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ABSTRACT

Vision-based structural health monitoring (SHM) has become an important approach

to recognize and evaluate structural damage after natural disasters. Deep convolutional

neural networks (CNNs) have recently attained a breakthrough in computer vision field,

in particular for image classification task. In this article, we adopted deep residual neural

network (ResNet) whose residual representations and shortcut connections mechanism

has gained significant performance in various computer vision tasks. In addition, we

applied transfer learning due to a relatively small number of training images. To test

our approach, we used the dataset from the 2018 PEER Hub ImageNet Challenge dis-

tributed by Pacific Earthquake Engineering Research Center. This challenge proposed

eight structural damage detection tasks: scene classification, damage check, spalling

condition, material type, collapse check, component type, damage level and damage

type which can be categorized as binary and multi-class (3 or 4 classes) classification

problems. Our experiments with eight different tasks showed that reliable classification

can be obtained for some tasks. Corresponding above eight tasks, classification accuracy

varied from 63.1% to 99.4%. Our approach has attained third place for overall tasks in

this challenge. Through the individual observation of training dataset, it is found that

there are a large number of confusing images. Therefore, it is believed that the accuracy

will be improved after making a precise training data.

INTRODUCTION

In these years, researchers prefer to apply knowledge and technologies of Artificial

Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) into Civil Enigi-

neering (CE) and Structural Engineering (SE), especially into Structural Damage De-

tection (SDD) and Structural Health Monitoring (SHM) [1]. Some researchers also

combined knowledge of Computer Vision and Structural Engineering, in particular on

damage evaluation and health monitoring of building structures, and developed novel

approaches for SDD and SHM [2] [3]. These approaches aim to automatically identify

and classify them for experts and administrators from images and videos. The cost and

time of classifying structural damage in post-event buildings will drop dramatically with

their application.

Gong et al. employed the random forest (RF), support vector machine (SVM) and

K nearest neighbor (kNN) to classify the damage of individual building with high-

resolution SAR images and building footprint maps after Wenchuan Earthquake (mag-

nitude 8.8) in China in 2008 [4]. Meanwhile, for satellite images obtained before and

after the Hurricane ’Charley’ struck Punta Gorda in 2004, Radhika et al. used artificial

neural network (ANN) and SVM to detect the edges of the destroyed roofs of coast-

line buildings and classify damage [5]. In [6], Ho et al. applied image-based damage

detection and machine learning on cable-stayed bridges to identify the defect of cable
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surface by three cameras moving along the cables. As convolutional neural networks

(CNNs) and deep learning (DL) outperform alternative techniques in Computer Vision

(CV), researchers implemented them into SDD and SHM problems [2] [3].

BACKGROUND

Since 2012, great progress has been made on convolutional neural networks (CNN)

in automatically classifying objects in images through the competition, which is called

the Large Scale Visual Recognition Challenge (ILSVRC) in ImageNet. In these series

of the challenge, 1000 classes of objects can be classified from 14 million images. The

algorithms with deep CNNs, such as AlexNet, ZF Net, GoogleNet, VGGNet and ResNet,

have been widely used and achieved the same accuracy as humans [7] [8]. Researchers

implemented this state-of-the-art architecture into SDD and SHM, and aimed to gain the

level of damage recognition as high as ILSVRC.

Yeum et al. applied AlexNet for automatically detecting damage in post-event struc-

tures with a large volume of images to identify two types of damage, such as buildings

collapse and spalling of building components [3]. Gao et al. were inspired by the Ima-

geNet and have built the Structural ImageNet for collecting pictures with building struc-

tural failures, and training CNN for structural damage detection. In order to overcome

the limitation on a small number of sampling data in Structural ImageNet, the authors

employed deep transfer learning (TL) to classify structural damage. Their tests show

that although the proposed method gained a low accuracy in some tasks, such as damage

type, they could do as well as human beings in other tasks [2]. In [9], the authors catego-

rized structural damage by ResNet23 and identified 7 classes of the damage by 19-VGG

networks with 1695 images cut from 339 original ones for about 250 buildings. Ali et al.

also adopted Faster R-CNN (Faster Region Convolutional Neural Networks) in the task

to detect damage and defects in historical masonry buildings based on high resolution

images [10].

Cha et al. used Faster R-CNN to identify five classes of structural damage: con-

crete crack, steel corrosion with two levels (medium and high), bolt corrosion, and steel

delamination [11]. And the authors in [12] propose another CNN for autonomous detec-

tion of pavement cracks. In addition, Kong and Li describe an application that detects

cracks in a steel girder with a video stream [13]. Furthermore, the authors in [14] ex-

plain the different effects when they use two algorithms of CNNs (VGG16 and ZF Net)

in detecting metallic corrosion from visual inspection, and Gibbons et al. implemented

a regional CNN to locate the damaged bolt heads with a bounding box regression [15].

Chen et al. applied VGG16 into automatically detecting damaged fasteners on catenary

support devices in various climates and regions [16].

METHODOLOGY

In this paper, two key components in deep learning are used for network modeling

and training. One is the residual neural network which has proved very beneficial in

image recognition tasks, and another is transfer learning technique which is a popular

approach when a model trained on limited dataset. There are similarities between our



approach and the approach given in [2]. In this paper we employed a more advanced

network and conducted experiments on comprehensive detection tasks. The details of

these two methods are described as follows.

Residual Neural Network (ResNet)

Before the advent of residual neural network, there were several popular networks

used to achieve image recognition tasks, such as AlexNet [17], VGG [18] and GoogleNet

[19]. AlexNet and VGG are simply stacking convolutional and pooling layers so as to

fulfill the complicated feature representation. Although they could integrate hierarchical

features and led to a series of breakthroughs, a natural question arise: is it better as

the number of layers increase? It is found that in practice when deeper networks starts

converging, a degradation problem has been exposed: with the network depth increasing,

accuracy gets saturated and then degrades rapidly. The residual neural network [8] is thus

designed to solve the problem of such deep layers.

The core contribution of ResNet lies in its residual learning compared to the tradi-

tional plain stack of layers which can directly cause notorious problem of gradients van-

ishing and exploding. Furthermore, the ResNet is built upon each layer which learns an

incremental function F (x) according to the equation: y = F (x)+x. Instead of learning

a direct mapping of x → y as done in many other CNNs, this residual learning redefine

the mapping function which can be realized by skip connections. This structure connects

components of different layers with an identity mapping. The authors’ hypothesis is that

it is easier to optimize the residual mapping than to optimize the original, unreferenced

mapping [8]. It showed in many recognition tasks this structure can achieve higher accu-

racy than previous network structures. There are also a few papers providing explanation

of the exact reason behind favourable results [20] [21]. We present two ways to explain

the differences. First, from a mathematical viewpoint, if the identity mapping is optimal,

we can easily set the residuals as zero than fit an identity mapping by stack of non-linear

layers. It is pretty easy to come up with a solution like F (x) = 0 rather than F (x) = x.

Another explanation from intuition perspective such that the whole hierarchical feature

combinations can be further optimized. Fewer feature compositions in different layers

may better represent object.

We adopted the ResNet152 architecture as training network. The number 152 here

denotes the total number of convolutional layers and fully connected layers. There are

three different sizes of convolution, also called kernel or filter: 1× 1, 3× 3 and 7× 7. In

practice, selection of convolution size is still a tricky task, therefore, several empirically

indicated sizes of convolution are usually utilized. To this end, we utilized the original

convolution combination of ResNet.

Transfer Learning

Big training dataset plays a vital role in deep learning technology. However, it is

not trivial to obtain a large amount of training data. To remediate this problem, transfer

learning is employed where a model developed for a task is reused as the starting point

for a model on a second task. Therefore, with transfer learning, we basically need to

exploit what has been learned in one task to improve generalization in another. Simply,



we fine tune the weights that a network has learned using a large amount of data at task

A to a new Task B.

Transfer Learning has a long history of research and techniques to tackle different

scenarios which basically can be categorized into two cases: 1) insufficient labeled train-

ing data to train our network from scratch, 2) an existing pre-trained neural network on

a similar task. Considering the second case, it is reasonable to harness the technique of

transfer learning to accomplish structural detection and recognition tasks.

As in Figure 1, the pre-train model is trained on ImageNet dataset which contains

more than 10,000 categories [22]. In the convolutional layers block, neural networks

prone to extract low-level features such as edges and curves in earlier layers and high-

level task-specific features in the deeper layers. It is acknowledged that some levels of

features can be reused in other similar tasks including the taks of structural health mon-

itoring. For transfer learning process, we fixed convolutional layers as feature extractor,

remove the last fully connected layer replacing with new layer and trained the network

using the new dataset.
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Figure 1. The general transfer learning framework (source data and target data are from

ImageNet dataset and PEER Hub Challenge dataset, respectively).

EXPERIMENTS

Since the motivation of this paper is from PEER Hub ImageNet Challenge, the part

of dataset can be seen in the challenge website and results has been submitted to Kaggle

platform [23]. In addition, we used related images in [24] and tested them on eight

trained models respectively.

Dataset and Training Settings



The dataset in PEER Hub ImageNet Challenge are used to measure the performance

of designed model. PEER Hub ImageNet Challenge is a competition on multi-purpose

classification, by which we can identify structural damage types, materials, and compo-

nent types. There are eight detection and classification tasks for vision-based structural

damage detection: 1) Scene level: pixel levels will help to detect cracks, and object and

structural levels focus on identify spalling of components and collapse of buildings; 2)

Damage or undamage state; 3) Spalling or Non-spalling; 4) Material type: steel and

others; 5) Collapse mode: this task will distinguish global collapse, partial collapse and

non-collapse of structures; 6) Component type: there are four types, including beams,

columns, walls and others; 7) Damage level: no damage, minor damage, moderate dam-

age and heavy damage; 8) Damage type: 4 types of structural member failure, such as

no damage, flexural damage, shear damage and combined damage. All the images are

RGB channel at 224×224 resolution. For each task, we first divide data into testing data

consisting 20 percent of whole data and training data for the rest of them, then the train-

ing data is further partitioned into ”real training data” which corresponds to 80 percent

of training data and validation data. The reason of partition in such way is to validate

model performance in every epoch using validation data and choose the best one at last.

The basic image statistics can be seen in the table I.

Once dataset and network architecture are prepared, the remaining task is to train the

designed neural network using the dataset. Most deep learning methods adopt stochastic

gradient descent (SGD) for training [25]. In this paper, this method is also being used

with learning rate 0.001 and momentum 0.9. The loss function is cross-entropy for

classification problem. To maximize GPU usage, we use 40 min-batches. The total

number of epochs is set as 100. The whole program is run under Windows system and

tested on NVIDIA GeForce GTX 1080.

Evaluation of Results

We evaluate our result of task classification based on the confusion matrix, where

the diagonal elements denote true positive and N denotes the total number of tested im-

ages. For this end, the metric called accuracy represents the percentage of the correctly

classified images and is defined as:

Accuracy =

∑
(TruePositive)

N

From the original challenge, the tasks are divided into three levels of difficulty. Dam-

age check, material type and spalling condition belong to easy tasks. It shows from the

Table I the test accuracy of material type is highest and hence indicates that the network

has learned feature representation, which can distinguish this type of structural damage.

However, the task of spalling condition and damage check obtained 79.6% and 81.9%
test accuracy which are greatly lower than the other task. After checking the data of

this two tasks, we found that the data is noisy which can be the key reason causing poor

performance. Therefore, it is believed that the performance can be improved after clean-

ing training data from noise. The scene classification, collapse check and component

type are at the medium level. The task of scene classification obtains more than 90.0%
test accuracy. This task also contains the most number of training images among all



the data. The remaining two tasks plus the most difficult level tasks, damage level and

damage type obtain similar test accuracy. The common characteristic for these tasks is

that the classes between each task is similar and ambiguous which poses a significant

challenge to the neural network. Overall, the test accuracy for eight structural damage

tasks can basically be considered satisfactory for engineers to obtain a basic knowledge

of the damage.

TABLE I. CLASSIFICATION RESULTS ON TESTING DATA

Detection Tasks
Number of Image Statistics Test Accuracy

Classes Train Validation Test (ResNet152)

Scene Classification 3 13939 3485 4356 93.8%
Damage Check 2 4730 1183 1479 81.9%
Spalling Condition 2 2635 659 824 79.6%
Material Type 2 3470 867 1085 99.5%
Collapse Check 3 2105 527 658 63.1%
Component Type 4 2104 526 658 71.7%
Damage Level 4 2105 527 658 67.8%
Damage Type 4 2105 527 658 67.5%

SUPPLEMENTARY TEST AND DISCUSSION

Besides the first experiment where we only used the provided data, we conducted

our test experiment on structural damage images collected from other sources and want

to further test our models, despite the fact that the number of images is very small. We

manually label them and compared the results after they are classified with our models.

As indicated in Table II, all the test accuracy are above 60%. Even though the accuracy

is lower than the case in the first experiment, we think it can still be acceptable for these

collected images. We also observed the scale of structures and components in images

can affect the accuracy, and perhaps more data for training will improve the performance

of these models.

TABLE II. CLASSIFICATION RESULTS ON REAL-WORLD DATA

Detection Tasks
Number of Number of Test Accuracy

Classes Images (ResNet152)

Scene Classification 3 65 76.9%
Damage Check 2 65 80.0%
Spalling Condition 2 65 69.2%
Material Type 2 65 66.2%
Collapse Check 3 65 64.6%
Component Type 4 65 84.6%
Damage Level 4 65 63.1%
Damage Type 4 65 60.0%

CONCLUSIONS



In this paper, we presented residual neural network (ResNet) with transfer learning to

detect and classify structural damage and gained better performance than VGG network.

Compared to simply deep neural networks, ResNet can solve the gradient propogation

in “deep” layers due to its residual learning mechanism and easily extend from natural

images to man-made objects area. We conducted two groups of experiments to test the

model performance, including the data separated from the original challenge and our

own collection data. The results have demonstrated that the test accuracy is satisfactory

for most of tasks. Although the current ResNet can obtain acceptable results, there is

still large room to improve. The original dataset provided for the challenge is noisy.

Therefore, we believe that when the more advanced neural network is designed in deep

learning field and the larger data are provided as training, it is possible for researchers in

structural engineering to combine their domain knowledge to obtain results with higher

accuracy.
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