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Abstract. This project aims to recognize a group of rare retinal dis-
eases, the hereditary macular dystrophies, based on Optical Coherence
Tomography (OCT) images, whose primary manifestation is the inter-
ruption, disruption, and loss of the layers of the retina. The challenge
of using machine learning models to recognize those diseases arises from
the limited number of collected images due to their rareness. We formu-
late the problems caused by lacking labeled data as a Student-Teacher
learning task with a discriminative feature space and knowledge distil-
lation (KD). OCT images have large variations due to different types of
macular structural changes, capturing devices, and angles. To alleviate
such issues, a pipeline of preprocessing is first utilized for image align-
ment. Tissue images at different angles can be roughly calibrated to a
horizontal state for better feature representation. Extensive experiments
on our dataset demonstrate the effectiveness of the proposed approach.

Keywords: Hereditary Retinal Diseases Recognition -
Student-Teacher learning - Knowledge distillation + Transfer learning

1 Introduction

Visual impairment and blindness caused by inherited retinal diseases (IRDs) are
increasing due to the global prolonged life expectancy. There was no treatment
for IRDs until recently, a number of therapeutic approaches such as gene replace-
ment and induced pluripotent stem cell transplantation have been proposed,
developed, and shown promising potential in some of the ongoing therapeutic
clinical trials. Spectral-domain Optical coherence tomography (SD-OCT) has
been playing a crucial role in the evaluation of the retina of IRDs in diagnosis,
progression surveillance as well as strategy exploration and response assessment
of the treatment. However, the recognition, interpretation, and comparison of
the minimal changes on OCT as shown in IRDs sometimes could be difficult
and time-consuming for retinal physicians. Recently automated image analysis
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has been successfully applied in the detection of changes on fundus and OCT
images of multiple retinal diseases such as diabetic retinopathy and age-related
macular degeneration, which are of higher prevalence among the population to
enable the acquisition of large volumes of training data for traditional machine
learning approaches including deep learning.

On the contrary, for rare diseases like IRDs, acquiring a large volume of high-
quality data representative of the patient cohorts is challenging. These datasets
also require accompanying annotations generated by experts which are time-
consuming to produce. This hinders the applying state-of-the-art image classifica-
tion, which usually requires a relatively large number of images with annotations
for training. The goal of this project is to design a computer-aided diagnosis algo-
rithm when only a very limited number of rare disease samples can be collected.

The methods of diagnosing ocular diseases like age-related macular degenera-
tion (AMD), diabetic macular edema (DME), etc., through the spectral domain
OCT images can be roughly categorized into the traditional machine learning
methods and deep learning-based methods. There are lots of works on OCT
image analysis based on the traditional machine learning methods like Principal
Components Analysis (PCA) [1,15], Support Vector Machine (SVM) [12,17],
or Random Forest [7], segmenting each layer of the OCT images [18] or learns
global representation directly [19,21].

Lots of previous work also focus on the deep-learning-based methods includ-
ing supervised and unsupervised ways. Existing mature and pre-trained frame-
works such as Inception-v3 [8,22], VGG16 [16,22], PCANet [4], GoogLeNet [9,10],
ResNet [9,13], DenseNet [9] have been deployed to classify OCT images. Others
unify multiple networks together to make classification more robust for diagnos-
ing, for example four-parallel-ResNet system [13] and multi-stage network [14].
Supervised learning has the advantage of learning hierarchical features compared
to traditional feature engineering. However, for supervised learning of OCT med-
ical images, satisfactory results are still dependent on large amounts of data.

In addition to the supervised learning methods above, we also try to address
the few-shot learning problem based on the contrastive learning. We empirically
show that the Siamese network architecture represented by Simple Siamese [2]
is able to learn meaningful representations and bypass the limitation of sample
size. Also, the embedding features in feature space obtained by the contrastive
learning [5] leads to more knowledge learned by the student network in the
subsequent S-T architecture.

The goal of this research is to classify a group of macular-involved TRDs
from different stages by a limited number of OCT images. Given the limited
training data, we plan to assist the classification with an auxiliary dataset in a
related task where labeled data are abundant. We propose a Student-Teacher
Learning framework to leverage the knowledge from the auxiliary dataset. In the
teacher part, the teacher model is firstly trained on a large-scale labeled auxiliary
OCT dataset [11] which contains 3 common retinal degenerative diseases with
84484 images. Soft Nearest Neighbor Loss (SNNL) [5] is utilized to maximize the
representation entanglement of different classes to help generalization. Transfer
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Learning methods is then applied to adapt the teacher model to the target label
space. While for the student model, the collected OCT samples are used to
serve as the hard labels. The student model can learn from both the teacher
model and the hard label information by Knowledge Distillation [6]. We have
collected 1128 diseased OCT images (185 of them are normal) from 60 patients
(15 of them are normal) with IRDs. The experiments on the collected dataset
demonstrated that, even under the circumstance of limited training samples, the
student model can catch a better performance than the teacher model and some
common few-shot learning methods [24].

2 Methods

The overview of the proposed method is shown in Fig. 1. The proposed pipeline
consists of three parts: image preprocessing, training for the teacher model and
then the student model. The OCT images are first normalized to reduce the effect
of noise on the model during training. The teacher model is designed to adapt
to the target OCT dataset based on a projector trained with the auxiliary OCT
dataset by Soft Nearest Neighbor Loss (SNNL). The student model learns the
knowledge from “soft” labels from the teacher model and the “hard” labels from
target dataset. In general, the structure of the student model is smaller than that
of the teacher model to prevent overfitting and to increase the training speed.
The source code is available in https://github.com/hatute/FSTL4AHRDR.
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Fig. 1. The overview of the proposed method

The problem of identifying congenital diseases is modeled as a problem of
few-shot learning. Unlike the unilateral optimization of model training methods,
our approach combines contrastive learning, transfer learning and knowledge
distillation to enhance the fast learning ability of the model from various aspects.
Second, the teacher-student learning model allows the student to learn more
“knowledge” and achieve better performance than the teacher, compared to fine-
tuning the original model directly.

2.1 Image Preprocessing

As shown in Fig. 3, the original OCT images show different angles, noise distri-
bution, and size diversity due to the acquisition machine and the patient. This
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will distract the neural network from the focal area and increase the training
time due to the useless data input during training. We adjust all images to the
horizontal position without destroying the original pathological information fol-
lowing a adapted OCT image preprocessing strategy from [19]. The main idea
of process is to generate a mask to attain retina layered structure.

(i) Crop

’ «Eg) Editted input
(b) BM3D c) Otsu alg. (d) Median filter (e) Close & open opt. (f) Polynomial
denoise ( ) & ( ) curve fitting _

(a) Raw input

(h) Editted mask

Fig. 2. Pipeline for the image alignment. The process begins with noise reduction as
shown in (b) to reduce the irregularly distributed noise with Block-matching and 3D
filtering (BM3D) [3] for better capturing the retina structure. (¢) The Otsu algorithm
allocates the location and morphology of the black background. (d) The median fil-
ter further reduces the noise area within the tissue. (¢) The morphological operations
opening and closing clean noises inside and outside the tissue area. (f) After the con-
tours are obtained, we use a polynomial curve fitting to represent the curvature of the
tissue area for adjusting and cropping both the mask and the original image as shown

in (i).

2.2 Feature Space Learning

Teacher model is the backbone structure for absorbing and learning the informa-
tion from an auxiliary dataset, more specifically, the textures, patterns, and pixel
distributions in the end-level convolutional layers. Soft Nearest Neighbor Loss
(SNNL) [5] is applied for the teacher model training in the feature space before
the classifier. SNNL is designed to enhance the separation of class manifolds in
representation space. There are bound to be objective differences between the
target and auxiliary datasets, and the great separation between the categories
in the feature space will facilitate the subsequent transfer learning [5,20] with
the target dataset.

Equation 1 shows the total loss function, which consists of the cross-entropy
loss on logits and the soft nearest neighbor loss for the representation learning
controlled by the hyper-parameter a. i for selected samples in the batch. j for
another sample in the same category as i. k for another sample in the same batch
as i. In Eq. 2, b is the batch size, T is the temperature. When the temperature
is large, the distances between widely separated points can influence the soft
nearest neighbor loss more. Moreover, the numerator of the log function implies
the distance between the target, and similar samples in each category, while the
denominator is the distances between the target and other samples in the batch.
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Usually, the use of cosine distances in training results in a smoother training
process.
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2.3 Knowledge Distillation and Student-Teacher Learning

In order to overcome the obstacles caused by the lack of training data, we use
the combination of Knowledge Distillation and Student-Teacher Learning for
knowledge transfer [6,23]. The S-T architecture is designed to give the small-scale
(student) model the ability to adapt to small samples and to absorb knowledge
from large-scale auxiliary dataset learned by the teacher model. This is mainly
designed to eliminate the overfitting problem, when large models cannot learn
parameters effectively with a small amount of data.

L(x;W)=a-H(y,0(zs;T=1)+ 5 -H(o(zt;T =7),0(2;T = 7)), (3)

where a and § control the balance of information coming from the two sources,
which generally add up to 1. H is the loss function, o is the softmax function
parameterized by the temperature T, z, is the logits from student network and
z; is the logits from teacher network. 7 denotes the temperature of adapted
softmax function, each probability p; of class i in the batch is calculated from
the logits z; as:
by — exp( %)
b exp(F)

when T increases, the probability distribution of the output becomes “softer”,
which means the differences among the probability of each class decreased and
more information will provide. By the S-T architecture, the smaller size student
model with the blank background is able to accept the knowledge from the fine-
tuned teacher as well as information from labels.

(4)

3 Experiments

3.1 Datasets

Auxiliary Dataset. We use a publicly available dataset of OCT images as
shown in Fig. 3 from Cell dataset [11] and BOE dataset [17] for training. The Cell
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(a) CNV (b) DME (¢) Drusen (d) Normal

Fig. 3. Four types of samples in the auxiliary dataset.
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Fig. 4. Relationship of categories in the target dataset

dataset contains four categories including Normal, Choroidal Neo Vascularisation
(CNV), Diabetic Macular (DME) and Drusen. They have a total of 109,309
samples, of which 1,000 are used for testing and the rest are used for training.
There are two kinds of sizes in those images, 1536 x496 x 1 and 1024 x 496 x 1. For
the experiments, they are all preprocessed and resized to 224 x 224 x 1. The BOE
dataset have smaller size than the Cell one. It works for target testing, which
acquired from 45 patients. 15 normal patients, 15 patients with dry AMD, and
15 patients with DME.

Target Dataset and Data Acquisition. In the target dataset as shown in
Fig. 4, we have 1128 samples from 60 patients’ 94 eyes, of which 236 are central
IRDs, 204 are excluded central IRDs, 209 are extensive IRDs, 185 are normal
and 294 are control samples (CNV, DME, MH, ERM...). The size of the images
is 1180 x 786 x 1. Extracted macular OCTs containing at least one OCT scan
providing a cross section of the fovea were included in this study. The B scan
OCT images with evidence of retinal disease as determined by two retinal spe-
cialists were defined as controls. For the experiments, they are all preprocessed
and resized to 224 x 224 x 1 because of the limitation of hardware. The ratio of
training, testing and validation is 0.70/0.15/0.15. The data were collected from
Beijing Tongren Eye Center with a clinical diagnosis of IRDs involving the mac-
ular area were included in the current study. SD-OCT data were acquired using a
Cirrus HD-OCT 5000 system (Carl Zeiss Meditec Inc., Dublin, CA, USA). This
study was performed in line with the principles of the Declaration of Helsinki.
Approval was granted by the Ethics Committee of Beijing Tongren Eye Center.
(No.TRECKY2017-10, Mar.3,2017).
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Fig. 5. Feature space representation of teacher (processed by T-SNE). After trans-
fer learning, the teacher model still has excellent clustering and fitting ability in the
high-dimensional feature space in the target feature space. The red crosses (normal)
appearing in both figures and the purple diamonds (containing CNV, DME, etc.) in
the right figure still have good clustering performance. (Color figure online)

3.2 Experimental Settings

Baseline and Data Applicability. It has been shown that the core prob-
lems of Few-Shot Learning (FSL) in supervised machine learning are Empirical
Risk Minimization and Unreliable Empirical Risk Minimizer [24]. To alleviate
these, we usually start with three aspects: data, models, and algorithms. For
data, we purposefully design the preprocessing pipeline. We conducted baseline
experiments on the state-of-the-art Simple Siamese (SimSiam) network [2]. As
shown in Table 1: our preprocessing pipeline mitigates the impact on the model
itself due to noise diversity. Also, normalizing this allows the model to exclude
redundant concerns.

Feature Space Representation. The SNNL loss function enables the model
to get a better projection of the input image during training in the designed
feature space, which means that inter-class samples can be clustered while intra-
class samples can be separated by the distance function. From Fig. 5, we can see
that when the Teacher model (ResNet-50) is trained by the auxiliary dataset, it
has the ability to project the test samples from the auxiliary dataset. Meanwhile,
to the target dataset, the Teacher also can cluster the normal class and control
class which becomes the control class in the target dataset before fine-tuning
and transfer learning.

Table 1. Baseline accuracy(%)

Methods

Target dataset

Raw Preprocessed

SimSiam

58.26 +1.59 | 60.5£1.40
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Fig. 6. Teacher model (ResNet-50) Test Experiments

3.3 Student-Teacher Learning

Teacher Model. We choose the ResNet-50 as Teacher Model to handle the
auxiliary dataset. The performance is mainly controlled by the hyper-parameter
« and Temperature T in Egs. 1 and 2. In our experiment, we fix the dimension
of Feature Space as 128 and pretrain the model with 30 epochs. We decrease the
learning rate at epoch 10 and 25 with a factor 0.1. There are two sets of control
trials in Fig.6 optimizing two hyper-parameters a and 7. We fix one of them
respectively at a time, and optimize the other to get the best accuracy. The best
performance is achieved with T' = 50, and a = —5.0.

After training the projector network with the auxiliary dataset by SNNL loss,
we perform three different forms of fine-tuning to the target dataset. In the “Fea-
tures Extraction” way, we freeze the parameters before the last fully-connected
layer and replace with a new classifier. In the “High-level” way, we freeze the
parameters before the 5th group of convolution layers (the 129y, layer in the
ResNet-50), left the last group of convolution to learn the high-level features from
the new target dataset. In the way of “All Parameters”, the model can adjust all
the parameters included in ResNet-50. From the data in Table 2, we pick the one
with best performance to play the teacher role in the S-T architecture.

Student Model. After accomplished the transfer learning and fine-tuning of
Teacher model, We use the ResNet-18 as the Student Model to adapt the smaller
size of target data. The ResNet-18 is totally untrained by any data before the
S-T learning. From Table2, we can see that the student model in our trained
S-T architecture gets better results than the teacher. This is attributed to the
student incorporates knowledge from the teacher’s pre-training and information
from the hard-label classification. By adjusting the valves of knowledge from
both sides, we are able to determine the proportion of prior knowledge that the
student model receives from the teacher model versus the feedback from the
labels, by adapting this to different data sets. Too much prior knowledge may
be counterproductive if the difference between the datasets is greater.
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Table 2. Test accuracy (%) comparison of common FSL methods. All the methods
based on the pre-trained network with Cell dataset. Features Extraction means freezing
the pre-trained ResNet-50 and replacing the last layer with a 3-layer classifier. All
Parameters means the whole ResNet-50 involved in the target-oriented training. High-
level means only the tail fully connected layers in ResNet-50 involved in the training
with the target dataset.

Dataset Methods
Features Extraction | All Parameters | High-level | SimSiam [2] | S-T Learning (ours)
Target(5 Classes) | 53.914+1.79 57.17+£2.11 59.68 £2.59 1 61.42+£2.18 | 74.45 +1.59
Teacher®
BOE(3 Classes)® | 72.1140.62 97.83 £1.55 92.87+£1.96 | 76.82£1.93|99.69 +0.10
Teacher®

# chosen as the teacher model in the S-T learning architecture.

® BOE dataset has more duplicate labels with the Cell dataset compared to the target
dataset. Therefore, it outperforms the target dataset under the same training and
network conditions.

4 Conclusion

In this study, we demonstrate a Student-Teacher Learning based classification
model on a small dataset to distinguish several retinal diseases. This framework
learns the knowledge from both ground truth labels and pretrained Teacher
model to make it possible to handle limited data. Data preprocessing also plays
a critical role that cannot be ignored before training.
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