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Abstract—Consider a Bayesian binary decision-making prob-
lem in star networks, where local agents make selfish decisions
independently, and a fusion agent makes a final decision based
on aggregated decisions and its own private signal. In particular,
we assume all agents have private beliefs for the true prior
probability, based on which they perform Bayesian decision
making. We focus on the Bayes risk of the fusion agent and
counterintuitively find that incorrect beliefs could achieve a
smaller risk than that when agents know the true prior. It is
of independent interest for sociotechnical system design that
the optimal beliefs of local agents resemble human probability
reweighting models from cumulative prospect theory.

We also consider asymptotic characterization of the optimal
beliefs and fusion agent’s risk in the number of local agents.
We find that the optimal risk of the fusion agent converges
to zero exponentially fast as the number of local agents grows.
Furthermore, having an identical constant belief is asymptotically
optimal in the sense of the risk exponent. For additive Gaussian
noise, the optimal belief turns out to be a simple function of only
error costs and the risk exponent can be explicitly characterized.

Index Terms—social decision making, distributed detection,
cumulative prospect theory

I. INTRODUCTION

Consider a committee where members convey their findings
to a chairperson that makes a final decision. Each member
has a private assessment of the issue under discussion and
presents a finding to the chairperson. The chairperson makes
a decision based on his/her own assessment and the findings
presented by non-chair members. In such a scenario, it is
common to assume members behave selfishly for their own
benefit, which is contrary to strategic behavior [2]. Here,
selfishness means optimizing one’s own performance without
consideration of other members, whereas strategic behavior
means decision making that optimizes the overall performance
of the team/group when considering the strategic responses
of other members. Also, each member’s selfish assessment is
often biased as people may have preconceived beliefs.

Another example can be found in labeling data by crowd-
workers in crowdsourcing platforms [3], [4], where sev-
eral crowdworkers label the same data independently. A
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Fig. 1. The star network model.

collector—possibly another crowdworker—aggregates such la-
bels as well as own observation and makes final labels for
the data. Like the previous example, crowdworkers’ goal is to
maximize their own labeling accuracy so that they maintain
a positive reputation in the platform, and the collector’s
goal is of course to maximize the final accuracy. Here, the
crowdworkers and collector may be biased to a certain label
when existing labeled data that were used for training are
biased.

The setting in these problems arises in numerous
technology-mediated social choice systems that must be en-
gineered. Consider recommendation systems in e-commerce
based on collaborative filtering. Customers select whether to
purchase a product for their own use, but a recommendation
algorithm collects those selections and combines them with
external information to assess the product’s usefulness for
future customers [5]. According to the assessment, the algo-
rithm recommends only useful products to new customers. In
addition, customers as well as a recommendation algorithm
often have bias in internally representing data (perception) of
whether the product will be useful or not. Introducing biased
perception is the main distinction of our work from existing
literature.

Our problem model is depicted in Fig. 1, but notations will
be formalized later. There is a common binary hypothesis
posed to a group of N + 1 agents. There are N local agents
that make binary inferences, which we assume selfish, without
interacting with others. Such inferences are collected and
used to improve the binary choice to be made by the fusion
agent. We consider a Bayesian setting, where the hypothesis
is randomly drawn according to a prior distribution. However,
a novel assumption of our work is that each agent perceives
the prior differently from the truth; we say each agent has a
belief for the true prior. Therefore, each agent makes a Bayes
optimal decision according to its own belief instead of the true



prior. We suppose the fusion agent makes the final decision in
the setup and hence is the most important node. Therefore, our
goal is to understand the effect of the biases and the optimal
combination of biases that minimizes the Bayes risk of the
fusion agent.

The main contribution of this work is twofold. First, we
identify that certain combinations of incorrect beliefs of
agents outperform the case of all agents making Bayes-
optimal decisions based on the true prior, as in Thm. 1.
As finding the globally optimal beliefs is challenging, we
suggest a person-by-person optimization (PBPO) algorithm
instead. In the setting of additive standard Gaussian noise,
the PBPO solution finds globally optimal beliefs obtained by
exhaustive search. Furthermore, the optimal local agent has a
distorted belief that overweights small prior probabilities and
underweights large prior probabilities, and the optimal fusion
agent has a belief that is the opposite of the prior, which we
refer to as a contrarian belief. Although agents in our model
need not be humans, considering the local agents as humans
reveals a connection to cumulative prospect theory that the
shape of the optimal beliefs minimizing the fusion agent’s
risk is similar to a human perception curve for probability in
cumulative prospect theory. So, one can claim that humans
are nearly optimal decision makers for information fusion in
star networks if heuristics from cumulative prospect theory is
permitted.

Second, we consider many-agent asymptotics and show that
having an identical belief, differing from the true prior in
general, is asymptotically optimal as the number of agents
tends to infinity—in this case, our focus is the risk exponent
of the fusion agent, that is, the negative logarithm of the
risk, normalized by the number of local agents. It turns out
that the optimal belief is a constant regardless of the prior,
as Thm. 2 states. In other words, irrespective of the true
prior, a certain constant incorrect belief for each agent in the
system, asymptotically in the number of agents, minimizes
the overall risk achieved by the fusion agent in the decision-
making process. In addition, the optimal risk exponent attained
in our setting is the best exponent in the strategic star network
[6]—the selfishness and misperception asymptotically incur no
additional loss in the Bayes risk of the fusion agent, in the risk
exponent sense.

There is a large body of related literature. Such infer-
ence problems over networks have been an active topic in
engineering and statistics for a last few decades. These are
so-called distributed detection or inference [7], [8], where
an agent aggregates decisions from neighbors and makes a
decision. We only provide a non-exhaustive list here: Among
numerous network structures, the most relevant work to our
setting is a star (also called parallel) network, where it is
common to consider the setting with or without a fusion agent
that aggregates local decisions and makes a final decision
[8, Chap. 3]. To ease analysis, the standard setting often
assumes that the observations of local agents are independent
conditioned on the hypothesis [9]. Variants of the standard
setting include when the link between the local agents and
the fusion agent may be rate-limited [10] or imperfect [11].
Asymptotic analysis of the optimal decision rule is given in

[6] as the number of local agents grows, and in [12] as the
observations are repeated many times while keeping a network
structure fixed. Among other network structures, tandem [13]-
[15] and tree [16], [17] networks are also widely studied.
For arbitrary graph networks, it is known that the unknown
hypothesis can be identifiable by exchanging a local inference
with neighbors and updating it over time [18]—[22].

Of interest to sociotechnical system designers [23], [24],
unlike machine agents such as sensor nodes, human behavior
has bounded rationality and is affected by individual percep-
tions of the underlying context. To explain why people make
irrational decisions under risk, cumulative prospect theory [25]
introduces probability reweighting functions. Among many
reweighting functions (e.g., [26] and references therein), the
Prelec reweighting function [27] satisfies a majority of axioms
of cumulative prospect theory, called compound invariance,
and explains empirical results well. As we will see, the
Prelec reweighting functions are similar to the set of beliefs
of individual agents that minimize the collective risk in our
model. It brings up an application scenario such as human-
Al teams, e.g., an Al recommendation algorithm based on
decisions made by humans.

However, our model differs from the existing works in
two important ways. First, agents do not have knowledge
of the true prior, but hold their individual perceptions of it,
which we call their beliefs. Therefore, agents make a biased
decision based on their own perception. Second, differently
from the cooperative decision making of the prior works, the
agents in our model make selfish decisions that minimize their
individual perceived risk.

Our finding opens a new avenue for improving decision
making in networks using non-idealities. Existing literature
mainly focuses on the performance in discrete-observation
models. For instance, introducing a few Bayes-irrational re-
vealers acting only on their private observations [28] and
adding noise to decision history [29] are known to prevent or
reduce incorrect detection of the community, which is called
an incorrect information cascade [30], [31]. In addition, it is
known that diversifying beliefs via stochastic generation [32]
improves an incorrect information cascade. Our work can be
thought of as an investigation into the optimal realization of
such stochastic beliefs. Further, both works give the same
message—a system knowing the true prior has room for
further improvement. Our result demonstrates a new case
where non-ideality improves performance in a continuous-
observation setting. The finding of this work is also different
from our previous research [33], where we studied a tandem
of agents that have private beliefs and make a decision se-
quentially. Focusing on the Bayes risk of the last-acting agent
of the tandem, we proved in [33] that a certain combination
of incorrect beliefs achieves a smaller Bayes risk than that
with correct beliefs. While the current work also shows a
similar conclusion that incorrect beliefs are beneficial in the
newly considered star topology, technical details are largely
different. For instance, unlike a tandem network, previous
(local) decisions are made in parallel without interaction
among agents. Therefore, the fusion agent has to take multiple
local decisions into account at the same time, which results



in non-monotonic behavior in Fig. 2, in stark contrast to the
result of [33].

This work was first presented in part in [1], where the main
focus was on the suboptimality of correct beliefs, and our
analytic understanding of the optimal beliefs for the many-
agent setting was limited. In this work, we further investigate
and analytically derive the optimal belief and risk when the
number of agents tends to infinity. Also, Gaussian assumption
in noise model is relaxed in this work.

The rest of this paper is organized as follows. Sec. II
formulates our setting in a star network and provides the re-
quired preliminary. Sec. III investigates the setting with a finite
number of agents and presents results on optimal beliefs and
human agent approximation by cumulative prospect theory.
Sec. IV studies asymptotic optimality when the number of
local agents tends to infinity. Sec. V concludes the paper.

II. PROBLEM DESCRIPTION AND PRELIMINARY
A. Model

Consider a star network, depicted in Fig. 1, consisting of
N local agents and a single fusion agent, denoted as agent 0.
The underlying hypothesis, H € {0,1}, is a binary random
variable that follows the prior probability P[H = 0] £ 7o and
P[H = 1] = 1 — mp = 7o, which is unknown to the agents.
Instead of the unknown 7y, the i-th agent, ¢ € {0,1,..., N},
believes every agent perceives the same belief as well. The
i-th agent observes a continuous private signal Y; with den-
sity fy#(yi|h). For the inference problem to be non-trivial,
Jy1a(-10) # fy|a(:[1) and no realization of ¥ completely
determines H. The latter condition is formally equivalent to
that fy g (+10), fym(:|1) are absolutely continuous [34] with
respect to each other. In the sequel, numerical evaluations and
discussions are with additive Gaussian noise, that is,

Yi=H+2;, i€{0,1,...,N},

where Z; is an independent Gaussian noise with zero mean
and variance o2.

The i-th agent (i # 0) establishes a selfish binary decision
rule based on its own belief ¢; and private signal Y;. Hence
H;,i# 0 is a random variable that depends on (H,¢;,Y;) as
well as error costs that will be mentioned. The fusion agent
similarly makes a selfish decision, but it also otlserves previous
decisions made by local agents. Therefore, Hy is a random
variable that depends on (H, qo, H1, ..., Hy) as well as error
costs. Since H and H; are both binary, two error events can
be defined—false alarm (or type I error, i.e., choosing H; = 1
when H = 0), and missed detection (or type II error, i.e.,
choosing H; = 0 when H = 1). We assume correct decisions
incur no cost. Costs for false alarm and missed detection are
denoted by cpa and cuvp, respectively. In addition, we assume
that all agents agree on the costs.

Agents are Bayes-rational under ¢; and so make decisions
that minimize their perceived Bayes risk,

R = CFAQipﬁ,i|H(1|O)[i] +cemp(1 — Qi)pﬁi|H(O|1)[i]7 (1

where pg |H(1|O)[i]7pﬁ»|H(O|1)[i] are the false alarm and
missed detection probabilities “seen” by the i-th agent as if ¢;

is the true prior. As the i-th agent believes g; is the truth, it
computes the risk to be minimized based only on ¢;, not on
(mo,{q;}j:). In other words, R; ; is a function of the i-th
agent’s decision rule based on g¢;. In particular, Rq g is the
fusion agent’s perceived risk. The fusion agent thinks g is the
true prior and that the local agents share the same belief. Thus,
it interprets local decisions as if they are based on ¢g. Formal
calculation of the error probabilities are given in Sec. III-A.
Risks and error probabilities that do not include a subscript
[i] are the true quantities computed by an external oracle that
has knowledge of (7, qo,q1,---,9N),

)

We suppose that the fusion agent is the most important node
as its decision is final in the setup. Then, the natural question
is under what (qo, q1, - - . , g ) the true Bayes risk of the fusion
agent, Ry, is minimized. To simplify analysis, two cases when
the number of agents is finite and grows without bound are
considered separately.

We do not consider a scenario where the fusion agent
infers a belief of a local agent and tweaks ¢y for a better
decision. It is because iEferring q;, a continuous value, from a
single binary decision H; inevitably incurs errors in inference
such that |g; — ¢;| > 0 in probability, cf. compressing and
decompressing a uniform random variable into 1 bit [35]. For
the belief inference to be accurate, the fusion agent must have
a number of decisions per agent, which is also often infeasible
in particular when the decisions are from anonymous agents.

R; £ ceamopg, 5 (110) + empTopg,  (01).

B. Cumulative Prospect Theory

Cumulative prospect theory is a widely accepted theory of
biased perception by people [25]. According to it, people be-
have irrationally under risk, e.g., casinos, lotteries, and finan-
cial markets, because the human perception of probabilities is
distorted. So, cumulative prospect theory considers humans as
Bayesian decision makers with prior being reweighted. Here,
we review one of the widely used probability reweighting
functions in cumulative prospect theory: the Prelec reweight-
ing function. Unlike other empirical reweighting functions
[26], it is obtained from a set of axioms called compound
invariance. In addition, it has been found to explain several
observed irrational traits of humans and is defined as follows.

Definition 1 ([27]). For a,8 > 0, the Prelec reweighting
Sfunction w : [0,1] — [0,1] is

w(p; o, B) = exp(—F(—logp)®).

The function satisfies several properties such as:

) w(0;a,8) =0,w(l;a,B) =1, and w(p; a, B) is strictly
increasing in p.

2) When o < 1, it spans a class of curves that overweight
small probabilities and underweight large probabilities.
Similarly, o > 1 spans a class of the opposite shape
curves, i.e., underweight small probabilities and over-
weight large ones.

We will approximate optimal beliefs using the Prelec function
and discuss inferring from human decisions.



C. Definition and Notation

To simplify notation, we use x Z1,...,xN) to denote
a tuple of length N, and =%, = (z1,...,2i—1,Tit1,-. -, TN)
to denote a tuple excluding the ¢-th element. All logarithms
are natural logarithms. We use p, f to denote probability mass
and density functions, respectively. Q(z) is the complementary
cumulative distribution function of the standard Gaussian,

Q@ - | " o(t:0,1)dt,

where &(;u,0?) is the probability density function of the
Gaussian random variable with mean p and variance o2. We
say the private observation is sub-Gaussian if fy g (-|h) are
sub-Gaussian [36], i.e., for all s € R, h € {0,1}, there is a
variance proxy o2 such that

V=

0282
Eyim=nlexp(s(Y — Eyg=nlY])] < exp < > ) ~

Also, we use C(-,-) to denote the Chernoff information
between two probability distributions over a discrete space X
(371,

s€[0,1]

C(p1,p2) = — min log (Z pf(x)pé_s(a:)> .
rzeX

III. OPTIMAL BELIEFS FOR FINITE N
A. Belief Update

Before discussing the optimal decision rules of agents, let us
consider the standard case when agents know the true prior.
Since agents know g, the i-th agent can compute the true
risk and wishes to minimize the risk (2) by optimizing the
decision rule. Any decision rule, in general, is admissible, but
the likelihood ratio test (LRT) minimizes the risk R; [38]. That
is, if agent ¢ € {1,..., N} knows the true prior, the optimal
decision rule is as follows.

fyia(yill) ﬁi>:1 CFAT
Frir(wil0) 7o emp(1 —m0)’

3)

H;=1

where 2 indicates that H; = 1 if the likelihood ratio (the

left sidgl isogrgater than the decision threshold (the right side),
and declares H; = 0 if the likelihood ratio is smaller than the
threshold. As the distribution of y is continuous, ties occur
with measure zero and can be resolved arbitrarily without
affecting the risk.

Returning to our case when agent i believes that g; is the
true prior, the LRT decision rule that minimizes the perceived
risk R; ;] in (1) reduces to

Sy (yil1) ﬁi;l CFAG;

2\ =ANg). @
FrinWil0) 5= emo(1 — @) (@) @

Noting that when the noise is Gaussian, fyg(yi|h) is
Gaussian with mean h and variance o2, (4) can be simplified
to

Hi=1 1 )
yi 2 Mai)=5+o°log
H;=0 2

CFAY;
. 5
emp(1 — %’)) ®)

In this case, the conditional error probabilities for local agents
have a closed-form expression in terms of the @)-function,

Pa,u(110) = /A o(t;0,02)dt = Q <U) 7

PO = [ szﬁ(t;l,og)dt—l—Q(Alg 1). (6b)

The fusion agent with belief go has access to all decisions

(6a)

made by local agents, so its LRT, given (yo, h1,...,hnN) is

fY,fINIH(y‘)’hN“) 1?0>=1 CEAqo
—~ < .

fY,I?NlH<y0’ hN|0) Ho=0 CMD(l - qo)

Since Y, a Tyenes a ~ are independent conditioned on H,

o~ N A~
fyﬁN|H(y07hN|h) = fyim(volh) Hpgi|H(hi|h)~
i=1

Here pj. H is a function of ¢; only. However, the fusion agent
believes ¢ is the true prior that other agents use too. So, the
fusion agent computes p A, 3 if all local agents performed
hypothesis testing (4) with gg. It leads to the following LRT
that the fusion agent actually performs'

fyia (yol1) ﬁ‘fl CFAq0 Al pﬁi|H(hi|O)[0]

fy 1 (400) ﬁ0<:0 emp(1 = o) i=1 pﬁ“H(ﬁiU)[O] .

)

Since z/(1 — z) is monotonically increasing in z € (0,1), we
can translate (7) into a new LRT with updated belief ¢,

1) Ho=1 /
Jya(yol1) 02 CFAQ _ )
Sy (Wol0) 72 emp(1 — qp)
where g, satisfies
N ~
a5 _ % pﬁi|H(hi|O)[0] ©)
l—g 1—qo ;3 Pz, (hil L))
Finally, the true Bayes risk of the fusion agent is
Ry :CFAﬂ'opﬁolH(HO)+CMD7T0pHO|H(O|1), (10)
with
pﬁo\H(h()'h) = ZpﬁN,ﬁo\H(thhOM)'
AN
Let us consider numerical evaluations with N = 2, 3,

assuming additive standard Gaussian noise. As stated, the
fusion agent adopts the new LRT based on the updated belief
q(, as in (8). Fig. 2 depicts the updated belief ¢j, in (9) for
possible local decisions. The curves indicate how observing
local decisions changes the fusion agent’s initial belief. We
can see that gy significantly changes when observed decisions
significantly differ from what the fusion agent expects. For
example in Fig. 2(b), when ¢y is small, the fusion agent
believes H is highly likely to be 1. However, observing
(h1,ha, h3) = (0,0,0), its updated belief becomes close to
1 implying that it now believes H is highly likely to be 0. On

! Again, the subscript [0] denotes quantities that the fusion agent “thinks”,
i.e., computation is based on gop.
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Fig. 2. Updated belief (9) for all possible local decisions. Additive standard
Gaussian noise is assumed.

the other hand, observing (7’;1,7’},\27/};3) (1,1,1) it confirms
and further enhances the small ¢, so ¢{, < qo after observing
(hl,hg,hg) (1,1,1).

Note that the updated belief curves for each set of prior
decisions are not monotonic in ¢y, which is different from
what is observed for a tandem network [33]. The belief update
in a tandem network is indeed the same as (9) with N =1
at each update step, where it was proven that the updated
belief is always monotonically increasing in gy [33, Fig. 2
and Thm. 3]. However, it is no longer true in the star network
where multiple local decisions (N > 2) should be considered
simultaneously, as illustrated in Fig. 2.

By further looking into (9), we can see why such non-
monotonicity occurs. Let us define A(go) £ ¢4 (qo) —qo as the
amount of “surprise” in the local decisions, clearly a function
of go. Using A(qp), we can separately characterize the effect
of initial belief and observed decisions in the updated belief.
Note that the updated behef qO (go) is monotonically increasing
if and only if aqo =1 + A > (. Since ¢}, is non-monotonic,
we can conclude that the surprlse A(qo) could change more
rapidly below —1 as qg varies only when N > 2. This can be
directly observed from (9): Note that go/(1 — qo) is increasing
in qo, whereas pg. ‘H(h 0)i0)/Pag, |H(h |1)[o] is decreasing in
qo for both h =0, 1. So, the non-monotonicity occurs when
the last multiplicative factors in the right side of (9) are large
enough to counter the increment of go/(1 — o) term. This is
the case for Gaussian noise. In such cases, the change in the
surprise (i.e., the surprise from the local decisions) outweighs
the perceived belief change if N > 2, whereas the change
in initial perception (i.e., gg) always dominates in tandem
networks [33].

B. Optimal Beliefs

Following the LRTs (4) and (7), the local agents decide, and
the fusion agent’s risk Ry can be computed by (10). Note that
Ry is a function of (qgo,q1,...,qn) for given 7y and costs.
One might think that Ry achieves its minimum when each
agent knows the true prior, i.e., when qp = q1 = --- =gy =
o, since the local agents make the best local decisions and
the fusion agent does not misunderstand the context the local
decisions were made. However, we will see that this is false.

Recall local decisions are independent conditioned on H,
which implies Pg | H(ho\h) in (10) can be rewritten as

N
Z (HP@M’%IM) PﬁO|HﬁN(ho|h, hN).

AN \i=1

Pize m (holh) =

Then, (10) can be expressed as

N
Ry = CFAWOZ (HpﬁH(hz|0)> pﬁo‘HﬁN(HO,hN)

AN \i=1
N o~ ~
+ cmD o Z <HpﬁlH(h1|1)> pﬁO\H’ﬁN (O‘la hN)'
AN \i=1

(1)

The next theorem gives a condition that the optimal beliefs
achieving the smallest risk at the fusion agent must satisfy.
It shows that making decisions based on the true prior is, in
general, suboptimal, i.e., the optimal belief ¢ # 7 in general.
Before proceeding, let us define conditional error probabilities

for notational brevity. For j € {1,..., N},
pFA(Ej =h)
- Z Hpﬁi|H(hi|0) pﬁ0|H7gN A, (1)0, h h)
RN \i#i
(12a)
pMDO;j =h)
- Z Hpﬁi|H(hi|1) Piio\m, %, 1, (0|1, N, h).
RN \i#i

(12b)

By the sum over all decisions except for the j-th agent’s
decision, pea(h; = h) (or pmp(h; = h)) is the false alarm
(or missed detection) probability of the fusion agent when the
j-th agent declares h; = h.

Theorem 1. Let (¢35, 43, -.,q%) be the optimal belief tuple
that minimizes Ro. Then, it must satisfy

4% ™o pra(h; =1) —
l=q¢; 1—=m0pup(h; =0)—
forall je{l,... N}

Proof: Differentiating (11) with respect to decision
threshold \; and rearranging terms prove the claim. Details
are in App. A [ ]

Note that the fusion agent is more likely to declare ho =
1 upon observing hj = 1 than before observing it. So, the
last factor in (13) is the ratio of the change in false alarm
to the change in missed detection between h; = 0,1. Also
the right side of (13) is independent of g; since pFA(ﬁj =
h), pMD(h = h) are the false alarm and missed detection
probabilities of the fusion agent provided that h = h. Hence,
(13) can be thought of as a balance condition that the optimal

initial beliefs must satisfy for error probability changes. As
:DFA(h =1)— PFA(h =0)
pup (h;=0)—pwp (h;=1)

PFA( Y ) (13)

pvp(hj =1)

the value

is not 1 in general, g} # m in
general.
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Fig. 4. Optimal beliefs that minimize Rq for several numbers of local agents.
Additive standard Gaussian noise is assumed. The curves for N = 2, 3 (solid
and dashed, respectively) are found by exhaustive search to obtain the global
minimum, whereas curves for N = 5, 10 (dotted and dash-dot, respectively)
are drawn by assuming g1 = g2 = - -+ = gqx, i.e., possibly a local minimum.
Arrows indicate “as N grows”.

Fig. 3 depicts the optimal beliefs for additive standard
Gaussian noise with N = 2, ¢k = cup = 1, and 7p = 0.3.
In this case, the optimal beliefs are gy = 0.7372, ¢1 = ¢2 =
0.3960, as shown in Fig. 4(a), and resulting minimal Bayes
risk (triangle) Ry = 0.1918. Clearly, prior-aware local agents
mo = q1 = q2 underperform with Ry = 0.2039 (circle). Also
remark that when 79 = ¢ = ¢2 = ¢p, not shown in Fig. 3,
Ry = 0.1976 is attained, which is strictly worse than the

optimal risk.

This result can be intuitively understood as distortion caused
by decision making. As the decision-making process can be
thought of as quantization, what the fusion agent aggregates
are quantized versions of continuous signals Y;. Noting quan-
tization inevitably incurs distortion, the fusion agent attains
the best performance when local agents’ distortion and own
distorted understanding, caused by the local agents’ bias and
own bias respectively, fit well.

Fig. 4 depicts the optimal beliefs> for N = 2,3,5,10
as mo changes. Two observations can be made: First, the
optimal beliefs come closer to —2— as N grows for the

K CFAtCMD | c
entire range of my. It suggests that setting ¢; = —2— for

crAt+CMD

all ¢ € {0,1,...,N} would be asymptotically optimal as
N grows. If this is true, the optimal beliefs are universally
optimal, i.e., do not depend on my. We rigorously revisit this
in Thm. 2 in the risk exponent sense. Second, the optimal
local belief overweights small probabilities and underweights
large probabilities so it tends to be more neutral than the true
prior. In other words, to achieve the least Bayes risk of the
fusion agent, the local agents have to think the hypothesis
is fairer than the truth. However, the optimal local belief
still overweights or underweights the horizontal line CFAc_TigMD
To compensate for this bias, the fusion agent has to hold a
contrarian belief that is contrary to the true prior, i.e., believes
H = 0 more likely when H =1 is, in fact, more likely, and
vice versa.

Since a local decision is Bayes optimal only when the
decision is with the accurate knowledge of the prior, Thm. 1
indicates that the risk of the fusion agent is minimized only at
the expense of risks of the local agents. However, because
each agent minimized perceived individual Bayes risk, the
local agents do not realize that they sacrifice their risk for
the fusion agent. Thus, if an organizer of the decision-making
system intentionally provides the agents with appropriately
incorrect knowledge about the prior and makes the agents
believe it, local agents maximize the system performance
without being aware of their loss in risk. Recalling the labeling
example with crowdworkers, we can see that misinforming the
crowdworkers and collector of incorrect prior, for instance by
providing biased training data, is necessary for the smallest
final risk. However, it is notable that a data provider must
know the true prior as the optimal biased perception depends
on the true prior.

The global optimization problem for Ry over
(g0, q1,---,9n) belongs to neither a convex class nor
any analytically solvable classes, as far as we know. A
popular numerical approach for this is the person-by-person
optimization (PBPO) that optimizes only one variable at a
time with other variables being fixed, e.g., [39], [40]. The
next lemma proves that R is coordinate-wise convex, which
enables us to apply the PBPO to our setting.

Lemma 1. Ry is strictly convex in pﬁle(1|O),j €
{0,1,..., N} when other quantities are fixed.

2However, curves for N = 5, 10 are drawn with the assumption of identical
local beliefs, i.e., possibly a local minimum.
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Fig. 5. A sample trajectory of qo, q1,q2, Ro via Algorithm 1. The setting
is the same as Fig. 3: N = 2,19 = 0.3, cpa = cump = 1, additive standard
Gaussian noise. The algorithm with A = 0.0005 converged to go = 0.7372,
q1 = g2 = 0.3960, Rp = 0.1918: The same result as exhaustive search was
obtained.

Proof: Provided in App. B. ]

Algorithm 1: PBPO Algorithm

Hyperparameter: Step size A, stopping criterion
e>0

Output: PBPO optimal belief (qo, . . .

an)

Initialize g;, ¢ = 0,1,..., N arbitrarily;
while True do
*Update ¢;*
for i =0,...,N do
Risky « Ro(q), 4, - - -
Risk_ < Ro(q}, ), - - -
if Risk, < Risk_ then
| G+ at+A
else
| G a—A
end

7q£—1aQi +A7qi+17 .- )a
aq'£717Qi _A7Qi+17' . )’

end

*Stopping criterionx*

if [1(dhs - @) — (dos--- )2 < € then
‘ Algorithm stops;

end

end

Therefore, any convex optimization algorithm with re-
spect to {pgj| ;(1]0)}; numerically finds the PBPO solution
{pﬁj\H(”O)}J” which in turn results in the PBPO solution
(0,41, - - -,qnN) since they are in continuous bijection. Alg. 1
shows a naive PBPO algorithm with Gauss-Seidel update.
Throughout the algorithm, the step size is constant.

The algorithm exhibits monotonically decreasing Ry over
each iteration and Ry is bounded below, hence, converges.
Once the convergence occurs, there is no decrease in R along
any ¢-th direction; therefore, attains either a local minimum or
a saddle point [41]. Repeating the entire algorithm a number
of times with different initializations and selecting the solution
that yields the least risk gives the global solution numerically.

A sample trajectory of beliefs and risk during iterations
of the algorithm is shown in Fig. 5, assuming 79 = 0.3
and standard Gaussian noise. With A = 0.0005 being fixed

throughout the algorithm, values converged to ¢y = 0.7372,
g1 = q2 = 0.3960, Ry = 0.1918, which were obtained by
exhaustive search in Fig. 3. We also obtained the same results
(not shown) in Fig. 4, which numerically verifies that having
identical local beliefs does not lose optimality in the Gaussian
setting. As Alg. 1 is vanilla and there are numerous optimiza-
tion methods recently, further improvements are possible: For
instance, one can use gradient-based or second-order methods
as well as A-scheduling methods. However, such algorithmic
improvements are beyond our scope of this work.

Since the local agents’ observations are i.i.d. conditioned
on H, the assumption of identical local beliefs is often made.
This does not in general guarantee global optimality though,
cf. counterexamples can be found in [6], [42] for standard
distributed detection settings, it greatly simplifies analytic and
numerical analysis. Note that the fixed point in Fig. 4, i.e.,
To =¢5 = qf = ... = ¢y, is at CFAT*ZMD Restricting to
identical local beliefs, we can analytically prove that it is a
fixed point. Let us note a useful property of (13) before stating
1t.

Lemma 2. The right side of (13) is strictly decreasing in g;,
i€ {1,...,N}\ {j}, when other parameters are fixed.

Proof: Provided in App. C. [ ]
Now the fixed point result follows.

Corollary 1. Suppose the noise is additive, independent, zero
mean, and its distribution is symmetric, e.g., Gaussian noise.
Then, among the set of identical beliefs, i.e., ¢ = -+ = qn,

knowing the true prior is optimal when mo € {0, 32— 1}.

Proof: The cases o € {0, 1} are trivial so focus on my =

. b At this ¢}, each agent takes initial decision threshold
FA+CMD ¢

A = 1/2 by (5). It implies by symmetry that

P (110) = pgg, 1 (O1) and pyz (010) = ppg , (1]1).

Furthermore, when the fusion agent’s initial threshold is also
1/2, it holds by symmetry that

N _ TN
p§U|Hﬁl_Vjﬁj(1|Ov h—ja h) = pﬁo\H’ﬁi_ij[j (01, _'h—jv =h),

where —(-) stands for a flip of decision. Hence, pra (ﬁ] =1)=
pMD(ﬁj = 0),pFA(ﬁj =0) = pMD(ﬁj = 1), and therefore,
(13) hold. Since the right side of (13) is decreasing along the
q1 = --- = qn direction, the solution is unique and optimal.

C. Human-Al Teams

The model in this work assumes each agent perceives the
prior differently from the truth. This phenomenon has been
widely discussed in cumulative prospect theory, where people
do not perceive probabilities linearly and tend to overweight
small probabilities and underweight large probabilities [25],
[26]. Although agents in our model need not be humans,
considering the local agents as humans could have important
implications for socio-technical network inference systems.

Specifically, we study a problem of human-AlI collaborative
systems such as recommendation systems in e-commerce,
depicted in Fig. 6. To this end, we assume that human agents
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Fig. 6. A model of human-Al collaborative systems. Local human agents
provide inputs for machine judgment.
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Fig. 7. Optimal beliefs and their Prelec approximation. The noise is additive

standard Gaussian. Solid curves are the optimal beliefs and dotted curves are
approximation by Prelec function. Arrows indicate “as N grows”.

perform Bayesian decision making [43], [44], and their per-
ceptions follow the Prelec reweighting function [27] in Def. 1.
We also assume private observations are with additive standard
Gaussian noise, common in human signal perception [45],
[46]. The fusion agent, possibly an Al algorithm, can be
arbitrarily biased as we want, whereas human agents cannot be
and only follow the Prelec weighting law. The result in Fig. 4
indicates that the optimal beliefs of the local agents (that is,
human agents in this scenario) overweight small probabilities
and underweight large probabilities. We approximate ¢; by the
Prelec reweighting function in the minimax sense to see how
humans agents perform for the decision-making system, that
is, we find the Prelec parameters o*, 5* such that

(a*,5%) = argmin [[¢7 () — w(-; @, B)]|oc-
a,3>0

Risk

N =2,3,5.10 005

N =2,3,5,10

0 01 02 03 04 05 06 07 08 03 1 0

0.1 02 03 04 05 06 07 08 09 1
Prior m

Prior m

(@) cra = cvp =1 (b) cpa = 1,emp = 2

Fig. 8. Optimal risk and incurred risk by Prelec approximation. The noise is
additive standard Gaussian. The optimal Bayes risks are in solid curve and
incurred risks using Prelec beliefs are in dotted curve. Arrows indicate “as N
grows”.
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Fig. 9. The phase transition of the updated belief (16) for N = 100 local

agents with g1 = -+ = qi00 = 0.4. Additive standard Gaussian noise is
assumed.

The approximation result is shown in Figs. 7 and 8.3
Surprisingly, the Prelec weighting function approximates g;
well so that the extra loss due to the Prelec human agents is
negligible. This indicates that the optimal belief conforms to
some Prelec-weighted beliefs of humans, and so the irrational-
ity of humans might be well-suited to group decision making
in star networks. The largest extra loss of Bayes risk is, for
instance of N = 2 and equal costs, || Ry pre — Ro||oo ~ 0.0015
at mo = 0.35, while Ry at mg = 0.35 is 0.2053 so negligible.
The close approximation suggests that a fusion agent holding a
contrarian belief can work efficiently in the presence of human
irrationality, facilitating improved inference in a near-optimal
way.

Note that among many other reweighting functions, the
Prelec function satisfies a set of axioms called compound
invariance [27], and therefore, people widely use the Prelec
function for probability reweighting. The Prelec function is
not cherry-picked for our approximation purpose since all
reweighting functions have similar shapes, e.g., [26], with only
minor differences. Using another reweighting function does
not significantly change our observation.

IV. ASYMPTOTIC OPTIMALITY OF IDENTICAL BELIEFS

In this section, we consider asymptotics in many-agent star
networks as N — oo. Our final goal is to derive the asymp-
totically optimal belief tuple (g5,q;,...,qx) and its risk

3In numerical results, computations are only over mo € [0.05,0.95]
because of computational instability.



characterization. To this end, we begin with the assumption
that local decision rules are all identical, i.e., ¢ = --- = qn,
but go can be arbitrary. The choice of identical local beliefs
often results in a suboptimal risk [6], [42], while greatly
reduces the analytic and computational complexity. However,
we will see that the loss due to the identical beliefs is provably
asymptotically negligible. Recall the results for finite [V that
optimal beliefs g3, g are dependent on 7y so the external
system designer must have knowledge of the true prior to attain
the least Bayes risk. However, unlike finite N, we now show
that the choice of ¢y = q1 = --- = g = constant regardless
of 7y is asymptotically optimal, as in Thm. 2.

Let us first assume ¢ = = gy and observe the
properties of agents’ behavior. As the private observations are
ii.d. and depend on H, and each local agent decides as if ¢;
is the true prior, local decisions depend on H and are i.i.d. as
well. To be precise, let A; be the local agent’s decision region
for H; =1, i.e., A; is the collection of y such that

Jy 1 (yill)
fy#(yil0)

CFAQ1
emp(l —aqu)

Then, false alarm and missed detection probabilities can be
written as:

Pa 10 = [ Fu(dylo),

Pa O = [ (i),

which are deterministic functions of ¢;. According to the
property of the receiver operating characteristic (ROC) [47],
to £ g, (110) <t1 2 pg (1) for all g1, thatis, H; =1
is more likely when H = 1.

The next proposition discusses the phase transition of the
updated belief when N is large, which in turn implies the
decision is close to a deterministic function in (qo, ¢1). It is
illustrated in Fig. 9: As the updated belief is close to either 0
or 1, the decision is close to being deterministic.

Proposition 1. When g1 = --- = qu, the updated belief (9)
of the fusion agent approaches either 0 or 1 almost surely as
N — oo. The limit point is a deterministic function of (qo, q1)-

__ Progf: Consider the belief update formula (9) for
(h1,...,hy) and define a random variable r; to be the ratio

.. .7 . A 3 sin AV .
of decision 1’s in A%, ie., r £ W For brevity let

2 Py (000)0
P, 0D

s Prgr (0o pa, (10)0

Z1 .
Pa, r(010))  Pa, (1)

y 22

Let g be the updated prior at the fusion agent. Then,

Ry = cpamy o

Ry = cyp(1 — m)

0 0.2 04 0.6 08 1
g = ueri= gn

Fig. 10. Beliefs partition by limiting value of Ry € {0, cpamo, cMD 70 }-
The optimal points for large N suggested by Fig. 4, ie.,
cMD cMD cMD The
cratemp 7 cpatemp ’ cratemp
noise is additive standard Gaussian.

, are drawn in dotted line.

algebraic manipulation shows the following.

q6 qo0 N pﬁi|H(hi|O)[0]

T T
1= 1=90;pg, u(hill)

N
—_% (zl(QO)Zz(QO)“(q”) ) (14)

1—gqo

In addition, ﬁl, e ,?LN are N i.i.d. copies of Bernoulli random

~

variable with P[h; = 1|H = 0] = to(q1) if H = 0, and
Plh; = 1|H = 1] = t1(¢1) if H = 1. In other words,

t if H=0
r g 2 0l ’ (15)
tl(ql) if H= 1,
almost surely as N grows. As r; converges to cy > 0,
li N _ q0 ca\N
WL T g ) = g ()
{thﬁoo 1—q (leéo)N it H =0, (16)
=< N
limy oo 13—%0 (zlzél) if H=1

Depending on the value to be exponentiated, the right side
approaches either 0 or oo. Since /(1 — z) : (0,1) — (0, 00)
is monotonic in x € (0,1), the updated belief shows phase

transition. u
TABLE I
ASYMPTOTIC RISK OF THE FUSION AGENT AS A FUNCTION OF INITIAL
BELIEFS.

[ zlzgo [ z1z§1 H Limit value of Rg

CASE 1 > 1 <1 0
CASE 2 <1 <1 CFATO
CASE 3 > 1 > 1 CMDT0
CASE 4 <1 > 1 impossible




Prop. 1 reveals the fact that when N is large, the fusion
agent makes a decision that is asymptotically deterministic, as
a function of ¢; and ¢y no matter what value the private signal
Y, takes. Also, note that the true prior my does not affect the
decision by the fusion agent. It only affects K. This will be
a crucial observation in the proof of Thm. 2.

Updating the belief, the fusion agent always makes a correct
decision if ¢y = 1 when H = 0 and ¢j, = 0 when H =
1. Therefore, due to the property ¢y = pﬁi‘H(HO) <t =
Pi,| ;7 (1]1), the fusion agent is always asymptotically correct
at least for one hypothesis, no matter what (7o, go, q1) tuple
is used. As summarized in Tab. I, the case of always being
wrong (i.e., CASE 4) is impossible. We include the proof for
this statement in App. D for completeness.

Among the possible three cases, the shaded region in Fig. 10
illustrates Ry — 0 case for additive standard Gaussian noise.
Two important observation can be made: First, the shaded
region contains CFAT(D:MD =gy = q1 = - = gy (the dotted
line) for any cga, cmp, at which Ry asymptotically vanishes
regardless of 7y as suggested by Fig. 4. Second, for any given
q1, the fusion agent can obtain an arbitrarily small risk by
taking an appropriate ¢o so that (go, q1) belongs to the shaded
region. Consequently, taking an appropriate gy according to
q1 1s important. Note that setting the appropriate belief can
be done by announcing an incorrect prior on purpose, €.g., an
external organizer of the system misinforms the fusion agent
so that it perceives as an appropriate ¢;. Furthermore, the
risk converges to its limit value at worst exponentially fast
as rigorously proven in Prop. 2 and Thm. 2.

We can also derive the speed of risk convergence to its
limiting value in Fig. 10. To explicitly denote dependency on
N, let RéN) be the risk of the fusion agent with /V local agents
and R(()OO) 2 limy_eo RéN) € {0, cpamo, cMpTo }. Then, the
next theorem shows that R(()N — ROOO) exponentially fast in
N, that is,

1 o0
82 sup (— lim - log (RgN) — R ))) > 0,

where the supremum is over all decision rules described in
Sec. III-A.

Proposition 2. Suppose the private observataions are sub-
Gaussian. Also, suppose that (qo,q1) satisfies CASE 1, 2, or
3, that is, (qo,q1) strictly belongs to one of the regions in
Fig. 10. Then, (3 is strictly positive.

Proof: Proof is based on the concentration inequality of
i.i.d. Bernoulli random variables and sub-Gaussian property of
distribution tails. Details are in App. E. ]

Returning to the result for finite NV in Fig. 4, two important
observations can be made. The first is that we cannot achieve
the smallest Bayes risk if the external network organizer does
not know 7 since the optimal beliefs are functions of my. The
other is that the optimal beliefs converge to a constant (CFATBMD
for Gaussian noise) as [N grows, although curves for N =
5,10 in Fig. 4 are drawn under ¢; = --- = g assumption.
We will see that the first observation is no longer true when
N — o0, and the second one is analytically provable.

Denote the optimal risk exponent by
1
* A T = (N)
I} sup( ngI})ONlogRo ),

where the supremum is over all decision rules, not limited
to identical rules or LRTs given in Sec. III-A, but including
strategic decision rules, e.g., [6], [8]. Unlike observations for
finite IV, the next theorem states that 3* can be attained simply
by setting qo =q=-=qv= CFACrBMD for any 7y under
some assumption.

Theorem 2. Suppose the private observations are sub-
Gaussian. Then, there exists some optimal identical beliefs at
all agents ¢* = qo = q1 = -+ - = qn and performing the LRT
with belief update (9) asymptotically achieves 3* as N — oo.
Further, this achieves the optimal risk exponent of cooperative
distributed detection in star networks in [6], which is,

B* = max C(Bern(pg, ; (110)), Bern(pz, ; (1[1)))-

Proof: Tsitsiklis [6] showed that an identical local deci-
sion rule is asymptotically optimal for the cooperative setting
where the fusion agent knows all local decision rules. It also
differs from ours in that error probability (i.e., unit costs) and
no private observation at the fusion agent (i.e., Yy = () are
considered. Building on the results so far and adapting [6], we
can show the claims. Details are in App. F. [ ]

The theorem indicates that the performance loss due to
selfishness and two mismatches (between the true prior and
beliefs, and between the i-th agent and j-th agent’s beliefs)
can be made insignificant by taking good identical beliefs. In
addition, the optimal belief indeed equalizes the false alarm
and missed detection error probabilities—this corroborates our
knowledge that when there are many observations, simply
equalizing the error exponents is asymptotically optimal, i.e.,
the maximum a posteriori (MAP) estimation and maximum
likelihood (ML) estimation make no significant difference in
asymptotics [48].

Like the finite network case, a clever organizer of the
decision-making system would provide incorrect information
about the true prior to minimize the risk of the fusion agent. To
do so, even organizers of the many-agent networks need not
know the true prior! Simply revealing incorrect information
(or revealing biased training data if considering labeling by
crowdworkers) so that the local agents perceive ¢* as the true
prior is asymptotically optimal.

From the statement of Thm. 2, it is immediate that 3*
is independent of m,cpa,cmp and the presence of Yj. In-
dependence from 7o, cpa,cmp iS essentially because Ry is
dominated by the exponential decay of false alarm and missed
detection error probabilities as N — oo. The presence of
Y) is also asymptotically negligible under the assumption of
sub-Gaussianity since local decisions dominate as N grows.
This can be also seen from the arguments that local decisions
outweigh the perceived belief at the end of Sec. III-A and that
the fusion agent’s decision is asymptotically deterministic in
do, q1-

Finally, we can obtain the optimal belief and risk exponent
explicitly if the noise is additive Gaussian.



Corollary 2. Suppose additive Gaussian noise. Then, having

Qo = q =+ = qn = Yo belief minimizes the Bayes

risk Ro asymptotically. Furthermore,

B* = C(Bern(Q(0.5/0)), Bern(Q(—0.5/0)))
~0.0793 ifo=1.
where C(-,-) is the Chernoff information.

Proof: Given in App. G. [ ]

V. CONCLUSION AND DISCUSSION

This work investigates a decision-making problem in star
networks with two distinguishing aspects that 1) agents are
selfish, and 2) agents perceive the prior differently, and further
the fusion agent thinks all local agents believe as it believes.
In this setting, we show that the belief tuple that minimizes
the fusion agent’s Bayes risk is in general different from the
tuple of true priors. The optimal local agent should overweight
small prior probabilities and underweight large ones, so it
has a distorted view of the hypothesis. However, the optimal
fusion agent should have a contrary view against the true
prior and the local agents. Also, the optimal belief of the
local agents can be accurately approximated by a human
agent following cumulative prospect theory. Therefore under
our model, decisions made by people are nearly optimal
for a machine to make a final decision. The setting where
the number of local agents is large is also investigated. As
suggested from the numerical result for a finite number of
agents, it turns out that the optimal beliefs are asymptotically
identical no matter what the true prior is. Also, the optimal risk
asymptotically vanishes exponentially fast and the exponent is
explicitly characterized.

This work opens up several future directions as inference
over networks of selfish agents having biased perception is a
new model in distributed detection. An immediate issue is to
extend the current results to M > 3 hypothesis cases. Recall
that the standard optimal decision rule in M-ary hypothesis
testing consists of (M — 1) binary likelihood ratio tests and
only one test is active for a particular observation. This incurs
a discontinuity in each decision threshold, so we need a new
approach instead of differentiation in the proof of Thm. 1.
For asymptotics, Tsitsiklis [6] considered a cooperative star
network where the fusion agent knows the decision rules
that local agents used. Then, for M > 3, it is shown that
dividing N local agents into M(M — 1)/2 groups with
each group having identical decision rules is asymptotically
optimal. Hence, it is also worth seeing whether M (M —1)/2
identical rules still hold in our setting.

Another promising direction is to investigate the case with
more general noise. Sub-Gaussianity in Sec. IV is perhaps an
easy extension of Gaussian noise and limits the effect of tails
of private observations. Therefore, it is of interest to see how
our results should be changed for heavy-tailed distributions.
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APPENDIX A
PROOF OF THM. 1

Without loss of generality, suppose that at the decision
threshold A; of our interest, increasing \; decreases the false
alarm probability, but increases the missed detection proba-
bility. Otherwise, the same proof still applies with opposite

signs.
Note that from (6), for j € {1,..., N},
Opg, 1 (110)
—n = P, (172)
g, (01)
s, — . (17b)

Differentiating (10) with respect to \;,j € {1,...,N}

using (17), we have (18) in the next page.

Setting the derivative zero and rearranging terms,
fyir(N11) _ CRATO pralhy = 1) — pea(h; = 0)
fy1a(A510)  empTo pyp (b = 0) — pmp(hy = 1)

Furthermore, we know from (4) that the left side is %.
J

Therefore the claim has been proved that

Q;'k T
l—¢  1-

APPENDIX B
PROOF OF LEM. 1

Let us focus on the agent j # 0. Rearranging (11) in
terms of pg IH(1|0) and pg ‘H(l\l using pra(h; = h) and

pMD(h = h) defined in (12) gives
Ry = CFAW()pﬁJ‘H(O‘O)pFA(hj =0)

+ ceamopgy, r (10)pea(hy = 1)
0)

+CMD7_TOpr.‘H(O‘1)pMD(E
+ emMpToP g | (1]1) pMD(ﬁ 1)
(A

= cpamo(1 —Pﬁj|H(1|0))pF hj =0)
+CFA7TOpf[j|H(1|0)pFA( =1)
+CMDﬁo(1—pﬁj|H(1|1)) D( i =0)

+CMD7_TOprj‘H(1‘1)pMD( =1)
= CFAWopﬁj‘H(l\O) (pFA<ﬁj =1) - pra(h; = ))

— emoTop g (11) (PMD(hj =0) -

+ CFAWOPFA(}\L' =0)+ CMDTTOPMD(h 0).

Now recall what pFA(@J = h), pMD(h] = h) stand for—
pFA(h = h) (or pmup(h; = h)) is the false alarm (or
missed detection) probability of the fusion agent conditioned
on h; = h. Also, recall that conditioning on h; = 0
increases the fusion agent’s initial belief, which in turn implies
tAhe decision threshold also does, whereas conditioning on
h; = 1 decreases the decision threshold. Since the false
alarm probability is decreasing in the decision threshold, we



i#]

i#]

ORyp ~ ~ —~ ~
v CFAﬂ'OfY|H()‘j|0)|:Z <HpﬁiH(hi|0)>P,§U|HﬁN(1|0,th:0) -> (Hpgi|H(h¢0)>p§0HﬁN(107 w,, 1)}
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i#]
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N AN

=pea(h,=1
prA(hj=1) (18)

i#]

=pmp (h;=0)

=pmp (hj=1)

can conclude that pFA(ﬁ =1) - pFA(ﬁ = 0) is nonnega-
tive always. A similar argument for missed detection shows
pmp(h; = 0) — pMD(h = 1) is nonnegative. Finally the fact
from the property of a receiver operating characteristic curve
[47] that pﬁle(1|1) is strictly concave in Pﬁj\H(”O) yields
the convexity in pﬁle(1|O).

For pﬁo‘H(HO), it can be shown similarly, i.e., pﬁo‘H(l\l)
is strictly concave in pﬁo‘H(1|O) when {pﬁj|H(1|O)}j21 are
fixed, or equivalently, {¢;};>1 are fixed. Hence, (10) is con-
cave in pﬁolH(1|0) as well.

APPENDIX C
PROOF OF LEM. 2

In the proof of Lem. 1, it has been shown that pFA(hJ =

1) pFA(h =0) and pMD(h =0) pMD(h = 1) are positive.

Next investigate how the decision of agent i # j changes
pFA(hj = 1)7p|:A(hj = O) Note that pFA(hj = 1)7p|:A(hj =
0) is linear in pﬁi‘H(l\O) € [0,1], i.e., the false alarm
probability of agent i. To determine whether the slope is
positive or negative, check two extremes py ;(1]0) =0 and
Pg, IH(1|0) = 1. When pg. IH(1|0) =0, in other words, f; =
0 always, pFA(h- =1)— pFA(h- = 0) gives the false alarm
probability conditioned on %; = 0. Similarly p | z(110) =1
corresponds to the false alarm probability conditioned on
h = 1. The fact that observing decision 0 increases the belief
qo (hence \g as well) implies pFA(h =1) - pFA(h = 0)
at py, | ;(1]0) = 0 is smaller, which in turn implies that the
slope is positive, or equivalently pFA(Bj =1)— pFA(Aj =0)
is decreasing in ¢; since pg ;(1]0) is decreasing in g;.
Repeating the argument for pMD(/]:Lj = h), we can conclude
that pMD(ﬁj = 0) — pmp(h; = 1) is increasing in g;, so the
overall function

is decreasing in g;.

APPENDIX D
CASE 4 1S IMPOSSIBLE

Proposition 3. The case when the fusion agent is always
wrong for H = 0 and H = 1 both is impossible.

Proof: From the property of a receiver operating charac-
teristic curve [47], to(q) £ pﬁi‘H(l\O) <ti(q) & pﬁi‘H(l\l)

always. Let us consider z3(qo) term. Using the definition of
t;(q), it can be rewritten as follows.

Y Pz, (011)(0] . Pz, (110)0)
P, 0100 pg, (L1
_ 1—ti(q0) to(qo)
~ 1—to(q0) ti(qo)
@ 1-tilw) |,

1 —to(qo)

where (a), (b) follows from ty(q) < t1(q). As 22 < 1, 25 is a
decreasing function in z. Again, using ¢y < t1, we know that
zlz;"(ql) < 1 implies zlzgl %) <1, which concludes that the

condition of CASE 4 is infeasible. |

APPENDIX E
PROOF OF PROP. 2

Let us consider an upper bound on R(()N) Relying on the
concentratlon roperty of i.i.d. random variables, we will prove
that Ro OO) < C-exp(—cN) with some C, ¢ > 0, i.e., the
Bayes risk Converges to its limit value at least exponentially
fast.

Consider CASE 1 and fix (qo,¢1) so that the condition of
CASE 1 is satisfied. Recall the likelihood ratio test in Sec. ITII-A
that the fusion agent performs: After updating go to ¢ by

% _ 4
l—qp 1-qo
it performs the likelihood ratio test as if g is the true prior,
frim(pll) A=t cragy
< .
fyi(Wol0) g.—o emo(1 — qp)

(z1251)",

Then, taking logarithm, we equivalently have
fyi(yol1) Ho=1
AT S
fY|H(Z/0|0) Ho=0
Also, since the local decisions are i.i.d. made as if g; is the
true prior, H; are i.i.d. random variables from Bern(to(q1))

when H = 0, whereas H; are from Bern(t; (¢1)) when H = 1.
Let us take § > 0 and define two “typical” events 70, Ty,

e.g., strongly typical sets [49]:
< 5}

N/\
Zh — to(q)
<5}.

CFAQ0

lo —_—
& emp(1 —qo)

+ Nlog(z125").

=zl \

- {iv);

7:;1 = {/l:LN:

Ei —ti(qr)

'Mzn

2=

i=1



Then, the risk expression (11) can be rewritten as

N

hNGTO i=1

N
+cramo Y (HpgiH(hi|0)>pgDHﬁN(1|0,hN)

AN QTO i=1

+ cMDTo Z (HszlH h; |1)> bg, |HHN(O|1 hN)

hNGTl i=1

+ cMDTo Z (HpH|H h |1)> pbg, |HHN(O|1 hN)

hNng =1

Because we are considering CASE 1 such that z; ztO(ql) > 1,
assuming 0 is small enough, z;z5' > 1 if N e TL. This
implies that the decision threshold of the fusion agent after
observing h" increases linearly in N. From the fact that
the tail probability of sub-Gaussian is upper bounded by
exp(—t%/20?) [36],

~ N2AZ
PﬁO|HﬁN(1‘Oa hN) < exp (‘2020> ) (19)
where Ay £ log zlzéo(q”_é) > 0. Therefore, the first term
is bounded by

N
CFATO Z <Hpﬁi|H(hi|0)>pﬁoHﬁN(”O»hN)

ENE'T(;O =1
N
~ N2AZ
< ¢cpaTo Z <Hpﬁi|H(hi|0)> exp (—2020)
ﬁNe'TSD i=1

N2AZ
< cpaTo€xp | — 2.
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To bound the second term, note that the local decisions are
i.i.d. and bounded (either 0 and 1). Hence, Hoeffding’s bound
[50] tells that

P{HN ¢ T/ H = 0] < 2exp(—2Nd) for h € {0,1}.

Hence the second term is bounded by

CFATQ Z (HPH |H h |0)> pHO\HHN(HO h,N)

hN€T0 =1

N
< cpaTo Z (HPELH(?Z@O))

EN¢7*50 i=1
S CFAWOIP [ﬁN ¢ 7:;O|H = O} S 2C|:A7T0 exp(72N6).
We have similar bounds for the other terms and finally
R(()N) < cpamo exp(—N?A2/2) + 2cpamo exp(—2N46)
+ empTo exp(—N2A?2/2) + 2emp 7 exp(—2N9)
= O(exp(—N9)),

A t1(q1)+9

where A; —log (2122 ) Therefore, it converges to
zero at least exponentially fast. This leads us to the positive

constant lower bound on S*.
similarly.

Other cases can be proven

APPENDIX F
PROOF OF THM. 2

This section shows that our model essentially makes no
difference from the model in [6], thus the result of [6]
that having identical belief (that is, having identical decision
threshold in LRT) is also optimal still holds for our model.

To be specific, consider a star network model given in
[6] where the fusion agent knows decision rules that the
local agents used. Hence, unlike (9), the fusion agent can
update its decision rule (or belief) based on true quanti-
ties. It is also different from our model in that the fusion
agent aggregates local decisions without a private signal, i.e.,
Yo = (Z] and wishes to minimize probability of error, i.e.,
JN) £ mopg, 1 (110) + Top g, 5 (0[1). Therefore, JWN) s a
function of decision rules of the local and fusion agents. Define
the optimal error exponent

N . )
¥ sup( A}gnooNlogJ ,

where the supremum is over all possible decision rules, not
necessarily identical nor LRT. Then, Tsitsiklis [6] shows that
the local agents having identical decision rules indeed achieves
the optimal ~v*. The statement below is adapted for binary
hypothesis and decision spaces.

Theorem 3 (Thm. 1 and Sec. II in [6]). The optimal error
exponent v* can be obtained by LRT with identical decision
thresholds at the local agents, followed by LRT at the fusion
agent. Specifically, the optimal local decision threshold is
determined by the minimizer \* of the following optimization
problem*: minycp mingejo,1) A(A, 5) where

A = 1og (pl= (00D, (O11) + i3 (10}, (11D))
(20)

and the optimal fusion agent performs the following LRT.

pﬁN|H( N1 Ffog o 1)
pﬁN|H( N10) Fo=0 1 =70

Finally, v* = —A* £ —minycr mingepo 1] A(A, 5).

First, look into [6] in Qetail. Since the local cl@cision rules
are all identicat, ‘p)ﬁllH(h|h) = ... = ??I)VIH(}LM) Letting
N PH,\H 0[1 N PH, | H 1|1 .
Ly = log 7})3;}1(0‘0) and L; = log 7177{\;}[(1‘0) for brevity, (21)
can be written equivalently as

Ho=1

o~ o~ 7'['
(# of Os in hN)Lo + (# of 1s in ANV)L; 2 log —
oo 1-— ™0
Ho=0
Ho=1 o
— N(l — ’I”]_)LQ + Nrilq 2 IOg s (22)
flo=o Lo

4The objective function (20) is the (negative of) Chernoff information and
also appears in the context of error exponent of discrete channels [51].



S 1 AN . .
where ry & #ofonesin b Although r; is a random variable,

it is highly concentrated around a constant (15) so can be
thought of as a constant with high probability. Then, the left
side is linear in [NV and only takes either —oo or oo as N —
o0, depending on whether H = 0 or H = 1. However, the
right side, which is the maximum a posteriori (MAP) decision
threshold, is finite provided that 7o is given. This implies that
Hy is determined independently of my as N — oo. Also, the
optimal local decision threshold A* is independent of 7o, and
Hy is asymptotically independent of 7 as well. It means that
the fusion agent’s decision threshold does not change the risk
exponent.

Returning to our setting with the fusion agent’s private
observation and belief, consider the binary hypothesis testing
. Pz, 1 (011)

that the fusion agent performs. Let L [g] £ log T'LOIO[O]

) P, 11(010) (0]

P, (1))

P, 1 (110)[0)
perception. Then,

and Ly (g £ log to emphasize the fusion agent’s

fyo’f{N|H(y07hN|1) ﬁ0>:1 CFAQO

=~ <
fYo,ﬁNIH(yOa hN|O) Ho=0 CMD(l - CIO)

Ho=1
N(l —7"1)[/07[0] +NT1L1,[0] 2
Ho=0
o caqo o Sy (yoll)
emp (1 — qo) fyvoH (0]0)

First, the fusion agent can exactly compute the true quan-
tities Lo, L1 if g9 = ¢1, which means that the probabilities
in the left side agree with the quantities in (22). Also, the
left side grows linearly in N. The first term in the right side
is finite, so negligible in asymptotics. The second term can
take a larger value than the left side which is linear in N,
but the sub-Gaussian property guarantees that such event is
with probability at most exp(—(cN)?/202) [36], negligible
in terms of the exponent. Hence, we can conclude that the
right side is bounded as in the setting of [6].

Therefore, having identical belief (thus, identical initial
decision threshold as well) asymptotically minimizes the ex-
ponent of equal-cost Bayes risk WépﬁO‘H(l \0)+ﬁ6pﬁ0|H(O| 1).
The only difference now is cga, cpmp in R(()N). However, RSN)
can be thought of as a scaled version of the equal-cost risk,

N _
Ré ) = CFAWUpIA{O‘H(].'O) + CMDWOpﬁo‘H(O‘]‘)
1
=5 (C'CFAWOPﬁO|H(1|O) + CCMDﬁ'OpﬁMH(OH))
1

[I>

= (7w, (110) + 7op g, (O1) )

where C' £ (cpamo + cMDfrO)*1 is taken so that C'cpamg +
CempTo = 1. Since the risk exponent remains unchanged after
constant scaling of risk, this is also asymptotically optimal
in the risk exponent sense as N — oo. The fusion agent’s
decision rule has been changed from that based on 7 to that
based on gy = g¢i, but this difference does not change the
decision outcome. This completes the proof.

Fig. 11. Plot of g(X, s*()) with the minimum in red circle.

APPENDIX G
PROOF OF COR. 2

When a specific noise distribution is given, we can (at
least numerically) compute the optimal decision threshold,
corresponding to initial belief and exponent. Let us consider
additive Gaussian noise. To find the optimal local threshold
A*, recall that the objective function is continuous and differ-
entiable in A and s, and convex in s, e.g., [S1]. Hence, we
first fix an arbitrary A and find the minimizer s* = s*(\). For
notational simplicity, define a £ ppg,(0[0), b = pg,, (1]1),
and g(\, s) £ log(a'=*(1 — b)* + (1 — a)!~*b*). Find s*()\)
with \ being fixed,

13}

%g(/\,s) =0 <

—a'™*(1 = b)*loga + a' (1 — b)*log(1 — b)
—(1—a)'"%b*log(1 —a) + (1 —a)' ~*b°logb = 0.

Letting A = —log(1 —a) +logb, B £ loga —log(1 —b), and
rearranging terms with algebra, we obtain

l1—a

A+ B

Now the objective is a function of only A,

~ +log§
s =log————=—

gA s (N) =log(a' > (1 —b)* + (1 —a)' " b*).

Note that a, b, s* are all dependent on A. Due to its complexity,
we are unable to analytically solve it, but the numerical
solution for Gaussian noise turns out to be A* = 0.5 as shown
in Fig. 11, which implies ¢ = mcrigm foralli e {1,...,N}.
Hence, it is optimal for the fusion agent exactly recovers the
information in the local decisions, so that ¢; = ¢; as well.

The second claim is immediate from the above argument.
As local decisions follow Bern(Q(0.5/0)) if H = 0 and
Bern(Q(-0.5/0)) if H = 1, this can be cast into Bayesian
binary hypothesis testing with i.i.d. observations. The fusion
agent’s private observation and the true prior are negligible as
discussed. Therefore, the Chernoff information is the optimal
risk exponent, which is the (negative of) objective function
(20). As in Fig. 11, the Chernoff information is

B* = C(Bern(Q(0.5/0)),Bern(Q(—0.5/0)))
~ 0.0793 if o =1.



[1]

[3]

[4]

[5]

[6]
[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

D. Seo, R. K. Raman, and L. R. Varshney, “Social learning with beliefs
in a parallel network,” in Proc. 2020 IEEE Int. Symp. Inf. Theory (ISIT
2020), Jun. 2020, pp. 1265-1270.

D. Austen-Smith and J. S. Banks, “Information aggregation, rationality,
and the Condorcet jury theorem,” Am. Polit. Sci. Rev., vol. 90, no. 1,
pp. 3445, Mar. 1996.

A. Vempaty, L. R. Varshney, and P. K. Varshney, “Reliable crowdsourc-
ing for multi-class labeling using coding theory,” IEEE J. Sel. Topics
Signal Process., vol. 8, no. 4, pp. 667-679, Aug. 2014.

A. Vempaty, L. R. Varshney, G. J. Koop, A. H. Criss, and P. K. Varshney,
“Experiments and models for decision fusion by humans in inference
networks,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2960-2971,
Jun. 2018.

J. B. Schafer, J. A. Konstan, and J. Riedl, “E-commerce recommendation
applications,” Data Min. Knowl. Discov., vol. 5, pp. 115-153, Jan. 2001.
J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”
Math. Control Signals, Syst., vol. 1, no. 2, pp. 167-182, Jun. 1988.

R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors: Part [—fundamentals,” Proc. IEEE, vol. 85, no. 1, pp. 54-63,
Jan. 1997.

P. K. Varshney, Distributed Detection and Data Fusion.
USA: Springer-Verlag, 1997.

J. N. Tsitsiklis and M. Athans, “On the complexity of decentralized
decision making and detection problems,” /[EEE Trans. Autom. Control,
vol. 30, no. 5, pp. 440-446, May 1985.

T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem,” IEEE
Trans. Inf. Theory, vol. 42, no. 3, pp. 887-902, May 1996.

V. Saligrama, M. Alanyali, and O. Savas, “Distributed detection in sensor
networks with packet losses and finite capacity links,” IEEE Trans.
Signal Process., vol. 54, no. 11, pp. 4118-4132, Nov. 2006.

J.-F. Chamberland and V. V. Veeravalli, “Decentralized detection in
sensor networks,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407—
416, 2003.

M. E. Hellman and T. M. Cover, “Learning with finite memory,” Ann.
Math. Stat., vol. 41, no. 3, pp. 765-782, 1970.

Z.-B. Tang, K. R. Pattipati, and D. L. Kleinman, “Optimization of
detection networks: Part I-tandem structures,” IEEE Trans. Syst., Man,
Cybern., vol. 21, no. 5, pp. 1044-1059, Sept.-Oct. 1991.

W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, “On the subexponential
decay of detection error probabilities in long tandems,” IEEE Trans.
Inf. Theory, vol. 54, no. 10, pp. 4767-4771, Oct. 2008.

Z.-B. Tang, K. R. Pattipati, and D. L. Kleinman, “Optimization of
detection networks: Part II-tree structures,” IEEE Trans. Syst., Man,
Cybern., vol. 23, no. 1, pp. 211-221, Jan.-Feb. 1993.

W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Bayesian detection in
bounded height tree networks,” IEEE Trans. Signal Process., vol. 57,
no. 10, pp. 4042-4051, Oct. 2009.

M. Alanyali, S. Venkatesh, O. Savas, and S. Aeron, “Distributed
Bayesian hypothesis testing in sensor networks,” in Proc. Am. Contr.
Conf. (ACC 2004), vol. 6, June-July 2004, pp. 5369-5374.

K. R. Rad and A. Tahbaz-Salehi, “Distributed parameter estimation in
networks,” in Proc. 49th IEEE Conf. Decision Control, Dec. 2010, pp.
5050-5055.

D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” Rev. Econ. Stud., vol. 78, no. 4, pp. 1201-
1236, Oct. 2011.

A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games Econ. Behav., vol. 76, no. 1, pp. 210-
225, Sep. 2012.

A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distributed
hypothesis testing,” IEEE Trans. Inf. Theory, vol. 64, no. 9, pp. 6161-
6179, Sep. 2018.

W. Saad, A. L. Glass, N. B. Mandayam, and H. V. Poor, “Toward a
consumer-centric grid: A behavioral perspective,” Proc. IEEE, vol. 104,
no. 4, pp. 865-882, Apr. 2016.

S. R. Etesami, W. Saad, N. B. Mandayam, and H. V. Poor, “Stochastic
games for the smart grid energy management with prospect prosumers,”
IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2327-2342, Aug. 2018.
A. Tversky and D. Kahneman, “Advances in prospect theory: Cumulative
representation of uncertainty,” J. Risk Uncertainty, vol. 5, no. 4, pp. 297—
323, Oct. 1992.

R. Gonzalez and G. Wu, “On the shape of the probability weighting
function,” Cogn. Psychol., vol. 38, no. 1, pp. 129-166, Feb. 1999.

D. Prelec, “The probability weighting function,” Econometrica, vol. 66,
no. 3, pp. 497-527, May 1998.

New York,

(28]

[29]

(30]

(31]

(32]

(33]

[34]
(35]

[36]

[37]

(38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]

[51]

Y. Peres, M. Z. Racz, A. Sly, and 1. Stuhl, “How fragile are information
cascades?” arXiv:1711.04024 [math.PR], Nov. 2017.

T. N. Le, V. G. Subramanian, and R. A. Berry, “Information cascades
with noise,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 2, pp.
239-251, Jun. 2017.

S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads, fashion,
custom, and cultural change as informational cascades,” J. Polit. Econ.,
vol. 100, no. 5, pp. 992-1026, Oct. 1992.

A. V. Banerjee, “A simple model of herd behavior,” Quart. J. Econ.,
vol. 107, no. 3, pp. 797-817, Aug. 1992.

F. Rosas, K.-C. Chen, and D. Giindiiz, “Social diversity for reducing
the impact of information cascades on social learning,” in In Proc. 2018
Symp. Inf. Theory Signal. Process. in the Benelux, May-June 2018, pp.
172-181.

D. Seo, R. K. Raman, J. B. Rhim, V. K. Goyal, and L. R. Varshney,
“Beliefs in decision-making cascades,” IEEE Trans. Signal Process.,
vol. 67, no. 19, pp. 5103-5117, Oct. 2019.

R. G. Bartle, The Elements of Integration and Lebesgue Measure.
York: John Wiley & Sons, 1966.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, USA: John Wiley & Sons, 1991.

R. Vershynin, High-dimensional Probability: An Introduction with Ap-
plications in Data Science. Cambridge, U.K.: Cambridge University
Press, 2018.

H. Chernoff, “A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations,” Ann. Math. Stat., vol. 23, no. 4,
pp. 493-507, 1952.

H. L. Van Trees, Detection, Estimation, and Modulation Theory. New
York, USA: John Wiley & Sons, 1968.

I. Y. Hoballah and P. K. Varshney, “Distributed Bayesian signal detec-
tion,” IEEE Trans. Inf. Theory, vol. 35, no. 5, pp. 995-1000, Sep. 1989.
Z.-B. Tang, K. R. Pattipati, and D. L. Kleinman, “An algorithm for
determining the decision thresholds in a distributed detection problem,”
IEEE Trans. Syst., Man, Cybern., vol. 21, no. 1, pp. 231-237, Jan.-Feb.
1991.

D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. New York, USA: Academic Press, 1982.

R. R. Tenney and N. R. Sandell Jr., “Detection with distributed sensors,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-17, no. 4, pp. 501-510,
Jul. 1981.

G. L. Brase, L. Cosmides, and J. Tooby, “Individuation, counting, and
statistical inference: The role of frequency and whole-object represen-
tations in judgment under uncertainty,” J. Exp. Psychol. Gen., vol. 127,
no. 1, pp. 3-21, Mar. 1998.

M. Glanzer, A. Hilford, and L. T. Maloney, “Likelihood ratio decisions
in memory: Three implied regularities,” Psychon. Bull. Rev., vol. 16,
no. 3, pp. 431455, Jun. 2009.

New

D. C. Knill and W. Richards, Perception as Bayesian Inference. Cam-
bridge, UK: Cambridge University Press, 1996.

W. A. Yost, A. N. Popper, and R. R. Fay, Human Psychophysics. New
York, USA: Springer-Verlag, 1993.

H. V. Poor, An Introduction to Signal Detection and Estimation. New

York, USA: Springer-Verlag, 1988.

P. Moulin and V. Veeravalli, Statistical Inference for Engineers and Data
Scientists. Cambridge, U.K.: Cambridge University Press, 2019.

R. W. Yeung, Information Theory and Network Coding. New York,
USA: Springer, 2008.

R. Durrett, Probability: Theory and Examples, 5th ed. Cambridge, UK:
Cambridge University Press, 2019.

C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds
to error probability for coding on discrete memoryless channels. I, Inf.
Control, vol. 10, no. 1, pp. 65-103, Jan. 1967.



