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Abstract—Water and power systems are increasingly interde-
pendent due to the growing number of electricity-driven water
facilities. The security of one system can be affected by a con-
tingency in the other system. This paper investigates a security-
constrained operation problem of the energy-water nexus (EWN),
which is a computationally challenging optimization problem due
to the nonlinearity, nonconvexity, and size. We propose a two-step
iterative contingency filtering method based on the feasibility and
rating of the contingencies to decrease the size of the problem.
The optimal power and water flow are obtained in a normal
situation by considering the set of contingencies that can not
be controlled with corrective actions. The feasibility check of
the contingencies is performed in the second step, followed by
a rating of the uncontrollable contingencies. Finally, the critical
contingencies are obtained and added to the first step for the
next iteration. We also employ convex technologies to reduce the
computation burden. The proposed method is validated via two
case studies. Results indicate that this approach can efficiently
attain optimal values.

Index Terms—contingency filtering, energy water nexus, opti-
mal power and water flow, security constrained.

I. INTRODUCTION

Water and power systems are closely linked [1], and their in-
terdependence is increasing because of the rising utilization of
electricity-driven water facilities (EDWFs). On the one hand,
water scarcity can be tackled by enhancing water efficiency
through recycling, which heavily relies on electric power. On
the other hand, EDWFs are able to adjust to power imbalances
since their demand is flexible. Hence, the water distribution
system (WDS) and the power distribution network (PDN) are
better served by working together as an energy-water nexus
(EWN).

Insufficient power supply to the EDWFs could lead to a fail-
ure in the PDN. Furthermore, a contingency in the WDS could
alter the operation of the EDWFs and their power demand.
These changes in the operation of the EDWFs have created
an imbalance between power supply and demand, resulting in
decreased PDN security. This paper proposes an N-1 security-
constrained optimal operation of an EWN (SCOEWN) with
corrective actions to address these contingency problems and
increase system security.

The SCOEWN is a combination of the optimal power
and water flow (OPWF) and the security-constrained optimal
power flow (SCOPF), which is used for a period of time. The

SCOPF and OPWF are obtained from large-scale, nonconvex,
and nonlinear optimization problems that are computation-
ally intractable and difficult to solve [2], [3]. Computing
the SCOEWN is computationally challenging due to a large
number of decision variables, nonlinearity, and nonconvexity.
It would require prohibitive amounts of memory and CPU time
to reach the SCOEWN directly.

In real-life applications, most contingencies have no impact
on the optimal solution, and only a limited subset of contingen-
cies is critical to the security optimal operation [4], [5]. In sev-
eral studies, this principle has been applied to reduce the size
of the security-constrained optimization problem by detecting
uncontrollable contingencies (UCs) using contingency filtering
methods [6]–[8]. All of these methods only consider the power
network at the transmission level and a one-time slot. In
this paper, we consider power distribution levels with radial
structure, integrated systems, and the parallel computation
framework to speed up computations in our proposed method.

To ensure the secure operation of EWN, we propose an
iterative two-stage approach based on contingency rating along
with simultaneous testing of feasibility (CRSFT). This method
takes into account only the crucial contingencies when solving
the optimization problem. To begin with, we find the optimal
power and water flow for the EWN subject to the regular
operation constraints and the set of critical contingencies. In
the next step, the feasibility of the contingencies is checked
by considering the corrective actions. The parallel process is
applied for analyzing different optimization problems to speed
up the computation [9]. The UCs, which can not be con-
trolled by corrective action, are determined and rated by their
violation of the feasible solution. Based on the contingency
rating, the critical contingency is identified and added to the
set of critical contingencies for the next iteration. The method
will be terminated when all of the contingencies lead to a
feasible solution by taking into account the corrective actions.
In addition, we apply convex technologies to both stages of
the proposed method to reduce the computational burden.

The rest of this paper is organized as follows. The details of
the problem formulation are presented in section II. Section III
introduces the solution method. Section IV presents two case
studies to validate the CRSFT method. Lastly, conclusions are
drawn in Section V.



II. PROBLEM FORMULATION

In this section, we formulate the security-constrained oper-
ation problem of an EWN system with corrective actions. An
EWN includes a PDN, a WDS, and EDWFs that are modeled
in the following subsections.

A. Power Distribution Network

In this paper, we use the well-known Distflow model to
describe power flow in the distribution system [10]. Besides,
distribution network reconfiguration (DNRC) is considered as
a corrective action to avoid isolating all customers downstream
of the on-contingency area in the radial structure. According
to this model, the formulations are expressed by (1a) to (1j):
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where k, i and j and t show the number of contingency, the
number of bus, and time, respectively; k = 0 shows the base
case operation without any contingency. Equations (1a) and
(1b) show the nodal balance of power, and (1c) to (1e) are
related to Ohm’s law. P g

i,t, Q
g
i,t, P

l
i,t, Q

l
i,t, and Vk

i,t are active
and reactive power generation and power load and square
voltage of the bus, respectively. P k

ij,t and Qk
ij,t, Ik

ij,t, rij , xij ,
and zij are active and reactive power flow, the square of the
current magnitude, resistance, reactance, and the sum of the
square of reactance and resistance of the line, respectively. We
consider the power generation changes as a corrective action
in our model which are shown with ∆P g,k

i,t and ∆Qg,k
i,t that

are limited to the acceptable value of ramping down and up
(Pg

i , Qg
i , Pg

i , and Qg
i ). Equations (1f) to (1h) describes the

upper and lower bounds of the variables. The DNRC which is
another corrective action is represented by (1i) and (1j). αk

ij

shows the status of a contingency for the line and Nb is the
total number of buses.

B. Water Distribution System

In this paper a model of WDS which consists of mass flow
conservation law, pipe network, water tank, pressure-reducing

valve (PRV), and water pump model is represented as follows:

∑
l

fk
nl,t = FR

n,t + F̂R,k
n,t − dn,t + FT,k

n,t , (2a)

ykn,t − ykl,t = Rw
nlsgn(f

k
nl,t)(f

k
nl,t)

2, (2b){
ykn,t − ykm,t + yG,k

nl,t = Rw
nl(f

k
nl,t)

2 if βnl,t = 1,

fk
nl,t = 0 if βnl,t = 0,

, (2c)

yT,k
n,t+1 = yT,k

n,t +
FT,k
n,t

AT
n

, (2d)

V T,k
n,t+1 = V T,k

n,t + FT,k
n,t , (2e)

V T,k
n,0 = V T,k

n,24, (2f)

FR
n , FT

n , fnl ≤ FR
n,t, F

T,k
n,t , f

k
nl,t ≤ FR

n , FT
n , fnl, (2g)

FR
n ≤ F̂R,k

n,t ≤ FR
n , (2h)

yn, V
T
n ≤ ykn,t, V

T,k
n,t ≤ yn, V T

n , (2i)

0 ≤ Rw
nl ≤ Φnl, nl ∈ ξrp, (2j)

Rw
nl =

8fsLnl

π2gD5
nl

, nl ∈ ξ \ ξrp, (2k)

where FR
n,t, dn,t, y

k
n,t, F

T,k
n,t , V T,k

n,t , and AT
k show water flow

injected from the water source, water demand, water head,
net water flow of tank, water tank volume, and water tank
area for node n, respectively. F̂R,k

n,t represents the change in
water production that is considered as a corrective action in
our model. fk

nl,t, y
G,k
n,t and βnl,t show water flow, head gains

imposed by the pump and the pump status for pipe nl. In
this model, (2a) guarantees the total water injection to each
node is equal to the whole withdraw water. Equations (2b)
and (2c) show the head lost along a regular pipe and a pipe
with a pump, respectively. Equation (2d) describes the head
pressure change at the water tank node; (2e) shows the stored
water in the water tank at each time slot; (2f) represents that
the total water input to the tank in a day should be equal to
the total water output from the tank. Equations (2g) to (2i)
describe the upper and lower bounds of variables. There are
several types of controllable valves in WDSs that can help
operators to control the WDS operation [11]. In this paper,
we assume that the system operators use PRV to reduce the
water pressure at some specific pipes in order to control the
water head pressure. Equation (2j) shows the acceptable value
for the head loss coefficient of the pipes with PRVs, where Φnl

shows the maximum value of head loss in the set of pipes with
PRVs (ξrp). Equation (2k) shows the Darcy-Weisbach formula
that is the most theoretically accurate formula to calculate the
head lost along the pipe without any PRVs [12], where Lnl

and Dnl are the length and diameter of the pipes, respectively,
fs is the coefficient of surface resistance, and g represents the
gravitational acceleration.

C. Electricity Driven Water Facilities

The WDS and the PDN are linked by EDWFs, which
require power and water. In this paper, a fixed-speed pump



is considered as an EDWF and formulated by a quadratic
function of the water flow as [13]:
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III. SOLUTION METHOD

This section explains the proposed method of solving
SCOEWN. First, we discuss the convex relaxation for the
EWN model to reduce the computational burden. Then, the
CRSFT method is explained to decrease the problem size.

A. Convex Relaxation

In this section, we convexify the formulation of the EWN
to reduce the computational burden.

1) Convexification of Constraint (1d): We relax (1d) by
using the convex hull relaxation model that is represented in
[14] as follows:
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the big-M technique to eliminate the logic proposition of (1i)
and (2c). Constraint (1i) is replaced by (6) and (7). Besides,
constraints (8) and (9) show the convex model of (2c).

M
(
αk
ij−1

)
≤Vk

i,t−Vk
j,t+zijIk

ij,t−2
(
rijP

k
ij,t+xijQ

k
ij,t

)
≤M

(
1−αc

ij

)
, (6)

0 ≤ Iij,tk ≤ αk
ijIij . (7)

M
(
βnl,t−1

)
≤ykn,t−ykl,t+yG,k

nl,t−Rw
nlfnlf

k
nl,t≤M

(
1−βnl,t

)
, (8)

0 ≤ fk
nl ≤ βk

nl,tfnl. (9)

3) Convexification of Constraint (2g): Equation (2g) is a
non-convex constraint that can be relaxed into convex hull
relaxation mode as follow [14]:
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4) Convexification of Constraint (3): A quadratic equation
like (3) is non-convex and it can be relaxed as the intersection
of a concave inequality and a convex inequality:
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B. Contingency Rating with Simultaneous Feasibility Testing

In this section, we propose the CRSFT method to reduce
the size of our optimization problem. CRSFT is an iterative
approach with two steps. The first step solves a multi-period
OPWF problem of the EWN by considering the regular op-
eration constraints and the crucial constraints. The feasibility
check of the contingencies is investigated in the second step.
All contingencies are considered as a controllable contingency
(CC), and UCs set will be empty in the first iteration. The
optimal values for decision variables are obtained by solving

the multi-period OPWF problem in a normal situation. These
optimal values are used in the second step to check the
feasibility of CCs simultaneously to accelerate reaching the
SCOEWN. To obtain the CCs for the next iteration, we update
constraints (1a), (1b), and (2a) with constraints (11), (12), and
(13), respectively:
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where P l and d are daily power and water demand, respec-
tively, to provide a comparable situation between the PDN and
the WDS. We named the contingencies without any violation
(Λk = 0) as CCs. The maximum violation between UCs
shows the critical contingency that should be added to the
master problem for the next iteration. This procedure will be
terminated when all of the CCs lead to a feasible solution by
taking into account the corrective actions in the second step.
Algorithm 1 and Fig. 1 show the details and procedure of
the CRSFT method. Let F be the feasible region of normal
operations for an EWN, shown with the solid line in Fig 1.
Each contingency provides a new feasible region as shown
with the dashed line. Let the red dot be the optimal solution
of the optimization problem in the first step. Therefore, there
are two CCs and four UCs in the set of contingencies. The
distance between the red and yellow dots shows the maximum
violation. We have used convex relaxation to have the convex
feasible region of the regular and secure operation of the
EWN. Therefore, adding the worst-case UC to the master
problem provides a new convex region, like Fc, with more
CCs. The blue dashed line in Fig 1b shows the worst-case
UC that should be added to the master problem for the next
iteration. This contingency provides a new convex feasible
region, Fc1 ⊂ Fc. The Fc1 consists of four CCs and two
UCs. The worst-case UC for the next iteration is shown with
the green dashed line in Fig 1c. A new convex set, Fc2 ⊂ Fc1,
is provided by adding this contingency to the master problem.
The blue region of Fig 1d shows the feasible region of the
operation of the EWN. Since all of the contingencies in the
Fc2 are CC, the optimal solution of the master problem is
SCOEWN.

IV. CASE STUDIES

Based upon the different characterization of the PDN and
WDS in different areas [15], we present two case studies to
demonstrate the robustness and effectiveness of the proposed
method. A 24-hour nodal price and the load curve of power
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Fig. 1. Two-dimensional example of algorithm 1: a) normal operation b)
adding the first worst-case scenario c) adding the second worst-case scenario
d) final feasible region after two iteration.

Algorithm 1: CRSFT method to obtain the SCOEWN.
1: Define the set of contingencies (C), initial set of CCs

(Cc
0 = C), initial set of UCs (Cu

0 = ∅), j = 0;
2: Define Cc

j+1 = ∅, Cu
j+1 = ∅;

3: Apply the optimization solver to find the optimal value of
decision variables (P g

i,t, Q
g
i,t, F

R
n,t and βnl,t) subject to the

network constraints in the normal operation and Cu
j

4: Find the Λk for Cc
j based on (14)

5: Determine the worst-case contingency (cwj ), which is the
contingency with maximum value of Λk (Λw

j )
6: if Λw

j ≥ ϵ then
7: Cu

j+1 ← Cu
j + cwj

8: Cc
j+1 ← Cc

j − cwj
9: j = j + 1

10: go to step 2
11: else
12: The optimal values in step 3 guarantee SCOEWN.
13: end if

demands [16] are used for both case studies. All simulations
are executed in MATLAB R2019b environment with Intel (R)
Core (TM) i7-9700 CPU 3 GHz and 16 GB RAM based
personal PC.

A. IEEE 13-Bus PDN with 8-Node EPANET WDS

The first case study is a modified IEEE 13-bus system with
the 8 nodes EPANET water system [17] that is suitable for a
micro EWN in a small community. We consider 17 different
contingencies for power lines and water pipes that are shown
with red color in Fig. 2. Dashed lines in the PDN are reserved
lines that are used for DNRC in a contingency situation. We
have applied the CRSFT method to the first case study. The
optimal values for power generation, water production, and
OPS in the base-case operation are obtained in 23.64 seconds.
Then we have used these optimal values as parameters in
the second step. The numerical results are explained in the
following subsections.

1) Contingency set in the PDN: The optimal values of the
first step are used to find the UCs in the second step. All
of the contingencies are UC in the first iteration, and the
critical contingency is contingency 3. We add this contingency

Fig. 2. IEEE 13-bus and EPANET 8-node.

to the master problem to find the optimal value of decision
variables for the second iteration. The optimization solver
reaches the results after 36.87 seconds for the first step in the
second iteration. After the second iteration, all contingencies
have been converted into CC. Therefore, the EWN operator
can handle any contingencies while corrective actions are
taken into account. The feasibility of the contingencies can
be evaluated independently and in parallel. Table I shows the
results. As can be seen, in the case of parallel computing, the
first and second iterations take a much smaller time.

2) Contingency set in WDS: In this section, we have studied
the set of contingencies in the WDS. Four contingencies are
determined as UCs, and the critical contingency is related to
contingency 2. Therefore, we add contingency 2 to the master
problem for the second iteration with a CPU time of 64.52
seconds. The contingency check for the second iteration shows
that all of the contingencies are controllable. Table I shows the
results of different iteration for this case study. Based on Table
I, parallel computing can reduce the time taken during the first
and second iterations.

TABLE I
FIRST CASE STUDY: POWER AND WATER CONTINGENCIES

PDN WDS
Iteration First Second First Second
Parallel
Time (s) 1.62 1.58 0.51 0.50

Total
Time (s) 5.44 5.08 2.56 2.52

UCs 2 to 12 - 2, 3, 5 -
Selected

Contingency 3 - 2 -

B. IEEE 33-Bus PDN with 13-Node Otsfeld WDS

The IEEE 33-bus system and the Otsfeld regional WDS
[18] shown in Fig. 3 are considered for the second case study
that can be used for an area of a city. Three pumps that link
the PDN to the WDS are connected to buses 14, 24, and
33. The WDS consists of three water resources with three
pump stations, 13 nodes, 14 pipes, two PRVs (on pipes 6 and
10), and one water tank. Same as the previous case study, the
optimal value for decision variables should be found in normal
operation as mentioned in Algorithm 1. The optimization
solver reaches the results with a CPU time of 47.66 seconds.
These optimal values are used as parameters for the feasibility
check.

1) Contingency set in PDN: In the first iteration, all con-
tingencies are UC as a result of solving the optimization
problem 14. Contingency 31, the worst-case contingency in
the first iteration, is added to the master problem for the
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Fig. 3. Second test bed: a) IEEE 33-bus system b) Otsfeld water system.

second iteration. In the second iteration, the master problem
is solved in 154.31 seconds, and the updated optimal values
of decision variables are used for contingency checks. The
results show that the operator can handle any contingency by
taking corrective actions. Table II shows the results of different
iterations for the second testbed. The total time for contingency
checks in the first and second iterations is 8.26 seconds and
7.17 seconds, respectively. By contrast, it takes at least 90.12
seconds and 81.73 seconds without parallel computing.

2) Contingency set in WDS: This section validates the
effectiveness of the proposed method for a set of WDS
contingencies in the second case study. In the first iteration,
contingency 2, contingency 3, contingency 4, and contingency
6 are UCs. All contingencies will be CC in the second
iteration by adding contingency 2 to the master problem.
The optimization solver finds the optimal values of decision
variables for the second iteration in 87.54 seconds. Table II
shows the results of different iterations. In parallel computing
mode, the total time for the first and second iterations is
0.24 seconds and 0.20 seconds, respectively. However, without
parallel solving, the total time for the first and second iteration
will be 1.65 seconds and 1.26 seconds, respectively.

TABLE II
SECOND CASE STUDY: POWER AND WATER CONTINGENCIES

PDN WDS
Iteration First Second First Second
Parallel
Time (s) 8.26 7.17 0.2 1.65

Total
Time (s) 90.12 81.73 0.24 1.26

UCs 3 to 32 - 2, 3, 4, 6 -
Selected

Contingency 31 - 4 -

To further validate the proposed method, we will look at
the effects of selecting the wrong contingency as the critical
contingency in the WDS for the second case study. We have
added contingency 2 to the master problem which is not the
critical contingency. Although this contingency is changed into
a CC, all other contingencies will be UC. Hence, adding one
of the contingencies as random to the master problem can
increase the number of UCs.

V. CONCLUSIONS

The paper presents a security-constrained optimal operation
of the EWN (SCOEWN). First, EWN has been modeled
in a contingency situation. Then, we have convexified this
model to reduce the computational burden. A two-step iterative

algorithm is proposed to obtain SCOEWN. The first step
solves the optimization problem for the base-case operation
and a set of the critical contingencies. The second step consists
of considering the violation of the optimal values for all
contingencies in order to obtain a new critical contingency.
This contingency is added to the master problem for the
next iteration. The process continues until there are no un-
controllable contingencies. The method has been tested in
two different case studies. The proposed contingency filtering
method allows most of the contingencies to be removed
from the master problem since they are redundant. With the
proposed method, the SCOEWN can be reached very fast.
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