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Abstract—Drone-mounted base-station (DBS) can empower 5G
and beyond networks with additional flexibility and maneuver-
ability, and laser charging can potentially extend the DBS’s flight
time. We propose a laser charging enabled DBS framework in
which a laser charging station on the ground constantly transmits
energy to a quadrotor DBS in the air and the DBS provides
communications for all users. The DBS is to be intelligently
placed in the optimal location to provide service to the ground
users in each time slot. We thus formulate the joinT powEr and
bandwidth assignment, LasEr Charing enAbled DBS placemenT
(TELECAST) problem to jointly maximize the flight time and
communications data rate. Since the TELECAST problem is NP-
hard, we decompose it into two sub-problems: the joint power
and bandwidth allocation problem (JPB) and the DBS placement
problem. A recursive algorithm is employed to solve the JPB
problem and a counting placement algorithm is used to tackle
the DBS placement problem. The performance of our algorithm
is superior to fixed placement algorithms and greedy resource
allocation algorithm and lagrange resource allocation algorithm
upon which the user data rate is improved by more than 6%
and the total flight time is extended by 20%, as demonstrated in
our simulation results.

Index Terms—Drone mounted base-station (DBS), laser charg-
ing, wireless communications, resource allocation

I. INTRODUCTION

Drone-mounted base-stations (DBSs) are drawing attention
from industry and government in recent years for various
applications. DBSs, which can empower 5G and beyond
networks with additional flexibility, maneuverability and cost
efficiency as compared to traditional base stations, can be
deployed to provide communications services for temporary
use cases in specific areas such as disaster areas and hot spots
[1].

High maneuverability enables the DBS to fly to a location
where it may have a high probability of line of sight (LoS)
connection to ground users, thus providing a good channel
condition. However, the limited battery power of a drone
limits its service capabilities. The weight of a general portable
base station carried by a drone varies from 1lb (0.45kg) to
2.35lb (1.07kg) [2]. For heavy lift drones, the ‘Tarot T-18
Ready To Fly’ drone with the maximum payload of 8kg
has 20 minutes of flight time, ‘DJI MATRICE 600’ with the
maximum payload of 6kg has 16 minutes of flight time and
‘AZ 4K UHD Camera Drone Green Bee 1200’ with 20kg
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payload has 20 minutes of flight time [3]. The heavy payload
and limited battery capacity curtail the drone’s service range
and serving time. One solution to overcome this issue is to
charge the drone via wire while it is flying. For example,
the 2017 hurricane Maria destroyed 90 percent of the cell
sites [4] in Puerto Rico and AT&T deployed DBSs charged
via wire to provide emergency cellular network service for
victims [5]. However, the wire limits the range of activities
of the DBS and reduces the maneuverability of the DBS; a
long cable also increases the cost of deploying a DBS. As
compared to the wired charging, wireless charging, e.g., via
RF and laser charging, is an attractive alternative solution.
Note that RF charging has a large divergence angle to charge
multiple devices and it can only work in a very short distance.
The laser can travel 50km in clear weather, 1.9km in fog and
500m in moderate fog [6]. Encouraged by the laser’s high
energy transmission efficiency, small divergence angle and
long transmission distance, the laser charging is becoming
a viable solution to charge the DBS. In a millimeter-wave
communication system, non-LoS links will greatly degrade
the communication rate, and the deployment of DBSs will
greatly increase the probability of LoS to improve the system
throughput. Furthermore, the field tests illustrated by [34] and
[35] have demonstrated the feasibility of charging DBSs by
laser beams.

Many works on DBS communications and wireless charging
of drones have been reported. Ansari et al. [7] first postulated
the concept of enabling DBSs to simultaneously receive data
and energy via the laser beams. Al-Hourani et al. [8] eluci-
dated a path loss model for drone-to-ground user communica-
tions, and constructed a model to calculate the optimal altitude
for a DBS to obtain the maximum coverage for a given path
loss. Wang et al. [9] proposed to use unsupervised learning and
3D wireless channel rapid modeling to estimate the wireless
channel. Zhang and Ansari [10] proposed an approximation
algorithm to solve the in-band full duplex communications
and 3D DBS placement problem. Mostafa et al. [11] built
a system for a DBS to harvest energy wirelessly. Wu et al.
[12] maximized the minimum average rate among all users
by jointly optimizing the user communication scheduling and
UAV trajectory. Ouyang et al. [13] studied a laser-powered
UAV focusing on the downlink communications from the UAV
to the ground base station. Jiang et al. [14] proposed to use the
DBS to charge the ground users through RF frequency with
the target to maximize the data rate from the ground users
to the DBS. Sun et al. [15] studied the 3D placement, power
and subcarrier allocation problem in a solar powered DBS
communication system. Qiao et al. [26] studied the trajectory
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of the DBS in the post-disaster area and implemented a
genetic algorithm to find the best DBS trajectory to provide
emergency communications for the victims. Sun et al. [27]
studied the DBS assisted mobile access network, and they
proposed a spectrum efficiency aware DBS placement and user
association algorithm to obtain the optimal 3D placement and
the maximum throughput of the network. Zhang et al. [30]
developed a non-convex mathematical model for Hierarchical
Heterogeneous Wireless Networks (HHWNs) and proposed
control and resource allocation algorithms for HHWNS to
adapt the dynamic scenarios. Hu et al. [31] investigated the
trajectory design for a group of DBSs in dynamic wireless
network scenarios and employed the optimal trajectory for
the DBSs to cooperatively navigate in the considered area to
maximize coverage of the dynamic requests of the ground
users. Chen et al. [32] studied the deployment of cache-
enabled UAVs in a cloud radio access network and proposed
a novel algorithm based on the machine learning framework
of concept-based echo state networks (ESNs) to predict the
users’ content request distribution and their mobility pattern by
leveraging prior knowledge of the limited information of users
and the network. By using the prediction, the optimal locations
of the UAVs and content to cache at UAVs are derived.

Different from the above works, we propose a laser charging
enabled DBS assisted network to provide ubiquitous communi-
cations, which is extremely useful to support communications
for disaster scenarios; the laser is used for charging the
DBS, and the DBS is employed to provide communications
for the ground users; the DBS placement, the power and
bandwidth assignment, the laser charging rate and the energy
consumption of the DBS are studied.

In this paper, the intelligent DBS placement is investigated
in each time slot and a time slot is a fixed small time duration,
during which the DBS hovers at a fixed location to serve user
equipments (UEs). Meanwhile, the UE association, the power
and bandwidth assignment need to be intelligently designed in
order to maximize the total throughput of the network while
the flight time of the DBS is extended. We formulate the joinT
powEr and bandwidth assignment, LasEr Charing enAbled
DBS placemenT (TELECAST) problem, and jointly maximize
the down link data rate and total flight time by optimizing
the limited power and bandwidth allocation as well as the
placement of the DBS.

The main contributions of this paper are delineated as
follows:

1) We propose a laser charging enabled DBS framework
where the laser is implemented for both communications
and charging. A laser charging station is placed on the
ground and it constantly transmits energy to a DBS while
the DBS provides communications to the ground users.

2) We propose a charging model with laser charging from the
perspective of the battery to estimate the flight time of the
DBS.

3) We propose a recursive algorithm to solve the joint power
and bandwidth allocation (JPB) problem iteratively and a
counting placement algorithm to solve the DBS placement
problem.

The rest of this article is organized as follows. The system
model and the problem formulation is presented in Section
II. Two heuristic algorithms are proposed in Section III. The
algorithm performance evaluation is shown in Section IV.
Section V presents the conclusion.
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Fig. 1: A laser charging enabled DBS assisted wireless
communications network

II. SYSTEM MODEL AND PROBLEM FORMULATION

We propose a laser charging enabled DBS assisted wireless
communications network to serve the ground UEs in a disaster
area or provide ubiquitous communications for temporary
events, as expressed in Fig. 1. The wireless communications
network consists of a DBS, a group of ground UEs and a laser
charging station. We assume that each UE has a determined
data rate requirement in every time slot and the power and
bandwidth resource in the DBS is limited. The DBS flies
at a fixed height and uses RF to provide services to the
ground UEs. The charging station is equipped with a laser
power source to provide both data and energy for the DBS
to extend its service time. Another laser, mounted on the
charging station, is used for backhaul communications. The
height of the DBS and that of the charging station are high
enough to provide LoS links. According to [28] [29], the data
rate of an FSO channel can reach more than 100 Gbps for
1–1.5 km transmission, and the backhaul link has enough
capacity to accommodate all UEs. Then, we only focus on
the optimization of the resource assignment and placement of
the DBS. Note that the DBS needs to reserve enough energy
to return to the charging station. The ground UEs’ positions
are known and assumed to be of low mobility. The DBS may
change its position in every time slot in order to harvest energy
while maximizing the total data rate of all UEs.

A. Communications Model

The communications channel between the DBS and UEs at
location 𝑖 is assumed to be probabilistic line of sight (LoS).
The probability of LoS can be written as [8]:

𝑝𝑙𝑜𝑠 =
1

1 + 𝑎𝑒−𝑏 (𝜃𝑖−𝑎)
, (1)

where 𝑎 and 𝑏 are environmental parameters related to a
specific area such as rural, urban and other terrain [16]. 𝜃𝑖
is the elevation angle between the DBS and 𝑈𝐸𝑖 , which can
be expressed as 𝜃𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑙/𝛿𝑖), where 𝑙 is the height of
the DBS and 𝛿𝑖 is the horizontal distance between the DBS
and 𝑈𝐸𝑖 .
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The LoS and non-LoS path loss between the DBS and 𝑈𝐸𝑖
can be written as:

𝜑𝑙𝑜𝑠𝑖 = 𝜉𝑙𝑜𝑠 + 𝜏𝑙𝑜𝑠 log10 (
√︃
𝛿2
𝑖
+ 𝑙2) (2)

𝜑𝑁𝑙𝑜𝑠𝑖 = 𝜉𝑁𝑙𝑜𝑠 + 𝜏𝑁𝑙𝑜𝑠 log10 (
√︃
𝛿2
𝑖
+ 𝑙2), (3)

where 𝜉𝑙𝑜𝑠 and 𝜉𝑁𝑙𝑜𝑠 are the path loss at the reference
distance, and 𝜏𝑙𝑜𝑠 and 𝜏𝑁𝑙𝑜𝑠 are the path exponent for LoS and
non-LoS connection, respectively [17], [18]. Since we know
the probability mass function of the LoS and non-Los date
rate, the average data rate of 𝑈𝐸𝑖 when communicating with
the DBS in time slot 𝑛 is expressed as:

𝑅𝑖 [𝑛] = 𝑏𝑖 [𝑛] log2 (1 +
𝑝𝑖 [𝑛]𝜑𝑙𝑜𝑠𝑖 [𝑛]
𝑁0𝑏𝑖 [𝑛]

)𝑝𝑙𝑜𝑠

+𝑏𝑖 [𝑛] log2 (1 +
𝑝𝑖 [𝑛]𝜑𝑁𝑙𝑜𝑠𝑖

[𝑛]
𝑁0𝑏𝑖 [𝑛]

) (1 − 𝑝𝑙𝑜𝑠),
(4)

where 𝑝𝑖 denotes the transmission power assigned to 𝑈𝐸𝑖 by
the DBS; 𝑝𝑖 remains the same over time slot 𝑛; 𝑁0 is the
power spectral density of white Gaussian noise and assumed
to be identical for all UEs; 𝑏𝑖 is the bandwidth allocated to
𝑈𝐸𝑖 by the DBS.

B. Laser Power Model

We consider free space optical propagation between the
DBS and the laser charging station. 𝐺𝑡 denotes the charging
station transmission gain and the transmitting power 𝑃𝑡 . The
power received at the DBS can be expressed as [6]:

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟𝜏𝑡𝜏𝑒𝜏𝑟𝑃, (5)

where 𝜏𝑡 and 𝜏𝑟 denote the optical efficiency at the transmitter
and receiver, respectively; 𝜏𝑒 = 10−𝛼𝐿/10 is the environmental
attenuation parameter, where 𝐿 is the distance between the
DBS and the charging station and 𝛼 is the environmental factor
with 𝛼 being 0.19 dB/km in clear weather, 6.9 dB/km when
foggy and 28.9 dB/km in moderate fog. 𝑃 = (𝜆/4𝜋𝐿)2 is the
free space path loss, where 𝜆 is the wavelength of the laser;
𝐺𝑟 = (𝜋𝐷/𝜆)2 is the DBS’s receiver gain, where 𝐷 is the
receiver diameter; 𝐺𝑡 = 16/Θ2 is the transmitter gain, where
Θ is the divergence angle [7]. We can rewrite Eq. (6) as:

𝑃𝑟 = 𝑃𝑡 (𝐷/Θ𝐿)2𝜏𝑡10−𝛼𝐿/10𝜏𝑟 . (6)

C. Charging Model

The DBS uses a lithium battery to provide energy. The
amount of charge in the battery when fully charged is 𝑄. Based
on the Coulomb counting method, the battery state of charge
is expressed as [19]:

𝑆(𝑡) = 1 − 1
𝑄

∫ 𝑡

0
𝐼 (𝜁)𝑑𝜁 . (7)

The remaining amount of charge in the battery can be
expressed as [20]:

𝑄(𝑡) = 𝑆(𝑡)𝑄. (8)

The remaining flight time of the DBS can be expressed as:

𝑇 (𝑡) = 𝑄(𝑡)𝜂𝑚𝜂𝑒
𝐼𝑑

, (9)

where 𝐼𝑑 is the average working current of the DBS, 𝜂𝑚 is the
motor efficiency and 𝜂𝑒 is the battery discharging efficiency.

The received laser energy is assumed to provide relatively
stable voltage for the DBS. The amount of charge in the battery
while charging equals to the initial amount of charge minus
the amount of charge used by the DBS plus the amount of
charge harvested from the laser. The remaining flight time of
the DBS while charging can be expressed as:

𝑇 (𝑡) = 𝑄(𝑡)𝜂𝑚𝜂𝑒
𝐼𝑑

+
𝜂𝑚𝜂𝑒𝜂𝑐
𝑉

∫ 𝑡
0 𝑃𝑟 (𝜁)𝑑𝜁
𝐼𝑑

. (10)

The first part of the formula is the remaining usage time after
the battery is discharged, and the second part is the extra flight
time converted by the DBS after collecting the laser energy.
Here, 𝜂𝑐 is the converting efficiency of the charging circuit on
the DBS. 𝑉 is the working voltage of the DBS.

To simplify the problem, we define Γ[𝑛] as the remaining
service time at the end of the 𝑛-th time slot, as expressed in
Eq. (11):

Γ[𝑛 + 1] = Γ[𝑛] − Γ𝑢𝑠𝑒𝑑 [𝑛 + 1] + Γ𝑐ℎ𝑎𝑟𝑔𝑒𝑑 [𝑛 + 1] . (11)

Here, the reduced service time due to the DBS movement and
hovering in the n+1-th time slot can be expressed as:

Γ𝑢𝑠𝑒𝑑 [𝑛 + 1] = 𝜏0 +
𝐸 [𝑛 + 1]
𝐼𝑑𝑉

, (12)

where 𝜏0 is the duration of a service period. 𝐸 [𝑛+1]
𝐼𝑑𝑉

is the
reduced DBS service time due to the movement energy con-
sumption in the (𝑛 + 1)-th time slot. The energy consumed by
the DBS while moving from one location to another location
in the (𝑛 + 1)-th time slot is defined as 𝐸 [𝑛 + 1], which can
be calculated by kinetic energy 𝐸 [𝑛 + 1] = 𝑘𝜈2 [𝑛 + 1] [21].
Here, the energy parameter is 𝑘 = 0.5𝑀 . 𝑀 is the mass of the
DBS.

The extended service time harvested from laser energy in
the (𝑛 + 1)-th time slot can be expressed as:

Γ𝑐ℎ𝑎𝑟𝑔𝑒𝑑 [𝑛 + 1] = 𝜂𝑚𝜂𝑒𝜂𝑐𝜏0

𝐼𝑑𝑉
𝑃𝑟 [𝑛 + 1] . (13)

Γ[0] can be obtained by calculating the average hovering time
of the DBS without charging.

The ground UEs are assumed to be of low mobility so that
the DBS will not change its location frequently. The movement
time is negligible as compared to the service period. So, the
remaining service time at the end of the (𝑛 + 1)-th service
period equals to the remaining service time minus the service
period and the reduced service time due to the movement
of the DBS, plus the extended time converted from the laser
energy in the (𝑛 + 1)-th service period.

D. Problem Formulation

In this paper, we aims to extend the DBS’s flight time and
maximize the total data rate. Here, 𝑋 [𝑛] and 𝑌 [𝑛] are the
location of the DBS at time slot 𝑛. 𝑝𝑖 and 𝑏𝑖 are the power
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and bandwidth allocated to 𝑈𝐸𝑖 . 𝑍 [𝑛] is a boolean variable. If
the DBS has enough battery energy to serve UE and return to
the charging station at the 𝑛-th time slot, 𝑍 [𝑛] = 1; otherwise,
𝑍 [𝑛] = 0. Then, the summation of 𝑍 [𝑛] indicates the number
of time slots that the DBS serves ground UEs. 𝜔𝑖 [𝑛] is the
UE association indicator and it is “1” if 𝑈𝐸𝑖 is served at time
slot 𝑛. Therefore, the throughput of the network at time slot 𝑛
can be expressed as

∑
𝑖 𝜔𝑖 [𝑛]𝑅𝑖 [𝑛]. The TELECAST problem

can be formulated as a multi-objective optimization:

𝒫1 : max
𝑋 [𝑛],𝑌 [𝑛],𝑏𝑖 [𝑛], 𝑝𝑖 [𝑛],𝜔𝑖 [𝑛],𝑍 [𝑛]

∑︁
𝑛

𝑍 [𝑛]

max
𝑋 [𝑛],𝑌 [𝑛],𝑏𝑖 [𝑛], 𝑝𝑖 [𝑛],𝜔𝑖 [𝑛],𝑍 [𝑛]

∑︁
𝑛

∑︁
𝑖

𝜔𝑖 [𝑛]𝑅𝑖 [𝑛]

𝑠.𝑡. :
𝐶1 : 𝜔𝑖 [𝑛] ≤ 𝑍 [𝑛],∀𝑖 ∈ {1, 2, ...𝐾},∀𝑛 ∈ {1, 2, ...}

𝐶2 :
𝐾∑︁
𝑖=1

𝜔𝑖 [𝑛]𝑏𝑖 [𝑛] ≤ 𝛽,∀𝑛 ∈ {1, 2, ...}

𝐶3 :
𝐾∑︁
𝑖=1

𝜔𝑖 [𝑛]𝑝𝑖 [𝑛] ≤ 𝑃𝑡ℎ,∀𝑛 ∈ {1, 2, ...}

𝐶4 : Γ[𝑛] − Γ𝑡ℎ ≥ (𝑍 [𝑛] − 1) · 𝑓0
𝐶5 : Γ[𝑛] − Γ𝑡ℎ < 𝑍 [𝑛] · 𝑓0
𝐶6 : 0 ≤ 𝑋 [𝑛] ≤ 𝑋𝑚𝑎𝑥

𝐶7 : 0 ≤ 𝑌 [𝑛] ≤ 𝑌𝑚𝑎𝑥 (14)

C1 is the battery constraint, which ensures the DBS to serve
with enough power. C2 is the bandwidth capacity constraint,
which imposes the bandwidth provisioned to UEs not to
exceed the total bandwidth capacity of the DBS. C3 is the
communications power capacity constraint, which imposes the
total power assigned to UEs for communications not to exceed
the maximum communications power of the DBS. C4-C5 are
the DBS energy constraints, which impose the DBS to reserve
enough energy to return to the charging station. Note that the
received laser energy can only extend the flight time rather
than allowing the DBS to fly forever. C6-C7 are the DBS
placement constraints on the horizontal plane.

III. PROPOSED SOLUTION

The TELECAST problem is NP hard due to the bandwidth
and power resource allocation. The resource allocation prob-
lem can be mapped into a two-dimensional knapsack problem.
A UE can be mapped into an item, the required bandwidth and
power consumption can be mapped into the weight and the
volume, and the data rate can be mapped into the profit (value).
The objective is to maximize the throughput of the network
by optimizing the limited bandwidth and power allocation. To
tackle the TELECAST problem, we divide the problem into
two sub-problems and solve the two sub-problems iteratively.
The first sub-problem is the bandwidth and communications
transmission power allocation problem. The second is the DBS
placement problem. First, the DBS is placed at a random
location and assigns the bandwidth and power to every UE
to achieve the maximum data rate. Then, the DBS flies to a
location where it can harvest the largest amount of laser energy
while maintaining the UE association.

TABLE I: Parameters

𝑏𝑖 bandwidth of 𝑈𝐸𝑖
𝑝𝑖 communications power of 𝑈𝐸𝑖
𝜔𝑖 UE association indicator
𝛽 bandwidth capacity of the DBS
𝑃𝑡ℎ communications power capacity of the DBS
𝑅𝑖 data rate of 𝑈𝐸𝑖
Γ0 initial flight time of the DBS

Γ [𝑛] remaining flight time of the DBS at the end of time slot 𝑛
Γ𝑡ℎ time for the DBS to return to the charging station
𝑍 [𝑛] DBS service indicator at time slot 𝑛
𝑓0 a large number, e.g., 109

𝐼𝑑 working current of the DBS
𝑉 working voltage of the DBS
𝐸 [𝑛] movement energy consumption of the DBS in time slot 𝑛
𝑀 weight of the DBS
𝜂𝑚 motor efficiency of the DBS
𝜂𝑒 battery discharging efficiency
𝜂𝑐 charging efficiency

𝑃𝑟 [𝑛] received laser power at time slot 𝑛
𝜏0 duration of the time slot
𝐾 number of UEs

(𝑋 [𝑛], 𝑌 [𝑛]) location of the DBS at time slot 𝑛
𝑅 expected data rate of the RA-JPB algorithm

𝐵( 𝑗 , 𝑅) the minimum bandwidth consumption for 𝑗 UEs and 𝑅

A. The JPB Problem

For a given DBS placement, 𝑃1 is simplified to:

𝒫2 : max
𝑏𝑖 [𝑛], 𝑝𝑖 [𝑛],𝜔𝑖 [𝑛]

∑︁
𝑛

∑︁
𝑖

𝜔𝑖 [𝑛]𝑅𝑖 [𝑛]

𝑠.𝑡. :
𝐶2 and 𝐶3 in 𝒫1 (15)

The JPB problem focuses on maximizing the total through-
put with limited communications and bandwidth resources.
It is a two-dimensional knapsack problem, which is a well
known NP hard problem. Every UE can either be served or
ignored, and so the solution space is 2𝐾 . The time complexity
of the traditional backtracking or depth first search algorithm is
𝑂 (2𝐾 ), even leveraged with some sub-tree subtraction method.

To reduce the computational complexity, we first reduce
the dimension of the problem by assigning the power of 𝑈𝐸𝑖
𝑝𝑖 = 𝜍𝑖𝑏𝑖 [22]. 𝜍𝑖 is the power-spectral density of the 𝑖𝑡ℎ

UE. Then, we convert the original problem to a minimum
bandwidth consumption problem: there are 𝐾 UEs, the data
rate requirement of 𝑈𝐸𝑖 is 𝑅𝑖 and the bandwidth requirement
of 𝑈𝐸𝑖 is 𝑏𝑖 . The total aggregated data rate is expected to be
𝑅. How to provision UEs such that the total data rate is at
least 𝑅 and

∑
𝑏𝑖 is the minimum is formulated as follows:

𝒫3 : min
𝜔𝑖 [𝑛],𝑏𝑖 [𝑛],𝑅

∑︁
𝑛

∑︁
𝑖

𝜔𝑖 [𝑛]𝑏𝑖 [𝑛]

𝑠.𝑡. :
𝐶2 in 𝒫1

𝐶8 :
𝐾∑︁
𝑖=1

𝜔𝑖 [𝑛]𝑅𝑖 [𝑛] ≥ 𝑅,∀𝑛 ∈ {1, 2, ...}, 𝑅 ∈ [0,
∑︁

𝑅𝑖]

(16)

To solve the minimum bandwidth consumption problem, we
define 𝐵( 𝑗 , 𝑅) as the smallest bandwidth consumption of UEs
in providing the total data rate larger than or equal to 𝑅 among
{𝑈𝐸1,𝑈𝐸2, ...,𝑈𝐸 𝑗 }. 𝐵( 𝑗 , 𝑅) = min{∑ 𝑗

𝑖=1 𝜔𝑖𝑏𝑖 |
∑ 𝑗

𝑖=1 𝜔𝑖𝑅𝑖 ≥
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𝑅, 𝑗 ∈ {1, 2, ...𝐾}, 𝑅 ∈ [0,∑𝐾
𝑖=1 𝑅𝑖], 𝜔𝑖 = 0 or 1 }. When

𝑗 = 0, no UE is to be served. So, 𝐵(0, 𝑅) = 0 if the expected
total data rate 𝑅 = 0. If the expected total data rate 𝑅 > 0,
𝐵(0, 𝑅) = +∞ because there is no solution for the expected
data rate to be larger than 0 if there is no UE to serve. The
recursive relationship between 𝑈𝐸 𝑗 and 𝑈𝐸 𝑗+1 is defined as
follows. If the data rate of 𝑈𝐸 𝑗+1 already reaches the expected
total data rate, there are two choices: we can either serve the
previous 𝑗 UEs or we only serve 𝑈𝐸 𝑗+1. Then, we chose the
one that consumes less bandwidth. If the data rate of 𝑈𝐸 𝑗+1
dose not meet the expected total data, there are two choices:
we can serve the previous 𝑗 UEs or ( 𝑗 + 1) UEs. Then, we
chose the one that consumes less bandwidth. As a result, we
get the recursive equation:

𝐵(0, 𝑅) =
{

0, 𝑅 = 0,
+∞, 𝑅 > 0, (17)

𝐵( 𝑗 + 1, 𝑅) =
{

min{𝐵( 𝑗 , 𝑅), 𝑏 𝑗+1}, 𝑅 ≤ 𝑅 𝑗+1,
min{𝐵( 𝑗 , 𝑅), 𝐵}, 𝑅 > 𝑅 𝑗+1,

(18)

where 𝐵 = 𝐵( 𝑗 , 𝑅 − 𝑅𝑖+1) + 𝑏 𝑗+1.
Algorithm 1 is a recursive allocation algorithm, and it is

designed based on the dynamic programming method to solve
the JPB problem (RA-JPB), consisting of two parts. For the
first part, the data rate of each UE 𝑅𝑖 is scaled down to increase
the running speed (Steps 1-3). Here, 𝑅𝑖 = d 𝐾

𝜖 𝐴
𝑅𝑖e, (1 − 𝜖) is

the approximation ratio. Since the dynamic programming can
only solve the integer problem, we need to round the data
rate of every user to an integer value in order to implement
Algorithm 1. For the scaler 𝐴, the data rate of each UE 𝑅𝑖
is not well scaled if 𝐴 is set to a large value, and this will
reduce the precision of Algorithm 1. The data rates of users
would be very large after scaling and rounding if we set 𝐴 to
a small value, and this will incur a long time to find a solution
for Algorithm 1. For example, 𝑅𝑖 becomes 1 after scaling if
𝐴 is set to infinity, and we are not able to find an appropriate
solution. If 𝐴 = 0.005, we can find a solution at the expense
of long running time because 𝑅𝑖 is 200 times larger. In this
work, we set 𝐴 equals to max{𝑅1, 𝑅2..., 𝑅𝐾 }, which is the
lower bound of the optimal data rate we can achieve. Then, the
solution is determined recursively. The second part includes
two loops (Steps 4-11). The outer loop enumerates all the
UEs and the inner loop enumerates all the expected data rates.
The complexity of the outer loop is obviously 𝑂 (𝐾) and the
complexity of the inner loop is 𝑂 (𝐾𝐴). Then, the complexity
of the RA-JPB algorithm is 𝑂 (𝐾𝐴). This algorithm maintains
a table to record the bandwidth consumption for every UE
and its achievable total data rate. Thus, the space complexity
is also 𝑂 (𝐾2𝐴).

Theorem 1. The RA-JPB algorithm can yield a near-optimal
solution of (1 − 𝜖)𝑅𝑜𝑝𝑡 .

Proof. Let 𝑆 be the set of UEs that achieves the optimal total
rate. Let 𝑅∗

𝑖
be the data rate after scaling and rounding. Let

𝑆∗ be the set of UEs that achieves the optimal total rate
after scaling and rounding. We have

∑
𝑖∈𝑆∗ 𝑅

∗
𝑖

≥ ∑
𝑖∈𝑆 𝑅

∗
𝑖
.

Moreover, 𝐾
𝜖 𝐴
𝑅𝑖 ≤ 𝑅∗

𝑖
≤ 𝐾

𝜖 𝐴
𝑅𝑖 + 1. Hence, we can derive

that 𝑅𝑜𝑝𝑡 =
∑
𝑖∈𝑆 𝑅𝑖 ≤ 𝜖 𝐴

𝐾

∑
𝑖∈𝑆 𝑅

∗
𝑖

≤ 𝜖 𝐴
𝐾

∑
𝑖∈𝑆∗ ( 𝐾𝜖 𝐴𝑅𝑖 +

Algorithm 1: Recursive Allocation for JPB (RA-JPB)

Input: 𝐾 , 𝜖 , 𝛽, 𝑃𝑡ℎ, 𝑈𝐸 , 𝑏𝑖 , 𝑝𝑖;
Output: 𝜔𝑖 , 𝑟∗, 𝑏𝑖 , 𝑝𝑖;

1 𝐴 = max 𝑅𝑖;
2 for 𝑖 ∈ 𝐾 do
3 𝑅

′
𝑖
= d 𝐾

𝜖 𝐴
𝑅𝑖e;

4 for 𝑗 ∈ 𝐾 do
5 while 𝑅 ≤ 𝐾 max 𝑅𝑖 do
6 if 𝑅 ≤ 𝑅 𝑗+1 then
7 𝐵( 𝑗 + 1, 𝑅) = min{𝐵( 𝑗 , 𝑅), 𝑏 𝑗+1};
8 if 𝑅 > 𝑅 𝑗+1 then
9 𝐵( 𝑗 + 1, 𝑅) =

min{𝐵( 𝑗 , 𝑅), 𝐵( 𝑗 , 𝑅 − 𝑅 𝑗+1) + 𝑏 𝑗+1};
10 𝑅 = 𝑅 + 1;

11 𝑗 = 𝑗 + 1;

12 return 𝐵∗ = 𝐵(𝐾, 𝑅) and 𝑟∗ = 𝑅;

1) ≤ ∑
𝑖∈𝑆∗ 𝑅𝑖 + 𝜖 𝐴

𝐾
𝐾 . Since 𝐴 ≤ 𝑅𝑜𝑝𝑡 , we can derive that

(1 − 𝜖)𝑅𝑜𝑝𝑡 ≤ ∑
𝑖∈𝑆∗ 𝑅𝑖 . �

Theorem 2. The minimum bandwidth consumption problem
is an NP complete problem.

Proof. Note that the minimum bandwidth consumption prob-
lem is a decision-making problem: given a set 𝐾 with 𝑘 items
with size 𝑏1, 𝑏2, ..., and 𝑏𝑘 . The values of the 𝑘 items are
𝑅1, 𝑅2, ..., and 𝑅𝑘 . The bandwidth capacity is 𝛽; 𝑅 is the
expected value. Is there a subset 𝑆 ∈ 𝐾 such that

∑
𝑖∈𝑆 𝑏𝑖 ≤ 𝛽

and
∑
𝑖∈𝑆 𝑅𝑖 ≥ 𝑅?

First, we prove that the decision problem can be verified
in polynomial time. For a given set 𝑆, to determine whether
it meets the conditions of

∑
𝑖∈𝑆 𝑏𝑖 ≤ 𝛽 and

∑
𝑖∈𝑆 𝑅𝑖 ≥ 𝑅, we

need 2 · ( |𝑆 | − 1) operations, where |𝑆 | is the number of items
in the set 𝑆. The time complexity is 𝑂 (2 · ( |𝑆 | − 1)), which is
polynomial.

Second, we show that there is a polynomial reduction from
the partition problem to the minimum bandwidth consumption
problem. Suppose we are given positive numbers 𝑎1, 𝑎2, ...,
and 𝑎𝑛 for the partition problem. The task is to decide whether
these numbers can be partitioned into two sets S and T such
that the sum of the numbers in S equals the sum of the numbers
in T. Consider a knapsack problem: 𝑏𝑖 = 𝑎𝑖 , 𝑅𝑖 = 𝑎𝑖 for
𝑖 ∈ {1, 2, ..., 𝑛}, 𝛽 = 𝑅 = 1

2
∑𝑛
𝑖=1 𝑎𝑖 . The process to convert the

partition problem to the knapsack problem is clearly polyno-
mial. If 𝑋 is a 𝑇𝑈𝑅𝐸 instance for the partition problem, there
exists 𝑆 and 𝑇 such that

∑
𝑖∈𝑆 𝑎𝑖 =

∑
𝑖∈𝑇 𝑎𝑖 =

1
2
∑𝑛
𝑖=1 𝑎𝑖 . Let

the knapsack contain the items in 𝑆 and
∑
𝑖∈𝑆 𝑏𝑖 =

∑
𝑖∈𝑆 𝑎𝑖 = 𝛽

and
∑
𝑖∈𝑆 𝑅𝑖 =

∑
𝑖∈𝑆 𝑎𝑖 = 𝑅. Therefore, 𝑋 ′ is a 𝑇𝑈𝑅𝐸 instance

for the knapsack decision problem. If 𝑋 ′ is a 𝑇𝑈𝑅𝐸 instance
for the knapsack decision problem, with the chosen set 𝑆,
let 𝑇 = {1, 2, ..., 𝑛} − 𝑆. We have

∑
𝑖∈𝑆 𝑏𝑖 =

∑
𝑖∈𝑆 𝑎𝑖 ≤

𝛽 = 1
2
∑𝑛
𝑖=1 𝑎𝑖 and

∑
𝑖∈𝑆 𝑏𝑖 =

∑
𝑖∈𝑆 𝑎𝑖 ≥ 𝑅 = 1

2
∑𝑛
𝑖=1 𝑎𝑖 .

This implies that
∑
𝑖∈𝑆 𝑎𝑖 =

∑
𝑖∈𝑇 𝑎𝑖 . Therefore, 𝑆 and 𝑇 are

the desired partitions, and 𝑋 is a 𝑇𝑈𝑅𝐸 instance for the
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partition problem. This establishes the NP completeness of
the minimum bandwidth consumption problem. �

Theorem 3. The minimum bandwidth consumption problem
exhibits the optimal substructure.

Proof. An optimization problem has the optimal substructure
if the optimal solution can be constructed from optimal solu-
tions of its subproblems. Let {𝜔1, 𝜔2, ..., 𝜔𝑘} be the solution
for the minimum bandwidth consumption problem with the
bandwidth consumption of 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ). For each UE, it has two
different statuses: served or not served. Without loss of gener-
ality, we analyze the provisioning process of one UE (e.g., the
𝑗-th UE) to prove the optimal substructure and the rest UEs
(excluding the 𝑗-th UE) are served. For the 𝑗-th UE, it has two
different serving statuses: 1) It is served, 𝜔 𝑗 = 1, implying that
the best solution is {𝜔1, 𝜔2, ..., 𝜔 𝑗 , ..., 𝜔𝑘} = {1, 1, ..., 1, ..., 1}
for the minimum bandwidth consumption problem and the
bandwidth consumption is 𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 − 𝑅 𝑗 ) + 𝑏 𝑗 ; 2)
It is not served, 𝜔 𝑗 = 0, implying that the best solution
is {𝜔1, 𝜔2, ..., 𝜔 𝑗−1, 𝜔 𝑗 , 𝜔 𝑗+1, ..., 𝜔𝑘} = {1, 1, ..., 1, 0, 1, ..., 1}
for the minimum bandwidth consumption problem and the
bandwidth consumption is 𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 ). We prove this
theorem by contradiction.

Proof of case 1: 𝜔 𝑗 = 1. We assume 𝐵(𝑘−1, 𝑅𝑜𝑝𝑡 −𝑅 𝑗 ) +𝑏 𝑗
is not the smallest bandwidth consumption, implying that
{𝜔1, 𝜔2, ..., 𝜔 𝑗−1, 𝜔 𝑗 , 𝜔 𝑗+1, ..., 𝜔𝑘} = {1, 1, ..., 1, 0, 1, ..., 1},
𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 − 𝑅 𝑗 ) + 𝑏 𝑗 > 𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 ). Then, we have
𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) = 𝐵(𝑘−1, 𝑅𝑜𝑝𝑡 −𝑅 𝑗 ) +𝑏 𝑗 > 𝐵(𝑘−1, 𝑅𝑜𝑝𝑡 ), which
contradicts 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) ≤ 𝐵(𝑘−1, 𝑅𝑜𝑝𝑡 ). Here, 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) and
𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 ) are the least required bandwidth for serving
𝑘 UEs and (𝑘 − 1) UEs to achieve 𝑅𝑜𝑝𝑡 ; 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) ≤
𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 ) because the former has more flexibility to
choose UEs with less required bandwidth among 𝑘 UEs.
Thus, we have 𝜔 𝑗 = 1, 𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 − 𝑅 𝑗 ) + 𝑏 𝑗 is the
smallest bandwidth consumption, and the optimal solution is
{𝜔1, 𝜔2, ..., 𝜔 𝑗 , ..., 𝜔𝑘} = {1, 1, ..., 1, ..., 1}.

Proof of case 2: 𝜔 𝑗 = 0. We assume 𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 )
is the smallest bandwidth consumption, implying that
{𝜔1, 𝜔2, ..., 𝜔 𝑗 , ..., 𝜔𝑘} = {1, 1, ..., 1, ..., 1}, 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) =

𝐵(𝑘 −1, 𝑅𝑜𝑝𝑡 − 𝑅 𝑗 ) + 𝑏 𝑗 and 𝐵(𝑘 −1, 𝑅𝑜𝑝𝑡 ) < 𝐵(𝑘 −1, 𝑅𝑜𝑝𝑡 −
𝑅 𝑗 ) + 𝑏 𝑗 . Then, we have 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) < 𝐵(𝑘 − 1, 𝑅𝑜𝑝𝑡 ) <

𝐵(𝑘−1, 𝑅𝑜𝑝𝑡−𝑅 𝑗 )+𝑏 𝑗 , which contradicts 𝐵(𝑘, 𝑅𝑜𝑝𝑡 ) = 𝐵(𝑘−
1, 𝑅𝑜𝑝𝑡 −𝑅 𝑗 ) +𝑏 𝑗 . Thus, we have 𝜔 𝑗 = 0, 𝐵(𝑘−1, 𝑅𝑜𝑝𝑡 ) is not
the smallest bandwidth consumption, and the optimal solution
is {𝜔1, 𝜔2, ..., 𝜔 𝑗−1, 𝜔 𝑗 , 𝜔 𝑗+1, ..., 𝜔𝑘} = {1, 1, ..., 1, 0, 1, ..., 1}.
Based on the above proof, we conclude that the minimum
bandwidth consumption problem of the JPB problem exhibits
optimal substructure. �

B. DBS Placement Problem
For a given horizontal plane and UE scheduling, the DBS

placement problem can be simplified as:

𝒫4 : max
𝑋 [𝑛],𝑌 [𝑛],𝜔𝑖 [𝑛],𝑏𝑖 [𝑛], 𝑝𝑖 [𝑛]

∑︁
𝑛

𝑍 [𝑛]

𝑠.𝑡. :

𝐶1 :
𝐾∑︁
𝑖=1

𝜔𝑖 [𝑛]𝑏𝑖 [𝑛] ≤ 𝛽,∀𝑛 ∈ {1, 2...}

𝐶2 :
𝐾∑︁
𝑖=1

𝜔𝑖 [𝑛]𝑝𝑖 [𝑛] ≤ 𝑃𝑡ℎ,∀𝑛 ∈ {1, 2...}

𝐶3 : Γ[𝑛] − Γ𝑡ℎ ≥ (𝑍 [𝑛] − 1) · 𝑓0
𝐶4 : Γ[𝑛] − Γ𝑡ℎ < 𝑍 [𝑛] · 𝑓0
𝐶5 : 0 ≤ 𝑋 [𝑛] ≤ 𝑋𝑚𝑎𝑥

𝐶6 : 0 ≤ 𝑌 [𝑛] ≤ 𝑌𝑚𝑎𝑥 (19)

Algorithm 2: Counting Placement (CP)

Input: 𝜔𝑖 , 𝑅𝑖 , 𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑎𝑥 , Γ[𝑛], Γ𝑡ℎ, 𝑟∗;
Output: 𝑋∗, 𝑌 ∗, 𝑍𝑛;

1 for 𝑋 ∈ 𝑋𝑚𝑎𝑥 and 𝑌 ∈ 𝑌𝑚𝑎𝑥 do
2 calculate 𝑏𝑖 and 𝑝𝑖 according to 𝜔𝑖 and 𝑅𝑚;

3 for 𝑚 ≤ 𝑀 do
4 if 𝑅𝑚 > 𝐵𝑚𝑎𝑥 then
5 𝐵𝑚𝑎𝑥 = 𝑅𝑚;

6 if 𝑅𝑚 < 𝐵𝑚𝑖𝑛 then
7 𝐵𝑚𝑖𝑛 = 𝑅𝑚;

8 𝑅𝑎 = 𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛 + 1;

9 for 𝑚 ≤ 𝑀 do
10 𝑖𝑛𝑑𝑒𝑥 = d𝑅𝑚 − 𝐵𝑚𝑖𝑛e;
11 𝐶𝑜 (𝑖𝑛𝑑𝑒𝑥) = 𝐶𝑜 (𝑖𝑛𝑑𝑒𝑥) + 1;

12 𝑖𝑛𝑑𝑒𝑥 = 1;
13 for 𝑚 ≤ 𝑅𝑎 do
14 while 𝐶𝑜 (𝑚) ≥ 1 do
15 𝑅(𝑖𝑛𝑑𝑒𝑥) = 𝑚 + min;
16 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 1;
17 𝐶𝑜 (𝑚) = 𝐶𝑜 (𝑚) − 1;

18 𝑚 = 𝑀;
19 for 𝑚 > 3

4𝑀 do
20 if 𝑟∗ ≤ 𝑅(𝑚) and Γ ≤ Γ‘ then
21 if

∑𝐾
𝑖=1 𝜔𝑖 [𝑛]𝑏𝑖 [𝑛] ≤ 𝛽 and∑𝐾
𝑖=1 𝜔𝑖 [𝑛]𝑝𝑖 [𝑛] ≤ 𝑃𝑡ℎ then

22 𝑟∗ = 𝑅(𝑚);
23 max Γ = Γ‘;
24 𝑚 = 𝑚 − 1

25 (𝑋∗, 𝑌 ∗) = arg max Γ(𝑋𝑛, 𝑌𝑛);
26 if Γ[𝑛] − Γ𝑡ℎ > 0 then
27 Z[n] = 1;

28 else
29 Z[n] = 0;
30 𝜔𝑖 = 0 ∀𝑖 ∈ 𝐾;

To determine the DBS’s location, we first divide the search-
ing plane into several blocks and calculate the total data rate
at each block. Second, we sort these blocks in ascending order
according to the total data rate. To decrease the complexity, we
compare 𝑅𝑜𝑝𝑡 and data rate in the sequence in reverse order.
If there is a location where the DBS can harvest more energy
while maintaining the data rate 𝑅𝑜𝑝𝑡 , the DBS will move to
that location. 𝑍 [𝑛] = 0 indicates that the DBS does not have
enough energy to fly back to the station even with the laser
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charging at the end of time slot 𝑛. When 𝑍 [𝑛] = 0, 𝜔𝑖 is set
to 0 for all UEs, i.e., the DBS does not have enough energy
and will not serve any UE.

Algorithm 2 is based on the Counting Sort algorithm. In
Algorithm 2, Counting Placement (CP), the plane is divided
into 𝑀 blocks and the throughput of the 𝑚-th bolck 𝑅𝑚
is calculated (Steps 1-2). 𝐵𝑚𝑎𝑥 and 𝐵𝑚𝑖𝑛 are two blocks
that have the maximum and minimum throughput among all
blocks, respectively (Steps 3-8). 𝑅𝑎 is the variance between the
maximum and minimum throughput. 𝐶𝑜 is an auxiliary array.
Here, index is used to count how many blocks can provision
a data rate of 𝑅𝑚. The number of blocks with throughput 𝑅𝑚
is stored in 𝐶𝑜 (Steps 9-11). The blocks are sorted according
to the throughput (Steps 13-17). A location that can maintain
the throughput of the network is determined from Steps 18-
25 of Algorithm 1. The energy status of the DBS is checked
(Steps 26-30). The complexity of the counting placement (CP)
algorithm depends on the number of blocks. The complexity
of calculating the data rate at each sub-plane is 𝑂 (𝑀𝐾2𝐴).
The complexity of sorting sub-planes is 𝑂 (𝑀 + 𝑅𝑎). The
complexity of obtaining the energy of each candidate sub-
plane is 𝑂 ( 1

4𝑀). As a result, the complexity of the CP
algorithm is 𝑂 (𝑀𝐾2𝐴 + 𝑀 + 𝑅𝑎).

IV. PERFORMANCE EVALUATION

We use MATLAB to conduct the simulation. The DBS is
deployed to respond to an emergency. So, for every simulation,
60 UEs are randomly distributed in a 300×300 𝑚2 area. One
DBS is deployed as a base station to serve the UEs. To
illustrate that the laser enables UAV to serve users far away,
the laser charging station is placed at (0, 0) point of the
Cartesian coordinate and the UEs are randomly distributed
at 𝑥 ∈ [100, 400] and 𝑦 ∈ [100, 400]. To simplify the
simulation, the DBS is initially placed in the middle of the
UEs (

∑𝐾
𝑖=1 𝑥𝑖
𝐾

,
∑𝐾
𝑖=1 𝑦𝑖
𝐾

) and gradually change their locations in
every time slot. We use the quadcopter UAV DJI MATRICE
100 specifications to run the simulations. The working voltage
is 23V, the working current is 5A and 4W is assigned for
communications. The output of the charging station is 200W
[23]. The original flight time of the DBS without charging is
30 minutes. Considering low mobility, we divide the original
flight time into 10 slots; each slot is 2 minutes. The other
parameters are summarized in Table 2.

TABLE II: Simulation Parameters

(𝑎, 𝑏) (9.1,0.16) [24] ( 𝜉 𝑙𝑜𝑠 , 𝜉𝑁𝑙𝑜𝑠) (1,20)
(𝜏𝑙𝑜𝑠 , 𝜏𝑁𝑙𝑜𝑠) (20,20) 𝑁0 -174 dbm/Hz

𝛽 10MHz 𝑣 18m/s
𝑙 25m 𝑃𝑡ℎ 4W
𝑃𝑡 200W 𝐷 1.5
𝜃 0.01 𝛼 6.9db/km [25]
𝐼𝑑 5A 𝑉 23V
𝑀 3.6kg [3] 𝜂𝑚 0.85
𝜂𝑒 0.95 𝜂𝑐 0.4
𝜏𝑡 0.7 𝜏𝑟 0.5
Γ0 30min 𝜏0 2min
𝐾 60 (𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑎𝑥 ) (400,400)m

A. Algorithm Comparison

In this section, we compare our proposed algorithm with
the fixed placement DBS algorithm, the Lagrange resource
allocation algorithm, the greedy resource allocation and UE as-
sociation algorithm, and the fixed placement with random UE
association algorithm. We have also compared the proposed
algorithm for different UE distributions and laser transmission
power.
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Fig. 2 and Fig. 3 show two distributions of UEs in the
horizontal plane. In Fig. 2, UEs are uniformly distributed in
the plane. In Fig. 3, UEs are sparsely distributed and form
different clusters in the plane.

Fig. 4 shows the laser energy harvested by the DBS. The
distribution of UEs is illustrated in Fig. 2. As the distribution
of UEs becomes denser, the DBS is able to find the best service
location easier. The movement of the DBS is relatively small
in every time slot, and, as a result, the yellow curve in Fig.
5 shows that the received energy grows slowly and steadily.
With the sparse distribution as shown in Fig. 3, the UEs are
form different clusters, and the DBS will fly between different
clusters to find the best service locations. The received energy
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fluctuates in every time slot. If the DBS does not have enough
energy to fly back to the charging station at the beginning of
the next time slot, it will fly back to the charging station and
stop serving UEs. So, at time slot 16 and 18, the received
energy becomes zero for the "sparsely distributed UEs" and
the "Fixed Placement", respectively.
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Fig. 5: Total flight time with different laser charging power

Fig. 5 demonstrates how the total flight time increases with
different laser transmission power and DBS placement. The
distribution of UEs is illustrated by Fig. 2. The blue bars are
the original flight time of the DBS without laser charging.
The green bars are the total flight time when the DBS is
fixed in the middle of the UEs. The yellow bars are the total
flight time by the proposed algorithm. From the simulation
results, the total flight time increases as the laser power grows
and our proposed algorithm is better than the fixed placement
algorithm. When there are 60 users and the laser power is set to
200 W, the total flight time is extended 20% as compared with
the flight time without charging and 3.5% of the total flight
time is extended as compared with fixed placement algorithm.
When the laser power is set to 400 W, our proposed algorithm
can extend 43% of the total flight time as compared with the
flight time without charging and 14% of the total flight time

is extended as compared with the fixed placement algorithm.
Our proposed algorithm is superior to the fixed placement
algorithm because our proposed algorithm enables the DBS
to fly closer to the charging station. When the DBS finds the
best placement, more energy can be harvested as compared
with the fixed placement algorithm.
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Fig. 6: Total data rate

Fig. 6 shows how the total data rate changes in 18 time slots
as compared with three baseline algorithms for 60 UEs. For
the Lagrange algorithm, the resource allocation follows that
reported in [33]. To allocate the resource fairly, we assign
the bandwidth equally and calculate the power assignment
according to the data rate requirement. Then, the Lagrange
function is constructed by combining the objective function,
the Lagrange multiplier and the power capacity constraint.
Eventually, we maximize the throughput by maximizing the
Lagrange function. For the greedy algorithm, the DBS always
serves the UE that requires the highest data rate per unit
power. The bandwidth is equally assigned to UEs and the
transmission power is calculated according to the requirement
of each UE. Then, UEs are sorted in ascending order by the
required data rate over the required transmission power. The
DBS continues to serve the UEs until the bandwidth or power
resource is exhausted. Our proposed algorithm is better than
the greedy algorithm because the recursive algorithm finds the
best scheduling to maximize the total throughput. However,
the greedy algorithm selects UEs with better power efficiency.
The random algorithm fixates the DBS in the middle of the
UEs and then randomly picks UEs to serve until either the
bandwidth or communications power is exhausted. Extensive
simulation results have been demonstrated that our proposed
algorithm is superior to the three baseline algorithms and the
improvement of the total data rate of the proposed algorithm
is up to 15% and 6% as compared to the greedy algorithm
and the Lagrange algorithm, respectively.

B. Parametric Study

In this section, we conduct a parametric study involved
in the system model by evaluating the effects of various
parameters on the performance metrics, including the receiver
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efficiency 𝜏𝑟 , converting efficiency of the charging circuit 𝜂𝑐
and the number of UEs. Fig. 7 shows the total flight time with
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Fig. 7: Total flight time with different receiver efficiency

different receiver efficiencies for the UE distribution illustrated
in Fig. 1. In Fig. 7, the y-axis represents the total DBS flight
time and the x-axis corresponds to eight receiver efficiency
scenarios. Here, 𝜏𝑟 is the receiver efficiency and 𝜂𝑐 is the
converting efficiency of the charging circuit. The results show
that as the receiver efficiency decreases, the total flight time
decreases accordingly. The flight time illustrated by the last
column (black) is the same as the flight time without charging.
Here, we concluded that when the laser power is 200w and
the laser transmission efficiency is 0.7, the receiver efficiency
and converting efficiency should be both at least 0.4 to extend
the flight time with our proposed algorithm.
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Fig. 8: Total UE data rate

Fig. 8 shows the total data rate versus the number of UEs.
The total data rate increases as the number of UEs increases.
The total data rate plateaus after 60 UEs because the power
and bandwidth in the DBS are exhausted.

V. CONCLUSION

In this paper, we have formulated the joint power and
bandwidth assignment, laser charging enabled DBS placement
(TELECAST) problem in which the DBS is deployed to
provide downlink communications to UEs on the ground and
a laser is employed to charge the DBS in the air as well as
provide backhaul link for the DBS. Our objective is to jointly
maximize the total downlink data rate and flight time. The
problem is decomposed into two sub-problems: joint power
and bandwidth allocation problem and the DBS placement
problem. Then, we have proposed a recursive algorithm to
solve the JPB problem to maximize the total data rate with
limited bandwidth and communications power. We have de-
veloped a method to estimate the flight time of the DBS
and extend the flying time by implementing the RA-JPB and
CP algorithms. The results show that the flight time can be
extended by as much as 20% when the laser power is 200w and
the flight time can be extended by more than 40% when laser is
400w. As compared to the fixed place algorithm, our algorithm
can improve the DBS service time by 14% when laser power
is 400w. In this paper, we have proposed to utilize DBS to
provide downlink communications to UEs on the ground and
a laser to charge the DBS in the air as well as provide backhaul
link communications for the DBS. We have demonstrated the
viability of our proposed concept by extensive simulations. In
practice, weather conditions such as windy or sunny days, the
payload weight, the air resistance, and other parameters in the
real world will affect the DBS flight time. For the future work,
we will investigate how to provide service to UEs in the DBS-
aided network with multi-UAVs and a more accurate battery
and charging model; we will study how the FSO link impacts
the communications over a long distance and under large UE
demands.
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