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Abstract—Deploying a drone-mounted base-station (DBS) to
assist mobile edge computing can empower 5G and beyond
networks with additional flexibility and maneuverability, and
laser charging can potentially extend the DBS’s service time.
A laser charging DBS framework is proposed in which a
DBS is provisioning services for user equipments (UEs) on
the ground and harvesting energy transmitted from the laser
charging station mounted on the macro base station (MBS).
Both MBS and DBS are equipped with servers. UEs can offload
their tasks to either the MBS or the DBS. The DBS is to be
placed at the optimal location to provide uplink communications
and computing services for the ground UEs in each time slot.
We thus formulate the joint user AssoCiation bandwidth and
Computation ResoUrce Assignment Laser charing (ACCRUAL)
problem to jointly maximize the DBS service time and minimize
the task completion time for all UEs. Since ACCRUAL is a
mixed integer nonlinear problem, we decompose it into two sub-
problems: the joint UE association computing REsource And
bandwidth allocation Problem (REAP) and the DBS placement
problem. An iterative algorithm is employed to solve the REAP
problem and a placement algorithm based on counting sort is
used to tackle the DBS placement problem. The performance of
our algorithm is superior to the greedy algorithm and equally
shared resource allocation algorithm upon which the total UE
task offloading completion time is improved by more than 9%
as compared to the greedy algorithm and the total DBS service
time is improved by 20% when the laser power is 200 w and
40% of the DBS service time is improved when the laser power
is 400 w.

Index Terms—wireless communications, drone mounted base-
station (DBS), edge computing, resource allocation, laser charging

I. INTRODUCTION

With the proliferation of mobile devices and the deployment
of 5G networks, many advanced mobile applications such
as augmented reality, face recognition and mobile online
games [1] are emerging. These applications require intensive
computation and impose stringent task completion time. How-
ever, mobile devices are typically resource-constrained, due to
their limited computation resources and battery life. Mobile
Cloud Computing (MCC) has been proposed to address the
challenges. However, offloading tasks to remote cloud servers
may incur a long task completion time. The total number of
connected devices in the world in 2020 was over 21.7 billion
including 11.7 billion IoT devices and 5.6 billion mobile
phones. The total number of connected devices in the world in
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2025 is estimated to be over 41.2 billion including 30.9 billion
IoT devices and 5.8 billion mobile phones [2]. Traffics and
tasks generated by these devices will overwhelm the cloud; as
a result, the network bandwidth will be throttled, thus leading
to a larger data bottleneck. Mobile Edge Computing (MEC)
has been proposed to alleviate this problem because MEC
facilitates data processing to be closer to the source and can
thus reduce task completion time as well as relieve the burden
of the clouds.

Deploying drone-mounted base-stations (DBSs) to provision
communications and computation services to user equipments
(UEs) for temporary use cases in specific areas such as disaster
areas and hot spots [4] [5] is promising. Since a DBS can be
configured and deployed easily, it is convenient for service
providers to deploy the DBS at a location where it may have
a good channel condition, thus reducing the path loss between
the DBS and UEs. Also, DBSs can bring the computing
capability even closer to the UEs. Thus, the UEs can leverage
the computing resources to handle their tasks without sending
their tasks to the remote clouds. However, the limited DBS
battery life curtails its service capabilities. A general portable
base station weights from 1lb to 2.35lb [6]. For heavy lift
drones, the flight usually lasts less than 20 minutes with
their maximum payload [7]. The scant battery life and heavy
payload restricts the DBS service range and time.

Charging the DBS via a wire is a solution to overcome the
insufficient battery capacity issue. In 2017, 90 percent of the
cellular sites were destroyed by Hurricane Maria [8] in Puerto
Rico. To provision emergency communications services for
victims, tethered DBSs have been deployed by AT&T [9].
However, the long wire (tether) increases the payload and
the cost of deploying the DBS. Also, the wire restricts the
service range and reduce the maneuverability of the DBS.
Therefore, wireless charging can be an alternative solution,
e.g., via radio frequency (RF) and laser. Since RF charging has
a large divergence angle, it is only suitable to charge devices
in a proximity range. The laser is able to travel over 500m in
moderate fog, 1.9km in foggy weather, and 50km on a sunny
day [10]. Owing to the laser’s long transmission distance, high
energy transmission efficiency, and small divergence angle,
laser charging is becoming a feasible solution to charge the
DBS. To extend the time for DBS to provide computing
services to UEs, we propose a laser charging enabled DBS-
assisted MEC network structure.

II. STATE OF THE ART

Multiple types of research related to DBS communications,
DBS-assisted edge computing, and wireless charging of drones
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have been studied. Ansari et al. [11] first postulated the
concept of enabling DBSs to simultaneously receive data and
energy via the laser beams. Al-Hourani et al. [12] studied the
line-of-sight (LoS) and non-LoS air-to-ground communications
channels, and they elucidated a probabilistic LoS path loss
model. Yang et al. [13] studied the IoT networks and pro-
posed to implement multiple drones to assist the mobile edge
computing to balance the load. Zhang et al. [14] proposed
a 1-𝜖 approximation algorithm to minimize the latency of
UAV-aided MEC networks. Mostafa et al. [15] constructed
a wireless energy harvesting system for drones to extend
the flight time. Wu et al. [16] jointly optimized the DBS
trajectory and the user association scheduling to maximize the
minimum average data rate among all users. Ouyang et al.
[17] investigated the communications from the laser-powered
DBS to the base station. A wireless charging system in which
a DBS is implemented to energize the ground UEs via RF
transmitter on the DBS was proposed by Jiang et al. [18], and
they proposed an algorithm to maximize the uplink throughput
from the UEs to the DBS. Sun et al. [19] investigated a solar-
powered UAV communications network system and designed
a 3D aerial trajectory to extend the UAV service time. They
also proposed a resources allocation algorithm to maximize
the throughput of the system. Moradi et al. [30] proposed
a SkyCore architecture that pushes the evolved packet core
(EPC) functionality to the edge to enhance the DBS-assisted
edge computing network. They also deployed the SkyCore on
a two-DBS LTE network and demonstrated its performance
on control and data management as compared to other EPC
in a DBS-assisted edge computing network. Fattore et al.
[31] proposed to mount a low-cost system-on-chip on the
drone and built a DBS to achieve the flying 5G user plane
function, which enables the drone to relay the user data to
the cellular base station or process the data on the drone. The
performance of their drone-extended mobile core architecture
was demonstrated through a field test. Zhang et al. [32] studied
the computation-intensive Internet of Things Devices (IoTDs)
network and proposed a DBS-assisted MEC architecture to
provide services to IoTDs. They also proposed a (1 + 𝜖)-
approximation algorithm to minimize the operational cost of
the network.

Different from the works mentioned above. The motivation
of this work is to minimize the task completion time of all
UEs while maximizing the DBS flight time. We propose a
DBS assisted mobile edge computing framework to reduce
the task offloading completion time that can greatly support
computation and communications for temporary scenarios
such as hot spots and disaster areas; a laser power source
is implemented to charge the DBS, and the DBS is deployed
to provision communications and computing for ground UEs;
the users association, bandwidth assignment, DBS placement,
the energy consumption of the DBS and the laser charging
rate are investigated in this work.

In this article, the placement of the DBS is investigated
in a time slot fashion. Here, one time slot is a fixed time
duration. Within a time slot, the DBS provisions ground UEs
at a fixed location. At the same time, the computing re-
sources, bandwidth assignment and the UE association should

be delicately designed to minimize the completion time of
all tasks in the network while extending the service time
of the DBS. To achieve the objective, we formulate the
joint user AssoCiation bandwidth and Computation ResoUrce
Assignment Laser charing (ACCRUAL) problem, and jointly
minimize the task completion time and maximize the total
DBS service time by optimizing the DBS placement, UE
association, and limited bandwidth and computing resources
assignment.

The main contributions of this article are delineated as
follows:
1) A laser charged DBS assisted MEC framework is proposed

where a laser power source is mounted on the MBS to
energize a DBS. Both the DBS and MBS are provisioning
uplink communications and computations for the ground
UEs.

2) A charging model based on battery properties is proposed
to estimate the battery usage time of the DBS.

3) An iterative algorithm is proposed to solve the joint UE
association, bandwidth and computing resource allocation
problem (REAP). The DBS placement problem is ad-
dressed by a proposed placement algorithm.

The remainder of this article is organized as follows. In
Section II, the communications between UE to DBS and
UE to MBS are defined. The task computing model and
energy harvesting model are presented. In Section III, the
problem formulation is elucidated. In Section IV, two heuristic
algorithms are proposed. In Section V, the performance of the
algorithms is evaluated and demonstrated with extensive sim-
ulation results. In Section VI, the conclusions are presented.

III. SYSTEM MODEL
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Fig. 1. System model.

A laser charged DBS assisted mobile edge computing net-
work is proposed to provision the ground UEs for temporary
events. As shown in Fig. 1, the MEC network system is
composed of a DBS, an MBS, a remote laser power source
mounted on the MBS and a group of ground UEs. We assume
that multiple UEs can be served simultaneously via different
frequency bands. Both MBS and DBS are equipped with
servers. The servers are assumed to be multi-cores and able
to handle multiple tasks simultaneously. The server on the
MBS is much more powerful than that on the DBS. The UEs
can offload their tasks to either MBS or DBS. The resources
for communications and computations are limited. The DBS
hovers at a fixed height and works as a base station to provide
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uplink and computing services for the ground UEs. A laser
power source is mounted on the MBS to energize the DBS
to prolong its service time. Since the laser energy can only
extend the DBS service time instead of exclusively powering
the DBS, the DBS must retain adequate energy to fly back to
the MBS. The positions of the UEs are assumed known by
the DBS and the MBS. We further assume the UEs are with
low mobility. The DBS may adjust its location to minimizing
the task completion time of all UEs while harvesting enough
energy to prolong its service time in every time slot.

A. Communications Model

We assume the communications channel between the 𝑖-th
user equipment 𝑈𝐸𝑖 and the DBS is probabilistic LoS [12]
expressed as:

𝑝𝑙𝑜𝑠 = [1 + 𝑏𝑒−𝑎 (\𝑖−𝑏) ]−1, (1)

where the environmental parameters 𝑎 and 𝑏 are corresponding
to different terrains e.g., urban or rural [20]. The elevation
angle between𝑈𝐸𝑖 and the DBS is denoted as \𝑖 , which can be
calculated by \𝑖 = arctan(ℎ/𝑖). Here, 𝑖 and ℎ are the horizontal
and vertical distance between 𝑈𝐸𝑖 and the DBS, respectively.

The non-LoS and LoS path loss between 𝑈𝐸𝑖 and the DBS
are expressed as:

𝜑𝑛𝑙𝑜𝑠𝑖 = Z𝑛𝑙𝑜𝑠 + 𝜋𝑛𝑙𝑜𝑠 log10 (
√︃
𝑙2
𝑖
+ ℎ2), (2)

𝜑𝑙𝑜𝑠𝑖 = Z 𝑙𝑜𝑠 + 𝜋𝑙𝑜𝑠 log10 (
√︃
𝑙2
𝑖
+ ℎ2), (3)

where Z 𝑙𝑜𝑠 and Z𝑛𝑙𝑜𝑠 are the LoS and non-LoS path loss at
a reference distance. 𝜋𝑙𝑜𝑠 and 𝜋𝑛𝑙𝑜𝑠 are the LoS and non-
LoS path exponent, respectively [21], [22]. Since we know
the probability density functions of the non-LoS and LoS path
loss, we can derive the average data rate between 𝑈𝐸𝑖 and the
DBS as:

𝑅𝑖𝑑 = 𝑏𝑖 log2 (1 +
𝑝𝑖𝜑

𝑙𝑜𝑠
𝑖

𝜎2 )𝑝𝑙𝑜𝑠

+𝑏𝑖 log2 (1 +
𝑝𝑖𝜑

𝑛𝑙𝑜𝑠
𝑖

𝜎2 )𝑝𝑛𝑙𝑜𝑠 .
(4)

Here, 𝑏𝑖 is the bandwidth assigned to 𝑈𝐸𝑖 . 𝑝𝑛𝑙𝑜𝑠 = 1− 𝑝𝑙𝑜𝑠 is
the probability of non-LoS connection between 𝑈𝐸𝑖 and the
DBS. 𝑝𝑖 is the communication power of 𝑈𝐸𝑖 and 𝜎2 is the
noise power. The path loss between the 𝑈𝐸𝑖 and MBS can be
written as:

𝜑𝑖𝑚 = Z𝑖𝑚 + 𝜋𝑖𝑚 log10 (
√︃
𝑙2
𝑖𝑚

+ ℎ2
𝑖𝑚
), (5)

where Z𝑖𝑚 and 𝜋𝑖𝑚 are the path loss at the reference distance
and path exponent between 𝑈𝐸𝑖 and the MBS, respectively.
ℎ𝑖𝑚 and 𝑖𝑚 are the vertical and horizontal distance between
𝑈𝐸𝑖 and the MBS, respectively. The data rate of 𝑈𝐸𝑖 toward
the MBS is expressed as:

𝑅𝑖𝑚 = 𝑏𝑖 log2 (1 + 𝛾𝑖𝑚), (6)

where 𝛾𝑖𝑚 = 𝑝𝑖𝜑𝑖𝑚/𝜎2 is the SNR from 𝑈𝐸𝑖 to the MBS.
Let 𝑗 indicates whether 𝑈𝐸𝑖 is associating with MBS or DBS.

Thus, the data rate of 𝑈𝐸𝑖 when associating with base station
𝑗 can be summarized as:

𝑅𝑖 𝑗 =

{
𝑅𝑖𝑚, 𝑗 = 1,
𝑅𝑖𝑑 , 𝑗 ≠ 1.

(7)

B. Computing Model

Both the DBS and MBS are assumed equipped with servers
to provide computing service, and the servers are assumed
to be multiple cores capable of processing multiple tasks
simultaneously. The server in the MBS is more powerful than
that mounted on the DBS. The task of 𝑈𝐸𝑖 can be executed
either by the server mounted on the DBS or by the server
equipped on the MBS. Let 𝑑𝑖 be the data size of 𝑈𝐸𝑖 . 𝐶𝑑
and 𝐶𝑚 are the computing capacities of the DBS and MBS,
respectively. The time for 𝑈𝐸𝑖 to complete its tasks by BS 𝑗 ,
denoted as 𝑇𝑖 𝑗 , includes the propagation time and computing
time:

𝑇𝑖 𝑗 =
𝑑𝑖

𝑅𝑖 𝑗
+ 𝑟𝑖𝑑𝑖
𝐶𝑖

, (8)

where 𝑟𝑖 is the number of CPU cycles required to compute
each bit of task 𝑑𝑖 and 𝐶𝑖 is the computing resources assigned
to 𝑈𝐸𝑖 . Then, the completion time of all UEs can be cal-
culated as: 𝑊 =

∑
𝑖 𝑗 𝑇𝑖 𝑗𝜔𝑖 𝑗 , where 𝜔𝑖 𝑗 is a binary indicator

representing whether 𝑈𝐸𝑖 is associated with DBS or MBS.

C. Received Laser Power Model

The laser transmission between the laser power source and
the DBS is assumed to be free space optical propagation. The
received laser power can be expressed as [10]:

𝑃𝑟 = 𝑃𝑟𝐺𝑟𝐺𝑡𝜏𝑟𝜏𝑡𝜏𝑒𝑃, (9)

where 𝑃𝑡 is the transmission power of the laser source; 𝐺𝑡 and
𝐺𝑟 are the transmitter and receiver gain. Here, 𝐺𝑡 = 16/Θ2,
where Θ is the divergence angle of the laser. 𝐺𝑟 = (𝜋𝐷/_)2,
where 𝐷 is the diameter of the receiver and _ is the wavelength
of the laser beam; 𝜏𝑡 and 𝜏𝑟 are the transmitter and receiver
efficiency; the environmental attenuation 𝜏𝑒 is calculated by
10−𝛼𝐿/10. The environmental factor 𝛼 equals to 6.9 dB/km and
0.19 dB/km in foggy weather and clear weather, respectively.
𝐿 is the distance between the laser power source and the DBS;
𝑃 = 1/16· (𝜋𝐿/_)−2 is the free space optical path loss between
the transmitter and receiver [11]. We substitute the parameters
and re-express Eq. (9) as:

𝑃𝑟 = 𝜏𝑟𝜏𝑡𝑃𝑡 (Θ𝐿/𝐷)−210−𝛼𝐿/10. (10)

D. Charging Model

Assume that a single battery is used to support the DBS
services. The quantity of electrical charge in the fully charged
battery is denoted as 𝑄. According to the Coulomb counting
method, the state of charge of the battery can be written as
[23]:

𝑆(𝑡) =
𝑄 −

∫ 𝑡
0 𝐼 (b)𝑑b
𝑄

, (11)
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where
∫ 𝑡
0 𝐼 (b)𝑑b represents the amount of charge consumed

by the DBS from 0 to 𝑡 seconds.
The remaining available power in the battery at time 𝑡 can

be written as [24]:
𝑄(𝑡) = 𝑆(𝑡)𝑄. (12)

The remaining DBS service time at time 𝑡 can be calculated
by:

𝑇 (𝑡) = [𝑒[𝑚

𝐼𝑑
𝑄(𝑡), (13)

where [𝑒 and [𝑚 are the discharging efficiency of the battery
and the motor efficiency of the DBS. 𝐼𝑑 denotes the DBS
average working current, which can be obtained by the motor
specification of the DBS.

We assume that the laser constantly provides energy to
prolong DBS service time; the quantity of available electrical
charge at time 𝑡 while charging can be derived as the initial
quantity of the electrical charge minus the quantity of charge
consumed by the DBS hovering and movement plus the
additional quantity of charge converted from the laser energy.
Thus, the remaining DBS service time while charging can be
calculated as:

𝑇 (𝑡) = [𝑒[𝑚

𝐼𝑑
𝑄(𝑡) + [𝑒[𝑚[𝑐

𝑉𝐼𝑑

∫ 𝑡

0
𝑃𝑟 (b)𝑑b. (14)

Here, 𝑉 and [𝑐 denote the working voltage of the DBS and
the converting efficiency of the energizing circuit, which can
both be obtained from the motor specification and energizing
circuit specification, respectively. The first part of Eq. (14) is
the remaining service time of the DBS after discharging. The
second part of the Eq. (14) is the extended service time trans-
formed from the harvested laser energy, where

∫ 𝑡
0 𝑃𝑟 (b)𝑑b

represents the laser energy received by the DBS from 0 to 𝑡
seconds.

Owing to the low mobility of the DBS, we assume that the
harvest laser power remains the same within a time slot. Thus,
we define z[𝑛] as the remaining service time at the end of the
𝑛-th time slot. Therefore, we can discretize and rewrite Eq.
(14) as:

z[𝑛 + 1] = z[𝑛] − z𝑢𝑠𝑒𝑑 [𝑛 + 1] + z𝑐ℎ𝑎𝑟𝑔𝑒𝑑 [𝑛 + 1] . (15)

Here, the service time consumption caused by the hovering
and movement of the DBS at the end of (𝑛 + 1)-th time slot
can be calculated by:

z𝑢𝑠𝑒𝑑 [𝑛 + 1] = 𝜏0 +
Y[𝑛 + 1]
𝐼𝑑𝑉

, (16)

where Y[𝑛 + 1] = 𝑀
2 a

2 [𝑛 + 1] [25] denotes the kinetic energy
consumption of the DBS in the (𝑛 + 1)-th time slot due to the
movement of the DBS. Here, 𝑀 and a are the mass and speed
of the DBS, respectively. Thus, the service time reduction due
to the DBS movement is calculated by Y [𝑛+1]

𝐼𝑑𝑉
. 𝜏0 represents

the duration of a DBS service period.
The extended DBS service time converted from laser energy

at the end of (𝑛 + 1)-th time slot can be calculated as:

z𝑐ℎ𝑎𝑟𝑔𝑒𝑑 [𝑛 + 1] = [𝑒[𝑚[𝑐𝜏0

𝑉𝐼𝑑
𝑃𝑟 [𝑛 + 1] . (17)

𝑃𝑟 [𝑛 + 1] represents the received laser energy in time slot
(𝑛 + 1). z[0] denotes the original service time of the DBS,

which can be obtained experimentally. For example, we can
calculate the average DBS hovering time without charging.

The DBS maintains low mobility because the UEs will
not change their locations frequently. The DBS service time
reduction caused by DBS movement within a service period
is negligible as compared to the service period. As a result,
the DBS service time at the end of the (𝑛 + 1)-th time slot
can be calculated by the remaining available service time at
the end of the 𝑛-th time slot minus the reduced service time
at the end of the (𝑛+1)-th time slot, plus the extended service
time at the end of the (𝑛 + 1)-th time slot.

IV. PROBLEM FORMULATION

In this article, our objective is to maximize the DBS’s
service time and minimize the total task completion time of all
UEs. In formulation 𝒫1, 𝑍 [𝑛] is a binary variable to indicate
whether the DBS has enough energy to serve time slot 𝑛.
The summation of 𝑍 [𝑛] is the number of time slots the DBS
has served UEs. As a result, it is equivalent to maximize the
summation of 𝑍 [𝑛] in order to maximize the DBS service
time. 𝑊 [𝑛] is the time for completing tasks of all UEs at
time slot 𝑛. Thus, we formulate the following multi-objective
optimization problem to solve the ACCRUAL problem:

𝒫1 : max
𝑋 [𝑛],𝑌 [𝑛],𝑏𝑖 [𝑛],𝐶𝑖 [𝑛],𝜔𝑖 𝑗 [𝑛]

∑︁
𝑛

𝑍 [𝑛]

min
𝑋 [𝑛],𝑌 [𝑛],𝑏𝑖 [𝑛],𝐶𝑖 [𝑛],𝜔𝑖 𝑗 [𝑛],𝑍 [𝑛]

∑︁
𝑛

𝑊 [𝑛]

𝑠.𝑡. :
𝐶1 : 𝜔𝑖 𝑗 [𝑛] ≤ 𝑍 [𝑛],∀𝑖 ∈ {1, 2, ...𝐼},
∀𝑛 ∈ {1, 2, ...},∀ 𝑗 ∈ {1, 2}

𝐶2 :
𝐽∑︁
𝑗=1
𝜔𝑖 𝑗 [𝑛] = 1,∀𝑖 ∈ {1, 2, ..., 𝐼},∀ 𝑗 ∈ {1, 2}

𝐶3 : 𝑇𝑖 𝑗𝜔𝑖 𝑗 [𝑛] ≤ 𝐷𝑖 ,∀𝑖 ∈ {1, 2, ..., 𝐼},∀ 𝑗 ∈ {1, 2}

𝐶4 :
𝐼∑︁
𝑖=1

𝜔𝑖2 [𝑛]𝐶𝑖 [𝑛] ≤ 𝐶𝑑 ,∀𝑛 ∈ {1, 2, ...}

𝐶5 :
𝐼∑︁
𝑖=1

𝜔𝑖1 [𝑛]𝐶𝑖 [𝑛] ≤ 𝐶𝑚,∀𝑛 ∈ {1, 2, ...}

𝐶6 :
𝐼∑︁
𝑖=1

𝜔𝑖2 [𝑛]𝑏𝑖 [𝑛] ≤ 𝛽𝑑 ,∀𝑛 ∈ {1, 2, ...}

𝐶7 :
𝐼∑︁
𝑖=1

𝜔𝑖1 [𝑛]𝑏𝑖 [𝑛] ≤ 𝛽𝑚,∀𝑛 ∈ {1, 2, ...}

𝐶8 : z[𝑛] − z𝑡ℎ ≥ (𝑍 [𝑛] − 1) · 𝑓0
𝐶9 : z[𝑛] − z𝑡ℎ < 𝑍 [𝑛] · 𝑓0
𝐶10 : 0 ≤ 𝑋 [𝑛] ≤ 𝑋𝑚𝑎𝑥

𝐶11 : 0 ≤ 𝑌 [𝑛] ≤ 𝑌𝑚𝑎𝑥 (18)

Here, 𝑋 [𝑛] and 𝑌 [𝑛] are the location of the DBS at time
slot 𝑛. 𝑏𝑖 [𝑛] and 𝐶𝑖 [𝑛] are the bandwidth and computing
resource allocated to 𝑈𝐸𝑖 at time slot 𝑛. 𝜔𝑖 𝑗 [𝑛] indicates
with which base station 𝑈𝐸𝑖 is associated at time slot 𝑛.
𝐷𝑖 is the deadline requirement of 𝑈𝐸𝑖 . 𝐶𝑑 and 𝐶𝑚 are the



5

computing resource capacities of the DBS and MBS. 𝛽𝑑 and
𝛽𝑚 are the bandwidth capacities of the DBS and MBS. z𝑡ℎ

is the service time threshold of the DBS. 𝑋𝑚𝑎𝑥 and 𝑌𝑚𝑎𝑥 are
the maximum distance the DBS can travel on the horizontal
plane. C1 is the battery power constraint, which imposes the
DBS to serve UEs with enough battery power. C2 is the UE
association constraint, which ensures one UE can associate
with only one station. C3 is the UE task deadline constraint,
which imposes the tasks to be completed in time. C4-C7 are
the resource capacity constraints. C4-C5 are the computing
resource constraints, which impose the computing resources
allocated to UEs not to exceed the respective computing
capacity of the MEC servers on the DBS and MBS. C6-
C7 are the bandwidth resource constraints, which impose the
bandwidth allocated to the ground UEs not to exceed the
respective bandwidth resource capacity of the MBS and DBS.
C8-C9 are the DBS energy constraints, where 𝑓0 is a large
positive number. Considering C8 and C9 together, 𝑍 [𝑛] = 1 if
the DBS has enough energy to return to the charging station
at time slot 𝑛; otherwise 𝑍 [𝑛] = 0. As a result, C8 and C9
impose the DBS to retain adequate energy to fly back to the
charging station. C10-C11 are the DBS placement constraints
on the horizontal plane.

V. PROPOSED SOLUTION

The ACCRUAL problem is a mixed integer nonlinear prob-
lem due to the binary UE association indicator, the bandwidth
and the computing resource allocation, and it is thus a very
difficult problem. In order to solve the ACCRUAL problem,
the original problem is decomposed into two sub-problems.
The first sub-problem is the REAP problem. The second sub-
problem is the DBS placement problem. To tackle the problem,
the DBS is first placed in the middle of the ground UEs
and allocated computing resources and bandwidth for UEs to
achieve the minimum task completion time. Then, the DBS
tries to find a location where it can maintain the total task
completion time while maximizing the service time.

A. The REAP Problem

Note that 𝒫1 is a mixed integer nonlinear multi-objective
problem which is difficult to solve. We can implement 𝜖-
Constraint Method, which is to incorporate one objective into
the constraints. However, it is very difficult to determine
the upper bound of the objective 𝜖 . Different 𝜖 will lead to
completely different target results. Same as the weighted sum
method, different weights of the objective can lead to totally
different results. To tackle the problem, we decompose 𝒫1 into
two sub-problems, the REAP problem and the DBS placement
problem. For a given DBS placement, we first solve the REAP
problem:

𝒫2 : min
𝑋 [𝑛],𝑌 [𝑛],𝑏𝑖 [𝑛],𝐶𝑖 [𝑛],𝜔𝑖 𝑗 [𝑛],𝑍 [𝑛]

∑︁
𝑛

𝑊 [𝑛]

𝑠.𝑡. :
𝐶1 − 𝐶7 (19)

The REAP problem focuses on minimizing the completion
time of the system with limited bandwidth and computing

resources. It is a mixed integer nonlinear programming, which
is difficult to solve. To tackle 𝒫2, we further decompose it
into two sub-problems: the bandwidth and computing resource
allocation problem and the UE association problem.

1) Bandwidth and computing resource allocation: For a
given UE association, we try to assign the bandwidth and
computing resources such that the deadline is satisfied. 𝒫2
is simplified as:

𝒫3 : min
𝑏𝑖 [𝑛],𝐶𝑖 [𝑛]

∑︁
𝑛

𝑊 [𝑛]

𝑠.𝑡. :
𝐶3 − 𝐶7 (20)

Lemma 1. For a given UE association, 𝒫3 is convex.

Proof: Denote the Hessian Matrix of 𝑇𝑖 𝑗 as 𝐻 =[
𝜕2𝑇
𝜕2𝑏𝑖

𝜕2𝑇
𝜕𝑏𝑖𝜕𝐶𝑖

𝜕2𝑇
𝜕𝐶𝑖𝜕𝑏𝑖

𝜕2𝑇
𝜕2𝐶𝑖

]
=


2𝑑𝑖

𝑏3
𝑖
𝑙𝑜𝑔 (1+𝛾𝑖)3 0

0 2𝑟𝑖𝑑𝑖
𝐶3

𝑖

 . Since 𝑟𝑖 , 𝑑𝑖 , 𝑏𝑖

and 𝐶𝑖 are all larger than 0, the Hessian Matrix 𝐻 is positive
definite, implying that 𝑇𝑖 𝑗 is convex for a given UE association.
Since the linear combination of convex functions is still
convex, we can conclude that 𝒫3 is convex for a given UE
association.

Since 𝒫3 is convex, we can easily solve it using CVX.
2) UE association: Given the resource allocation strategy,

the UE association problem can be mapped into a multiple-
choice two-dimensional knapsack problem. A UE can be
mapped into an item, the required bandwidth and computa-
tional resource can be mapped into the weight and the volume,
the MBS and DBS can be mapped into two knapsacks, and
the inverse of the task completion time can be mapped into
the profit. The objective is to maximize the profit. To solve
the association problem, we first define the profit of 𝑈𝐸𝑖 in
associating with BS 𝑗 as:

𝜛𝑖 𝑗 =
1
𝑇𝑖 𝑗

=
1

𝑑𝑖
𝑅𝑖 𝑗

+ 𝑟𝑖𝑑𝑖
𝐶𝑖

, (21)

such that the profit 𝜛𝑖 𝑗 will decrease if the task completion
time of𝑈𝐸𝑖 in associating with BS 𝑗 increases. By implement-
ing the profit 𝜛𝑖 𝑗 , we transform the minimization problem
into a maximization problem. Then, to solve the problem,
we define 𝐶 as the 𝐾-dimensional capacity constraints vector.
Here, 𝐾 is the number of capacity constraints including the
bandwidth and computing resource constraints of the MBD
and DBS. Let 𝐶𝑘 be the 𝑘 𝑡ℎ capacity constraint. We further
define the required resource represented by a 𝐾-dimensional
weight vector Φ𝑖 𝑗 . Here, Φ𝑘

𝑖 𝑗
is the 𝑘 𝑡ℎ required resource of

𝑈𝐸𝑖 associated with BS 𝑗 . After having solved 𝒫3, we try
to obtain better UE association by solving the multi-choice
multi-dimensional Knapsack Problem 𝒫4:

𝒫4 :𝑃(𝜔) = max
𝜔𝑖 𝑗 [𝑛],𝑍 [𝑛]

𝐼∑︁
𝑖=1

2∑︁
𝑗=1
𝜛𝑖 𝑗 [𝑛]𝜔𝑖 𝑗 [𝑛]

𝑠.𝑡. :
𝐶1 & 𝐶2
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𝐶14 :
𝐼∑︁
𝑖=1

2∑︁
𝑗=1

Φ𝑘𝑖 𝑗 [𝑛]𝜔𝑖 𝑗 [𝑛] ≤ 𝐶𝑘 (22)

Here, 𝜛𝑖 𝑗 is the profit of 𝑈𝐸𝑖 to be served by BS 𝑗 . 𝐶𝑖 and
𝑏𝑖 are the two costs of 𝑈𝐸𝑖 . The MBS and DBS are the two
knapsacks. We want to maximize the total profit by putting
UEs into two knapsacks (MBS vs DBS) without exceeding
their respective capacities.

By letting the non-negative real vector _ correspond to the
capacity constraint 𝐶14, 𝒫4 can be relaxed to the following
Lagrangian:

𝒫5 :𝐿 (_) = max
𝜔𝑖 𝑗 [𝑛],𝑍 [𝑛]

𝐼∑︁
𝑖=1

2∑︁
𝑗=1
𝜛𝑖 𝑗 [𝑛]𝜔𝑖 𝑗 [𝑛]

−
𝐾∑︁
𝑘=1

_𝑘 (
𝐼∑︁
𝑖=1

2∑︁
𝑗=1

Φ𝑘𝑖 𝑗 [𝑛]𝜔𝑖 𝑗 [𝑛] − 𝐶𝑘).

𝑠.𝑡. :
𝐶1 & 𝐶2. (23)

Here, _ is a 𝐾-dimensional Lagrange multiplier vector and
_𝑘 is the Lagrange multiplier correspond to the 𝑘 𝑡ℎ capacity
constraint.

Lemma 2. For a given _̃ ≥ 0, we can calculate the corre-
sponding upper bound of 𝒫4 by solving 𝒫5 : 𝐿 (_̃).

Proof: Denote the optimal objective function value of 𝒫4
as 𝑧∗. Since the capacity constraint 𝐶14 of 𝒫4 is removed and∑𝐾
𝑘=1 _̃𝑘 (

∑𝐼
𝑖=1

∑2
𝑗=1 Φ

𝑘
𝑖 𝑗
[𝑛]𝜔𝑖 𝑗 [𝑛] −𝐶𝑘) ≤ 0. We have 𝐿 (_̃) ≥

𝑧∗.
By combining similar items in 𝒫5, we get 𝒫6. For a given

_̃ ≥ 0, we can calculate the corresponding upper bound by
solving 𝒫6:

𝒫6 :𝐿 (_̃) = max
𝜔𝑖 𝑗 [𝑛],𝑍 [𝑛]

𝐼∑︁
𝑖=1

2∑︁
𝑗=1

(𝜛𝑖 𝑗 [𝑛] −
𝐾∑︁
𝑘=1

_̃𝑘Φ
𝑘
𝑖 𝑗 [𝑛])

· 𝜔𝑖 𝑗 [𝑛] +
𝐾∑︁
𝑘=1

_̃𝑘𝐶
𝑘

𝑠.𝑡. :
𝐶1 & 𝐶2 (24)

Obviously for 𝑈𝐸𝑖 , given Lagrange multiplier vector _̃, the
summation of capacity constraints

∑𝐾
𝑘=1 _̃𝑘𝐶

𝑘 is a constant.
Considering 𝐶1 and 𝐶2, to maximize 𝒫6, we just need to
maximize

∑𝐼
𝑖=1

∑2
𝑗=1 (𝜛𝑖 𝑗 [𝑛] −

∑𝐾
𝑘=1 _̃𝑘Φ

𝑘
𝑖 𝑗
[𝑛]) ·𝜔𝑖 𝑗 [𝑛]. Thus,

𝜔𝑖 𝑗 = 1 for 𝑈𝐸𝑖 to select BS 𝑗 that maximizes 𝜛𝑖 𝑗 [𝑛] −∑𝐾
𝑘=1 _̃𝑘Φ

𝑘
𝑖 𝑗
[𝑛]; if 𝜛𝑖 𝑗 [𝑛] −

∑𝐾
𝑘=1 _̃𝑘Φ

𝑘
𝑖 𝑗
[𝑛] = 0,∀ 𝑗 ∈ 𝐽, 𝑈𝐸𝑖

can select any BS.
We denote 𝑧𝐿 as the value of 𝐿 (_); 𝑧𝐿 is minimized by

the sub-gradient method from which the optimal Lagrange
multiplier vector, denoted as _∗, can be derived. Let

Ω = {𝜔𝑡 subject to C1 and C2}

be the finite set of feasible solutions of 𝐿 (_), where _ ≥ 0
and 𝜔𝑡 = (𝜔𝑡1,1, ..., 𝜔

𝑡
𝑖 𝑗
, ..., 𝜔𝑡

𝐼 ,2) be the feasible solution at the

𝑡𝑡ℎ iteration. The dual problem, which is to find the tightest
upper bound of 𝒫4, can be written as:

𝒫7 :𝑧𝐿 (_) = min
_
𝑢

𝑠.𝑡. :

𝑢 ≥
𝐼∑︁
𝑖=1

2∑︁
𝑗=1
𝜛𝑖 𝑗 [𝑛]𝜔𝑡𝑖 𝑗 [𝑛] +

𝐾∑︁
𝑘=1

_𝑘𝑔
𝑡

_𝑘 ≥ 0,∀𝑘 ∈ 𝐾 (25)

where 𝑔𝑡 = (𝑔𝑡1, ..., 𝑔
𝑡
𝐾
) is an 𝐾-dimensional vector at the 𝑡𝑡ℎ

iteration such that 𝑔𝑡
𝑘
=
∑𝐼
𝑖=1

∑2
𝑗=1 𝐶

𝑘 −Φ𝑘
𝑖 𝑗
[𝑛]𝜔𝑡

𝑖 𝑗
[𝑛].

Theorem 1. The function 𝐿 (_) of _ is piecewise-linear.

Proof: Denote 𝑆 as any subset of UEs, and 𝑎(𝑆) and
𝑐(𝑆) denote the total required resources and the total profit of
UEs in 𝑆, respectively. Then, we have 𝐿 (_) = max𝑆∈Ω{𝑐(𝑆) −
_(𝑎(𝑆) − 𝐶)}. Since 𝑐(𝑆) − _(𝑎(𝑆) − 𝐶) is a linear function
of _ for a given subset, we find that 𝐿 (_) is the maximum of
a finite set of linear functions, and thus it is piecewise-linear.

Since 𝐿 (_) is piecewise-linear, it is not differentiable at
some points. We use the sub-gradient method [29] to find the
optimal _ that leads to the tightest upper bound. Recall that
the 𝐾-dimensional vector 𝑔𝑡 is a sub-gradient of 𝜔𝑡 on _̃ for
function 𝑧𝐿 (_) when the condition

𝑧𝐿 (_) ≤ 𝑧𝐿 (_̃) + 𝑔𝑡 (_ − _̃),∀_ ≥ 0 (26)

is satisfied, where 𝜔𝑡 is the optimal solution of 𝐿 (_̃).
The optimal Lagrange multiplier _∗ can be approached iter-

atively by generating a sequence of _ according to Inequality
(26). Given an initial _1, the sequence {_𝑡 } can be determined
iteratively by:

_𝑡+1 = _𝑡 + 𝛾𝑠𝑔𝑡 , (27)

where 𝛾𝑠 is the step size. _𝑡 is the Lagrange multiplier at the
𝑡𝑡ℎ iteration.

Lemma 3. The optimal Lagrange multiplier _∗ can be ap-
proached iteratively.

Proof: ‖_𝑡+1 − _∗‖2 = ‖_𝑡 + 𝛾𝑠𝑔𝑡 − _∗‖2

= ‖_𝑡 − _∗‖2 + 𝛾2
𝑠 ‖𝑔𝑡 ‖2 + 2𝛾𝑠𝑔𝑡 (_𝑡 − _∗)

≤ ‖_𝑡 − _∗‖2 + 𝛾2
𝑠 ‖𝑔𝑡 ‖2 + 2𝛾𝑠 (𝑧𝐿 (_𝑡 ) − 𝑧𝐿 (_∗))

To guarantee ‖_𝑡+1 − _∗‖2 − ‖_𝑡 − _∗‖2 ≤ 0,
we should ensure 𝛾2

𝑠 ‖𝑔𝑡 ‖2 + 2𝛾𝑠 (𝑧𝐿 (_𝑡 ) − 𝑧𝐿 (_∗)) < 0.
Thus, we can conclude that as long as:

𝛾𝑠 ∈ (0, 2(𝑧𝐿 (_𝑡 ) − 𝑧𝐿 (_∗))
‖𝑔𝑡 ‖2 ), (28)

_∗ can be progressively approached.
In practice, we set 𝑧𝐿 (_∗) as the lower bound of 𝒫3. For

example, we can calculate the lower bound by the greedy
method. The steps are summarized in Algorithm 1.

In Algorithm 2 Iterative Allocation for REAP (IA-REAP),
we denote 𝑚 as the number of iterations, the resource al-
location of 𝒫3 as 𝑎 and the objective value of the REAP
problem as 𝑊 (𝜔, 𝑎). Since 𝒫3 is convex for given UE
association 𝜔, we have 𝑊 (𝜔𝑚, 𝑎𝑚) ≥ 𝑊 (𝜔𝑚, 𝑎𝑚+1). As



7

Algorithm 1: UE Association for REAP
Input: 𝐾 , 𝜖 , 𝛽𝑑 , 𝛽𝑚, 𝑈𝐸 , 𝐶𝑑 , 𝐶𝑚, 𝑋 [𝑛], 𝑌 [𝑛].
Output: 𝜔𝑡 , 𝑊 [𝑛]∗.

1 Calculate 𝑏𝑖 and 𝐶𝑖 by solving 𝒫3.
2 Initialize _𝑡 and set 𝑡 = 1.
3 repeat
4 Obtain 𝜔𝑡 by solving 𝒫6.
5 Calculate the sub-gradient 𝑔𝑡 according to Eq.(26).
6 _𝑡+1 = _𝑡 + 𝛾𝑠𝑔𝑡 .
7 Choose 𝛾𝑠 according to Eq.(28).
8 𝑡 = 𝑡 + 1.
9 until 𝑃(𝜔𝑡+1) − 𝑃(𝜔𝑡 ) ≤ 𝜖 .

Algorithm 2: Iterative Allocation for REAP (IA-
REAP)

Input: 𝐾 , 𝜖 , 𝛽𝑑 , 𝛽𝑚, 𝑈𝐸 , 𝐶𝑑 , 𝐶𝑚, 𝑋 [𝑛], 𝑌 [𝑛].
Output: 𝜔𝑡 , 𝑊 [𝑛]∗.

1 Initialize 𝑚 = 0, 𝜔𝑚 and 𝑎𝑚.
2 repeat
3 Given {𝜔𝑚, 𝑎𝑚}, find the optimal resource

allocation 𝑎𝑚+1 by solving 𝒫3
4 Given {𝜔𝑚, 𝑎𝑚+1}, find the optimal UE association

𝜔𝑚+1 by Algorithm 1.
5 𝑚 = 𝑚 + 1.
6 until the improvement is less than 𝜖 .

proven before, for given resource allocation 𝑎𝑚+1, we have
𝑊 (𝜔𝑚, 𝑎𝑚+1) ≥ 𝑊 (𝜔𝑚+1, 𝑎𝑚+1). Therefore, we can conclude
that 𝑊 (𝜔𝑚, 𝑎𝑚) ≥ 𝑊 (𝜔𝑚+1, 𝑎𝑚+1).

B. DBS Placement Problem

Given the UE association and resource allocation, we try to
solve the DBS placement problem:

𝒫8 : max
𝑋 [𝑛],𝑌 [𝑛]

∑︁
𝑛

𝑍 [𝑛]

𝑠.𝑡. :
𝐶8 − 𝐶11 (29)

Since 𝒫8 is highly non-linear, to tackle the DBS placement
problem, the horizontal plane is divided into several sub-
planes to determine the DBS placement. We first calculate
the completion time of all tasks at each sub-plane. Second,
the sub-planes are sorted in ascending order according to the
total task completion time. In Algorithm 3, the plane is divided
into 𝐿 sub-planes. 𝑊𝑙 [𝑛] is the completion time of all tasks
at the 𝑙-th sub-plane. 𝑊 [𝑛]∗ is the completion time of all
tasks obtained form Algorithm 2. In lines 1-5, the completion
time of all tasks at each sub-plane are rounded down. In lines
6-11, the maximum and minimum completion times among
all sub-planes are found. 𝑟𝑎𝑛𝑔𝑒 is the variance of the task
completion time among all sub-planes. 𝑐𝑜𝑢𝑛𝑡 is an auxiliary
array in lines 12-14; it stores the number of sub-planes for each
completion time. 𝑖𝑛𝑑𝑒𝑥 is used to count how many blocks can
provision task completion time of 𝑊𝑙 [𝑛]. In lines 15-20, the
blocks are sorted according to the completion time stored in

Algorithm 3: Counting Placement (CP)

Input: 𝜔𝑖 𝑗 , 𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑎𝑥 , z[𝑛], z𝑡ℎ, 𝑊 [𝑛]∗.
Output: 𝑋∗, 𝑌 ∗, 𝑍𝑛.

1 for 𝑋 ∈ 𝑋𝑚𝑎𝑥 and 𝑌 ∈ 𝑌𝑚𝑎𝑥 do
2 obtain 𝑊𝑙 [𝑛] for every 𝑋 and 𝑌 by Algorithm 2.

3 for 𝑙 ≤ 𝐿 do
4 𝑊 [𝑛]∗ = b𝑊 [𝑛]∗ ∗ 100c.
5 𝑊𝑙 [𝑛] = b𝑊𝑙 [𝑛] ∗ 100c.
6 for 𝑙 ≤ 𝐿 do
7 if 𝑊𝑙 [𝑛] > max then
8 max = 𝑊𝑖 [𝑛].
9 if 𝑊𝑙 [𝑛] < min then

10 min = 𝑊𝑙 [𝑛].
11 𝑟𝑎𝑛𝑔𝑒 = max−min+1.

12 for 𝑙 ≤ 𝐿 do
13 𝑖𝑛𝑑𝑒𝑥 = 𝑊𝑙 [𝑛] − min.
14 𝑐𝑜𝑢𝑛𝑡 (𝑖𝑛𝑑𝑒𝑥) = 𝑐𝑜𝑢𝑛𝑡 (𝑖𝑛𝑑𝑒𝑥) + 1.

15 𝑖𝑛𝑑𝑒𝑥 = 1.
16 for 𝑙 ≤ 𝑟𝑎𝑛𝑔𝑒 do
17 while 𝑐𝑜𝑢𝑛𝑡 (𝑙) ≥ 1 do
18 𝑊𝑖𝑛𝑑𝑒𝑥 [𝑛] = 𝑙 + min.
19 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 1.
20 𝑐𝑜𝑢𝑛𝑡 (𝑙) = 𝑐𝑜𝑢𝑛𝑡 (𝑙) − 1.

21 𝑙 = 𝐿.
22 for 𝑙 > 3

4𝐿 do
23 if 𝑊 [𝑛]∗ ≤ 𝑊𝑙 [𝑛] and z ≤ ¤z then
24 max z = ¤z.
25 𝑙 = 𝑙 − 1

26 (𝑋∗, 𝑌 ∗) = arg max z(𝑋𝑙 , 𝑌𝑙).
27 if z[𝑛] − z𝑡ℎ > 0 then
28 Z[n] = 1.

29 else
30 Z[n] = 0.
31 𝜔𝑖 𝑗 = 0 ∀𝑖 ∈ 𝐼.

𝑐𝑜𝑢𝑛𝑡. Here, 𝑐𝑜𝑢𝑛𝑡 stores the positions where the sub-planes
with each completion time should be placed. Then, in lines
21-26, we compare 𝑊 [𝑛]∗ and total completion time of the
sub-planes. The DBS will move to the location where it can
maintain the completion time 𝑊 [𝑛]∗ obtained from Algorithm
2 and maximize the service time of the DBS. In lines 27-31,
𝑍 [𝑛] = 0 if the DBS does not retain adequate battery power
to fly back to the MBS charging station at the end of time slot
𝑛, in which case all ground UE association indicators 𝜔𝑖 𝑗 will
be set to 0. The time complexity of Algorithm3 (CP) depends
on the number of sub-planes. The complexity to calculate the
task completion time at all candidate sub-planes is 𝑂 (𝐿 · 𝑚),
where 𝑚 is the number of iterations of Algorithm 2. The
complexity to sort sub-planes is 𝑂 (𝐿+𝑟𝑎𝑛𝑔𝑒). The complexity
to compare the service time of the candidate sub-planes is
𝑂 ( 1

4𝐿). Thus, the total complexity of the CP algorithm is
𝑂 (( 5

4 + 𝑚)𝐿 + 𝑟𝑎𝑛𝑔𝑒).
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VI. PERFORMANCE EVALUATION

Extensive simulations are run using MATLAB to obtain the
results. 40 UEs are uniformly distributed in a 500×500 𝑚2

area for every simulation. To simulate the scenario that the
DBS helps serve the UEs far away from the MBS, the MBS
is placed at the origin (0, 0) of the Cartesian coordinate. A
laser power source is mounted on the MBS. The ground UEs
are uniformly distributed at 𝑥 ∈ [0, 500] and 𝑦 ∈ [0, 500].
The DBS is first placed at (∑𝐼

𝑖=1
𝑥𝑖
𝐼
,
∑𝐼
𝑖=1

𝑦𝑖
𝐼
) and gradually

modifies its location in every time slot. The raspberry pi 4
mounted on the drone is responsible for executing computing
tasks. The quad core CPU on the raspberry pi 4 can overclock
to 2.3 GHz [34], [38]. So, the computational capacity of the
DBS is set to 9.2 GHz. According to Federal Communications
Commission, the specific absorption rate for mobile devices
such as cell phones is 1.6 watts per kilogram (W/kg) [36].
The recent smartphones weight ranking report shows that the
weight of the smartphone ranges from 112 g to 328 g [37].
So, the communication power of each UE is distributed within
[100, 500] mW. The task size of each UE is distributed within
[0.1, 0.5] Mb [32]. The deadline of every task is distributed
within [0.2, 1] s. The working current and voltage of the DBS
are 23V and 5A, respectively. The original DBS service time
without charging is 1800s. The original DBS service time is
divided into 15 slots, considering the low mobility of the DBS.
The other simulation parameters are illustrated in Table 1.

TABLE 1. Simulation Parameters

(𝑎, 𝑏) (9.1,0.16) [27] ( b 𝑙𝑜𝑠 , b𝑁𝑙𝑜𝑠) (1,20)
(𝜏𝑙𝑜𝑠 , 𝜏𝑁𝑙𝑜𝑠) (20,20) ( b𝑖𝑚, 𝜏𝑖𝑚) (131.1,42.8)

𝑁0 -174 dbm/Hz (𝛽𝑚, 𝛽𝑑) (20,5) MHz
(𝐶𝑚, 𝐶𝑑) (50,9.2) GHz [33] a 18 m/s

𝑝𝑖 [100, 500] mW 𝑃𝑡 200 W
𝑑𝑖 [0.1, 0.5]Mb [32] 𝐷 [35] 1.5
\ 0.01 𝛼 6.9db/km [28]
𝐼𝑑 5A 𝑉 23V
𝑀 3.6kg [7] [𝑚 0.85
[𝑒 0.95 𝐷𝑖 [0.2, 1]s [32]
z0 1800 s 𝜏0 120 s
𝐼 40 (𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑎𝑥 ) (500,500) m
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Fig. 2. Distribution of UEs.

Fig. 2 shows the distribution of UEs in the horizontal plane.
The red circle is the location of the MBS and the blue circle
is the location of the DBS. Fig. 3 demonstrates how the total
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Fig. 3. Total service time with different laser source power.

service time of the DBS increases as the laser source power
increases. The blue columns show the initial DBS service time
without charging. The orange columns illustrate the service
time with the fixed placement algorithm, in which the DBS
is located in the middle of all ground UEs in every time slot.
The khaki columns illustrate the DBS service time achieved
by our proposed algorithm. The simulation results demonstrate
that our algorithm is superior to the fixed placement algorithm
because the proposed algorithm enables the DBS to harvest
more energy. When the laser source power is 200w, 20% of
the DBS service time is improved as compared to the service
time without charging. As compared with the fixed placement
algorithm, the service time is improved by more than 3%.
When the laser source power is 400w [26], our proposed
algorithm improves the service time by 16% as compared to
the fixed placement algorithm and by 40% of the service time
as compared to that without charging.
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Fig. 4. Received power.

Fig. 4 illustrates the laser power received by the DBS. The
laser source transmission power is 200w. The UE distribution
is shown in Fig. 2. The blue line corresponds to the fixed
placement. As the DBS is located in the middle of the ground
UEs, the received power is almost the same in every time slot.
At the 17th time slot, even with the laser charging energy, the
DBS does not have sufficient battery energy to serve the next
time slot. So, the DBS returns to the charging station. As a
result, the received power at the 18th time slot becomes 0. The
red curve corresponds to our proposed algorithm. The DBS
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tries to find a location where it can both maintain the total
task completion time calculated by Algorithm 2 and harvest
the maximum energy. The result shows that the received power
grows fast from time slot 1 to time slot 4 because the DBS is
flying towards the charging station. From time slot 4 to time
slot 18, the location of the DBS is almost fixed. The DBS is
searching for a location where it can both extend the service
time and maintain the task completion time obtained from
Algorithm 2. Here, extending the DBS service time means
the DBS has to move closer to the MBS, and maintaining the
task completion time means the DBS may need to fly away to
provide services to the UEs far from the MBS. In Algorithm
3 (lines 23-26), only when both conditions are fulfilled, will
the DBS move. The two conditions conflict with each other.
Since the DBS has to serve UEs and fulfill the deadlines of
the tasks of UEs, the DBS cannot fly to the charging station
as close as it wants. So, the DBS remains almost stationary
from time slot 4 to 18, and the received power grows slowly
and steadily. At time slot 18, the DBS does not have sufficient
battery energy to provide services in the next time slot. Thus,
the received laser power becomes 0 at time slot 19.
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Fig. 5. Total task completion time for all UEs

Fig. 5 illustrates the time for completing tasks of all
UEs for different numbers of UEs by implementing different
algorithms. The UE distribution is shown in Fig. 2. The blue
bar corresponds to our proposed algorithm and the orange
bar to the greedy algorithm. The UEs try to offload their
tasks to the base station which can provide better channel
conditions. Since the DBS has a better channel condition
most of the time, most tasks will be offloaded to the DBS
until the DBS runs out of resources, and then the rest of
the UEs must offload their tasks to the MBS. Although the
DBS has better channel conditions, it has limited resources.
As a result, more tasks have to be offloaded to the MBS,
thus leading to a larger completion time as compared to our
proposed algorithm. The khaki bar corresponds to the equal
resource assignment algorithm. All the resources are equally
allocated to all UEs and the UEs will try to offload their tasks
to the DBS until the DBS runs out of resources. Although the
equal distribution of resources seems very fair, this policy will
greatly increase the delay of some tasks that require a large
amount of resources. The purple bar corresponds to the fixed
placement random association algorithm. The DBS is located

in the middle of the ground UEs and resources are equally
shared among UEs. Tasks are equally likely offloaded to MBS
and DBS. The green bar corresponds to the one without DBS
assistance, in which all the tasks are offloaded to the MBS.
As the result shows, when the number of UEs increases, the
total task completion time increases. When there are 20 UEs,
the fixed placement algorithm and the non-DBS assistance
algorithm are not able to meet the task deadline requirement.
When there are 30 UEs, only the proposed algorithm can meet
the task deadline requirement. Furthermore, our algorithm is
superior to the other algorithms, and more than 9% of the total
task completion time is improved as compared to the greedy
algorithm when there are 40 UEs.
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Fig. 6. DBS service time with different receiver efficiency.

Fig. 6 illustrates the total flight time with different receiver
efficiencies. In Fig. 6, the y-axis represents the DBS service
time and the x-axis corresponds to eight different receiver
efficiencies. Here, 𝜏𝑡 is the transmission efficiency of the laser
charging station. [𝑐 is the converting efficiency of the charging
circuit. 𝜏𝑟 is the energy harvesting efficiency of the receiver.
The results show that as the receiver efficiency decreases,
the total flight time decreases accordingly. The flight time
illustrated by the last column (black) is the same as the flight
time without charging. So, in order to extend the DBS service
time when the laser power and transmission efficiencies are
200 w and 0.7, the energy harvesting efficiency and converting
efficiency should be both at least 0.4.

VII. CONCLUSION

In this article, the joint user association bandwidth and com-
putation resource assignment and laser charing (ACCRUAL)
problem has been formulated. Both DBS and MBS are de-
ployed to provide computing services to the ground UEs. A
laser power source is mounted on the MBS to energize the
DBS. Our objective is to jointly minimize the task completion
time and maximize the DBS services time. We have decom-
posed the ACCRUAL problem into two sub-problems: the
REAP problem and the DBS placement problem. An iterative
algorithm has been proposed to solve the REAP problem
to minimize the completion time with limited bandwidth
and computing resources as well as the user association. A
method to estimate the DBS service time has been devel-
oped. Implementing IA-REAP and CP algorithms has been
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shown to extend the DBS service time. The simulation results
demonstrate that when the laser power is 200w, our proposed
algorithm can improve the DBS service time by 20% as
compared to the service time without charging. When the laser
power is 400w, our proposed algorithm can improve the DBS
service time by 40% as compared to the service time without
charging and 16% of service time is improved as compared to
the fixed placement algorithm.
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