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An Open Simulation Environment for Learning and
Practice of Robot-Assisted Surgical Suturing

Adnan Munawar1, Jie Ying Wu2, Gregory S. Fischer3, Russell H. Taylor1, Peter Kazanzides1

Abstract—Automation has the potential to improve the stan-
dard of care but is difficult to realize due to perceptual challenges,
especially in soft-tissue surgery. Machine learning can provide
solutions, but typically requires large amounts of training data,
which is time-consuming to collect. Even with shared platforms,
hardware differences can prevent effective sharing of data be-
tween institutions. This paper proposes a standardized simulation
platform for training and testing algorithms to control surgical
robotic systems, which is built upon an open-source simulator,
the Asynchronous Multi-Body Framework (AMBF), to enable
quick prototyping of different scenes. An illustrative example of
a suturing task on a phantom is presented and has formed the
basis of a challenge, released to the community. The top-level
contribution is the open-source release of a dynamic simulation
environment that enables realistic suturing on a phantom, but
supporting contributions include its extendable architectural
design and a series of algorithmic optimizations to achieve
real-time control and collision detection, realistic behavior of
the needle and suture, and generation of multi-modal ground-
truth data, including labeled depth data. These capabilities
enable simulation-based surgical training and support research in
machine learning for surgical scene perception and autonomous
action.

I. INTRODUCTION
Automation in certain surgical fields, such as orthopedics,

has improved precision to a superhuman extent [1]. Yet its
adaptation to soft-tissue surgeries remains an open question due
to the increased difficulty in understanding the environment.
In a recent review of research done on one particular surgical
robot research system, the da Vinci Research Kit (dVRK) [2],
68 of the 253 papers published between 2012-2021 focused on
automation [3]. Related fields such as surgical gesture and skill
recognition, and imaging and vision had 33 and 32 publications,
respectively.

Despite the interest in these topics, it has been difficult to
identify a common experiment setup to ensure that results are
reproducible. There are currently over 40 sites in 11 countries
using the dVRK. It is difficult to ensure that physical setups
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are consistent across these sites. This work proposes a modular
simulation platform with dynamically loadable phantoms that
can be designed and shared as a way to overcome the lack
of standardized physical setups. Simulation platforms can also
enable researchers without a dVRK to perform surgical robotics
research. However, creating such a platform is challenging.
Automation, such as for cutting, pick and place, irrigation, or
endoscopic motion, requires precise actuation of the robot in the
simulator and realistic response from the simulated environment.
Vision-based methods to identify tool-tissue segmentation or
phase of surgery require high-fidelity visual feedback. We
present such a simulation environment in this manuscript that
is built on top of the Asynchronous Multi-Body Framework
(AMBF) [4].

We previously developed AMBF for simulating the dynamics
of kinematically redundant robots and mechanisms, a construct
employed frequently in surgical robots. As part of developing
the surgical environment in AMBF, several new features were
required, which were co-developed. These features can be
readily used for many different applications. We briefly discuss
some of these features alongside their use for the simulation
environment in Sec. III.

The development of a surgical simulation environment, as
presented in this manuscript, requires a significant amount of
engineering work and system integration. In light of this, we
aim to present the challenges faced, lessons learned, and our
approach in various sections throughout the paper.

The primary contribution of this work is an open-source
simulation environment for surgical suturing, integrated with
shared research platforms such as the dVRK. This includes:
(1) architectural contributions in the integration, using ROS, of
software packages for defining object models (Blender AMBF
Addon), dynamic simulation (AMBF Simulator) and interfaces
to multiple devices (AMBF Client and Python scripts), and
(2) algorithmic contributions in real-time collision checking,
realistic needle grasping, suture simulation, visual rendering,
generation of labeled depth images and a closed-form inverse
kinematic solution for the dVRK PSM.

II. RELATED WORKS
There are existing technologies that implement simulated

surgical procedures such as the da Vinci SimNow1 and Mimic2

simulation. These and other similar systems are all closed-
source and are pre-configured to support a specific set of user-
input devices. Due to their proprietary nature, and common

1https://www.davincisurgerycommunity.com/Systems I A/Skills
Simulator

2https://mimicsimulation.com/
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Fig. 1. Overview of the surgical simulation scene and its components. The Blender-AMBF addon generates ADF files which are loaded into the AMBF
Simulator. The AMBF Simulator generates and streams kinematics, dynamics, and scene data in standardized formats (ROS msgs). The Python Client and the
provided Python scripts convert the kinematics and dynamics data in CRTK compatible format. The Python scripts also implement teleoperation via input
devices.

use in clinical settings, there is no evidence of these systems
allowing the streaming of internal data for other applications
such as machine learning.

Robot Operating System (ROS) [5] has revolutionized
academic research in robotics, by providing a standard set
of payloads combined with an easy-to-use and distributed
middleware. Royalty-free and open-source robot simulators
such as Gazebo [6] and V-REP [7] have also found great
traction in robotics, in part due to their support for ROS as
a middleware. These robot simulators rely on a dynamically
loadable data format to define scene data (lights, cameras,
robots, etc.). The Universal Robot Description Format (URDF)
[8] and Simulation Description Format3 (SDF) are such exam-
ples which are written using the XML language. Describing
scene data in such dynamically loadable formats has many
advantages over an application where these are pre-programmed.
For example, SDF and URDF allow a model to be distributable,
modular and supported over many different versions of the
underlying simulator. At the same time, advanced features
may quickly become cumbersome and complex in terms of
description. Gazebo and V-REP support a rich set of plugins
to simply these descriptions. However, plugin support across
different versions of the simulator remains questionable as
the API for open-source simulators is constantly evolving.
Furthermore, relying heavily on plugins may defeat the purpose
of the description format, and ultimately the use-case of

3http://sdformat.org/spec

these simulators themselves. Consequently, one may opt for
developing the simulation environment in video game engines
such as Unity4 and Unreal engine5, however, the open-source
aspect, modularity, and support with ROS remain questionable.

These simulation environments can be used to prototype
robot interactions. Fontanelli et al. proposed a specific surgical
robotics environment implemented in V-REP [9]. Enayati et
al. [10] demonstrated that training on even simple, simulated
tasks could speed up surgeon skill acquisition. Other simulators,
such as SOFA [11], focus on the patient side of the surgical
scene. Nguyen et al. [12] note in their review that most simu-
lators that focus on soft-tissue do not support manipulators so
researchers must choose between high-fidelity robot movements
or soft-tissue response.

To simulate a realistic surgical environment, there must be
a simulator that combines the robot model and the patient
model, while allowing for different combinations of surgeon
and patient manipulators. Our previous work [13] detailed
how we could construct a set of reference frames that allows
for flexible pairings between different numbers of user input
devices, camera motion, and patient manipulators.

OpenAI Gym [14] has demonstrated that an open-source
environment can be a valuable tool for machine learning. While
OpenAI Gym supports a broad range of applications, medical
robotic environments often require more specific setups such as

4https://unity.com/
5https://www.unrealengine.com/
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the ability to manipulate fluids (e.g., blood [15]) or soft-bodies
(e.g., tissue). Richter et al. proposed a simulator focused on
driving surgical robotics, the dVRL [16]. This combines the
physics environment for the da Vinci Surgical System, proposed
by Fontanelli et al. [9], with the learning interface used in
OpenAI Gym. This environment focuses on accurate robot
movements but has limited support for tissue manipulation.
Similarly, Xu et al. extends this environment in SurRoL, while
still focusing on rigid phantom tasks such as peg transfer [17].
Tagliabue et al. [18] proposed an environment for soft tissue
but is limited to sheet-like objects rather than fully 3D models.
The proposed simulator’s value is in bringing together accurate
robot kinematics with tissue deformation while not limiting
the simulation scenes to pre-optimized setups.

III. METHODS

The goal of this work is to provide a modular simulated
suturing environment with realistic interactions, generation
and streaming of structured data, and a standardized control
interface. This is achieved by concurrent improvements to
AMBF and its various components as described in this section.
Sec. III-A gives a brief overview of the AMBF architecture.
Sec. III-B describes the collision optimization of simulated
bodies for realistic interactions. Sec. III-C describes the
simulation of suture. Sec. III-D discusses the robot controls,
how to teleoperate, and methods to achieve realistic grasping.
Lastly, Sec. III-E details how the visualization works and how
to stream out RGB and depth information.

A. System Architecture

The overall system architecture is shown in Fig. 1. The
entry point of an AMBF simulation is via a launch file, which
contains meta-data in the form of paths to different AMBF
description format (ADF) files. This is shown in Fig. 2. There
are three different types of ADF files that include world, input-
devices, and models. A launch file must define a single world
file, a single input-devices file, and as many model files as
required.

Solver Attribs
Gravity

World Dimensions
...

afObject Specific
Attribs

Model File (model.yaml)

afObject AttributesafObject AttributesafObject Attributes

World File (world.yaml)

World Attributes

Env Model File

Launch File

World File

Input Device File

Model FilesModel FilesModel Files

Fig. 2. Entry to AMBF simulation via a launch file

The world ADF file describes global attributes such as solver
iterations, gravity, world’s bounds, etc. It may also define lights
and cameras, however, these could also be defined in model
ADF files. A model ADF file describes afObjects, where an
afObject refers to a simulation entity such as a rigid body
or a joint. Different types of afObjects are shown in Fig. 3.

Each afObject shares some common attributes such as naming,
parenting, and communication. The surgical simulation scene
consists of rigid bodies, ghost objects, joints, sensors, actuators,
cameras, and lights. The provided launch file includes the paths
to all these ADF files which can then be loaded in AMBF.

1) The Blender-AMBF Addon: The ADF files can be created
by hand, however, this is not an easy task for complex
scenes. We developed the Blender-AMBF addon that allows the
creation of ADF files using a graphical interface. To create the
surgical scene, several new features were added to the Blender-
AMBF addon including: 1) advanced collision specification for
a rigid body, 2) setting textures and normals maps for meshes,
3) setting 6 DOF constraints (joints), and 4) fine-tuning inertial
attributes of a rigid body. To the best of our knowledge, the
Blender-AMBF addon is the most feature-rich tool for creating
robots and mechanisms for physics simulations, although it
currently only supports the ADF specification.

Base afObject

afRigidBody afSoftBody afVolume afVehicle

afSesnsor afActuator afJoint afCamera afLight

Non Visual Objects

Visual Objects

Fig. 3. Different Types of afObjects

2) Collaborative Robotics Toolkit Specification: Since our
goal is to make an accessible simulation platform, we chose
to use a standardized specification for interfacing with our
simulator. We use the Collaborative Robotics Toolkit (CRTK)
[19], which is a specification for describing and standardizing
the task and joint space motion-related data for teleoperated
and collaborative robots. CRTK is currently implemented in
ROS but can be extended to any middleware. The software
stack for the dVRK uses the CRTK API both for its internal
method names pertaining to robot control and its ROS interfaces.
Several other robots and devices that utilize the core software
(cisst and SAW [2]) that runs the dVRK, are also CRTK
compatible.

Keeping in line with the dVRK software, our simulation
environment provides CRTK compatible interfaces (both in
terms of ROS topics and method names) for controlling
the simulated PSMs and ECM. This allows any algorithm
developed in simulation to port easily to the real dVRK.

B. Realistic Interaction Between Environment Objects

Simulation environments that involve the fine manipulation
of rigid bodies in and around other complex rigid bodies and
narrow pathways, such as the one presented in this manuscript,
require optimizations to the collision composition of each
collidable object. This is because collision detection and contact
resolution is commonly the most computationally expensive
step. In general, convex shapes are always preferred over
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concave shapes as commonly used collision algorithms such
as Gilbert-Jhonson-Kreethi (GJK) [20] offer almost linear time
computation. Collision primitives that include spheres, capsules,
cylinders, cones, and boxes are even more efficient than general
convex hulls. Most of the collidable shapes in the surgical scene
cannot be approximated with a single convex hull or primitive
and instead only by a group (compound) of shapes.

Due to a large number of possibilities, optimizing collisions
is a time-consuming task. The Blender-AMBF addon, the ADF
specification, and AMBF have all been updated alongside the
surgical scene to support such possibilities. Fig. 4 and Fig. 5
show the collision compositions of several critical shapes in
the scene. Figure 5 also shows the simplicity of defining the
convex-hulls and primitive based compound collision shapes
using the Blender-AMBF addon.

Entry/Exit 
Corridors For 

Needle Insertion

Mesh Based Convex Hulls

Entry Holes 
(Right)Exit Holes (Left)

Fig. 4. The visual mesh for the phantom (left) with demarcated points for
needle insertion shown in red. Optimized collision mesh for the phantom mesh
shown on the right. Each color corresponds to a different convex hull, all
assembled into a single mesh with different materials.

C. Simulation of Surgical Suture

Simulation of ropes and rods has been investigated in
several works including [21], [22] and [23]. For rope
simulation, the rope length is approximated by a system of
particles interconnected via distance constraints (Jakobsen
constraints [24]). After the formulation of the equations of
motions and the constraint equations, the system state is updated
using integration (e.g., Verlet integration [25]) to compute the
particle’s position. Each particle is defined as a point mass
with no associated orientation. For the simulation of elastic
rods [26] bending, twisting and elongation is modeled by
additional constraint equations and occasionally with implicit
integration techniques.

Position Based Dynamics (PBD) [27] is a class of solvers
that offers stable and visually plausible soft body simulations,
including the simulation of ropes and rods [22]. In our
simulation framework, we use the Bullet Physics [28] library
and its default velocity based solver (Sequential Impulse
(SI) [29] solver) for simulating robots with revolute and
prismatic joints.

The SI solver computes corrective impulses which indirectly
alter the position of the bodies at subsequent states. Unlike SI,
the PBD solver uses constraint projection to directly rectify the
position of the particles (bodies). As a result, PBD offers better
stability and convergence, albeit at the expense of solution

Transparent 
Ghost 

Objects

(a) (b)

Visual Shape

Convex Hull 
Group

Primitive Shape 
Group

Fig. 5. The collision composition of the needle (top left). Each colored
segment denotes a different convex hull. All the convex hulls together can
be combined into a single mesh with a different material for each hull and
set as the collision mesh using the Blender-AMBF addon (lower left). (Right)
A boundary mesh (yellow cylinders) to constrain the orthogonal motion of
the needle once it is inserted into the phantom’s holes. The collision of the
boundary mesh is composed of four capsule primitives (yellow) which can
be set via the Blender-AMBF addon (lower right). The red transparent box
denotes a ghost object to detect the overlap of simulated objects and perform
necessary computation.

accuracy [27]. On the other hand, SI is widely used in fast
physics simulations for video games and applications involving
force feedback and haptics. While the SI solver is not ideal for
the simulation of the surgical thread, it is already integrated
with AMBF. The general equation for computing the impulses
in SI is formulated as:

I⃗c = −JTM−1
e

(︂
J
(︂
V⃗i +M−1F⃗e∆t

)︂
+ b⃗

)︂
(1)

Where I⃗c ∈ R12 is the computed impulse for a pair of
constrained bodies, F⃗e is the external force acting on the two
bodies, J is the constraint Jacobian, V⃗i is the stacked vector of
the velocities of the two constrained bodies, M is the combined
mass matrix, Me = JM−1JT is the effective mass matrix,
and b⃗ is the bias velocity. The SI solver uses the symplectic
Euler integration to update the state of the system after solving
the constraints.

V⃗i+1 = V⃗i +M−1
(︂
Fe∆t+ I⃗c

)︂
(2)

X⃗i+1 = X⃗i + V⃗i+1∆t (3)

To simulate the surgical thread, we use a 6 Degree of
Freedom (DOF) spring constraint with three linear and three
angular DOF between two rigid bodies. We set the nominal
length (equilibrium point), the stiffness, and damping of the 3
linear DOF to 0 to emulate a universal joint.

Since our simulation environment involves both objects
with low masses and inertias (needle and thread elements),
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as well as objects with high masses (robot links), we end up
with constraints that handle large mass ratios. The SI solver’s
solution convergence and stability are negatively affected
by large mass ratios. Specifically for the surgical thread,
which is manipulated by PSMs with much larger masses, the
individual masses of the thread elements, their inertias, and
correspondingly the angular spring parameters (stiffness and
damping) require tuning by trial and error. In our testing, the
thread was divided into 40 elements, each with a mass of 0.03
kg and the spring parameters were set as: angular limits =
[−π

6 ,
π
6 ] rad, stiffness = 0.02 Nm/rad and damping 0.01

Ns/rad along the three axes.
Finally, as shown in Fig. 5, we use Ghost Objects to detect

if the needle or thread overlaps with the entry or exit hole in
the phantom. We apply viscous friction Fv = −KV⃗relative to
the needle (or the suture) to emulate as if it were in the tissue.
This stabilizes the needle and prevents it from moving on its
own if a suture is not attached. With a suture attached, the
needle tends to drift as a result of the forces imparted by the
suture. An additional constraint may be required to stabilize it
in such cases.

D. Controlling the Robot

1) Kinematics of Simulated Robots: The simulated robot
end-effectors are modeled after the da Vinci PSMs. The
dVRK models the inverse kinematics of the PSMs using the
damped-least squares method [30] which is computationally
more expensive as compared to analytical methods, however,
analytical solutions do not exist for many robot manipulators.

The PSMs are 6 Degree of Freedom (DOF) manipulators
(excluding the gripper) with a remote center of motion (RCM),
and thus an analytical solution exists. The computational cost
saving achieved by employing an analytical solution is valuable
for us since our teleoperation code is Python based.

We provide a brief geometrical description of our analytical
inverse kinematics solution in Fig. 6. The main challenge is
to identify a set of planes and orthogonal vectors that relate
the end-effector pose T 0

E to a point along the line passing
between the base frame F0 and the RCM point. The frames
for kinematic computation are assigned identical to the dVRK
software stack [2].

TE
yaw =

[︂
I3×3; P⃗L2

]︂
∈ R4×4 (4)

Where P⃗L2 = (0, 0, L2)T

T 0
yaw = T 0

E ∗ TE
yaw ; P⃗yaw = (R0

yaw)
−1 ∗ P⃗ 0

yaw (5)

P⃗ yaw
pitch = projyzP⃗yaw = −

⃓⃓⃓⃓⃓⃓
P⃗yaw ⊙ (0, 1, 1)

⃓⃓⃓⃓⃓⃓
∗ L1 (6)

The operator ⊙ represents element-wise multiplication.

T yaw
pitch =

[︂
I3×3; P⃗

yaw
pitch

]︂
;T 0

pitch = T 0
E ∗ TE

yaw ∗ T yaw
pitch (7)

Now the inverse kinematic solution qi where i ∈ [1, 2...6]
is calculated as:

(b) (c)

(d) (e) (f)

(a)

Pitch axis

Yaw axis

Fig. 6. Geometrical breakdown of PSM’s IK. (a) The two parameters (L1

and L2) that differ between different tool types. (b) (c) Traversing back from
end-effector pose to compute frame Fyaw . (d) Computing P⃗yaw as error
between Fyaw and PSM origin F0. (e) Projecting P⃗yaw onto Fyz to get
projyzP⃗yaw . (f) Computing P⃗ 0

pitch

q1 = atan2
(︁
Px0

pitch,−Pz0pitch
)︁

(8)

Px , Py and Pz denote the x, y and z components of a
vector P⃗ , P⃗ 0

pitch in the above equation.

q2 = −atan2
(︂
Py0pitch,

⃓⃓⃓⃓⃓⃓
P⃗ 0
pitch ⊙ [1, 0, 1]

⃓⃓⃓⃓⃓⃓)︂
(9)

q3 =
⃓⃓⃓⃓⃓⃓
P⃗ 0
pitch

⃓⃓⃓⃓⃓⃓
+ Ltool2rcm (10)

The length Ltool2rcm is the offset between the tool shaft’s
end (intersection of joint 4 and 5) and the remote center point
at the home position (i.e., the prismatic insertion joint q3 fully
retracted). The calculation of the last three joint angles is
tricky and requires identifying the correct components of the
assigned rotation matrices to the last three links. Moreover,
to compute joint angles within the assigned joint limits, the
function GetAngle

(︂
a⃗, b⃗, c⃗

)︂
in Eq. 12, 13, and 14 returns the

angle between −π to π rather than the usual 0 to π. The
returned value is the angle between a⃗ and b⃗, along c⃗.

P⃗ ′ = R⃗x
0

E ×
(︂
P⃗ 0
yaw − P⃗ 0

pitch

)︂
(11)

q4 = GetAngle
(︂
P⃗ ′, R⃗y

0

3,−R⃗z
0

3

)︂
(12)

R⃗x, R⃗y and R⃗z denote the 1st, 2nd and 3rd columns of a
rotation matrix, respectively. R0

3 is computed from the forward
kinematics formulation and using the computed q1, q2 and q3.

q5 = GetAngle
(︂
P⃗ 0
yaw − P⃗ 0

pitch, R⃗z
0

4,−R⃗y
0

4

)︂
(13)

q6 = GetAngle
(︂
R⃗z

0

E , R⃗x
0

5,−R⃗y
0

5

)︂
(14)

This analytical solution can be used to compute the inverse
kinematics of any PSM tool with the correct values of
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Ltool2rcm, L1, and L2. A joint limit check is performed in
practice after obtaining the inverse kinematics solution.

2) Teleoperation: Controlling the simulated tools using
physical input devices is useful for both training surgeons
and generating expert data for machine learning applications.
Towards this end, we have paid special attention in developing a
realistic teleoperation experience that is similar to the da Vinci
system. The simulation package consists of scripts that allow
the pairing of a variety of input devices including dVRK MTMs,
Geomagic Touch (3D Systems, Rock Hill, South Carolina,
USA) devices, and Razer Hydras (Razer, Irvine, California,
USA) to the simulated robot end-effectors. The teleoperation
scripts also allow a single input device to dynamically switch
between multiple PSMs, or connect different input devices to
different PSMs. The dynamic switching is useful not only for
debugging purposes but also for the single-handed performance
of otherwise bi-manual or multi-manual tasks.

3) Grasping and Manipulation: Friction-based grasping in
real-time dynamic simulations using the SI solver is a challeng-
ing problem due to its iterative nature and the approximation of
the friction model. Since grasping involves the pressing of an
object between two or more fingers, in our experience, finding
the optimal value of the friction coefficients to prevent slippage
is not trivial. Modeling friction-based grasping is useful for
tasks that involve within hand manipulation, in which the object
is not firmly grasped. Approaches such as [31] [32] provide
implementation techniques for this kind of grasping. In our
specific application, the needle and the thread are often firmly
grasped with little to no slippage. This allows us to “cheat” and
implement a rigid grasping technique. In this technique, we
place a ray-tracing sensor and a constraint actuator (general-
purpose features available in ADF and AMBF) between the two
fingers of the tool as shown in Fig. 7. Using the combination of
the sensor and the actuator, and using the name of the sensed
object to trigger the actuator, the grasping technique works
reasonably well for our specific application.

Sensor 
End

Sensor 
Start

Constraint 
Actuator ON

Fig. 7. Constraint based grasping using a combination of a ray-tracing sensor
and constraint actuator parented to an object. The sensor detects an object and
the actuator can be triggered to affix it to the parent object.

E. Rendering Scene Data

It is desirable to have a high degree of visual realism in the
rendering quality of the surgical scene. The basic and simplest
component for achieving better rendering output is to use
textures and normal maps, though specular maps to control per
pixel shininess can impart more realism. AMBF uses OpenGL’s
fixed rendering pipeline for outputting the scene to the display

unit. The fixed rendering pipeline implements Gourard shading
[33], which is a fairly simple model. Other models such as
the Blinn-Phong [34], or more advanced models such as the
Physically Based Rendering (PBR) [35], in combination with
Image Based Lighting (IBL) [36], require access to custom
vertex and fragment shaders. In this regard, AMBF has been
updated to allow the specification of world specific, model
specific, or object specific shaders using the ADF files. This
opens the possibility for improving the scene rendering quality
by dynamically loading different shading models.

Screen Output Depth Data

Depth Data
+

Scene Color

Depth Data
+

Seg. Mask

Fig. 8. Generating labeled depth maps by combining data from different
rendering passes

For machine learning applications, access to scene data in the
form of a video stream or images is required. This is possible
by enabling a “publish image” flag for the camera in its ADF
file. For depth perception, it is possible to launch two cameras
with a parametric offset to emulate a stereo endoscope like
that used on the clinical da Vinci robot, and then use the two
scene images for stereo vision. However, a benefit of using a
simulator is that ground truth depth data can be generated.

We have incorporated the support for generating and stream-
ing the depth data for any camera in AMBF. Similar to enabling
the streaming of scene data, setting a flag “publish depth”
enables the generation of the depth data and its publishing.
The depth data is defined with respect to the camera frame.
Additionally, it is possible to generate segmented depth data
by using a custom rendering pipeline of AMBF cameras, as
shown in Fig. 8.
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Fig. 9. (a) Comparison of simulation time vs real world time. (b) Frequency
of the simulation during a suture task.
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Fig. 10. Example Suture Task.

IV. RESULTS

A real-time simulation is required for user training such
that the progression of the simulation time matches that of the
real world. Most of the optimizations, discussed in Sec. III,
were targeted towards achieving this goal. Fig. 9 shows the
comparison between the simulation time and the real world
time, and the simulation frequency for a suturing task. The
test was performed on a system comprising of an AMD Ryzen
3600 CPU, 32 GB of RAM, and an Nvidia 1080 GPU running
Ubuntu 20.04. Fig. 10 shows different snapshots of the surgical
suture task performed via the input devices shown in Fig. 1 (see
accompanying video). A more general evaluation of AMBF is
presented in [37].

We obtained qualitative feedback from an OBGYN surgeon
and a fellow who interacted with the simulation using the
dVRK MTMs. Their critical feedback is summarized as: 1)
the suture behavior, the overall teleoperation experience, and
the scene, in general, look convincing, 2) the needle insertion
dynamics and feedback into the tissue should be improved, 3)
two-handed needle grasp felt more rigid compared to a real
needle interaction via the da Vinci Xi instruments, and 4) the
simulated PSMs move at a different speed compared to the da
Vinci Xi PSMs.

V. DISCUSSION AND FUTURE WORK

In this work, we present a real-time simulation that models a
robot-assisted suturing task. The simulation mimics the controls
of both the camera motion and the PSMs of a real da Vinci
Surgical System to ease the transfer of algorithms to physical
setups. The environment is designed to be modular and easily
modifiable to model different scenes with different sets of input
devices and robot arms. The scene files and the source code are
available at https://github.com/collaborative-robotics/surgical
robotics challenge.

Despite its many features, it has several obvious limitations
including the rigidity of the phantom, fixed needle penetration
holes, and the firm needle grasp. We plan on addressing

these limitations and making improvements to several different
components as discussed below.

The foremost improvement is to replace the rigid body
phantom with a softbody. In this regard, AMBF already
provides the basics of softbody simulation [38]. However,
tuning the elasticity of the softbody so that it behaves in
a visually plausible way requires tuning of the underlying
softbody parameters mostly by trial and error. Furthermore,
softbody simulations are significantly more computationally
expensive and thus require a considerable amount of opti-
mizations. These optimizations include the simplification of
the collision geometry as well as the visual geometry of the
phantom mesh. We are considering integrating our previous
works in using deep learning to learn more accurate softbody
behavior [39] and to speed up simulation [40].

Currently, the needle is only able to penetrate the phantom
at highlighted areas, which was a reasonable result for the
intended challenge, but will be improved upon to increase
the flexibility of the system. With the addition of a softbody
phantom, we aim to allow the needle to penetrate anywhere
on the tissue. Softbody simulations usually model the surface
of a mesh and thus realistic needle penetration and dynamics
have to be modeled explicitly. The ghost objects and velocity
constraints as discussed in Sec. III-B may be utilized for this
purpose. In terms of the dynamics of the needle insertion, we
plan on dynamically creating 6 DOF spring constraints, with a
low value of stiffness and damping along the needle curvature,
and high values for all other axes. Similarly, for the needle
grasping methodology as discussed in Sec. III-D3, future work
may involve allowing for needle slippage.

Another possible improvement is the visualization of the
suture thread. In our current implementation, the rigid body
finite elements that make up the thread are directly visualized,
which results in an unrealistic-looking thread with hard edges.
This becomes more apparent as the camera moves closer to the
thread. A better approach is to use a combination of curve fitting
and extruded rendering (tubing). For curve fitting, one may
use Bezier curves or Chaikin’s corner-cutting algorithm [41]
and the center of finite elements of the thread as control points.
Once a reasonably smooth curve is obtained, a 2-dimensional
shape can be extruded along the curve to generate a visually
smooth suture thread.

Our current work was only qualitatively evaluated by an
OBGYN surgeon and a fellow. For the future, we plan on
recruiting several surgeons and residents to more formally
evaluate the simulation, both quantitatively and qualitatively.

Finally, to motivate the use of our environment, we propose
a challenge based on automating the suturing task. The task
involves several sub-challenges including needle/tool detection
and tracking, pick and place, needle-driving through the
tissue (which results in interaction dynamics and occlusion),
coordination between robot end-effectors (for needle handover),
and path planning (for manipulating the thread and knot-
tying). As such, it requires algorithms that span vision, phase
recognition, and automation.
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