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Abstract—Robust Mask R-CNN (Mask Regional Convolu-
tional Neural Network) methods are proposed and tested for
automatic detection of cracks on structures or their components
that may be damaged during extreme events, such as earth-
quakes. We curated a new dataset with 2,021 labeled images for
training and validation and aimed to find end-to-end deep
neural networks for crack detection in the field. With data
augmentation and parameters fine-tuning, Path Aggregation
Network (PANet) with spatial attention mechanisms and High-
resolution Network (HRNet) are introduced into Mask R-CNNs.
The tests on three public datasets with low- or high-resolution
images demonstrate that the proposed methods can achieve a
big improvement over alternative networks, so the proposed
method may be sufficient for crack detection for a variety of
scales in real applications.

Keywords— structural damage detection, crack detection,
PANet, HRNet, attention mechanisms, Mask R-CNN.

L INTRODUCTION

A. Introduction

In an Artificial Intelligence (Al) application, agents learn
from the environment and take actions. Commonly these
agents on special tasks use state-of-the-art deep learning
methods for solving real world problems. For Structural
Damage Detection (SDD) and Structural Health Monitoring
(SHM) applications, automation has been attracting attention
since the advanced sensors, vision- or vibration-based, are
supported with deep learning methods [1]. Thus, platforms
like UAVs (Unmanned Aerial Vehicles) and UGVs
(Unmanned Ground Vehicles) are employed in field
inspections for SDD when human experts cannot timely and
safely access to the damaged infrastructures after large wind
or earthquake events. Surveillance cameras are installed to
monitor the performance of structural members of critical
structures, such as important bridges and buildings, during
their service life. Depending on its capability to process the
information from sensors, an agent for these tasks can be
smarter if it interacts with the environment around it [2]. In
typical collected images, there are too many items together or
cluttered. Some important indicators of structural damage like
cracks are usually small and may not be easily noticeable.
These indicators may be salient and clear in other special
scenarios. Therefore, it is necessary to define the fundamental
problem, i.e., scene levels, for this task. It is possible to find
robust and accurate models that can be adapted to changing
environments if those models can be tested.

When automatic damage detection is used with vision-
based technology, there are two main branches: image classifi-

cation and image segmentation. The goal of classification is to
identify the categories of structural attributes such as material
type (e.g., steel, concrete, masonry) or structural damage type
(e.g., cracking, spalling) without identifying the position of
damage in images. On the other hand, image segmentation can
detect and mark specific objects, which can be used for
quantification in the next step. Image segmentation process
labels classes of the damage (semantic segmentation) or
partitions individual damage with masks (instance seg-
mentation) for each pixel within the images [3], mainly to
detect and delineate different material failure including cracks,
spalling and other indicators of structural damage in SDD. In
this paper, we focus on crack detection.

Cracking is an initial signal of material failure or even
potential structural collapse, but cracks may look totally
different in images taken from different angles and distance.
Similarly, other types of structural damage manifest
themselves differently within complete different scenes.
Scene levels of structural damage can be defined as pixel level,
object level and structural level [4]. As explained by Bai et al.
[5], typically structural components like columns, beams and
walls are zoomed in and partially captured at pixel level, but
appear complete in object-level images and can be recognized.
Meanwhile, an entire building or bridge can be seen in
structural-level images. Therefore, typical cracks in pixel-
level images are short and wide, while they look long and
narrow in object-level images. Cracks also show up in
structural-level images whereas they become less visible and
are accompanied with crack-like objects as scale increases
(see Figure 1). Due to these characteristics, typical images
taken at different scales are selected for labeling and are used
for training the deep learning models to locate the cracks
automatically [5].
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Fig. 1. Three scene levels (scales) in our methods
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B. Problem Statement

The image scale problem in SDD is challenging in current
research. For example, the deep learning models in [6, 7, 8]
have a very high accuracy for pixel-level crack detection,
however, no details are available about how they may work
on larger scales, e.g. at object or structural level. Hoskere et al.
[9] apply Residual Network (ResNet) and Visual Geometry
Group (VGQG) network to identify and segment seven classes



of structural damage including cracks. But the accuracy of
mask prediction on large-scale images is far from being
adequate since only several hundred images are used for
training.

We notice the importance of scene levels in SDD and
SHM. And we proposed a two-step method, called cascaded
network, with a ResNet to classify damage first and a U-Net
to finally mark the damage [5]. This is an indirect and time-
consuming way and the precision is not high. Therefore, in
this paper, we use thousands of images with cracks at various
scene levels for training and test state-of-the-art segmentation
networks with data augmentation and image enhancement
skills. Our tests are based on three public datasets. Thus, we
hope to find out how close our proposed models are to field
inspections on buildings and bridges damaged by major
earthquakes or hurricanes.

II.  RELATED WORK

A. Deep Learning with R-CNN in Image Segmentation

Major deep learning methods for image segmentation
include Fully Convolutional Networks (FCNs), encoder-
decoder based models, multi-scale and pyramid network
based models, Regional Convolutional Neural Networks (R-
CNN) based models, etc.. Each of these techniques has its own
contribution and unique aspects, and some of them are
typically used as benchmarks in computer vision [3].

In FCNs, multiple convolutional layers are employed on
the image directly as the feature extractors with the
downsampling and upsampling process inside sliding
windows, but its efficiency is very low. With R-CNN, the
image is preprocessed and thousands of Region of Interests
(Rols) for feature extraction with FCNs are eventually
produced. The R-CNN reduces the computational time
compared to alternative approaches and improves the
accuracy of segmentation. However, it still is computationally
demanding. Fast R-CNN and Faster R-CNN are quite
different from the conventional R-CNN. The former applies
FCNs directly on the Rols of the feature maps which comes
after convolutional process on the original image, but, in
Faster R-CNN, a network called Regional Proposal Network
(RPN) on these maps is inserted to automatically produce the
proposal, thus the speed and accuracy of prediction are
improved [10]. Neither of them are applicable for instance
segmentation. He et al. [11] propose a benchmark network,
Mask R-CNN, to predict the instance as well as its bounding
box and class. There are several significant variations on Mask
R-CNN while researchers continue to provide new backbones
for feature extraction in image processing. More details about
these methods will be discussed when our methods are
introduced below.

B. Structural Damage Detection and Crack Detection

Researchers have already adopted deep learning methods
for detecting structural damage. Yeum et al. [12] use AlexNet
to classify and identify the structural damages in post-event
buildings with large scale images, Hoskere et al. [9] illustrate
an experiment with 23-layer ResNet and 9-layer VGG
networks to classify and segment seven classes of structural
damage, including cracks, spalling, exposed reinforcement,
corrosion, fatigue cracks, asphalt cracks, and no damage. Ali
et al. [13] introduce Faster R-CNN into defects detection in
historical masonry buildings with high-resolution images.
Kong and Li [14] describe an application that detects and

tracks the propagation of cracks in a steel girder with a video
stream. Atha et al. [15] explain the different effects when two
algorithms of CNNss are used in detecting metallic corrosion.
Gao and Mosalam [16] started the Phi-Net Challenge for
collecting pictures of building structural failures in 2018 [16].
Their large dataset, which is used in this paper, is suitable for
training and testing different methods for structural damage
detection at different scales.

Crack detection with deep learning methods is an active
area of research. Zhang et al. [17] propose an improved CNN
for autonomous detection of pavement cracks at the pixel level.
Liu et al. [8] demonstrate the application with U-Net to
segment the crack on concrete structures. Their experiment
shows that the proposed network outperform the CNN which
was used by Cha et al. [18]. Dung and Anh [19] also use FCNs
for localizing the cracks on the concrete surface, Liu et al. [20]
implement DeepCrack, which is made of an extended FCN
and a Deeply-Supervised Nets (DSN), to pin the pixel-wise
cracks. However, these methods of crack segmentation are
based on pixel level images and less useful for structural
engineering applications.

Recent research in image segmentation have significantly
advanced deep learning based SDD and crack detection. Yang
et al. [2] employed a hybrid network, composed by
Holistically-Nested Edge Detection (HED) network and U-
Net, to detect cracks and spalling on concrete structures, and
then to reconstruct 3D model via Simultaneous Localization
and Mapping (SLAM) for UAV images. Cha et al. [6] applied
Fast R-CNN on detecting five types of structural damages,
including concrete cracks, steel corrosion with two levels
(medium and high), bolt corrosion, and steel delamination.
For this purpose, 2,366 images with the size of 500 x 375
were labeled for training. Attard et al. [21] trained a Mask R-
CNN with 200 images to locate cracks on the concrete surface
at pixel level. Kim and Cho [22] used 376 images in their
training data for Mask R-CNN to find the cracks on a concrete
wall with high-resolution cameras and utilized an additional
image processing procedure on each bounding box to
quantitatively measure the width of these cracks. Kalfarisi et
al. [23] introduced structured random forest edge detection
into bounding boxes of a Faster R-CNN to detect cracks on
infrastructures and compared with the performance of Mask
R-CNN. A total of 1,250 images were included in training and
validation process with the size varying from 344 x 296 to
1,024 x 796. These models are verified with images acquired
from field inspections on surface of structural and
nonstructural members, including building walls, bridge
columns, tunnel walls and roads. The results show that both
approaches are robust for this task. Finally, they used
photogrammetry software to construct a 3D reality mesh
model so that the cracks can be visualized and quantified
further [23].

C. Cascaded Networks for Crack Detection

Some researchers prefer to classify structural damage in
SDD because it doesn’t require additional resources for
labeling the damage. As a result, the location and position of
the damage on structural components or structures are
unknown until human experts manually check and mark them
out. These models can be trained with large number of images
while segmentation networks are facing insufficient training
samples. In order to inherit the advantage of classification
networks, it is necessary to employ a segmentation network to
locate the damage after various structural damage have been



classified. A cascaded network, including a ResNet and a U-
Net, was proposed to perform the detection of cracks [5]. The
152-layer ResNet can meet the requirements of the
identification of scene levels, material types, and damage
types. Even the severity of structural damage can be classified
[24]. U-Net is utilized in the second step to mark the damage
like cracks at various scene levels (scales). Then two public
datasets are tested by the proposed method. The results show
that the cascaded network can improve the accuracy of the
detection dramatically in larger scale tasks instead of being
limited to pixel-level detection [5]. A comparison between the
U-Net of this method and our proposed end-to-end Mask R-
CNN:s is illustrated in the experiment section of this paper.

III. FRAMEWORK OF THE PROPOSED METHOD

A. Data Preparation

We curated a dataset similar to Common Objects in
Context (COCO) and used it for training the pipeline because
of the fact that the COCO dataset does not contain any
structural damage and there are only a few open source
datasets available for cracking segmentation. The images
selected in our dataset are at various scales, and the tool
referred to as the COCO Annotator [25] is used to label cracks
for training. Some examples from this process are shown in
Figure 2. In these labeled images, cracks are in yellow and
background is in purple. Size of the training and labeling
images is varied from 168300 to 4600x3070. By excluding
steel structures, 2,021 images are labeled when surface cracks
appeared on structural or nonstructural materials at various
scales.
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Fig. 2. Some examples of training samples in our methods
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B. Data Augmentation with Albumentation

It is a common issue that training data are not sufficiently
large for the image segmentation task, so it is necessary to
increase the size of training data through augmentation. In this
work, we employed Albumentation to augment our training
data. Buslaev et al. [26] develop this method with pixel-level
transformation and spatial-level transformation, including
flipping, rotating, cropping, etc.. Spatial-level transformation
is adopted to preprocess our training data since it can change
the input images, masks and bounding boxes simultaneously.

C. Mask R-CNN with Path Aggregation Network (PANet)
and Spatial Attention Mechanisms (Mask R-CNN + A-
PANet)

He et al. [11] proposed Mask R-CNN for instance
segmentation, which is an extension of Faster R-CNN. A RPN
is inserted on feature maps to automatically produce Rols,
then a small FCN is applied on each Rol to segment the
instance of objects with masks when the classes and bounding
boxes of these objects are predicted with the same pipeline as
used in Faster R-CNN. In addition, different depth of ResNet
and the Feature Pyramid Network (FPN) are combined to
extract high-quality feature maps. Since Mask R-CNN is a
benchmark for instance segmentation in image processing,
many improvements have been made after it was published in
2017. The framework of Mask R-CNN is shown in Figure 3.
Liu et al. [27] improved Mask R-CNN by replacing FPN with
PANet to gain better performance. Because features of low
layers in the pyramid can reach high layers by skip-
connections and a technique called adaptive feature pooling
can fuse all levels of features for each proposal, their proposed
method achieves a higher accuracy when a modified approach
on mask prediction is also adjusted. Figure 4 shows the
framework of PANet, which is part of methodologies used in
this paper. Furthermore, inspired by Nie et al. [28] on their
application to detect ships from satellite images, we also
introduce spatial attention mechanisms as suggested by Zhu et
al. [29] into our methods. The goal of this study is to facilitate
the backbone of Mask R-CNN to extract more useful features
in crack detection. We call this method as Mask R-CNN + A-
PANet in this paper.

Fig. 3. The Mask R-CNN framework for instance segmentation [11]
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Fig. 4. llustration of PANet framework. (a) FPN backbone. (b) Bottom-up

path augmentation. (c) Adaptive feature pooling. (d) Box branch. (e) Fully

connected fusion. Note that we omit channel dimension of feature maps in
(a) and (b) for brevity [27].

D. Mask R-CNN with High-resolution Network (Mask R-
CNN + HRNet)

CNNs are backbones of segmentation networks. For
example, the original of Mask R-CNN uses a 101-layer
ResNet as its backbone. Sun et al. [30] developed a new
network named HRNet to extract features from an original
image. Utilizing repeated multi-scale fusions across these
convolutional blocks, this network maintains high-resolution
representations via inter-connection between high- and low-
resolution convolutional modules within a parallel structure.
As shown in Figure 5, there are four stages in HRNet. High-
resolution features are kept until the end of convolutional
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Fig. 5. A simple example of a high-resolution network. There are four stages. The first stage consists of high-resolution convolutions. The second (third, fourth)
stage repeats two-resolution (three-resolution, four-resolution) blocks [30].

operation, and low-resolution ones are added to each new
stage. The connection between them may be the key for better
feature extraction. In this paper, HRNet is also employed for
crack detection as the backbone of a Mask R-CNN and named
as Mask R-CNN + HRNet.

IV. IMPLEMENTATION

Our implementation with these Mask R-CNNs are
originated from MMDetection source codes [31]. Modifi-
cations are made to the training and testing process for
consideration of our specific problem and data. First, these
augmented images are trained and evaluated. Then, the data
from Phi-Net [16], the 2017 Pohang earthquake images [32]
and the 2017 Mexico City earthquake images [33] at various
scales are tested. The hyperparameters are defined as follows:
learning rate is 0.002, momentum is 0.9 and decay rate of
weights is 0.0001. The loss function for mask is “cross-
entropy” and for bounding boxes is *“ smooth L1”. The training
and testing for the model are using NVIDIA GeForce GTX
2080 Super. The total number of epochs for each training
model is 100.

A. Evaluation on the proposed models

Because the labeled data in training and validation have
the same format as COCO data, we followed the same
standard metrics to evaluate our models via assessing them
with our validation dataset. The result is shown in Table I. The
AP (Average Precision) is based on Intersection over Union
(IoU), while AP, APso, AP7s, and APs, APy, AP are defined
with different threshold values and scales. Here we report
Mask AP of box as most researchers have done. Both of the
original Mask R-CNN and the Mask R-CNN + A-PANet
employ 50-layer ResNet as the backbone, and the Mask R-
CNN + HRNet uses four stage high-resolution networks. The
AP metrics of our proposed Mask R-CNNs are improved
dramatically. This means the latest development of Mask R-
CNN has increased the chance to solve real crack detection
problem.

TABLE I
COMPARISON OF MASK R-CNNS WITH VALIDATION DATA

Methods AP APs0 AP75 APs APy APL

Mask R-CNN 21.7 54.9 16.6 28.6 41.2 23.1
Mask R-CNN + A-PANet 46.9 78.5 48.9 70.0 53.9 41.5
Mask R-CNN + HRNet | 59.3 86.7 63.6 80.0 58.4 62.2

The criterion for a valid prediction in the following tests is
defined as at least one crack being located by a bounding box
or a mask.

B. Testing on Phi-Net datasets [16]

The Phi-Net datasets, in which the images have been
rescaled to 224 x 224, are tested. There are three kinds of
datasets, pixel-level, object-level and structural-level images
with or without cracks. We also compared with the prediction

by U-Net in the cascaded network [5]. In the predictions of the
proposed approaches, Mask R-CNN + A-PANet is the only
method being used here because it works better in Phi-Net
datasets based on our observation. After considering the effect
of low resolution in the Phi-Net datasets, the threshold for
these cracks being detected is set as 0.2 instead of 0.5 as most
studies used.

The metrics including recall, precision and total accuracy
are used here:

TP
Recall = 1)
TP+FN
. TP

Precision = 2)

TP + FP
TP+TN

Accuracy = ————— 3)

TP + FP + FN + FN

where TP and TN are true positive and negative, FP and FN
are false positive and negative, respectively.

1) Pixel scene level Task in Phi-Net: There are 4,663
images in this dataset. The accuracy of prediction from U-Net
is 60.5% as an end-to-end network for crack detection. With
Mask R-CNN + A-PANet , the accuracy and the recall of
prediction can reach to 84.7% and 77.4% respectively for
detecting and locating the actual cracks.

Figure 6 shows some examples of correct prediction
from U-Net and Mask R-CNN + A-PANet. Cracks are marked
with red color from U-Net model in the middle images. In the
images on the right, the Mask R-CNN gives the masks and
bounding boxes in purple and green colors, respectively.
These colors have the same meaning in Figures 7, 8 and 9.

original U-Net Mask R-CNN + A-PANet
Fig. 6. Some correct predictions of U-Net and Mask R-CNN + A-PANet at
pixel level.

2) Object scene level Task in Phi-Net: We tested 5,713
images in this dataset. The accuracy of the prediction from
U-Net is 26.2% as an end-to-end network for crack detection,



but Mask R-CNN + A-PANet can obtain an accuracy of
77.1%. Its recall can achieve 62.3% while it is 59.6% in U-
Net model. It should be noted that at this scale there are more
objects like wires, windows and doors in images. Figure 7
shows good predictions of both U-Net and Mask R-CNN +
A-PANet.

3) Structural scene level Task in Phi-Net: A total of 5,832
images are included in this dataset. The accuracy of the U-
Net model is 8.9% whereas Mask R-CNN + A-PANet can
reach to 81.9% accuracy. The recall of the later is 40.9%
while that for the U-Net is 49.7%. It should be noted that in
this scale more objects (like cables, tree branches, and other
objects) are shown up in these images when cracks are less
visible. On the other hand, because there are so many images
without any cracks, and there are cracks less visible at such a
large scale with such low resolution, the overall accuracy of
Mask R-CNN + A-PANet can be very high as the recall and
precision can be low. However, it should be pointed out that
the predictions of crack location by Mask R-CNN + A-PANet
is more accurate than those from the U-Net (see Figure 8).

U-Net Mask R-CNN + A-PANet

original
Fig. 7. Some correct predictions of U-Net and Mask R-CNN + A-PANet at
object level.

U-Net Mask R-CNN + A-PANet

original
Fig. 8. Some correct predictions of U-Net and Mask R-CNN + A-PANet at
structural level

4) Direct test on Task 8 in Phi-Net: We tested the Mask
R-CNN model at various scene levels in the previous step.
We also wanted to know its performance by testing images at
different scales that are mixed together, which is more
common in field inspections. In Task 8 of the Phi-Net [16],
there are four crack types, including non-cracking, flexural
cracks, shear cracks and combined cracks. We incorporated
all these images with different cracks into a cracking class
while keeping the noncracking ones as another class. A total
of 1,502 images for non-cracking and 1,130 images for
cracking cases were tested with Mask R-CNN + A-PANet
and U-Net.

The results in Table II indicate that U-Net can lead to a
higher recall than Mask R-CNN + A-PANet for this dataset.
The table also shows that U-Net cannot discern those images
without any cracks as well as in the previous tests. Thus, the
accuracy and precision from U-Net are much lower than Mask
R-CNN + A-PANet. However, failure examples in Figure 9
show that the objects like wires, edges of windows, doors and
tiles, and trees are the main distractions being detected by both
models.

TABLE I
PREDICTIONS OF U-NET AND R-CNN + A-PANET ON PHI-NET TASK 8
Methods Accuracy | Recall Precision
U-Net 44.7% 98.5% 43.6%
Mask R-CNN + A-PANet 75.1% 67.7% 82.4%

Figure 9 indicates that the Mask R-CNN model still has
difficulties to handle these crack-like distractions, even the
shadows can cause erroneous prediction. In addition, all these
testing images are in low resolution while their size is
uniformly set as 224 x 224. This size may be good enough for
detecting pixel-level cracks and part of object-level cracks, but
not at the rest levels. This is one of the main reasons for the
poor performance on detecting cracks at larger scales.

B

Mask R-CNN + A-PANet
Fig. 9. Some incorrect predictions of U-Net and Mask R-CNN for Phi-Net
data
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C. Testing on the Other Two Datasets

In field inspections, high-definition cameras are
commonly used. We believe that cracks can be more easily
detected with high-definition images because the more pixels,
the clearer appearance of cracks. We began with a dataset of
our own, in which the image size is varied from 1600 x 1200
to 4290 x 3200, so that the parameters of these Mask R-CNNs
could be fine-tuned. With this, it is possible to predict and
mark more cracks in the images. The following parameters are
used for 2017 Pohang earthquake images [32] and 2017
Mexico City earthquakes images [33]: 1) the threshold for the
cracks being detected is set to be 0.5 as the original Mask R-
CNN does, and 2) the threshold for mask is reduced from 0.5
to 0.05 for inference. A comparison between Mask R-CNN
with A-PANet and HRNet is done here while the same
detection criterion is used as before.

1) Testing on 2017 Mexico City earthquake images [33]:
There are 4,136 images with two image sizes, 2740 x 3650
and 6000 x 4000, in this dataset. All of them are taken by
human experts at Purdue University when they conducted the
field investigation in Mexico City after a magnitude 7.1
earthquake in 2017. Figure 10 shows some examples of the
prediction from our models. The cracks are marked in purple
while the bounding boxes are in green in both Mask R-CNN
models. Colors have the same meaning in Figures 10 and 11.

The accuracy, recall and precision of the two models are
shown in Table III, two of them are very close except recall
for which there is a 9.1% difference.

Mask R-CNN + HRNet Mask R-CNN + A-PANet

original
Fig. 10. Prediction of Mask R-CNN with Attention PANet and HRNet for
2017 Mexico City earthquake images [33].

TABLE III
PREDICTIONS OF MASK R-CNN ON 2017 MEXICO CITY EARTHQUAKE

Methods Accuracy Recall Precision
Mask R-CNN + A-PANet 70.6% 53.6% 92.9%
Mask R-CNN + HRNet 73.0% 62.7% 90.5%

2) Testing on 2017 Pohang earthquake images [32]: In
this dataset, a team of researchers supported by the American
Concrete Institute (ACI) collected images during their field
inspection after a magnitude 5.4 earthquake in Pohang, South
Korea, in 2017. The total number of images used for testing
is 4,109. The images in this dataset have two sizes, 2600 x
3890 and 5180 x 3460. Some examples of the prediction are
shown in Figure 11. Accuracy, recall and precision of the two
models are shown in Table IV.

TABLE IV
PREDICTIONS OF MASK R-CNN ON 2017 POHANG EARTHQUAKE
Methods Accuracy | Recall Precision
Mask R-CNN + A-PANet 74.1% 56.9% 94.7%
Mask R-CNN + HRNet 74.0% 63.6% 88.3%

Table III and IV show that precision for Mask R-CNN +
A-PANet is higher than Mask R-CNN + HRNet while recall
of the former is lower than the later. But their accuracy is
close.

original Mask R-CNN + HRNet Mask R-CNN + A-PANet
Fig. 11. Prediction of Mask R-CNN with Attention PANet and HRNet for
2017 Pohang earthquake images [32].

3) Comments on the Testing Results of Two Datasets:
Tests show that cracks are more visible and easier to be
detected in high-definition images by our models. The
proposed end-to-end networks can reach a high accuracy for



detecting cracks on infrastructures after a disaster including
large earthquakes. Furthermore, it was also discovered in this
research that an appropriate angle and a right distance to the
observed objects are critical because they affect detection rate
even with high quality images. However, crack-like things
also distract the prediction of the models, which leads to
inaccurate detection. As a result, the proposed two Mask R-
CNNs work well at pixel level and object level but get worse
at larger scale.

V. DISCUSSION

In this work, the scene levels or scales are treated as a
fundamental problem in detecting small damage like cracks in
real world. So the models proposed in this paper are evaluated
using different publicly available datasets with an aim to find
end-to-end networks to segment them automatically and
accurately, regardless of its number, shapes and positions.
Some parameters used in the original Mask R-CNN are
identified to be fine-tuned in order to robustly detect the
damage in 2D images.

o With the latest developments in deep learning, end-to-
end networks make it possible to automatically
recognized damage from images of field inspections
after a large earthquake or a hurricane. Through tests
conducted on various selected images, we observed
that these proposed models can give very precise
prediction for instance of pixel-level and object-level
cracks, but they don’t work well at the structural level.
In addition to insufficient number of samples at such a
large scale included in our training data, thus may be a
result of distraction due to trees, wires, and other
crack-like things in the images. However, high-
resolution images are helpful for improving the models,
especially with HRNet, to detect real cracks. This is in
line with our goal to lower the effect of scale changing
in structural damage detection.

e Low resolution is commonly used with high speed
cameras whereas high resolution is standard for other
high quality data collection. Our testing results may be
useful for other researchers when they try to balance
the speed and resolution in their field inspection
missions. For example, Mask R-CNN + A-PANet can
be employed in video detection task and Mask R-CNN
+ HRNet is applicable in few shot task. We are
currently working on consistency prediction between
frames with these models.

e The inference speed for high-definition images is
much slower than for low-definition ones in the two
Mask R-CNNs. This is because more pixel-wise
processes are involved that leads to more time
consuming. In addition, the masks from the models do
not exactly fit the shapes and positions of cracks in
some cases, and not every crack is marked separately.
Therefore, we are still in the process of exploring
potential solutions for this problem.

e Better detection rate can be achieved only if the
appropriate distance and viewpoints are available in
the images from field investigations. Therefore, it is
feasible to train the agents to interact with the
environment to gain higher quality data in this task.

VI. CONCLUSIONS

In this paper, 2,021 images are selected and labeled as
training and validation data at various scales for structural
damage detection on surface cracks. The study is intended to
find robust end-to-end instance segmentation networks for
crack detection of visual data in field inspections after extreme
events such as large earthquakes and hurricanes. Several
public datasets with earthquake-induced damage are tested by
our proposed Mask R-CNNs with HRNet as the backbone and
with PANet combining spatial attention mechanism. Our tests
show that the proposed models are applicable for real practice
and robust to overcome the influence of scale difference. Thus,
it is possible that agents such as UGVs and UAVs are smart
enough to automatically detect the indicators of material
failure or structural collapse, especially by interacting with
the environment around them. In addition, we also show how
to adjust parameters to address our concerns that cracks are
identified and marked as accurately as possible.

Our future work is to generate more labeled data, in
particular larger number of large-scale images, for training
purposes. We also plan to add more validation and testing data
for real applications. There is a great potential for other deep
learning methods on instance segmentation. Moreover, the
speed and accuracy of structural damage detection need to be
improved to automatically identify damage from images
collected during field inspections.
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