2 Dy — Point cloud N
it \) fixed B lixed ' '
Multi-scale 3D Multi-scale 3D | . Multi-scale 3D
density feature density feature density feature
Hierarchical change detection

Detection results

Figure 1. The general workflow of the proposed method. Details of this workflow are explained in the texts.
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(multi-temporal) dense point clouds, of which we perform a hierarchical change detection algor-
ithm using octree-based multi-scale 3D feature analysis (introduced in Section 3.2), and yield a
changed area of each date. The proposed method aims to address two of the above-mentioned limit-
ations when applied to our case study of demolition monitoring (details of this case study will be
introduced in Section 4): (1) we build an implicit 3D registration paradigm by including progressive
and time-dependent observations into UAV image geo-referencing, to improve the robustness and
accuracy of 3D multi-temporal data alignment; (2) we propose to use an octree structure to rep-
resent the occupancy grid to reduce needed memory consumption and allow the flexibility to rep-
resent detailed structures, at the same time perform a coarse-to-fine detection to focus on major
volumetric changes in 3D at a fine-grained level.

3.1. Progressive registration and pose-estimation of multi-temporal UAV imageries

The proposed approach follows a feature-based implicit 3D registration paradigm as mentioned in
Section 2.1, and the goal is to perform accurate pose-estimation across multi-temporal UAV-obli-
que image datasets through bundle adjustment (BA), such that the estimate poses for each of the
images are consistent and within the same coordinate frame. The existing methods run a single
BA across the multiple-temporal datasets, which estimates the pose of each image simultaneously
(Lietal. 2017). As mentioned in Section 2.1, this introduces two potential drawbacks: (1) the num-
ber of tie points in a single BA grows exponentially leading to increased computations; (2) since the
single BA covers images from the first to the last date, the scene contents might change dramatically
leading to more outliers in tie points and unreliability in BA. We, hence, advance this paradigm
with a minor modification to allow progressive BA by complying to two constraints: (1) the tie
point matching is only performed between neighboring temporal datasets; (2) for each new tem-
poral dataset D;, we only estimate the poses of images in D; while keeping the poses in the previous
temporal datasets and observations (D;_y, ... D) fixed to resolve the datum for the new temporal
dataset for pose estimation, at the same time to remove outliers of the newly detected tie points. The
process is shown in Figure 1. To start, the first-date dataset is firstly geo-referenced via free-network
BA, with datum decided by keeping the center of mass of the perspective centers the same as GPS
positions. In addition, as a standard process, the GPS information will provide neighborhood con-
nectivity to guide the tie point matching to reduce the computational cost. With this simple expan-
sion of the previous approaches (Qin 2014; Li et al. 2017), the linearized observation formulation
with a slight modification of the general BA procedure (Yao, Qin, and Chen 2019) is as follows
Equation (1):

—ep = A1 X, + Aot + Aszi + Agtiyy + Aszi — Ip:Pp
—er = It, - lti: Pl‘, (1)
—e, =1, —1,: P,

where t; and z; are the exterior orientation parameter (EOP) vector and self-calibration parameter
(SCP) vector, respectively, for the georeferenced date i as the reference here while t;;;, z;1; are for
date i+ 1. X, denotes the object point vector recovered from date i and date i+ 1, with
Ay, Ay, Az, Ay and A5 being their associated design matrix, respectively. e, e; and e, represent
the true error vectors of image coordinates of all images on both date i and date i + 1, EOP, and
SCP of the reference date i. I, I, and I, are associated observation vectors of tie points between
the two datasets, EOP and SCP of the reference date. Pg, P, and P, are the prior weights of the
observations. EOP and SCP of the reference date i are fixed as observations, thus Py, P,, — .
The dense matching is performed using Agisoft Metashape (Agisoft Metashape User Manual Pro-
fessional Edition (version Version 1.7) 2021) based on the optimized poses mentioned above sep-
arately for each date, to yield multi-temporal 3D model/point clouds. We evaluate the relative
differences of the reconstructed surface at different dates to assess the level of 3D registration, a
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Jan 11
Jan 13
Jan 14
Jan 19
Jan 22
Jan 29

OEOEEOE

h 2 3 a 5 6 7 8 Measurement Line/m

Figure 2. Profile analysis of an unchanged portion of surface throughout different dates showing the level of registration accu-
racy (statistics shown in Table 1).

profile analysis of an unchanged surface is shown respectively in Figure 2, which has shown that
surface collected from different dates coincide well and only minor differences are observed. The
profile from the date Jan. 14’ appears to be slightly off from the other profiles, while still resides
within a reasonable range (ca. 5 cm). Table 1 evaluates the 3D geometric differences in the
unchanged area of the entire dataset by taking the first-date dataset as the reference and shows
that the mean registration accuracy ranges from 2 to 5cm for a 2 cm image resolution, which
has satisfactorily achieved an accuracy of 1-2 pixels.

3.2. Hierarchical volumetric change detection

With the produced dense point clouds from each date, we propose a hierarchical volumetric change
detection method to compute the changes of multi-temporal point clouds. The idea is to utilize a
coarse-to-fine strategy, to first locate areas where significant changes occur, and then progressively
refine the changes on finer scales.

3.2.1. Multi-scale tree structure and hierarchical process

To set up a multi-scale structure, we used the octree (Shaffer 2011), a tree-based structure is used for
partitioning the 3D space to adapt the distribution of the 3D point clouds. The octree tree starts its
root note to represent the entire bounding box of the 3D point clouds and divided the space equally
into eight volumes as child nodes (each is one-eighth of the parent node volume), and this division
along with depth (the number of divisions, or scales) is adaptively determined based on the density
of the point clouds within each divided volume.

In this work, we divided the space by an octree with the depth of 11 as an empirical value lever-
aging the desired level of granularity and computation time, which gives to a volume of 1/8'" of the
original volume as the finest scale (a volume of 0.027 m?). The choice of depth can be also optionally
determined by selecting the largest depth through portioning the point clouds given the desired
density. The detection of changes on a certain scale can be achieved by calculating the distance
of the 3D density feature per node (introduced in Section 3.2.2) for each node of the octree

Table 1. Registration accuracy of temporal dataset with respect to the reference day (January 11, 2021).

Mean of distance (m) Standard deviation of distance (m)
January 13 0.0471 0.1495
January 14 0.0339 0.0479
January 19 0.0259 0.0302
January 22 0.0513 0.0741

January 29 0.0272 0.0362
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partition. Since the octree structure is adaptive with respect to the point clouds and varies with the
point clouds, for this change detection purpose we used the octree structure generated by point
clouds from date 1. Our hierarchical change detection process starts with a coarse level (a depth
of 7 in our work). The detection on a finer scale is performed on the node (i.e. space represented
by this node) detected as changes in its coarser scale. This effectively removes those isolated seg-
ments of changes while focusing on volumes of changes where major activities are. The process con-
tinues throughout the scales and a post-connected component analysis (Beksi and
Papanikolopoulos 2016), as a common post noise-filtering method and easily extendable in 3D,
is performed on the finest scale to obtain the final change detection results. Figure 3 shows an
example of this process on the change detection of two dates, and points in each sub-figure (points

(d) Detection result advanced from (c)
Post-filering Depth=11

(f) Final detection result advanced from (e).

(g) Overview of January 29 data and (f). (h} Detailed view 1 at (g)

Figure 3. Hierarchical change detection process of point clouds of two dates (first and the last). ‘Depth’ represents the scale level
of the constructed octree. In each figure from (a) to (f), all points constitute the detection result at this depth. The final detection
result shown in (f) is marked in all other figures as a reference. Points of other colors are the points to be removed at different
depths. ‘Post-filtering’ in (f) was achieved by using connected components method. Colored print of this is available online.
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of all colors) correspond to the detected changes on different scales, and the red portion remains the
same throughout all the sub-figures, denoting the final detected results as a comparison. It can be
seen that more detailed changes are detected as the maximal depth of oct-tree decomposition
increases; large change segments are removed in the detections in a smaller depth (i.e. large gran-
ularity per node), thus avoid a large number of fractional noisy segments in the first place for the
detection.

3.2.2. 3D density feature for change vector analysis

Most of the existing methods perform an occupancy analysis for the volumetric space of the node
under evaluation, which gives a binary description of change based on whether points are presented
within the space for each point cloud. This can be particularly effective for point clouds with high
fidelities such as LIDAR. To accommodate the potential uncertainties of image-based point clouds,
we employ a ‘soft’ approach by evaluating the possibility of changes within each node using a 3D
density feature to form a change vector for analysis. For each volumetric space of the node under
evaluation, we equally divide them into N sub-voxels and the density of points of each sub-voxel can
be concatenated and form a N dimension feature vector F. Here the formed vector F; and F, for
two-point clouds are compared through their L-2 distance D as an indicator for the possibility of
changes, as formulated as:

Fr = [di1> dias - dki- . dkN], dii ERk=1,2

N
dk,i:i, N,ViER k=12
Vs @)

N
D=Y"||dy; — du,ll?
1

where N is the dimension of the feature vector, D is the Euclidian distance between two feature vec-
tors, d; is the density of a certain sub-voxel, N; is the number of points within the sub-voxel and V; is
the volume of sub-voxels.

4. Experiments and analysis

The UAV images were captured using a DJI Phantom 4 Pro model, and images are collected in six
separate days at two adjacent garage structures at The Ohio State University campus on North Can-
non Drive (in Figure 4). The buildings are 16 m in height and cover an area of 16,117 m*. From
January 11 to January 29, 2021, we captured 656, 547, 539, 638, 360, and 364 images respectively
with nadir and fagade viewing angles, and the collected dates do not cover the entire demolition
process due to logistical constraints. The BA and dense point clouds generation are performed
on a general workstation with an Intel Xeon W-2275 CPU, and dual GeForce RTX 2080 Ti graphics
card. The processing time for each date data were approximately 90 min. The number of dense
points of the generated 3D model ranges from 271,656 to 561,627 per date.

4.1. Data collection

The oblique photogrammetric data are collected through five pre-defined flight trajectories, includ-
ing a 45 degree off-nadir angle regular block (hereafter we call overview trajectory) with an 80% of
both forward and side overlap. The overview flight design, in consideration of the camera focal
length, has yielded a ground sampling distance (GSD) of approximately 2 cm on the roof of the
buildings. The facades of the buildings are captured through four separate trajectories that follow
the edge of the buildings to capture the details of the stories. In particular, the images are captured
in a confined urban space where the UAV is flown close to the fagade surface due to the presence of
high-rise nearby buildings (to the east of the buildings shown in Figure 4), which leads to a large
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Figure 4. Study area is located at the North Cannon garage structures at The Ohio State University campus. Two adjacent build-
ings outlined in red are the object of interest that are subjected to demolition event during January-February of 2021.

scale difference with respect to images in the overview trajectory (with GSD varying from 0.7 to
2 cm). Therefore, the four fagade trajectories are flown at two height layers such that the top
layer serves as the convergence layer to be connected to images of the regular blocks, and particu-
larly, to have the convergence angle less than 40 degrees with respect to the overview to allow suc-
cessful tie point extraction. The sampled camera stations of each trajectory are shown in Figure 5,
rendered through Pix4D software (Pix4Dmapper 3.2 User Manual (version 2017), n.d.).

Figure 5. Flight trajectories of our monitoring mission with sequence numbers, visualization of the cameras produced by Pix4D
software.
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4.2. Accuracy analysis of the produced 3D point clouds from UAV images

To understand the metric accuracy of the 3D point clouds generated through UAV images, we com-
pared them with the LiDAR point clouds collected both from an airborne platform (for top roof
structure) through the State of Ohio and a Leica RTC360 terrestrial platform (for facade structure).
We therefore respectively compute the point-to-plane distances between the drone data (from one
date) and the LiDAR data for both roof surface and fagade surface. For each point of the drone point
cloud, the point-to-plane distance computes the Euclidean distance between the drone point and
the plane formed by the closest N points in LiDAR data.

Prior to the distance computation, the drone point clouds and the LiDAR point clouds are regis-
tered using the ICP (iterative closest point) algorithm (Besl and McKay 1992) to remove any sys-
tematic differences. The roof surface and one of the facade surfaces are extracted to measure the
reconstruction accuracy and the results are shown in Figure 6 and Table 2. As shown in Table 2,
we observed that in general, the drone-based point clouds in our acquisition configuration achieve
10-15 cm relative accuracy to LIDAR point clouds, and the accuracy for the roof structures appears
to be slightly better than for the fagade structure, even though the GSD of the fagade is smaller than
the roof structures. This attributes to two main reasons. First, the overview images capturing the
roof geometry follow a well-designed photogrammetric block pattern, while the fagade images
have only a maximum of two strips. Second, the scene contents from the overhead perspective
have richer contents and larger depth variation, both of which contribute to a more robust bundle
adjustment and dense matching results. As can be seen from bottom left illustration in Figure 6, the
error map indicates that the eastern sides of the buildings have larger errors than the western sides,
which is likely attributed to the suboptimal collection geometry of oblique images on the eastern

Overview

(1) Roof surface (2) Fagade surface

Figure 6. Reconstruction accuracy for the roof surface and facade surface of drone data. (1) is the roof area of drone point cloud
and its error map with respect to airborne LiDAR (through the State of Ohio) while (2) is the facade surface of drone point cloud
and its error map with respect to LiDAR (through a Leica RTC360 laser scanner).
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Table 2. The distance statistics of top-view and facade-view.

Roof surface Facade surface
Average distance (m) 0.1255 0.1651
Standard deviation (m) 0.1088 0.1514

side due to the nearby high-rise building (see Figure 4.). The accuracy for the fagade as shown in
Figure 6 (bottom right) shows no significant systematic patterns in the error maps although the
overall accuracy is lower than that of the roof.

4.3. Change detection accuracy analysis

The change detection is performed for consecutive dates. To analyze the accuracy of the change
detection accuracy, we quantitatively evaluate the results for the first date (January 11th) and the
last date (January 29th) data. We selected four representative regions of changes in the building
and manually labeled the changes to serve as the ground-truth for the assessment, respectively.
Two surfaces are from the roof and two are from the fagades, as shown in Figure 7 (first row).
The detailed views of these four regions are in the second and third rows of Figure 7. These regions
are selected to both include change and unchanged areas and our detection results are shown as true
positives (TP, in green), false positives (FP, in blue) and false negatives (FN, in red). True negatives
(TN) are pixels without any masks. In general, the detected changes coincide well with the ground
truth as a result of the large proportion of the TPs, and it can be observed that the proposed method
underestimates the changes given the notable number of FNs. This is counter-intuitive to most of
the change detection studies reported in the literature since they tend to overestimate the changes
given the uncertainty of the data for comparison and other disturbances factors such as moving or
temporary objects. Since the proposed change detection application explores the full-scale 3D infor-
mation with a robust density-based change vector, any subtle changes within a volumetric unit, if
not significantly introduce density changes, will not be captured unless the depth of the octree is
increased to have finer scales. This is expected in our specific application, due to the fact that
changes occurring in a demolition site are rather focused, thus we aim our method to minimize

Figure 7. Change detection accuracy evaluation of date 1 (January11) and date 2 (January 29). The first row: overview of the four
selected regions; The second and third rows: enlarged views of the results for the four regions. True positives (TPs), false
positives (FPs), false negatives (FNs) are shown on the image. Color print of this figure is available online.
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potential false positives by robustly highlighting the focused changes. We expect that increasing the
depth will reduce the FNs and may potentially introduce more FPs, and vice versa. Therefore, a
depth of 11 in our experiment is an empirical trade-off that gives realistic volumetric change esti-
mations, as the FN regions, although notable, only contains relatively minor changes in volume and
will unlikely to pose a significant impact in volume changes.

We use different metrics including intersection over union (IOU), precision, recall, and F1 score
as the measures of accuracy. Results of these four regions are in Table 3, and it can be seen that our
proposed method, in general, has yielded an F-1 score ranging from 0.78 to 0.92, indicating the level
of agreement between the detection and the ground truth. Although the highest Fl-score is
achieved on the roof surface and the lowest on the fagade, we do not observe a notable systematic
difference in the accuracy achieved for roof and facade structures. In addition, our method has
achieved consistently a high precision in detection, this is of particular use when being used for cal-
culating volumes of changes.

4.4. Derived volumetric changes

By progressively applying the proposed methods on the data of these six dates (following the general
workflow in Figure 1), we visualize the detected changes in point clouds showing the building
demolition processes, colorized based on the date of changes in Figure 8, where the arrow shows
the progress where the demolition starts and moves towards the other parts of the buildings. Demo-
lition starts from the middle of the building in the North (Figure 4) and it starts from the edge in the
South building.

We further compute the volumetric changes throughout the demolition process. To compute,
the point cloud, partial meshes need to be converted to a complete and watertight surface
model. However due to the often-unavoidable occlusions in data collection, directly taking the
interpolated surface model will result in significant overestimation of volume, especially for
multi-story buildings. We, in turn, utilize the octree structures that we introduced before for
each pair of temporal point clouds. Then, we compute the changed volume within the cubic volu-
metric space (a voxel) of the finest scale, which is detailed as: for two-point clouds P and Q, an
octree is built for one of the point clouds where the changing voxels K on the finest scale can be
identified. The changed voxels K are projected to the ground plane, forming a 2.5D grid map.
The changing volume of each occupied grid can be regarded as a mini-2.5D surface. The volume
of changes is then computed as the grid area times the height difference of P and Q, within that
grid. The changing volume V is computed by summing up the changing volume of all occupied
grids:

V=25 h 3)

where V is the volume, i is the index of the occupied grid, s is the grid size, h; is the difference of
height in the grid i. Figure 9 depicts the cumulative volume of change and the rate of the changes
during the demolition process, and it can be seen that from date 1 to date 6, there are in total
40,481.8 m’ volume of masses demolished. The speed of demolition starts slow, at a rate of
967.3 m’/day and keeps relatively stable (varying from 1152.8 m>/day to 1774.2 m’/day), and
almost doubled at the last seven days (2479.5 m’/day). This as a result leads to a 19836.1 m> of

Table 3. Accuracy evaluation of the change detection for the selected regions.

10U Precision Recall F1-score
Roof 1 0.8563 0.9299 0.9153 0.9225
Roof 2 0.6878 0.9982 0.6886 0.8150
Facade 1 0.7858 0.9967 0.8801 0.8801

Facade 2 0.6440 0.9999 0.6440 0.7834
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Figure 8. Visualization of the building demolition process. The arrow indicates the directions of progression of demolition. Por-
tion being demolished in different dates are colorized in differently for these different dates respectively follow the direction of
the arrow: (January 11-January 13), (January 13-January 14), (January 14-January 19), (January 19-January 22), and (January 22—
January 29). Color print of this figure is available online.
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demolitions in the last seven days, as compared to 20645.7 m” since the beginning of the demolition
to the beginning of the last week.

5. Conclusions

In this paper, we presented an end-to-end workflow for 3D change detection using time-series
UAV-oblique images. The idea is to perform a fully automated progressive bundle adjustment
and a coarse-to-fine 3D volumetric change detection framework to locate and identify the volume
of changes. The proposed progressive bundle adjustment follows and advances existing 3D implicit
registration paradigms to allow 3D collections to be robustly registered for evaluation, and the
octree-based volumetric change detection algorithm with a 3D density change vector is specifically
designed to reduce false positives commonly presented in change detection to ensure high
precision.

The proposed workflow is validated on a case study of building demolition event through pro-
gressive collapse, in which two adjacent five-story parking garage structures (with approximately
35,000 square meters of footage) underwent a demolition process and UAV-oblique photogram-
metric images are collected under a constrained collection environment, repetitively on six separate
days throughout the one-month demolition period. Our work has validated the proposed approach
through the following three aspects:

(1) We evaluated the generated UAV point clouds through cloud-to-cloud distance with airborne
and terrestrial LIDAR point clouds and concluded that our collection configuration (as intro-
duced in Section 4.1) yields point clouds with an accuracy of 12 cm on the roof structure and
16 cm on the facade structure.

(2) We evaluated the proposed hierarchical change detection algorithm against the selected regions
where ground-truth changes are manually labeled and achieved an F-1 score varying from 0.78
to 0.92, with consistently high precision (0.92-0.99), which is suitable to identify focused
changes occurring in a progressive manner.

(3) We calculated the volumetric changes using the collected data and demonstrated that the
derived statistics such as the total volume of change and the demolition rate may serve as useful
information for construction management or for assessment of structures that may be
damaged or partially collapsed after a man-made or natural disaster.

We consider this work has presented a useful workflow and a full-scale case study that will pro-
vide useful knowledge to potential researchers and engineers for such ultra-high-resolution moni-
toring tasks using UAV-oblique photogrammetry. In our work, we noted the drawbacks of this
method still lies in the lack of control of octree depth, as well as a more accurate presentation
for volumetric calculation under cases where partial occlusion of the geometry exists Therefore,
our future work will attempt to address these challenges.
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