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Optimal Operation of Power Systems With Energy
Storage Under Uncertainty: A Scenario-Based
Method With Strategic Sampling

Ren Hu"', Graduate Student Member, IEEE, and Qifeng Li

Abstract—The multi-period dynamics of energy storage (ES),
intermittent renewable generation and uncontrollable power
loads, make the optimization of power system operation (PSO)
challenging. A multi-period optimal PSO under uncertainty is
formulated using the chance-constrained optimization (CCO)
modeling paradigm, where the constraints include the nonlin-
ear energy storage and AC power flow models. Based on the
emerging scenario optimization method which does not rely on
pre-known probability distribution, this paper develops a novel
solution method for this challenging CCO problem. The proposed
method is computationally effective for mainly two reasons. First,
the original AC power flow constraints are approximated by
a set of learning-assisted quadratic convex inequalities based
on a generalized least absolute shrinkage and selection opera-
tor (LASSSO). Second, considering the physical patterns of data
and driven by the learning-based sampling, the strategic sam-
pling method is developed to significantly reduce the required
number of scenarios by different sampling strategies. The sim-
ulation results on IEEE standard systems indicate that 1) the
proposed strategic sampling significantly improves the computa-
tional efficiency of the scenario-based approach for solving the
chance-constrained optimal PSO problem, 2) the data-driven con-
vex approximation of power flow can be promising alternatives
of nonlinear and nonconvex AC power flow.

Index Terms—Chance-constrained, power flow, scenario

optimization, LASSO, data-driven.
NOMENCLATURE

Sets and Indices

n Number of buses (nodes) in the system.

i,j Index for the buses, i,j =1, 2, ..., n.

T Index set of the time periods.

t Index for any time-period, t € 7.

Y The scenario set.

1S Length of the scenario set.

A Index for any scenario, s, i, j/ € S'.
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Coefficients
tion cost.
Real (imaginary) part of the line admittance.
Equivalent resistance of the battery
(converter).

Lower and upper limits of bus voltage mag-
nitude.

Lower and upper limits of the generator’s
active power.

Lower and upper limits of the generator’s
reactive power.

Maximum apparent power of power trans-
mission.

Capacity limits of energy storage.

Initial energy status of energy storage.
Maximum apparent power of energy storage.
Probability level.

Violation probability level.

Confidence level.

Participation factors of the generator’s or
energy storage’s active (reactive) power.
Forecast values of the net active load input
of power loads and renewable energy gener-
ations (PLREG).

Forecast values of the net reactive load
inputs of PLREG.

Corresponding forecast errors of the net
active and reactive power inputs.

Known constant vector.

Dimension of decision variable vector.
Number of effective samples by strategic
sampling.

Dimension of the random variable vector.
Estimated numbers of scenarios by diverse
random sampling-based methods.

The i'-th state (sample).

Action from st; to sty.

Transition probability from st; to st;.
Reward function from sty to stj.
Dissimilarity of two samples (scenarios).
Potential state set for next state.

Symmetric indefinite matrices for P;;, Q; ;.
Symmetric indefinite matrices for Pjj;, Qjj;.

of the generator’s genera-
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M Training sample size.

M Number of coefficients.

u Tunable regularization parameter.
Variables

P, 0f, Generator active and reactive power.

P Of Net active and reactive power inputs
of PLREG.

it fir Real and imaginary parts of bus voltage.

Pij1, Qijs Active and reactive power flow at lines.

PEgs i, OEs.ir Active and reactive power of energy storage.

Pﬁ.’gsl , Active power loss of energy storage.

Vfr Square of voltage magnitude.

P%g't,i,l Net active power of energy storage.

P;Z t(base) Base part of the generator’s actlv? power.

Q! (base) Base part of the generator’s reactive power.
ES, i, t(base) Base part of the energy storage’s

active power.

OEs, i t(base) Base part of the energy storage’s reac-

tive power.

y Variable vector consisting of the decision
variables and the state variables.

8 Random variable vector of the net active and
reactive power inputs.

v Decision variable vector.

A7, A;-"j Positive  semi-definite (PSD) coefficient
matrices of the quadratic terms.

B, B;;. Coefficient vectors of the linear terms.

iy ¢ Constant terms.

(*) Upper index set {p, g} indicating the active
or reactive power.

Xy Voltage component vector at all buses.

Xijt Voltage component vector at i-and j-th buses.

VA Auxiliary variable.

I. INTRODUCTION

NERGY storage (ES) has been well-recognized for deal-

ing with the challenges in power systems, such as shaving
peak-load and filling valley-load. However, the current cost of
battery ES is still expensive. According to the roadmap of ES
issued by the U.S. department of Energy in 2020, by 2030
the levelized cost of battery ES may be reduced to only 10%
of the current cost [1]. This probably makes ES widely used
in power systems. However, the inter-temporal property of ES
may couple the multi-period power system operation (PSO).
Moreover, the intermittence of renewable energy (RE) brings
the uncertainty to PSO. Hence, the exploration on optimizing
the multi-period PSO with ES (PSO-ES) under the uncertainty
of RE is rather challenging. Unfortunately, the current deter-
ministic approaches are incapable of capturing the uncertainty
in the context of optimization. There exist some approaches
of modeling optimization problems under uncertainty, such as
stochastic, robust, and chance-constrained optimization meth-
ods [2]-[7]. The stochastic optimization [2], [3] attempts
to find solutions with the best expected objective values
based on the predefined probability distributions. The robust
optimization [3], [4] enforces strict feasibility under the worst
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case, resulting in high conservativeness. Unlike the two meth-
ods above, the chance-constrained optimization (CCO) [5]-[7]
can guarantee that the satisfactory probability of a solution
is above a certain level if properly implemented. Generally,
power system operators put higher weight in security than
in cost-saving. As a tradeoff, power operators may be more
interested in solutions with the low probability of con-
straint violation. Therefore, in this paper, CCO is adopted
to model the multi-period PSO-ES problem under uncer-
tainty (CC-PSO-ES). For solving the CCO problems, the
conventional methods generally assume a probability distribu-
tion (PD) on the uncertain variables, such as the power load
and renewable energy generation (PLREG), and enforce the
constraints to satisfy a desired level of probability, i.e., con-
fidence level. We call the conventional methods as PD-based
methods. However, such methods turn out to be computation-
ally expensive for several reasons [8]-[11]. First, the actual
joint PD of uncertain variables may be hard to access in some
cases. Even if the actual joint PD is available, converting the
probabilistic constraints to the deterministic constraints by the
multivariate integral is computationally prohibitive and cannot
guarantee the converted deterministic constraints are convex.
Second, Monte Carlo-based method may be the only way to
check whether a specific point of decision variables satisfies
the probabilistic constraints, and it is too costly when setting
a high confidence level. In addition, the discussions on the
solution methods of the CCO problems in many existing ref-
erences [5]-[7] mainly depend on the strict assumptions that
all uncertain variables are independent and the actual joint PD
is tractable.

As an alternative to the PD-based methods to solve the CCO
problems, the PD-free methods, called scenario optimization
or scenario-based methods, don’t rely on the actual PD of
uncertainty, but only use the historical scenarios of uncer-
tainty. Such methods have been applied in probabilistic
optimization problems [12]-[18] learning models and artificial
intelligence (AI) [19]-[21]. The scenario optimization deter-
mines the minimum sample size (MSS) that is required to
satisfy the specific probability level [12]-[14]. Reference [13]
illustrates a random sampling (RS)-based method (RSM) to
estimate the MSS associated with the number of decision vari-
ables under the convex program. To verify the efficacy of
RSM, [15]-[18] exemplify the utilization of the scenario-based
solution methods in economic dispatch and reserve scheduling
considering the uncertainty of demand response or renew-
able energy generations. The method in [17], [18] adjusts the
level of conservativeness of solutions by discarding samples,
but it is computationally expensive in complex systems as
discarding samples needs to solve the optimization problem
repeatedly. Additionally, for complex systems with numerous
decision variables, the MSS estimated by RSM may explode
as the MSS grows with the size of decision variables [13].
To tackle this issue, the fast algorithm for scenario tech-
nique (FAST), a two-stage method [14] has been proposed to
cut down the sample size and applied in computing optimal
power flow with uncertainty [22]. As stated in RS-based meth-
ods [9], [10], [13], [14], [17], [18] in convex programs there
may have a small size of ‘active’ scenarios that essentially
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decide the optimal solution. The number of active scenar-
ios is proven to be at most the decision variable size, which
is far smaller than the sample size determined by RSM. In
other words, there exist abundant repetitive or similar scenar-
ios via RSM. However, these active scenarios are unknown
before solving the CCO problems using RSM. Inspired by
the resounding sequential sampling [19], [20] used in machine
learning and the existence of physical patterns in data, a con-
cept of strategic sampling is developed in this paper to find a
much smaller size of effective scenarios that can approximate
the effect of the active scenarios before optimization, through
physics-guided sampling [23], [24], dissimilarity-based learn-
ing [25] and reinforcement learning [26]—[29] methods.

The above-mentioned scenario-related optimization meth-
ods are mostly applied in convex program problems [13], [14].
However, the constraints of AC power flow (ACPF) in
CC-PSO-ES problem are inherently nonlinear and non-
convex [6]. Currently, the approximations of ACPF have
been discussed from the perspectives of linearization and
convexification. The linear approximations like the DC
model [7], [30] and other linear ACPF [6], [31], are gen-
erally easy to solve, however, many of which ignore the
quadratic terms of voltages resulting in inaccuracy of model.
The typical convex approximations have been widely stud-
ied, such as the second-order cone (SOC) [32], semi-
definite programming (SDP) [33], convex DistFlow [34],
quadratic convex (QC) [35], moment-based [36], convex hull
relaxation [37], and the learning-based convex approxima-
tion [38], [39]. References [39]-[41] found that the SDP
relaxation may not guarantee the exactness of solutions and
its exactness greatly depends on the critical assumptions of
network topologies and physical parameter settings. In [39],
the authors developed an ensemble learning-based data-driven
convex quadratic approximation (DDCQA) of ACPF with
higher accuracy and efficiency than the SDP relaxation. This
paper introduces the generalized least absolute shrinkage and
selection operator (LASSO) [42]-[45] to improve the DDCQA
developed in [39] from both aspects of the computing time
and memory used. LASSO is one of the most popular meth-
ods for selection and estimation of parameters in regression
problems [42], [43]. It is used for not only the variable selec-
tion, but also the parameter regularization. Unlike the forward
and backward selection methods that yield the local optimal
results, LASSO is formulated as a convex problem that out-
puts the global optimal result [44]. The generalized LASSO
exhibits the superiority over LASSO in the stability and the
speed of computation [45], which is adopted to learn sparser
coefficient matrices in the current research.

To solve the CC-PSO-ES which is a complex multi-period
nonlinear nonconvex optimization problem, this paper pro-
poses a novel scenario-based solution method based on the
DDCQA of ACPF and strategic sampling. The proposed
approach is more computationally effective using only few
effective scenarios, compared with RSM. The contributions of
this paper are written as below:

1) Unlike the existing PD-based methods to solve the CCO
problems, the proposed solution method based on two-stage
hybrid sampling (HS) is PD-free and use the historical samples

1251

of uncertainty. HS makes full use of the physical patterns of
data and the merits of learning algorithms. The innovation
of HS resides in using the resounding learning algorithms
to improve the sampling effect and computational efficiency,
avoiding the repetitive samples using dissimilarity metric and
preserving the accuracy of solution. There are few existing
references discussing HS for the PD-free solution paradigm
of CCO. To the best of our knowledge, the existing work on
the PD-free solution paradigm of CCO generally uses random
sampling (RS) [9], [10], [13]-[18].

2) The DDCQA of ACPF is significantly improved by the
generalized LASSO from the aspects of computational time
and memory usage, then applied to convert the originally
intractable nonconvex CC-PSO-ES problem into a tractable
convex quadratic optimization problem.

The rest of this paper is organized as follows: Section II
illustrates the formulations of deterministic and chance-
constrained multi-period PSO-ES problems. In Section III,
scenario optimization is introduced, and the novel scenario-
based solution method for CC-PSO-ES problem is developed
by strategic sampling and the DDCQA of ACPF modified by
generalized LASSO. The empirical IEEE case analyses and
conclusions are displayed in Sections IV and V, respectively.

II. PROBLEM FORMULATION

This section formulates the optimal multi-period operation
for power systems with energy storage under the modeling
paradigm of chance-constrained optimization step-by-step.

A. Deterministic Multi-Period PSO With Battery Energy
Storage

In an n-bus power system, the deterministic formulation of
the multi-period PSO-ES is given below which can be consid-
ered as a multi-period AC optimal power flow (ACOPF) with
adjustable generations and battery energy storages:

Min 33" (e P§ Hen(PE)’) (1a)
teT’ i
n n
s.l. e Z (Gijej,r — Bijfj,)Hix Z (Gifj.c + Bijejr)
j=1 j=1
=P§, — P! + Pes.i (1b)
n n
fit Z (Gijej,r — Bijfi.)—ei Z (Gijfj,t + Bijej,t)
j=1 j=1
= 0, — O/ + Qks.i (1c)
G,-je,-,tej,t — ijei,tf]“,t + Bijfi,tej,t + Gl}fu]s,
~Gy(e2 +1%) = Pus (1)
Gi'}ﬁ’tejyt — Bijei’lej’l — Gijel"xf]",[ — Bijfi,[ﬁ,t
+Bij<eizt +fi2t) = Qij.r (le)
Pfsosﬂz sz = reqplzss it T riCWQIZES,i,t (1f)
Py i = Prsia+ PR, (1g)
PAZES i T QES i = Sglgfz (1h)
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t

EJ < Epsio+ Aty P < Ep: (1)
k=1

me2 < ezt+f;t < VmaxZ (1])

P(lg);un < Pg < Pgmax (H()

ngm < Q” < ngax (11)

Py + 05, < ST (1m)

The equations (la)-(1m) illustrates a deterministic model
for multi-period power system operation (PSO) with bat-
tery energy storage. The equation (la) indicates the objective
function that minimizes the total PSO cost. The constraints
of power balance are presented in (1b)-(1c). The equations
(1d)-(le) denotes the constraints of power flows at power
lines. The formulations for battery energy storages (BES)
are represented in (1f)-(1i) considering the power loss of
BES. The equations (1j)-(Im) are used to bound the bus
voltages, active(reactive) power injections and transmission
capacities.

B. Chance-Constrained Formulation of Multi-Period PSO
With Adjustable Generation and Battery Energy Storage

Considering that the net load inputs of PLREG are ran-
dom variables, the power generation may be fluctuating, which
consists of the base and adjustable parts. The base part
meets the forecast net demand injection of PLREG. The gap
between the forecast and actual net demand injections is sat-
isfied by the adjustable part. According to the affine control
scheme [46], then

Py = Pl + AD] (2a)
Q1" = Ofiim + Aq; (2)
n

85 8
Pl}t = Pi,l(base) - Wpi Z Apjs' (20)
j:l
Q l t(bave) — Wqi Z Aq] (2d)
Prs.is = PES.i.t(base) — Wpi Z Apj (2e)
j=1
n
Oks.is = OES.it(base) — @gi Z Ag; (2f)
j=1
Z wpi + Z Wpj = 1 (2g)
i J
(2h)

Za)qi—i-quj:l
i J

Note that we assume the difference between the base case
and real-time power loss can be compensated by the refer-
ence generator and it is typically negligible. Suppose that the
chance-constrained method is used to model the problem (1)
under uncertainty. Then, by substituting (2a)~(2h) into (1) and
updating each variable in (1) with the superscript s, the
deterministic problem (1) is reformulated into a CC-PSO-ES
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problem in (2):

min E[Z (Pl + ciz(P‘iff} (2i)

4 el i

s.t. h(y,8) =0 2j)
Prf(»8) <0)>1—-«a (2k)

where h(y, 8), f(y,8) compacts the constraints of (1b)~(1h)
and (1i)~(1m), respectively; Pr(-) enforces each constraint at
a specific confidence level.

III. A SCENARIO-BASED SOLUTION METHOD WITH
STRATEGIC SAMPLING AND DATA DRIVEN CONVEX
APPROXIMATION

A. Scenario Optimization

Scenario optimization has been widely used in machine
learning [13], [14], [19], [20], whose general idea is to use
a finite number of scenarios to approximate the probabilistic
constraints (2j) and (2k) with a specific confidence level. The
mathematical formulation can be represented as

Min CTv
s.t. F(v, S(S)) <0, ( s=1,2,..,

(3a)

N eS) (3b)
where (3a) is a linear objective function related to the deci-
sion variable vector v; 8¢) denotes the s-th scenario sampled
from the uncertainty set; F is a convex function on v ; N’ is
the estimated number of scenarios. In the existing applications
of scenario optimization, the constraints depend upon the ran-
dom samples, and the sample size discussed in the statistical
learning [20], [21] has a conversative estimate unrelated to the
number of decision variables. Until in [13], the lower bound
of the sample size related to the decision variable size under
convex program settings is derived from the aspect of binomial
distribution. A theorem in [13] states that, if N’ is sufficiently
large, the optimal solution of (3) can satisfy the chance con-
straints (2j)~(2k). Scenario optimization is still an emerging
solution method for chance-constrained optimization that does
not rely on the assumed PD [12]-[18]. The RS-based method
in [13]-[18] provides some discussions on how to determine
the required number of scenarios, shown in (3c):

2/ 1
N >Z(lh=+d
—e<”ﬁ+ )

However, in CC-PSO-ES problem, the number of scenarios
required by the RS-based method may be very large, which
results in significant challenge in optimization computation.
Moreover, scenario optimization is applied in convex pro-
grams [13]-[18], while there have nonconvex constraints in
current CC-PSO-ES problem. Hence, the following sections
will discuss how to tackle the two issues through the strategic
sampling and DDCQA, respectively.

(o)

B. Strategic Sampling

Instead of random sampling with plentiful inactive scenar-
ios [13]-[18], we attempt to develop a framework of strategic
sampling to find out a smaller number of effective scenarios

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2022 at 02:43:23 UTC from IEEE Xplore. Restrictions apply.



HU AND LI: OPTIMAL OPERATION OF POWER SYSTEMS WITH ES UNDER UNCERTAINTY

1.Filter the data by time span, such as two months for 15-
min interval data, or a year for hourly interval data, etc.

v

2.Stratify the data by seasons, such as from spring to
winter, or summer and non-summer, etc.

PGS T ;
| 3.In a seasonal cycle, cluster data by weather, such as
sunny, cloudy, windy, etc., to form different data subset.

v

4.Fill the missing value with the data of same hours in the
most recently similar day and clean the data.

Fig. 1. Flowchart of Physics-guided Sampling.

that include the active ones. According to different selection
strategies, there may have diverse specific strategic sampling
methods, such as physics-guided sampling (PGS) [23], [24],
learning-based sampling, and hybrid sampling, etc., [25]-[29].
The PGS is designed considering there might have specific
patterns in PLREG data. The patterns may be related to the
temporal, spatial, and meteorological conditions [23], [24].
The learning-based sampling is based on machine learning
methods, such as dissimilarity-based learning [21] and rein-
forcement learning (RL) [26]—-[29]. The hybrid one may be the
combination of any two sampling methods. In this research,
two types of two-stage hybrid sampling methods are developed
and named as HS1 and HS2. The first stage is the physics-
guided sampling (PGS). Then, at the second stage, i.e., the
stage of learning-based sampling, one of dissimilarity-based
sampling (DBS) and RL-based sampling (RLS) will be chosen
to select the d dissimilar samples. From a series of experi-
mental simulations, in IEEE-5 system, d is suggested to be at
least the number of the decision variables; in IEEE-9, —57,
and —118 systems we can set d to be 10%-15% of the number
of decision variables.

1) Physics-Guided Sampling: Assume there are regional
power systems like IEEE-5, —9, —57, —118 systems. The gist
of PGS for a specific regional power system can be described
in Fig. 1 [23], [24].

2) Dissimilarity-Based Sampling: The dissimilarity-based
sampling (DBS) is defined to use a learning function to select
the scenarios. The purpose of using a learning function is to
ensure that the scenarios selected should be dissimilar enough
to maximize the scenario difference in a specific data subset
obtained after PGS. To measure the dissimilarity of samples,
in machine learning the distance metrics are commonly used,
such as the Euclidean distance [19], [25]. Assume that §;, Jy
are the /'-th and j’-th samples where §; = (8},, (Siz,, 80 m
is the dimension of each sample. The dissimilarity between
two samples can be measured by the Euclidean distance
calculated as

(4a)

where Dy denotes the dissimilarity of two samples, used for
determining the new samples. The specific hybrid sampling
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I.Input the sample dataset with the length of N and
compute the dissimilarity of pairwise samples.

v

2.Initialize and find the next sample with maximum
average dissimilarity.

DBS

2

3.Find d dissimilar samples and stop.

Fig. 2. Flowchart of Hybrid Sampling Type 1 (HS1).

that consists of PGS and DBS is described as HS1 in Fig. 2
where N is computed by FAST [14].

3) Reinforcement Learning-Based Sampling: In essence,
RL involves a Markov decision process (MDP). A MDP
consists of the state space, the action space, the transition
function, and the reward function. The transition probabil-
ity from the current state to next state is only decided by
the current state in a MDP. The action from the current state
to next state will be rewarded according to the reward func-
tion. The objective in a MDP is to find an optimal policy to
maximize the expected cumulative reward [27]. In this paper,
the model-based RL algorithm [26]-[29] is adopted to develop
the sampling method. In this version of RL algorithm, the
models of the transition and reward functions are known or
learned, and then perform the value or policy iteration to yield
the optimal policy, corresponding to a small set of effective
samples in this paper. The RL-based sampling (RLS) is used
to search a small set of dissimilar (effective) samples from
the input sample dataset with finite samples. Specifically, we
consider each sample as a state st;7, and the transition function
myy, 1.e., the transition probability from the i’-th state sty to
Jj'-th state sty by the action azyy is defined as:

Dl'/j/
> jen Diy

where the indices i’ and j/ correspond to the current and next
state; H is the potential state set for next state. The reward
function ry; of the transition from the i’-th state to j'-th state
is defined to be Dy, and the discount factor of reward is
set to one in this research. Based on the known transition
and reward functions above, the value or policy iteration can
be used to yield the optimal policy, namely, a map of states
to actions, corresponding to the dissimilar samples in this
paper. To prevent the agent from repeating a state multiple
times, after each transition, the previous states traversed will
be removed from the potential state set. In this fashion, the
agent will try to select the action directing to the ‘farthest’ state
(sample) with the maximum dissimilarity in the potential state
set. To some extent, the defined transition and reward functions
can circumvent the instability from learning them and using
the dissimilarity metric can reduce the instability due to the
correlations existing in the samples [27]-[29]. The implemen-
tation of RLS is shown as HS2 in Fig. 3. The main difference
between DBS and RLS lies in that RLS only consider the

iy (Sl‘j/ } Sty al‘i/j/) = (4b)
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PGS

l.Input the sample dataset with the length of N and
compute the dissimilarity of pairwise samples.

2.Initialize the state and select the next state by the action
with largest dissimilarity at each step.

. 2

RLS

3.Perform d steps and output the d states traversed.

Fig. 3. Flowchart of Hybrid Sampling Type 2 (HS2).

dissimilarity between the current selected sample and the can-
didate sample, while DBS computes the average dissimilarity
between the previous all selected samples and the candidate
sample.

The proposed sample selection strategies are rea-
sonable for the following reasons. First, as stated
in [9], [10], [13], [14], [17], [18] 1in convex programs

only a small set of ‘active’ scenarios (samples) decides the
optimal solution and there are many repetitive or similar
scenarios selected by RSM [9], [10], [13], [14]. For instance,
for randomly sampling / samples, assume a scenario u(s) has
the probability Pr(u(s)), then it may be sampled I*Pr(u(s))
times. However, for optimization problems, only one u(s) is
sufficient and the rest of (/*Pr(u(s))-1) ones are unnecessary.
The proposed hybrid sampling (HS) methods can avoid these
repetitive or similar scenarios and only keep a small number
of diverse scenarios that can approximate the effect of active
scenarios, because of using the dissimilarity metric. Many
learning methods distinguish samples by their dissimilarities
or similarities [47]-[49], inspiring us to design DBS and
use the dissimilarity metric to guide the agent’s action in
RLS. Second, the specific physical patterns do exist in power
and energy data, such as the temporal, spatial and meteoro-
logical patterns. From this point, it would be advisable to
design the physics-guided sampling.

C. Data-Driven Convex Quadratic Approximation of Power
Flow

Note that the scenario-based solution methods discussed so
far are designed for the convex program [12]-[18], while, in
the original CC-PSO-ES problem, the constraints of ACPF are
nonconvex. To deal with the issue of nonconvexity, we improve
the data-driven convex quadratic approximation (DDCQA) of
ACPF [39] using the generalized LASSO [42]-[45]. For the
ease of analysis, the constraints (1b)-(le) at #-th hour are
reformulated as the following matrix form:

P, = X'AX, (52)
Qi = X! BiX, (5b)
Py = X[ AiXij. (5¢)
Qijr = X[, BijXij. (5d)

X; = [xl,t X2, s xzn,z]T = [el,tfl,ts e en,tfn,t]T (5e)
Xij = [X2i-1,0 X200 Xj—1.¢ xzj,z]T = [eis fir €jr ﬁ,z]T (59)
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where A;, B;, Ajj, Bjj are symmetric indefinite matrices con-
sisting of elements of the admittance matrix, implying all
dependent variables P;;, Q;;, P and Qj, are nonconvex
functions of the independent variables X; or Xj;,. Hence, a
convex quadratic mapping (5g)-(5j) between power, i.e., P;;,

Qi Pijs, and Qjj 4, and voltage X; or Xj;,, is defined as:
Piy = X[ AVX, + B{X, + & (52)
Qi = X AIX, + BIX, + ¢! (5h)
P,,,_X;,A”X,,,+BX,,,+CP (51)
QUI—XU[A th+BXUt+C (SJ)

According to [39], the positive semi-definite (PSD) matrices
AP, Al AZ, Aq in (5g)-(5j) can be obtained via training his-
torlcal data usmg the polynomial regression as a basic learner
to learn the convex relationships between the voltage and the
active or reactive power. Then, ensemble learning methods are
used to assemble all basic learners, to boost the performance
of model. However, the PSD matrices in (5g)-(5j) are dense
and high-dimensional, which is an obstacle in computing
the complex CC-PSO-ES problem. Therefore, the generalized
LASSO [42]-[45] is introduced to learn more compact and
sparser PSD matrices for the purposes of speeding up the
computational efficiency and saving the storage space. The
following illustration of generalized LASSO takes P;; as an
example based on dataset {x;, y,-,}?i | Where x;;, y;; are the i-th
observed voltage input and active power output at 7-th hour;
M 1is the training sample size. The detailed formulation is
written as

M M
1 T 2
min-— Z;(yiz—X,AfX,—Bf.’X,—cf-’) +uzlj|ej| (5k)
= /:
s.L. AP =0

1

(51

where 6; is the j-th coefficient constituted by the entries of A‘f ;
“>=" means Af is a PSD matrix; M’is the number of coefficients;
@ > 0 is a tunable regularization parameter that controls the
degree of shrinkage. By the shrinkage, some coefficients may
be zero, which means the matrix Af becomes sparse.

D. Convex Hull Relaxation of Energy Storage Model

As suggested by [50], it is a typical design requirement for
AC power grids to design small phase angle differences and
the voltage drop can be negligible in many systems [51]-[58].
The solutions of AC optimal power flow in IEEE test systems
in [54], [55] also verify that the bus voltage magnitudes are
approximate to 1.0 (p.u.). Besides, many LinDistFlow mod-
els [56]-[58] assume power line losses at any line segment
are negligible and the voltage drop from the slack node to
each node is sufficiently small. Hence, we assume that Vi%t ~
1.0 (p.u.) in (1f) for the nodes with the energy storage. Then,
the convex hull relaxation [37] of the energy storage model
can be formulated as the followings:

|Jziel|l, — b7z <0 (6a)
|izie|, — b zis < mi (6b)
Kz —2m; <0 (6¢c)
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where J = diag((v2 V2 1 117, b =001 117, J; =
diag([0 \/2r?" 1 1), ziy = [Pes.ic Qrs.ic PR, 117, Ki =
[00 {7 SEE2T, my = r{ISpee.

E. Scenario Programming Formulation of CC-PSO-ES

Based on the DDCQA of power flow constraints in (5g)-(5j)
and the convex hull relaxation of energy storage model in
(6a)-(6¢), the corresponding convex constraints are written as

XIATX, + BiX, + & < P§, — P} + Pgsiy  (Ta)
XTAIX, + BIX; + ¢! < 0, — 01"+ Qps.ic  (7b)
X AVXij o + B X+ & < Py (7o)
XJ AXyo + BIXy. + ¢ < 04 (7d)
i1+, < VI

(1k) — (1m) and (6a) — (6¢). (7e)

Then, we introduce an auxiliary variable Z used to reformu-
late the objective function (2i) into a linear formulation (7f)
with a convex constraint (7g) as

(7f)
(72)

Minimize: Z
2
st Y Y Y (eaPf i) <1512
se8 teT i

where |S’| is the number of scenarios. As the constraints above
are all convex, the scenario programming, i.e., the strate-
gic sampling-based solution approach for the CC-PSO-ES
problem can be rewritten in (8) as

Minimize: (7f)
5t F’(y, 5@)) <0, (s=1,2,... d)

(8a)
(8b)

where F/(y,8) compacts all constraints in (7a)-(7e), (7g),
(1k)-(1m), and (6a)-(6¢) at each scenario. The corresponding
sampling procedure for the problem (8) is illustrated in the
section of strategic sampling.

IV. SIMULATION ANALYSIS
A. Case Selection and Data Collection

The real-world power systems and their data are expected
to use in this research. However, they are not available in
public. As empirical alternatives, some IEEE standard test
systems such as IEEE-5, —9, —57, and —118 systems studied
in [40], [54] are used and the steady-state operation condi-
tions in these systems are preserved. The demand data is
accessed from ISO New England [59]. The net active and
reactive power loads at each bus are based on the hourly load
curves of ISO new England and set up at the range of [0.7,
1.3] of their true values to simulate the uncertainty of power
loads and renewable energy generations and to generate the
24-hour simulating data. The settings of energy storage units
are summarized in Table I [37]. Considering sampling in the
whole sample space may be computationally expensive, for
each test system, the sample size determined by the RS-based
method [13]-[18] is treated as the sample space. The goal is to
demonstrate the efficacy of the proposed solution method with
fewer effective scenarios via the strategic sampling methods
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TABLE I
SETTINGS OF ENERGY STORAGE UNITS

Case IEEE-5 IEEE-9 IEEE-57 IEEE-118
Units 2 2 3 3
Bus No. 3,5 5.7 8,9, 12 59,90, 116
Canaci IMVA, 0.75MVA, 0.75MVA, IMVA,
apacity  HMwh 1.5MWh 1.5MWh 2MWh

2 ELPR ®mLASSO

@

U"‘l

=

0% 20% 40% 60% 80% 100%

Average Training Time (%)

Fig. 4. Comparison of Training Time.

IEEE-118

= ELPR mLASSO

IEEE-57

Test Systems

IEEE-9

IEEE-5

0% 20% 40% 60% 80% 100%

Average Computing Time (%)

Fig. 5. Comparison of Computing Time of CC-PSO-ES.

and the DDCQA of ACPF. The simulations are performed in
MATLAB with cvx package.

B. Computational Complexity Comparison of DDCQA

To compare the computational efficiency of the DDCQA
of ACPF before and after improvement, we explore the
average training time for the active and reactive power at
each bus and the average computation time for solving
the CC-PSO-ES problems, using the existing method, i.e.,
ensemble learning-based polynomial regression (ELPR) [39],
named as ‘ELPR’ and the generalized LASSO named as
‘LASSO’, shown in Figs. 4-5. Figs. 4 and 5 indicate that
there exist significant improvements in both the training time
and computing time of CC-PSO-ES problem, using ‘LASSO’
instead of ‘ELPR’. Particularly, on IEEE-57 system, it only
takes about 25% of the original average training time to
train the improved DDCQA and about 40% of the original
average computing time of CC-PSO-ES to obtain the solu-
tion. For the IEEE-118 system, the average training time
and the average computing time of CC-PSO-ES used now
are only about 2% and 5% of the ones before, respec-
tively. As the supplements of Figs. 4 and 5, the specific
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TABLE 11
AVERAGE TRAINING TIME (UNIT: SECOND)
Case ELPR LASSO Runtime Reduction
IEEE-5 0.98 0.38 61.22%
IEEE-9 1.02 0.69 32.35%
IEEE-57 3.96 0.76 80.81%
IEEE-118  53.77 1.01 98.12%
TABLE III
AVERAGE TIME OF COMPUTING CC-PSO-ES (UNIT: SECOND)
Case ELPR LASSO  Runtime Reduction
IEEE-5 11.38 10.32 9.31%
IEEE-9 22.10 19.64 11.13%
IEEE-57 2837.72  1214.31 57.21%
IEEE-118 36767.43 2875.22 92.18%
reee-us [——
=ELPR ®LASSO
»
1
wee-s [—
0% 20% 40% 60% 80% 100%

Memory Usage (%)

Fig. 6. Comparison of Memory Usage.

data of average training time and average time of comput-
ing CC-PSO-ES problems are provided in Tables II and III
where the runtime reduction in the two tables is computed by
(1-runtime(LASSO)/runtime(ELPR))*100%. Both Figs. 4, 5
and Tables II, III conclude that ‘LASSO’ spends less time
than ‘ELPR’ on training the DDCQA and computing the
CC-PSO-ES problem. Specifically, there are 30%-98% and
9%-90% runtime reductions for training the DDCQA and
computing the CC-PSO-ES problem, respectively.

Moreover, the memory usages of the matrix Af before and
after improving DDCQA in all test systems have been dis-
played in Fig. 6. This figure shows that in all test systems,
the memory usage consumed now is reduced by over 75%
compared with the one consumed before. For IEEE-57 and
—118 systems, the memory usage used now may only account
for 1%-2% of the one used before. Overall, the improved
DDCQA based on the generalized LASSO greatly decreases
the computational complexity in training and computing the
optimization problem.

In addition, the comparison between the generalized LASSO
and other variable selection methods is performed. The results
of ridge regression (RR) and forward / backward / ‘both’
selection methods have been provided and compared with the
generalized LASSO. Note that RR in essence doesn’t do vari-
able selection but only shrink the magnitude of coefficients,
and ‘both’ selection method mentioned means using both
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TABLE IV
COMPARISON OF THE RESULTS OF VARIABLE SELECTION METHODS
(UNIT: P.U.)
Case LASSO Ridge Forward Backward Both
IEEE-5 P, 0.003812 0071646 0.0904038  0.090405  0.090404
size=100 0,  0.035367 0.047281  0.0785919  0.078583  0.078591
IEEE-9 P, 0.002811 0013257 0.0977825  0.097798  0.097780
size=100 O,  0.006885  0.026002 0.1976358  0.197632  0.197635
IEEE-57  Pi 0004328 0012902  0.0232383  0.023238  0.023237
size=200 (), 0.016140  0.020047  0.0331035  0.033102  0.033102
IEEE-118 P 0003752  0.008019  0.0131902  0.013185  0.013181
size=300 (), 0.012413  0.015748  0.0244099  0.024407  0.024405
TABLE V

OBJECTIVE COST BY FAST AND THE PROPOSED METHOD

Case IEEE-5 IEEE-9 [IEEE-57 [IEEE-118
Objective Cost ($/h) 477487 262187 296260 3603450
TABLE VI
SAMPLE S1ZES OF FAST AND RSM
Case IEEE-5 IEEE-9 IEEE-57 [IEEE-118
d 864 1104 5904 17328
N 1050 1290 6090 17514
N’ 34929 44529 236529 693489
Ratiol=d”/N’ 0.02474 0.02479  0.02496 0.02499

forward and backward selection methods. The average test
errors denoted by the root-mean-square error (RMSE) for
the active and reactive power P; and Q; at all buses under
different variable selection methods are shown in Table IV
(unit: p.u.). From this table, we can observe that: 1) the
generalized LASSO and RR work better than forward / back-
ward / both selection methods in learning the DDCQA in
this manuscript; 2) the generalized LASSO has the best
performance; 3) forward/backward/both selection methods
have very similar performance.

C. Performance Comparison of Solution Methods

In this numerical experiment, we set the allowed violation
probability level and the confidence level to be € = 0.05 and
1 — B8 = 0.9999, respectively. FAST [14] is used to provide
a benchmark result. Both FAST and the proposed solution
method based the strategic sampling can achieve the same
objective costs of the CC-PSO-ES problems considering the
uncertainty of PLREG, shown in Table V. This indicates that
the proposed solution method achieves the optimal solutions
of the CC-PSO-ES problems in our research. To compute the
objective costs in TABLE V, the estimated number of scenar-
ios required by the RS-based method (RSM) [13], [15]-[18]
and FAST [14] are shown as N' and N, in TABLE VI where d’
is the decision variable size.

TABLE VI shows that the number of active scenarios only
accounts for at most 2.5% of the sample size computed by the
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TABLE VII
BEST AND WORST SAMPLE SELECTIONS (SIZES) BY RLS AND DBS

Case IEEE-5 1EEE-9 IEEE-57 1IEEE-118
RLS(best) 223 2 4 2
RLS(worst) 883 114 729 1780
DBS(best) 3 2 3 2
DBS(worst) 432 96 289 1661

RSM, reflected in the row of Ratiol. In other words, the major-
ity of N’ samples may be useless for solving the CC-PSO-ES
problems. Compared with the RSM, FAST can reduce the
number of scenarios to from N to N. Especially, for IEEE-57
and —118 systems, the sample sizes required by the RSM are
more than 230k and 690k, respectively. It will be difficult to
solve the CC-PSO-ES problems with such large number of
scenarios in practice. From TABLE VI, with the same confi-
dence level requirement, it is easier to solve the CC-PSO-ES
problems with N samples by FAST than with N' samples by
the RSM, but it is still computationally expensive to compute
the CC-PSO-ES problems in IEEE-57 and —118 systems. As
a promising alternative of the RSM and FAST, the solution
method via the strategic sampling, namely, the hybrid sampling
methods via RLS and DBS, is illustrated below.

Similarly, for achieving the objective costs in Table V by
the proposed solution method based on the DBS and RLS, the
sample sizes required by DBS and RLS are shown in Table VII
where the ‘best’ and ‘worst’ items correspond to the best and
worst sample sizes selected by DBS and RLS based on many
times of experimental simulations. From Table VII, we can
infer that:

1) The sample selection results of HS1 and HS2 can be

approximately bounded by the size of decision variables.

2) The hybrid sampling methods through DBS and RLS,

ie., HS1 and HS2, use far fewer samples than the
RSM and FAST for solving the CC-PSO-ES prob-
lems, especially in IEEE-57 and —118 systems. For
instance, in IEEE-5 system the solution methods via
HS1 and HS2 find the optimal solution within 450
and 890 scenarios, respectively, which is smaller than
1050 scenarios determined by FAST. In a similar fash-
ion, in IEEE-9, —57 and —118 systems, 120, 800 and
1800 scenarios are large enough for the solution methods
via HS1 and HS2 to reach the optimal solution.

3) DBS (HS1) and RLS (HS2) have very similar

performance on the best sample selection in IEEE-9,
—57 and —118 systems, while DBS (HS1) outper-
forms RLS (HS2) on the worst sample selection in four
systems. The main reason may be that DBS selects
each sample based on the maximum average dissimi-
larity between the candidate sample and the previous all
selected ones, while RLS selects samples by the maxi-
mum dissimilarity between the candidate sample and the
most recently selected one.

Additionally, the  runtimes (unit: second) of
HS1 and HS2 are provided in Table VIII below
where the runtime reduction is computed by

(1-runtime(HS2)/runtime(HS1))*100%. Though HS1 may
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TABLE VIII
COMPARISON FOR RUNTIMES OF HS1 AND HS2
Case HS1 HS2 Runtime Reduction
IEEE-5 0.66 0.28 57.57%
1IEEE-9 0.74 0.38 48.65%
IEEE-57 5.58 341 38.89%
IEEE-118 4275 13.12 69.31%
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Fig. 7. (a) Performance of DBS in IEEE-5 System. (b) Performance of RLS

in IEEE-5 System.

work better than HS2 on the sample selections from Table VI,
HS2 is computationally more efficient than HS1 according to
Table VIII. Specifically, using HS2, instead of HS1, will have
about 40%-70% runtime reductions in these test systems.
Hence, in the cases that requires considerable computational
time, HS2 would be a promising alternative of HS1.

D. Verification of Learning-Based Sampling Methods

In the practical implementation of DBS or RLS, there is no
need to repeat this verification process, but only d effective
samples selected by DBS or RLS are used to solve the CC-
PSO-ES problems. From a series of experimental simulations,
in IEEE-5 system, d is suggested to be at least the number of
the decision variables; IEEE-9, —57, and —118 systems can
set d to be 10%-15% of the number of decision variables.
The goal of this part is to trace how many effective samples
selected by DBS or RLS are sufficient for achieving the objec-
tive costs in Table 1V, i.e., to reveal the details of the sample
selections in Table VI. Four sets of plots for verifying the
effective samples selected by DBS and RLS in four IEEE test
cases are displayed in Figs. 7-10 (a) and (b).

For the figures above, the x-axis denotes the number of
scenarios used for solving the CC-PSO-ES problem with the
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Fig. 9. (a) Performance of DBS in IEEE-57 System. (b) Performance of
RLS in IEEE-57 System.

range of 1 to N, and the y-axis is the objective cost of
the CC-PSO-ES problem. When the x-axis is more than the
best (worst) sample size by DBS or RLS shown in Table VII,
y-axis doesn’t change in fact. Hence, the figures above ignore
the results with x-axis more than the best (worst) sample
size. To avoid the overlap of the results of DBS and RLS
in the single figure, each set of figures has (a) and (b) fig-
ures, corresponding to using DBS and RLS, respectively.
Each figure has a partial enlarged view at the left bottom
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Fig. 10. (a) Performance of DBS in IEEE-118 System. (b) Performance of
RLS in IEEE-118 System.

to reveal the result with x-axis from 1 to 10. There are two
colored lines at each figure where DBS or RLS has blue
and red lines corresponding to the best and worst selection
results, denoted as ‘DBS_best’ (blue) and ‘DBS_worst’ (red),
‘RLS_best’” (blue) and ‘RLS_worst’ (red), respectively. Each
pair of (a) and (b) figures are used to trace how the objective
cost shown in Table V is achieved by the number of effective
scenarios shown in Table VII. Once the sample sizes satisfy
the values of Table VII, the optimal solutions (objective costs)
are achieved and shown by the flattening lines. For instance,
Fig. 7 (a), (b) show that the blue (red) line starts to be flat-
ten when the sample size is more than 3 (432) using DBS,
and 223 (883) using RLS, respectively, which is exactly in
accord with the sample selection results of DBS and RLS
from Table VII. In the same fashion, in IEEE-9, —57 and
—118 systems, under the best sample selection results with
2~4 effective samples selected by DBS or RLS, the corre-
sponding objective costs can be achieved and indicated by the
flatten blue lines of partial enlarged views in Figs. 7-10. The
red lines denote that the objective costs can be obtained with
the worst selection results of DBS or RLS in Tables VII and
shown at the top flat lines. Overall, the results of Figs. 7-10
are completely consistent with the sample selection results of
DBS and RLS from Table VII.

Under different violation probabilities € = 0.01 ~ 0.2 and
the confidence level fixed at 0.9999, the desired sample sizes
required by the RSM used in [13], [15]-[18], FAST in [14],
and the proposed method based on DBS are computed below
in Tables IX-XI. Basically, three tables indicate that: 1) all
sample sized decided by three methods will increase with the
decrease in the violation probability, 2) the sample size by
RSM is far more than the sample sizes by FAST and the
proposed method, 3) the sample size by the proposed method
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TABLE IX
SAMPLE SI1ZE REQUIRED BY RSM

Case/ € 0.01 0.025 0.075 0.1 0.2
IEEE-5 174643 69857 23286 17465 8733
IEEE-9 222643 89057 29686 22265 11133
IEEE-57 1182643 473057 157686 118265 59133
IEEE-118 3467443 1386977 462326 346745 173373
TABLE X
SAMPLE SIZE REQUIRED BY FAST
Case/ € 0.01 0.025 0.075 0.1 0.2
IEEE-5 1787 1234 988 958 912
IEEE-9 2027 1474 1228 1198 1152
IEEE-57 6827 6274 6028 5998 5952
IEEE-118 18251 17698 17458 17422 17376
TABLE XI

SAMPLE SIZE REQUIRED BY THE PROPOSED METHOD

Case/ € 0.01  0.025 0.075 0.1 0.2
IEEE-5 448 289 231 218 213
IEEE-9 219 135 95 94 88
IEEE-57 221 211 213 204 210

1675 1680

IEEE-118 1752 1672 1671

on average is much smaller than the sample size by FAST and
bounded by the number of decision variables.

In practice, the decision-makers may be more interested
in the solution with low violation probabilities. According
to [13]-[18], the violation probability within 0.1 would give a
satisfactory solution. Our experimental analysis shows that the
objective costs on four cases have no significant changes with
€ = 0.01 ~ 0.2, which is similar with the analysis in [17], [18]
using the existing PD-free solution method for the CCO prob-
lems. The results in [17], [18] with changing the violation
probabilities within 0.4 have little effect on the objective cost
of the CCO problems. Specifically, the change in the objective
cost with each (£0.05) change in the violation probability is
only 1% on average.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel scenario-based solution method
for solving the chance-constrained multi-period optimal
power system operation (PSO) with battery energy storage
(CC-PSO-ES), which is originally nonconvex and computa-
tionally intractable. The proposed method, which is based
on the data-driven convex quadratic approximation (DDCQA)
of ACPF and the strategic sampling, i.e., hybrid sampling
methods, only uses a small number of scenarios without the
pre-known PD of the uncertainty of PLREG, which is PD-free.
The DDCQA is modified through the generalized LASSO
and applied to address the nonconvex problem of ACPF
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constraints in CC-PSO-ES problem. Unlike the RS-based
methods, the hybrid sampling (HS) methods are proposed with
dissimilarity-based learning and reinforcement learning meth-
ods. HS determines a smaller sample size than the RS-based
methods. Eventually, the originally intractable CC-PSO-ES is
converted to a tractable convex quadratic optimization problem
with few effective scenarios. In our future work, we intend to
test the proposed method in real-life large-scale power systems
and further discuss the strategic sample selection from the
aspects of using theoretical inference and advanced learning
methods.
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