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The fast-growing construction industry has a vast potential to rise to the plastics challenge by using them in both
primary and recycled forms as a sustainable solution to some challenges in the built environment. Improving
existing plastics and developing innovative polymers and polymer nanocomposites requires knowledge of
interatomic interactions and their influence on macroscopic properties. Coarse-grained (CG) models offer a more
computationally efficient alternative to their all-atom counterparts for simulating larger, more representative
models of these materials. However, the parameterization and calibration process of CG force fields (CG-FFs)
commonly entails solving a nonconvex optimization problem involving numerous local minima, rendering
traditional optimization techniques impractical and iterations based on educated guesses inefficient. Here, we
develop an approach to efficiently parameterize a CG-FF by coupling a metaheuristic algorithm as the calibrator
(optimizer) with support vector regression-based surrogate models trained using molecular dynamics data. The
merit of the approach is demonstrated by parameterizing a CG-FF potential for polyvinyl chloride (PVC) as a
representative general-purpose plastic with many applications in the construction industry. The generalizability
of the CG-FF to large PVC models in both pristine and carbon nanotube-filled composite forms is demonstrated.
The CG-FF also accurately reproduces glass transition temperature and thermal conductivity as unseen properties

of PVC.

1. Introduction

The expanding construction industry has a vast potential to rise to
the plastics challenge and contribute to stimulating a more resource-
efficient, circular economy. For one thing, discarded plastics can be
repurposed for construction applications, saving space in landfills and
reducing construction costs, among other benefits (Kazemi et al., 2021;
Fini et al., 2021; Zakertabrizi et al., 2021; Kazemi and Fini, 2022). And
for another, characteristics such as strength, lightness, durability,
impermeability, affordability, and moldability make plastics a compet-
itive engineering solution to some challenges in the built environment.
Geosynthetics, for instance, are one of the salient examples of plastic-
s/polymers in the built environment that offer multiple functions such as
reinforcing roads, stabilizing steep soil embankments and bridge abut-
ments, controlling coastal erosion, and lining landfills, canals, water
storage facilities, and wastewater treatment lagoons, all at considerably
reduced levels of COy emission, soil acidification, and eutrophication
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compared with conventional construction materials and techniques
(Puppala et al., 2020; Shukla, 2021).

Improving the properties and durability of existing polymers and
polymer nanocomposites (PNCs) and developing novel polymeric
products, especially for construction purposes, can further reduce the
environmental impact and embodied carbon of these materials and
promote sustainability. However, the traditional development cycle of
polymers and PNCs typically involves educated guesses or Edisonian
techniques that often yield incremental advances but with limited effi-
ciency. Computational approaches to materials design such as numerical
simulations and predictive modeling offer the potential to ‘short-circuit’
this development cycle by making it possible to investigate scenarios
that would otherwise be difficult/impossible to investigate in the labo-
ratory. These approaches also offer insight into the phenomena and
mechanisms governing the behavior of materials, reducing the time and
resources necessary to engineer innovative, lightweight, high-
performance, multifunctional polymers and PNCs. These approaches,
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however, are demanding, emphasizing the need to develop more
computationally benign models and techniques.

In computational and statistical mechanics, coarse-graining involves
constructing and parameterizing (calibrating) a sufficiently accurate
representation of an atomistic/molecular system. The reduced degrees
of freedom and number of highly fluctuating particles (e.g. light atoms
such as hydrogen) in coarse-grained (CG) models results in a smoother
energy landscape that, depending on energy oscillations, often allows
for analyzing structures and processes that transcend length and time-
scales accessible to all-atom molecular dynamics (AA-MD). Several
coarse-graining methods exist that offer different degrees of structural
and statistical equivalence to the reference system, depending on the
system characteristics and the basis used for parameterization. These
methods can broadly be categorized into two main themes: top-down
and bottom-up. The top-down theme involves parameterizing force
fields using experimental macroscopic data, whereas in the bottom-up
theme data such as forces or structural probability distributions from
more detailed simulations are employed as the basis for the force field
parameterization (Sun et al., 2021). Examples of bottom-up methods
include the iterative Boltzmann inversion method (Miiller-Plathe, 2002;
Rudzinski and Noid, 2015), the Martini force field (Marrink et al., 2007),
and the energy-conservation approach (Espanol et al., 2016). These
methods differ in convergence rate (e.g. the iterative Boltzmann inver-
sion method is often slow (Jain et al., 2006)), the chemical specificity
they represent, and the type and level of details they provide (e.g. the
Martini force field does not provide structural details for a specific
system (Arash et al., 2015)), among other factors. The optimal choice of
coarse-graining method will depend on the material in hand, quantities
of interest (i.e. properties)), and which side of the model
simplicity-physical realism (i.e. computational efficiency-accuracy)
trade-off one would wish to stand.

AA data are a common basis in bottom-up CG force field (CG-FF)
parameterization where several neighboring particles (e.g. functional
groups or molecular subunits) are lumped into extended interaction
clusters known as beads or blobs, followed by defining the bonded (e.g.
via springs) and nonbonded interactions among the beads by force field
parameterization. Such reduced degrees of freedom associated with
coarse-graining introduce uncertainties into the simulation results.
These uncertainties are commonly addressed by performing calibration
and validation tests over select parameters to match CG and AA data (e.
g. force-matching (Liwo and Czaplewski, 2020)). The process is formu-
lated as a minimization (optimization) problem with the objective (cost)
function defined as the difference in the predictions made for quantities
of interest by the CG and AA models (Oden et al., 2015). For materials
like polymers that feature a wide range of compositions, phenomena,
and interactions occurring across several scales of time, length,
complexity, and uncertainty, such optimization problems would be
highly nonlinear. Solving such problems would entail extensive sam-
pling to effectively explore and exploit the force field parameters space,
rendering traditional optimization methods impractical and iterations
based on educated guesses inefficient (Christensen et al., 2021).
Therefore, it appears to be reasonable to target a limited number of
quantities of interest (e.g. elastic modulus) and optimize the CG-FF pa-
rameters for them to reduce the complexity and computational costs of
the problem. Some shortcomings, however, will inevitably ensue. For
example, by targeting specific quantities of interest, one may need to
compromise on the accuracy of predictions made by the CG-MD model
for less important polymer features (e.g. melting temperature (Oden
et al.,, 2013)). Nevertheless, such an approach would reduce the
computational burden of the problem to the level that can be managed
using machine learning-assisted metaheuristic optimization.

A known characteristic of structure-based CG simulations of soft
matter is that the dynamics involved are artificially accelerated (Eslami
et al., 2019). In case the experimental/fully-atomistic dataset is rela-
tively small, this characteristic implies that CG dynamical features
mainly characterized by structural attributes such as angle and bond
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Fig. 1. Flowchart of the approach devised and used in this study to develop a
CG model. A description of the task that each symbol entails is provided in the
text with the heading “Step (insert the number attached to the symbol)”.

distributions of connected beads in polymer chains cannot readily be
compared with the dataset in absolute terms (Eslami and Miiller-Plathe,
2013). This study hypothesizes that such small datasets can be used to
develop scalable and generalizable CG models that will reproduce spe-
cific quantities of interest (here, mechanical properties and density) of
the polymer while capturing the chain dynamics and other properties
only to a reasonable extent. The hypothesis is tested by parameterizing
and calibrating a CG-FF given a limited dataset. The approach involves
coupling the particle swarm optimization (PSO) algorithm as the cali-
brator (optimizer) with support vector regression (SVR) surrogate
models as the predictors. The efficiency of the approach is demonstrated
by applying it to polyvinyl chloride (PVC) as a representative
general-purpose plastic for which, to the best of our knowledge, no
CG-FF has been reported. The scalability of the CG-FF to larger PVC
models and its generalizability to PVC nanocomposites are also
demonstrated.

2. Methodology
2.1. Quantifying and calibrating CG priors

Finding the CG priors and the calibration process consisted of four
steps, as described below and summarized in Fig. 1.

Step 1- Find CG priors using AA-MD: This step involved finding a set of
CG-FF parameters by which each energy component (as introduced later
in this section) of the CG model would be independently equivalent to
the energy of its AA model. To this end, PVC monomers (Ca;H2Cl) were
represented by beads in the CG model, and their interactions were
described using the consistent-valence force field (Hagler et al., 1979)
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Table 1
Energy formulations and CG input parameters.
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AA representation CG representation Energy component CG CVFF expression CG parameters
Bond energy Ep = Ki(r - 19)? K:, 1o
Angle energy Eo = Ko(6 - 6p)* Ko, 60
Torsion energy Ep = Ko(1 - cos®) Ko
Nonbonded energy Evaw = 4e[(6/1)'? - (6/7)°] £ 0

(CVFF) with the seven parameters shown in Table 1. CVFF was also used
for the AA simulations. The FF has five energy components, including
bond stretch, angle, torsion, van der Waals (vdW), and Coulombic and
has successfully been used in both AA and CG simulations to predict a
wide range of properties for polymer and polymer composites (Lange
et al., 2016). Here, the first four energy components were considered for
CG simulations, and Coulombic interactions were excluded, given the
electrical neutrality of the beads.

A harmonic expression was used to describe the bond stretch inter-
action (bond energy) between every pair of bonded beads (see Table 1
for the formulation). To quantify (i.e. finding the priors of) the bonding
parameters (i.e. rg and K;), an AA model made of one chain with 1,000
monomers was relaxed at the temperature of 300 K under the canonical
ensemble (NVT) for 2 ns, followed by 2 ns relaxation at no pressure

@® Carbon

© Hydrogen
® Chlorine
@ PVC Bead

under isothermal-isobaric (NPT) ensemble. Simulations were repeated
three times with different seed numbers to account for the randomness
in the initial velocity distribution of atoms. In the last 1 ns of the NPT
relaxation stage, eight monomers (two groups of four successive
monomers) were randomly selected, and the most frequent distance (r)
between their centers of mass (COMs) was taken for ry in the CG model.
Next, the bond energy of each pair of neighboring monomers was
divided by (r - ro)? of each pair of beads, and the most frequent resulting
value was assigned to K.

The angle energy was also expressed as a harmonic formulation.
Similarly, eight monomers in each simulation (two groups of four suc-
cessive monomers) were randomly picked to find the equilibrium angle,
6o, between every three consecutive monomers. Then, the angle energy
was divided by (6 - 6’0)2, and the most frequent value was given to Kp.

Fig. 2. a) The AA model containing seven chains, each having 1,000 PVC monomers, and b) its equivalent CG model.
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The torsion (dihedral) angle is defined as the angle between two
intersecting planes, each formed by three beads. The planes share the
two middle beads. Here, eight monomers (two groups of four successive
monomers) were randomly selected to calculate the torsion angle, which
was later divided by (1 - cos®) to find the torsion stiffness (Kg).

The nonbonded priors (¢ [‘dispersion energy’] and o [‘size of the
particle’]) were represented by the most frequent inter-monomer energy
and distance observed among nonbonded monomers.

Step 2- Evaluate accuracy of the priors: The accuracy of the priors
obtained in Step 1 was evaluated by comparing the density and tensile
stress-strain response of a CG model defined by them and those of the
reference AA model. For comparison, the CG model comprised seven
chains of 1,000 PVC beads each (Fig. 2). The chains were generated
using the self-avoiding random walk technique (Hossain et al., 2010).
Each chain started from a random site and then grew in length by
moving randomly from a current site to one of its nearest neighbors
according to a uniform probability density function until a certain
number of sites equal to the degree of polymerization (i.e. 1,000 beads)
were visited. Every two neighboring beads were linked with a chemical
bond, and the priors and potential functions described and quantified in
Step 1 were assigned to the model. The stress-strain responses were
established by uniaxially stretching the models. All simulations were
performed with LAMMPS (Plimpton, 1995) and visualized with OVITO
(Stukowski, 2009). A time step of 0.5 fs and a deformation velocity of
1074 (f\/fs) were used in all (both AA and CG) simulations. In all CG-MD
simulations, the cutoff was selected to be 12 A. Stress values were
recorded at 10 strain values from 0.5-5% with 0.5% increments in both
CG and AA simulations. The error was represented by the
root-mean-square values of the deviation of the stress value given by the
CG-MD simulation from that given by the AA-MD simulation at a
particular strain normalized with respect to the stress value given by the
AA-MD simulation, as:

RMSE = 1/n§:{("“’)(;_)("“)2 o

i=1

where (o¢g); and (6a4); represent the stresses computed at the i-th strain
value in the CG-MD and AA-MD simulations, respectively.

Step 3- Develop a surrogate model to predict RMSE: As shown later, an
independent evaluation of energy components (potential functions) in
Step 1 typically results in values for the priors that fail to collectively
reproduce the response of the AA model, leading to large errors (i.e.
RMSE values). Therefore, the priors should be calibrated to reduce the
error. Such calibration, however, would entail adjusting the values
iteratively and evaluating RMSE in each iteration until an acceptable
RMSE value is achieved. Since the number of iterations is problem-
specific and unknown, the computational expense of such an approach
could be prohibitive. As previously alluded, machine learning predictive
models (surrogate or metamodels models) can significantly alleviate this
computational cost and accelerate the calibration process. The following
sub-steps were taken to develop surrogate models with MATLAB
R2019b.

3-1- Create a training dataset: The priors and their corresponding
RMSE values were treated as the reference observation. A set of 42
additional observations was made as follows to construct a dataset: for
each observation, all the priors were held constant at their reference
value except one prior that was either increased or decreased by 10%,
30%, and 50%, yielding a total of 42 additional observations (7 priors x
3 +%). Note that the upper bound for the equilibrium angle parameters,
0o, was set at its maximum physically possible value of 180" (i.e. a
maximum of 40% increase).

3-2- Develop surrogate models to predict RMSE and density: Since the
dataset in this study was also relatively small, support vector regression
(SVR) was used to predict RMSE (more information to follow). For each
SVR model, hyperparameters were tuned to achieve the lowest
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prediction error (mean square error). Also, one-leave-out cross-valida-
tion (LOO-XV) was used to prevent overfitting. This means that with a
dataset of size N, the predictor was trained N separate times on all the
data except for one data point, a prediction was made for that point, and
the average error was finally computed and used to evaluate the model.
Another SVR model was developed following the same approach to
predict density.

3-3- Expand the dataset and improve the predictive models: Following
training and tuning hyperparameters, the SVR models were coupled
with an optimization algorithm, described in the next section, to stra-
tegically take samples from a wide range of values (+50% of the refer-
ence value, except the equilibrium angle which was bounded between
-50% and +40% of its prior) for the CG-FF parameters and iteratively
calibrate the priors. The best solution offered by the optimization al-
gorithm at the end of each iteration (i.e. the combination associated
with the minimum predicted RMSE value) was used to simulate a CG
model comprising seven 1,000-monomer chains (7,000 monomers in
total) to compute the solution’s true RMSE value. The combination and
its true RMSE value were then added to the training dataset to improve
the accuracy of the SVR models. This process continued until a combi-
nation (calibrated priors) with a desirable RMSE level was found.

Step 4- Validate generalizability of the calibrated priors: The general-
izability of the calibrated priors to larger models and composite systems
was validated by demonstrating their capability to reproduce the tensile
response of AA models composed of 20 and 40 1,000-monomer chains
(20,000 and 40,000 monomers in total) in both pristine form and
composite form reinforced with one (5,5) carbon nanotube (CNT) with
an aspect ratio of 157 (CNT concentration: 2.5 wt.%).

2.2. Optimization Problem and Approach

2.2.1. Optimization problem
The optimization problem can be expressed as:

Find : K;, ro, Ko, 00, K,y €, 0
Minimize : ~ RMSE (2)
subjectto :Opin < O < Opux

where Ois a vector representing the values of the seven parameters to be
quantified by the optimization algorithm, and®,,and ®y,include the
lower and upper limits of the values, respectively.

2.2.2. Particle swarm optimization

Metaheuristics are problem-independent and versatile techniques
that have proven efficient in solving various optimization problems.
Compared with now-traditional gradient-based optimization tech-
niques, the stochastic mechanism inherent in metaheuristics allows
them to effectively explore and exploit a vast search space enclosed by
highly nonlinear and discontinuous constraints without requiring
gradient information and explicit formulations for the objective function
and constraints (Khatibinia and Yazdani, 2018; Shayesteh Bilondi et al.,
2018). A class of metaheuristics, swarm-based metaheuristic techniques
iteratively converge to the optimum solution(s) by comparing the so-
lutions offered by the swarm in each iteration. Since the optimization
process could involve a large swarm of agents and numerous iterations,
it could be computationally intractable if the solutions were to be
MD-simulated for objective function evaluations. One approach that has
proven effective at considerably alleviating the computational cost
associated with evaluating the objective function is to use machine
learning predictive (surrogate) models. Such models approximate the
objective function and constraints with an accuracy that depends on the
nature of the problem and the data used to train the models, hence
considerably accelerating the optimization process (Yazdani et al.,
2017b; Gharehbaghi et al., 2019).

Particle swarm optimization (PSO) is an optimization technique
inspired by swarm intelligence, which is the collective behavior of a
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Fig. 3. a) a linear SVM regression with b) an e-insensitive loss function and slack variables. SVM hyperparameters are iteratively tuned to get the lowest prediction

errors (Vapnik, 2000).

swarm capable of accomplishing complex tasks in dynamic and varied
environments without any central coordination, external guidance, or
control (Kennedy and Eberhart, 1995). PSO imitates the choreography
and sociocognitive behavior of birds in a flock (swarm). The birds are
dubbed ‘agents’ or ‘particles.” Each agent represents a possible solution
in the search space. Agents quasi-randomly fly around and iteratively
move toward the optimum solution (food). They achieve this by keeping
an eye on others to follow the agent closest to the optimum solution
(gbes) while keeping track of their own best solutions found so far (ppesy)-
The i-th agent in the I-th iteration is associated with a position vector X}

and a velocity vector V! denoted as
Xﬁ = {x,i.lv xlf,zv EERE) xli,p }

1 _ [ ! !
V.= {Vi,n Viay«oo Vi‘])}

where p is the dimension of the solution space (here 7, see Table 1). As
an agent navigates the solution space, its position is updated as:

3

V,{“ =o' Vf + o (pbestﬁ —Xﬁ) + (gbest’ —Xf) @

XHI :Xl + VHI (5)
where r; and ry are two uniform random numbers between (0, 1); ¢; and
c are the cognitive- and social-scaling parameters, respectively; and o'
is the inertia weight that controls the influence of the previous velocity
and is defined in the I-th iteration as (Shi and Eberhart, 1998):

@Dmax — Omin

l (6)

@ = Wpax — 1
max

where wpandog,are the maximum and minimum values of o,
respectively; and Ilnq is the maximum number of iterations. The

Fig. 4. End-to-end distance in a schematic chain of polymer.

following values were used in this study for the parameters described
above: ¢; = 2.5, c3 = 2.5, 0= 0.9, and @y, = 0.01. The population size
(N) and the maximum number of iterations (I,,q,) were set to 50 and 200,
respectively. These values were selected by trial and error and per our
experience and general recommendations in the literature (Shayesteh
Bilondi et al., 2018). These values are also consistent with those used in
a recent study on developing an interatomic potential for glassy silica
using PSO (Christensen et al., 2021).

2.3. Support vector regression

Support vector regression (SVR; the regression equivalent of support
vector machines/classifiers) was used to develop the surrogate models.
SVR has the advantages of generalizability and ease of use. SVR aims to
construct a hyperplane that is close to as many of the data points as
possible. Therefore, it can achieve good generalizability by minimizing
the prediction error as tuning its hyperparameters is obtained by cross-
validation (Chen et al., 2018). The structural risk minimization (SRM)
principle in SVR makes it less prone to overfitting than convolutional
neural networks that use the empirical risk minimization (ERM) prin-
ciple. In contrast to ERM, which shrinks the prediction error on the
training data, SRM reduces an upper bound on the expected prediction
risk to make SVR generalizable. To both reduce the prediction error and
enhance the generalizability of an SVR model, SVR can be trained based
on the ¢-insensitive loss function (Mozer et al., 1997). The e-insensitive
loss function uses margins in regression such that if the error is smaller
than ¢, the prediction error will be assumed to be zero. Therefore, for a
linear regression function f(x):

fx)

(w.x) + 0 )

where w is the weight error, x is the input vector, and b is the bias of the
regression function. The SRM principle can be formulated by minimizing
the empirical risk Remp (W, b) defined as:

| / DS Lo £

where L is the loss function, and y represents the true output. Then, the
e-insensitive loss function finds the following form:

0, if yi—f(x)|<e }

lyvi —f(x)] — €, otherwise
Finding w and b to reduce the ERM with respect to the e-insensitive
loss function is a convex optimization problem that minimizes the
margin and two non-negative slack variables, £ and £, as:

Remp (w, b) (8)

Le i 1) = { ©
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Minimize : 5” w|| +CZ(§,~+§.)
i=1

yi—wxi—b<e+§
wxi+b—y <e+¢ (10)
éiﬂgi* 20

Subject to :

where C > 0 is known as ‘penalty’ or ‘regularization’ or ‘box constraint’
and governs the trade-off between the model complexity and the influ-
ence of deviations larger than ¢ on the regressor (Smola and Scholkopf,
2004). A representation of the linear SVM regression is shown in Fig. 3.
For nonlinear SVM regressions, the line shown in Fig. 3a is replaced by a
hyperplane, and x in Eq. (7) is replaced by a function called ‘kernel
function’ denoted by ¢(x). Polynomial and gaussian (also known as the
radial basis) kernels are popular kernel functions widely used in the
materials engineering literature (Lu et al., 2013; Mannodi-Kanakkithodi
et al., 2016). As shown in Fig. 3, hyperparameters of an SVM regressor,
penalty, the kernel function, and ¢ should be optimized iteratively such
that the regressor finds the minimum prediction error. In this study, the
quadratic kernel function and a C value of 567.7 were used, and the
hyperparameters of the SVM regressor were tuned such that the mean
square error (MSE) of RMSE predictions would be minimized.

2.4. Evaluation of accuracy of CG parameters

The CG-FF was examined for its accuracy in reproducing glass
transition temperature, thermal conductivity, and end-to-end distance
of polymer chains as unseen properties beyond the properties that the
CG-FF was optimized against (i.e. mechanical and density).

2.4.1. Mechanical properties

The uniaxial strain-stress behavior of PVC and CNT-filled PVC
composites up to 5% of strain was used to represent mechanical
properties.

2.4.2. Glass transition temperature

The glass transition temperature (Tg) of a polymer is the temperature
associated with a distinct transition of (amorphous regions in) the
polymer from a hard, glassy state to a soft, rubbery state where polymer
chains obtain full segmental mobility. T, corresponds to the point of
maximum curvature in the temperature-volumetric strain curve. To
calculate the Tg of PVG, its structure was first relaxed at an initial tem-
perature of 500 K, which is higher than the 341-373 K range reported for
the Ty of PVC (Cui et al., 2017). While maintaining the pressure com-
ponents at zero, the temperature was then decreased to 100 K at a
cooling rate of 1 K/ps, and volume change was recorded and plotted to
find Tj.

2.4.3. Thermal conductivity

Four main methods can be used to calculate the thermal conductivity
of materials using MD simulations. These include equilibrium molecular
dynamics (EMD - (Bagri et al., 2011)), approach-to-equilibrium molec-
ular dynamics (AEMD - (Lampin et al., 2013)), nonequilibrium molec-
ular dynamics (NEMD - (Razzaghi et al., 2021)), and reverse
nonequilibrium molecular dynamics (RNEMD - (Miiller-Plathe and
Bordat, 2004)). Among these four, EMD and RNEMD are more popular
and have widely been used to calculate the thermal conductivity of
polymers (Eslami et al., 2011, p. 6; Lussetti et al., 2007, p. 6; Vasilev
et al., 2020). In this study, EMD and RNEMD were used to calculate the
thermal conductivity of AA and CG models.

o EMD

The EMD approach uses Green-Kubo formulas (Kubo, 1957) to relate
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Table 2

Prior values obtained for the force field parameters.
Force field parameters (priors) Value
ro (&) 36
K, (kcal/mol/A?) 10.0
6o (°) 127.0
Kq (kcal/mol/rad?) 5.0
K¢ (kcal/mol) 5.8
& (kcal/mol) 2.2
o (A) 5.5

the ensemble average of the autocorrelation of the heat flux (J) to
thermal conductivity «, as:

Vo[ v
K= p /0 KO0dr = 5 /O J(0)J(t)rd an

where V is volume, T is temperature, and kg is the Boltzmann constant.
In this study, to calculate the heat flux autocorrelation function in MD
simulations, the trajectories of atoms in the AA model and beads in the
CG model were updated with the microcanonical ensemble (NVE) for
2.5 ns, and the thermal conductivity of PVC was averaged in the three
principal directions.

RNEMD

The RNEMD approach imposes heat flux by periodically exchanging
kinetic energy between two atoms in two different regions and calcu-
lates the induced temperature gradient as system response. RNEMD is
based on the Muller-Plathe algorithm (Miiller-Plathe, 1997), where the
periodic simulation box is divided into N bins (N is an even number)
along the dimension of interest (e.g. x), followed by swapping the kinetic
energy every user-defined number of steps between Ngyap atoms with
the highest kinetic energy in the 1% bin and Ngyap atoms with the lowest
kinetic energy in the (N/2+1)™ bin. This process eventually establishes
two symmetric temperature gradients dT/dx on both sides of the
simulation box that can be plugged into Fourier’s law (law of heat
conduction) to calculate thermal conductivity:

Q = —KkAdT/dx 12)

where Q is the swapped kinetic energy, A is the cross-sectional area
perpendicular to the x dimension, and T is temperature. In this study, N
= 40 and Ngyap = 10 were used, and the swapping was performed every
1,000 time steps.

m AA
120 = o Priors-defined CG } {
MRSE = 2.8 {
100 { {
g 80 {
g {
2 60 {
o
17
40 | { -
[]
| § L 5
20 - - |
[
-
=
0- 1 1 1 1 1
0 1 2 3 4 5

Strain (%)

Fig. 5. Comparison of strain-stress response of the AA model with that of the
7,000-bead CG model defined by the CG-FF values. The error bars represent one
standard deviation from the mean values of three simulations with different
seed numbers.
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2.4.4. End-to-end distance

In the physical chemistry of polymers, the vector that starts from one
end of a polymer chain (first monomer in the chain) and points to the
other end of the chain (last monomer in the chain) is called the end-to-
end vector. The end-to-end distance of a polymer chain is defined as the
magnitude of the end-to-end vector. The end-to-end distance is used to
evaluate whether the developed CG-MD model retained the structural
features of the corresponding AA-MD model.

Here, the end-to-end distances of the AA-MD model and CG-MD
model made of 7,000 monomers (7 chains of 1,000 monomers) were
calculated and compared against each other.

3. Results and discussion
3.1. Priors

The priors obtained for the CG-FF parameters are shown in Table 2.
These values were used to define the interactions in the CG model

comprising seven chains of 1,000 beads each. The simulation yielded a
density of 1.18 g/cm3, which agrees well with that of 1.22 g/cm®

1

-
o
—

©
—

100" iteration:
R-squared: 0.71
MSE: 3.22
MAE: 1.79

MSE of predicted RMSEs

0 20 40 60 80 100
Number of iterations to tune SVM hyperparameters

Fig. 7. Iterative hyperparameter tuning of the SVR model to minimize the MSE
of predicted RMSEs.

computed for the AA model.

The stress-strain responses of the CG and AA models are compared in
Fig. 5. The elapsed (wall-clock) time associated with the CG simulation
was less than an hour, down substantially from the almost 24 hours it
took for the AA simulation to finish, showing a considerable efficiency
achieved by coarse-graining. The softness and hardness of CG bead in-
teractions depend on the value of individual CG-FF parameters and in-
terplays thereof. Here, the reproduction of structural features of the AA
model by the CG model was considered secondary in favor of simplicity
and computational cost. Also, the literature suggests that CG-MD pre-
dictions can overestimate the mechanical properties of AA models (An
etal., 2018; Duan et al., 2019; Shireen et al., 2022). Larger errors in the
CG-MD results over AA-MD results in Fig. 5 are associated with uncer-
tainty in averaging over 7,000 beads in the CG models compared with
42,000 atoms in the AA-MD model. Moreover, in MD simulations, high
deformation rates (10~* A/fs) and fast ensemble sampling (time step of
0.5 fs) contribute to uncertainty propagation when the number of
beads/atoms in a sample is relatively low.

The failure of the priors to fully capture the strain-stress response of
the AA model could be attributed to the following reasons:

e Simplifications in CG models

One downside to converting AA models to CG models is losing intra-
bead information. Each bond in the CG model of PVC, for instance,
represented 11 bonds in the AA model. Although this simplification was
the main impetus for creating CG models in the first place, the lost in-
formation associated with it introduced some errors into the CG model
predictions.

e Chain length effect

The CG model parameters were quantified by studying the behavior
of only 24 beads of a 1,000 bead model. In contrast, the comparison step
involved simulating seven chains consisting of 1,000 beads (7,000 in
total). This considerable increase in the number of chains influences the
mechanical properties of polymers (Al-Nasassrah et al., 1998; Yazdani
et al., 2019) because quantities derived from a small number of beads
might not generalize to represent the mechanical properties of many
chains with 1,000-bead for each.

e Insufficiency of harmonic expressions

Although the literature is rich in the use of CVFF to describe
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Fig. 8. Changes in RMSE and density of the 7,000-bead CG model resulting
from SVR-assisted optimization of prior values.

interactions in the CG models of many types of polymers, the harmonic
expressions inherent in CVFF fail to precisely capture all energy com-
ponents among the beads, particularly under large deformations.
Therefore, one source of uncertainty in the CG model would be the
uncertainty in the implementation of CVFF to fully replicate the
extracted properties of AA models.
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e Uncertainties in priors

Another source of error in CG models could be the uncertainties
associated with the priors. For example, as previously mentioned, the
priors of the bond and angle equilibrium parameters (i.e. ro and 6y) were
the most frequent values over a long simulation time. These parameters,
however, are not deterministic and subject to slight fluctuations or
variations that can contribute to the departure of the CG response from
the AA response.

3.2. SVR-assisted calibration of the priors

The performances of the surrogate models trained using the first
generation of observations are shown in Fig. 6. R-squared values in the
range 0.7-0.8 were achieved (Fig. 6), indicating an acceptable accuracy
for the SVR models given the small size of the dataset. The history of
hyperparameter tuning of the RMSE SVR model is shown in Fig. 7. Its
mean squared error (MSE) sharply fell in the first 20 hyperparameter-
tuning iterations. MSE, meant to punish significant errors in predic-
tion, is one of the most common loss functions that is calculated by
averaging the square of the difference between the model predictions
and the ground truth across the entire dataset. Its closeness to the square
of MAE (in other words, the proximity of MAE to RMSE) indicates the
absence of significant errors in predictions.

Changes in the RMSE and density of the CG model due to the SVR-
assisted, iterative calibration of the priors are shown in Fig. 8. Itera-
tion O corresponds to the reference observation (i.e. priors). Results
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Fig. 9. Comparison of strain-stress response of AA model and that of PSO-calibrated CG models with a) 7,000 beads, b) 20,000 beads, and c) 40,000 beads; d)
comparison of strain-stress responses in longitudinal and transverse directions of a CNT-reinforced PVC model. The error bars represent one standard deviation from
the mean results of three simulations with different seed numbers. Error bars in (d) were small and removed for clarity.
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Table 3

PSO-derived values for CG-FF parameters.

CG parameter

PSO-calibrated value

Change wrt prior (%)

ro (A) 5.1 41.7
K; (kcal/mol/A?) 12.5 -25.0
6 () 171.3 34.8
K, (kcal/mol/rad?) 4.9 -2.0
Kg (kcal/mol) 5.8 0.0

& (kcal/mol) 1.1 -50.0
o (A) 3.6 -345

indicate that RMSE almost vanished, and density converged to its AA
value of 1.22 g/cm® in only four iterations. Since RMSE did not decrease
monotonically, it was not feasible to define a stopping criterion for the
iterations, and the iterations were terminated when acceptable accu-
racies for the predicted density and stress-strain response at a given
iteration were achieved.

Figs. 8a-c compare the stress-strain responses of the AA and PSO-
calibrated CG models containing 7,000, 20,000, and 40,000 beads.
Overall, the results show that the CG models well represented the AA
model and captured its tensile response. The relatively larger error bars
observed for the 7,000-bead CG model (Fig. 9a) can be attributed to the
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size effect. An exact match is also observed between the AA and CG
models in composite form (Fig. 9d). The higher accuracy of the CNT-
filled CG models compared with their pristine counterparts, especially
in the CNT longitudinal direction, could be attributed to the substan-
tially higher stiffness of the CNT that allows it to have a greater
contribution to carrying the tensile load, leaving little to no meaningful
contribution from the polymer matrix (Yazdani et al., 2017a, 2019).
Another observation is that the error bars calculated across three rep-
licates (different seed numbers) decreased as the model size increased
from 7,000 to 20,000 and 40,000 beads (Fig. 9a vs. Fig. 9b and Fig. 9c).

The PSO-calibrated values of the CG-FF parameters are shown in
Table 3. Five of the seven parameters had more than £20% change from
their priors. Such large deviations point to the inefficiency of traditional
optimization methods, trial and error, and educated guesses at cali-
brating CG models.

As previously stated, Ty, thermal conductivity, and end-to-end dis-
tance of polymer chains were used to examine whether the optimized
CG-FF would accurately predict the properties that it was not optimized
against. Consistent with previous studies that showed the accuracy of CG
models in predicting the T; of AA models (Duan et al., 2019; Morita
et al., 2006; Shireen et al., 2022; Yang et al., 2014), the results shown in
Fig. 10 indicate a very close agreement between the Ty values obtained
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Fig. 10. Variation of volume by varying temperature from 500 K to 100 K with cooling rate of 1 K/ps for a) AA and b) CG models.
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Fig. 12. The end-to-end distance comparison between AA-MD and CG-MD models of 7,000 monomers (seven 1,000-monomer chains).

using the AA and CG models (334 K vs. 336 K). The larger error bars of
CG-MD models can be attributed to the smaller number of CG beads (7,
000) than atoms in the AA model (42,000).

The thermal conductivity of amorphous polymers is typically very
low and ranges from 0.1 W/m/K to 0.5 W/m/K for different types of
bulk polymers (Szther et al., 2021). In this study, based on the EMD
approach, the thermal conductivity of the CG model was found to be
0.17 W/m/K, which is close to that of 0.25 W/m/K for the AA model.

The temperature profiles created by swapping the kinetic energy
between the edge and middle slabs of PVC are shown in Fig. 11. The
thermal conductivity of the AA and CG models using the RNEMD
approach was calculated to be 0.11 and 0.22 W/m/K, respectively,
which are close to the experimental values of 0.16-0.19 W/m/K (Han
and Fina, 2011; Mamunya et al., 2002).

The end-to-end distances of seven chains with 1,000 monomers in
CG-MD and AA-MD models are shown in Fig. 12. As it is seen, the end-to-
end distances of both models are fairly similar, indicating that the CG-
MD model can somewhat retain the structural features of the AA-MD
model. However, even though the CG-MD model had a reasonably
good prediction of the end-to-end distance of polymer chains, the ob-
servations for bond and angle distributions of monomers were not
promising, suggesting that further attention should be given to repli-
cating the structural features of the CG-MD model in future works.

4. Conclusion

A sustainable built environment is critical to propelling a country’s
economic growth. Polymers and polymer nanocomposites (PNCs) can be
tuned to offer a lightweight, multifunctional, high-performance alter-
native to conventional construction materials and contribute to reducing
the carbon footprint of the construction industry. Efforts, however,
should be made to accelerate their transition from demonstration-scale
to real-world applications by developing verified and validated
computational paradigms, techniques, and models that can serve as a
means to investigate the behavior of these materials in different
circumstances.

Coarse graining is a promising approach to creating relatively larger
yet representative models of materials for atomistic and molecular-scale
simulations. Such simulations require coarse-grained (CG) force fields
(CG-FFs) to describe interatomic or interparticle interactions among
atoms and particles. Therefore, efforts should be made to reduce the

10

CG-MD

otherwise high computational cost of developing CG-FFs. This study
developed an approach to parameterize CG-FFs in an energy-conserving
scheme. The approach involved coupling the particle swarm optimiza-
tion (PSO) algorithm as the calibrator (optimizer) with two support
vector regression (SVR)-based surrogate models (one for density and one
for the stress-strain response) as the predictors. More specifically, it
involved four stages: 1) simulating a reference all-atom (AA) model to
find initial values (priors) for the CG-FF parameters, creating one
“observation,” 2) systematically perturbing the priors to create addi-
tional observations later AA-MD- and CG-MD-simulated to establish
their stress-strain response, 3) training the two SVR models using the
observations, and 4) iteratively calibrating the priors using SVR-assisted
PSO and adding the newly calibrated priors to the SVR dataset to
improve the accuracy of SVR predictions. The approach was demon-
strated by developing a CG-FF for the mechanical properties and density
of PVC. The CG-FF was also tested for reproducing some properties it
was not optimized against (glass transition temperature, thermal con-
ductivity, and end-to-end distance). Although the CG-FF was reasonably
accurate in modeling these properties, further investigation is required
to ascertain whether the underlying dynamics were captured and if the
CG-FF can predict other thermal properties such as thermal expansion
and heat capacity. Nevertheless, the presented approach is generic and
can be used to formulate CG-FFs for simulating other polymers and PNCs
toward shining light on mechanisms and phenomena governing their
behavior. Such insight can help produce lighter polymers and PNCs with
improved properties, in turn reducing embodied carbon and emissions,
diverting as much waste from landfills as possible, and promoting sus-
tainability in the built environment.
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