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A B S T R A C T   

The fast-growing construction industry has a vast potential to rise to the plastics challenge by using them in both 
primary and recycled forms as a sustainable solution to some challenges in the built environment. Improving 
existing plastics and developing innovative polymers and polymer nanocomposites requires knowledge of 
interatomic interactions and their influence on macroscopic properties. Coarse-grained (CG) models offer a more 
computationally efficient alternative to their all-atom counterparts for simulating larger, more representative 
models of these materials. However, the parameterization and calibration process of CG force fields (CG-FFs) 
commonly entails solving a nonconvex optimization problem involving numerous local minima, rendering 
traditional optimization techniques impractical and iterations based on educated guesses inefficient. Here, we 
develop an approach to efficiently parameterize a CG-FF by coupling a metaheuristic algorithm as the calibrator 
(optimizer) with support vector regression-based surrogate models trained using molecular dynamics data. The 
merit of the approach is demonstrated by parameterizing a CG-FF potential for polyvinyl chloride (PVC) as a 
representative general-purpose plastic with many applications in the construction industry. The generalizability 
of the CG-FF to large PVC models in both pristine and carbon nanotube-filled composite forms is demonstrated. 
The CG-FF also accurately reproduces glass transition temperature and thermal conductivity as unseen properties 
of PVC.   

1. Introduction 

The expanding construction industry has a vast potential to rise to 
the plastics challenge and contribute to stimulating a more resource- 
efficient, circular economy. For one thing, discarded plastics can be 
repurposed for construction applications, saving space in landfills and 
reducing construction costs, among other benefits (Kazemi et al., 2021; 
Fini et al., 2021; Zakertabrizi et al., 2021; Kazemi and Fini, 2022). And 
for another, characteristics such as strength, lightness, durability, 
impermeability, affordability, and moldability make plastics a compet
itive engineering solution to some challenges in the built environment. 
Geosynthetics, for instance, are one of the salient examples of plastic
s/polymers in the built environment that offer multiple functions such as 
reinforcing roads, stabilizing steep soil embankments and bridge abut
ments, controlling coastal erosion, and lining landfills, canals, water 
storage facilities, and wastewater treatment lagoons, all at considerably 
reduced levels of CO2 emission, soil acidification, and eutrophication 

compared with conventional construction materials and techniques 
(Puppala et al., 2020; Shukla, 2021). 

Improving the properties and durability of existing polymers and 
polymer nanocomposites (PNCs) and developing novel polymeric 
products, especially for construction purposes, can further reduce the 
environmental impact and embodied carbon of these materials and 
promote sustainability. However, the traditional development cycle of 
polymers and PNCs typically involves educated guesses or Edisonian 
techniques that often yield incremental advances but with limited effi
ciency. Computational approaches to materials design such as numerical 
simulations and predictive modeling offer the potential to ‘short-circuit’ 
this development cycle by making it possible to investigate scenarios 
that would otherwise be difficult/impossible to investigate in the labo
ratory. These approaches also offer insight into the phenomena and 
mechanisms governing the behavior of materials, reducing the time and 
resources necessary to engineer innovative, lightweight, high- 
performance, multifunctional polymers and PNCs. These approaches, 
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however, are demanding, emphasizing the need to develop more 
computationally benign models and techniques. 

In computational and statistical mechanics, coarse-graining involves 
constructing and parameterizing (calibrating) a sufficiently accurate 
representation of an atomistic/molecular system. The reduced degrees 
of freedom and number of highly fluctuating particles (e.g. light atoms 
such as hydrogen) in coarse-grained (CG) models results in a smoother 
energy landscape that, depending on energy oscillations, often allows 
for analyzing structures and processes that transcend length and time
scales accessible to all-atom molecular dynamics (AA-MD). Several 
coarse-graining methods exist that offer different degrees of structural 
and statistical equivalence to the reference system, depending on the 
system characteristics and the basis used for parameterization. These 
methods can broadly be categorized into two main themes: top-down 
and bottom-up. The top-down theme involves parameterizing force 
fields using experimental macroscopic data, whereas in the bottom-up 
theme data such as forces or structural probability distributions from 
more detailed simulations are employed as the basis for the force field 
parameterization (Sun et al., 2021). Examples of bottom-up methods 
include the iterative Boltzmann inversion method (Müller-Plathe, 2002; 
Rudzinski and Noid, 2015), the Martini force field (Marrink et al., 2007), 
and the energy-conservation approach (Español et al., 2016). These 
methods differ in convergence rate (e.g. the iterative Boltzmann inver
sion method is often slow (Jain et al., 2006)), the chemical specificity 
they represent, and the type and level of details they provide (e.g. the 
Martini force field does not provide structural details for a specific 
system (Arash et al., 2015)), among other factors. The optimal choice of 
coarse-graining method will depend on the material in hand, quantities 
of interest (i.e. properties), and which side of the model 
simplicity-physical realism (i.e. computational efficiency-accuracy) 
trade-off one would wish to stand. 

AA data are a common basis in bottom-up CG force field (CG-FF) 
parameterization where several neighboring particles (e.g. functional 
groups or molecular subunits) are lumped into extended interaction 
clusters known as beads or blobs, followed by defining the bonded (e.g. 
via springs) and nonbonded interactions among the beads by force field 
parameterization. Such reduced degrees of freedom associated with 
coarse-graining introduce uncertainties into the simulation results. 
These uncertainties are commonly addressed by performing calibration 
and validation tests over select parameters to match CG and AA data (e. 
g. force-matching (Liwo and Czaplewski, 2020)). The process is formu
lated as a minimization (optimization) problem with the objective (cost) 
function defined as the difference in the predictions made for quantities 
of interest by the CG and AA models (Oden et al., 2015). For materials 
like polymers that feature a wide range of compositions, phenomena, 
and interactions occurring across several scales of time, length, 
complexity, and uncertainty, such optimization problems would be 
highly nonlinear. Solving such problems would entail extensive sam
pling to effectively explore and exploit the force field parameters space, 
rendering traditional optimization methods impractical and iterations 
based on educated guesses inefficient (Christensen et al., 2021). 
Therefore, it appears to be reasonable to target a limited number of 
quantities of interest (e.g. elastic modulus) and optimize the CG-FF pa
rameters for them to reduce the complexity and computational costs of 
the problem. Some shortcomings, however, will inevitably ensue. For 
example, by targeting specific quantities of interest, one may need to 
compromise on the accuracy of predictions made by the CG-MD model 
for less important polymer features (e.g. melting temperature (Oden 
et al., 2013)). Nevertheless, such an approach would reduce the 
computational burden of the problem to the level that can be managed 
using machine learning-assisted metaheuristic optimization. 

A known characteristic of structure-based CG simulations of soft 
matter is that the dynamics involved are artificially accelerated (Eslami 
et al., 2019). In case the experimental/fully-atomistic dataset is rela
tively small, this characteristic implies that CG dynamical features 
mainly characterized by structural attributes such as angle and bond 

distributions of connected beads in polymer chains cannot readily be 
compared with the dataset in absolute terms (Eslami and Müller-Plathe, 
2013). This study hypothesizes that such small datasets can be used to 
develop scalable and generalizable CG models that will reproduce spe
cific quantities of interest (here, mechanical properties and density) of 
the polymer while capturing the chain dynamics and other properties 
only to a reasonable extent. The hypothesis is tested by parameterizing 
and calibrating a CG-FF given a limited dataset. The approach involves 
coupling the particle swarm optimization (PSO) algorithm as the cali
brator (optimizer) with support vector regression (SVR) surrogate 
models as the predictors. The efficiency of the approach is demonstrated 
by applying it to polyvinyl chloride (PVC) as a representative 
general-purpose plastic for which, to the best of our knowledge, no 
CG-FF has been reported. The scalability of the CG-FF to larger PVC 
models and its generalizability to PVC nanocomposites are also 
demonstrated. 

2. Methodology 

2.1. Quantifying and calibrating CG priors 

Finding the CG priors and the calibration process consisted of four 
steps, as described below and summarized in Fig. 1. 

Step 1- Find CG priors using AA-MD: This step involved finding a set of 
CG-FF parameters by which each energy component (as introduced later 
in this section) of the CG model would be independently equivalent to 
the energy of its AA model. To this end, PVC monomers (C2H2Cl) were 
represented by beads in the CG model, and their interactions were 
described using the consistent-valence force field (Hagler et al., 1979) 

Fig. 1. Flowchart of the approach devised and used in this study to develop a 
CG model. A description of the task that each symbol entails is provided in the 
text with the heading “Step (insert the number attached to the symbol)”. 
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(CVFF) with the seven parameters shown in Table 1. CVFF was also used 
for the AA simulations. The FF has five energy components, including 
bond stretch, angle, torsion, van der Waals (vdW), and Coulombic and 
has successfully been used in both AA and CG simulations to predict a 
wide range of properties for polymer and polymer composites (Lange 
et al., 2016). Here, the first four energy components were considered for 
CG simulations, and Coulombic interactions were excluded, given the 
electrical neutrality of the beads. 

A harmonic expression was used to describe the bond stretch inter
action (bond energy) between every pair of bonded beads (see Table 1 
for the formulation). To quantify (i.e. finding the priors of) the bonding 
parameters (i.e. r0 and Kr), an AA model made of one chain with 1,000 
monomers was relaxed at the temperature of 300 K under the canonical 
ensemble (NVT) for 2 ns, followed by 2 ns relaxation at no pressure 

under isothermal-isobaric (NPT) ensemble. Simulations were repeated 
three times with different seed numbers to account for the randomness 
in the initial velocity distribution of atoms. In the last 1 ns of the NPT 
relaxation stage, eight monomers (two groups of four successive 
monomers) were randomly selected, and the most frequent distance (r) 
between their centers of mass (COMs) was taken for r0 in the CG model. 
Next, the bond energy of each pair of neighboring monomers was 
divided by (r - r0)2 of each pair of beads, and the most frequent resulting 
value was assigned to Kr. 

The angle energy was also expressed as a harmonic formulation. 
Similarly, eight monomers in each simulation (two groups of four suc
cessive monomers) were randomly picked to find the equilibrium angle, 
θ0, between every three consecutive monomers. Then, the angle energy 
was divided by (θ - θ0)2, and the most frequent value was given to Kθ. 

Table 1 
Energy formulations and CG input parameters.  

AA representation CG representation Energy component CG CVFF expression CG parameters 

Bond energy Eb = Kr(r - r0)2 Kr, r0 

Angle energy Eθ = Kθ(θ - θ0)2 Kθ, θ0 

Torsion energy EΦ = KΦ(1 - cosΦ) KΦ 

Nonbonded energy EvdW = 4ε[(σ/r)12 - (σ/r)6] ε, σ  

Fig. 2. a) The AA model containing seven chains, each having 1,000 PVC monomers, and b) its equivalent CG model.  
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The torsion (dihedral) angle is defined as the angle between two 
intersecting planes, each formed by three beads. The planes share the 
two middle beads. Here, eight monomers (two groups of four successive 
monomers) were randomly selected to calculate the torsion angle, which 
was later divided by (1 - cosΦ) to find the torsion stiffness (KФ). 

The nonbonded priors (ε [‘dispersion energy’] and σ [‘size of the 
particle’]) were represented by the most frequent inter-monomer energy 
and distance observed among nonbonded monomers. 

Step 2- Evaluate accuracy of the priors: The accuracy of the priors 
obtained in Step 1 was evaluated by comparing the density and tensile 
stress-strain response of a CG model defined by them and those of the 
reference AA model. For comparison, the CG model comprised seven 
chains of 1,000 PVC beads each (Fig. 2). The chains were generated 
using the self-avoiding random walk technique (Hossain et al., 2010). 
Each chain started from a random site and then grew in length by 
moving randomly from a current site to one of its nearest neighbors 
according to a uniform probability density function until a certain 
number of sites equal to the degree of polymerization (i.e. 1,000 beads) 
were visited. Every two neighboring beads were linked with a chemical 
bond, and the priors and potential functions described and quantified in 
Step 1 were assigned to the model. The stress-strain responses were 
established by uniaxially stretching the models. All simulations were 
performed with LAMMPS (Plimpton, 1995) and visualized with OVITO 
(Stukowski, 2009). A time step of 0.5 fs and a deformation velocity of 
10−4 (Å/fs) were used in all (both AA and CG) simulations. In all CG-MD 
simulations, the cutoff was selected to be 12 Å. Stress values were 
recorded at 10 strain values from 0.5–5% with 0.5% increments in both 
CG and AA simulations. The error was represented by the 
root-mean-square values of the deviation of the stress value given by the 
CG-MD simulation from that given by the AA-MD simulation at a 
particular strain normalized with respect to the stress value given by the 
AA-MD simulation, as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

/

n
∑10

i=1

[
(σCG)i − − (σAA)i

(σAA)i

]2
√
√
√
√ (1)  

where (σCG)I and (σAA)i represent the stresses computed at the i-th strain 
value in the CG-MD and AA-MD simulations, respectively. 

Step 3- Develop a surrogate model to predict RMSE: As shown later, an 
independent evaluation of energy components (potential functions) in 
Step 1 typically results in values for the priors that fail to collectively 
reproduce the response of the AA model, leading to large errors (i.e. 
RMSE values). Therefore, the priors should be calibrated to reduce the 
error. Such calibration, however, would entail adjusting the values 
iteratively and evaluating RMSE in each iteration until an acceptable 
RMSE value is achieved. Since the number of iterations is problem- 
specific and unknown, the computational expense of such an approach 
could be prohibitive. As previously alluded, machine learning predictive 
models (surrogate or metamodels models) can significantly alleviate this 
computational cost and accelerate the calibration process. The following 
sub-steps were taken to develop surrogate models with MATLAB 
R2019b. 

3-1- Create a training dataset: The priors and their corresponding 
RMSE values were treated as the reference observation. A set of 42 
additional observations was made as follows to construct a dataset: for 
each observation, all the priors were held constant at their reference 
value except one prior that was either increased or decreased by 10%, 
30%, and 50%, yielding a total of 42 additional observations (7 priors ×
3 ±%). Note that the upper bound for the equilibrium angle parameters, 
θ0, was set at its maximum physically possible value of 180

◦

(i.e. a 
maximum of 40% increase). 

3-2- Develop surrogate models to predict RMSE and density: Since the 
dataset in this study was also relatively small, support vector regression 
(SVR) was used to predict RMSE (more information to follow). For each 
SVR model, hyperparameters were tuned to achieve the lowest 

prediction error (mean square error). Also, one-leave-out cross-valida
tion (LOO-XV) was used to prevent overfitting. This means that with a 
dataset of size N, the predictor was trained N separate times on all the 
data except for one data point, a prediction was made for that point, and 
the average error was finally computed and used to evaluate the model. 
Another SVR model was developed following the same approach to 
predict density. 

3-3- Expand the dataset and improve the predictive models: Following 
training and tuning hyperparameters, the SVR models were coupled 
with an optimization algorithm, described in the next section, to stra
tegically take samples from a wide range of values (±50% of the refer
ence value, except the equilibrium angle which was bounded between 
-50% and +40% of its prior) for the CG-FF parameters and iteratively 
calibrate the priors. The best solution offered by the optimization al
gorithm at the end of each iteration (i.e. the combination associated 
with the minimum predicted RMSE value) was used to simulate a CG 
model comprising seven 1,000-monomer chains (7,000 monomers in 
total) to compute the solution’s true RMSE value. The combination and 
its true RMSE value were then added to the training dataset to improve 
the accuracy of the SVR models. This process continued until a combi
nation (calibrated priors) with a desirable RMSE level was found. 

Step 4- Validate generalizability of the calibrated priors: The general
izability of the calibrated priors to larger models and composite systems 
was validated by demonstrating their capability to reproduce the tensile 
response of AA models composed of 20 and 40 1,000-monomer chains 
(20,000 and 40,000 monomers in total) in both pristine form and 
composite form reinforced with one (5,5) carbon nanotube (CNT) with 
an aspect ratio of 157 (CNT concentration: 2.5 wt.%). 

2.2. Optimization Problem and Approach 

2.2.1. Optimization problem 
The optimization problem can be expressed as: 

Find : Kr, r0, Kθ, θ0, Kφ, ε, σ
Minimize : RMSE
subject to :Θmin ≤ Θ ≤ Θmax

(2)  

where Θis a vector representing the values of the seven parameters to be 
quantified by the optimization algorithm, andΘminand Θmaxinclude the 
lower and upper limits of the values, respectively. 

2.2.2. Particle swarm optimization 
Metaheuristics are problem-independent and versatile techniques 

that have proven efficient in solving various optimization problems. 
Compared with now-traditional gradient-based optimization tech
niques, the stochastic mechanism inherent in metaheuristics allows 
them to effectively explore and exploit a vast search space enclosed by 
highly nonlinear and discontinuous constraints without requiring 
gradient information and explicit formulations for the objective function 
and constraints (Khatibinia and Yazdani, 2018; Shayesteh Bilondi et al., 
2018). A class of metaheuristics, swarm-based metaheuristic techniques 
iteratively converge to the optimum solution(s) by comparing the so
lutions offered by the swarm in each iteration. Since the optimization 
process could involve a large swarm of agents and numerous iterations, 
it could be computationally intractable if the solutions were to be 
MD-simulated for objective function evaluations. One approach that has 
proven effective at considerably alleviating the computational cost 
associated with evaluating the objective function is to use machine 
learning predictive (surrogate) models. Such models approximate the 
objective function and constraints with an accuracy that depends on the 
nature of the problem and the data used to train the models, hence 
considerably accelerating the optimization process (Yazdani et al., 
2017b; Gharehbaghi et al., 2019). 

Particle swarm optimization (PSO) is an optimization technique 
inspired by swarm intelligence, which is the collective behavior of a 
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swarm capable of accomplishing complex tasks in dynamic and varied 
environments without any central coordination, external guidance, or 
control (Kennedy and Eberhart, 1995). PSO imitates the choreography 
and sociocognitive behavior of birds in a flock (swarm). The birds are 
dubbed ‘agents’ or ‘particles.’ Each agent represents a possible solution 
in the search space. Agents quasi-randomly fly around and iteratively 
move toward the optimum solution (food). They achieve this by keeping 
an eye on others to follow the agent closest to the optimum solution 
(gbest) while keeping track of their own best solutions found so far (pbest). 
The i-th agent in the l-th iteration is associated with a position vector Xl

i 

and a velocity vector Vl
i denoted as 

Xl
i =

{
xl

i, 1, xl
i ,2, . . . , xl

i,p

}

Vl
i =

{
vl

i, 1, vl
i, 2, . . . , vl

i,p

} (3)  

where p is the dimension of the solution space (here 7, see Table 1). As 
an agent navigates the solution space, its position is updated as: 

Vl+1
i = ωl Vl

i + c1 r1
(

pbestl
i − Xl

i

)
+ c2 r2

(
gbestl − Xl

i

)
(4)  

Xl+1
i = Xl

i + Vl+1
i (5)  

where r1 and r2 are two uniform random numbers between (0, 1); c1 and 
c2 are the cognitive- and social-scaling parameters, respectively; and ωl 

is the inertia weight that controls the influence of the previous velocity 
and is defined in the l-th iteration as (Shi and Eberhart, 1998): 

ω = ωmax −
ωmax − ωmin

lmax
l (6)  

where ωmaxandωminare the maximum and minimum values of ω, 
respectively; and lmax is the maximum number of iterations. The 

following values were used in this study for the parameters described 
above: c1 = 2.5, c2 = 2.5, ωmax= 0.9, and ωmin= 0.01. The population size 
(N) and the maximum number of iterations (lmax) were set to 50 and 200, 
respectively. These values were selected by trial and error and per our 
experience and general recommendations in the literature (Shayesteh 
Bilondi et al., 2018). These values are also consistent with those used in 
a recent study on developing an interatomic potential for glassy silica 
using PSO (Christensen et al., 2021). 

2.3. Support vector regression 

Support vector regression (SVR; the regression equivalent of support 
vector machines/classifiers) was used to develop the surrogate models. 
SVR has the advantages of generalizability and ease of use. SVR aims to 
construct a hyperplane that is close to as many of the data points as 
possible. Therefore, it can achieve good generalizability by minimizing 
the prediction error as tuning its hyperparameters is obtained by cross- 
validation (Chen et al., 2018). The structural risk minimization (SRM) 
principle in SVR makes it less prone to overfitting than convolutional 
neural networks that use the empirical risk minimization (ERM) prin
ciple. In contrast to ERM, which shrinks the prediction error on the 
training data, SRM reduces an upper bound on the expected prediction 
risk to make SVR generalizable. To both reduce the prediction error and 
enhance the generalizability of an SVR model, SVR can be trained based 
on the ε-insensitive loss function (Mozer et al., 1997). The ε-insensitive 
loss function uses margins in regression such that if the error is smaller 
than ε, the prediction error will be assumed to be zero. Therefore, for a 
linear regression function f(x): 

f (x) = 〈 w . x 〉 + b (7)  

where w is the weight error, x is the input vector, and b is the bias of the 
regression function. The SRM principle can be formulated by minimizing 
the empirical risk Remp (w, b) defined as: 

Remp (w, b) = 1

/

n
∑n

i=1
Lε(yi, f (x)) (8)  

where Lε is the loss function, and y represents the true output. Then, the 
ε-insensitive loss function finds the following form: 

Lε (yi, f (x)) =

{
0, if |yi − f (x)| ≤ ε

|yi − f (x)| − ε, otherwise

}

(9) 

Finding w and b to reduce the ERM with respect to the ε-insensitive 
loss function is a convex optimization problem that minimizes the 
margin and two non-negative slack variables, ξ and ξ∗, as: 

Fig. 3. a) a linear SVM regression with b) an ε-insensitive loss function and slack variables. SVM hyperparameters are iteratively tuned to get the lowest prediction 
errors (Vapnik, 2000). 

Fig. 4. End-to-end distance in a schematic chain of polymer.  
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Minimize :

[
1
2

‖ w‖2 + C
∑m

i=1

(
ξi + ξ∗

i

)
]

Subject to :

⎧
⎪⎪⎨

⎪⎪⎩

yi − w.xi − b ≤ ε + ξi

w.xi + b − yi ≤ ε + ξi

ξi, ξ∗
i ≥ 0

(10)  

where C > 0 is known as ‘penalty’ or ‘regularization’ or ‘box constraint’ 
and governs the trade-off between the model complexity and the influ
ence of deviations larger than ε on the regressor (Smola and Schölkopf, 
2004). A representation of the linear SVM regression is shown in Fig. 3. 
For nonlinear SVM regressions, the line shown in Fig. 3a is replaced by a 
hyperplane, and x in Eq. (7) is replaced by a function called ‘kernel 
function’ denoted by φ(x). Polynomial and gaussian (also known as the 
radial basis) kernels are popular kernel functions widely used in the 
materials engineering literature (Lu et al., 2013; Mannodi-Kanakkithodi 
et al., 2016). As shown in Fig. 3, hyperparameters of an SVM regressor, 
penalty, the kernel function, and ε should be optimized iteratively such 
that the regressor finds the minimum prediction error. In this study, the 
quadratic kernel function and a C value of 567.7 were used, and the 
hyperparameters of the SVM regressor were tuned such that the mean 
square error (MSE) of RMSE predictions would be minimized. 

2.4. Evaluation of accuracy of CG parameters 

The CG-FF was examined for its accuracy in reproducing glass 
transition temperature, thermal conductivity, and end-to-end distance 
of polymer chains as unseen properties beyond the properties that the 
CG-FF was optimized against (i.e. mechanical and density). 

2.4.1. Mechanical properties 
The uniaxial strain-stress behavior of PVC and CNT-filled PVC 

composites up to 5% of strain was used to represent mechanical 
properties. 

2.4.2. Glass transition temperature 
The glass transition temperature (Tg) of a polymer is the temperature 

associated with a distinct transition of (amorphous regions in) the 
polymer from a hard, glassy state to a soft, rubbery state where polymer 
chains obtain full segmental mobility. Tg corresponds to the point of 
maximum curvature in the temperature-volumetric strain curve. To 
calculate the Tg of PVC, its structure was first relaxed at an initial tem
perature of 500 K, which is higher than the 341–373 K range reported for 
the Tg of PVC (Cui et al., 2017). While maintaining the pressure com
ponents at zero, the temperature was then decreased to 100 K at a 
cooling rate of 1 K/ps, and volume change was recorded and plotted to 
find Tg. 

2.4.3. Thermal conductivity 
Four main methods can be used to calculate the thermal conductivity 

of materials using MD simulations. These include equilibrium molecular 
dynamics (EMD - (Bagri et al., 2011)), approach-to-equilibrium molec
ular dynamics (AEMD - (Lampin et al., 2013)), nonequilibrium molec
ular dynamics (NEMD - (Razzaghi et al., 2021)), and reverse 
nonequilibrium molecular dynamics (RNEMD - (Müller-Plathe and 
Bordat, 2004)). Among these four, EMD and RNEMD are more popular 
and have widely been used to calculate the thermal conductivity of 
polymers (Eslami et al., 2011, p. 6; Lussetti et al., 2007, p. 6; Vasilev 
et al., 2020). In this study, EMD and RNEMD were used to calculate the 
thermal conductivity of AA and CG models.  

• EMD 

The EMD approach uses Green-Kubo formulas (Kubo, 1957) to relate 

the ensemble average of the autocorrelation of the heat flux (J) to 
thermal conductivity κ, as: 

κ =
V

kBT2

∫ ∞

0
Jx(0)Jx(t)dt =

V
3kBT2

∫ ∞

0
J(0)J(t)td (11)  

where V is volume, T is temperature, and kB is the Boltzmann constant. 
In this study, to calculate the heat flux autocorrelation function in MD 
simulations, the trajectories of atoms in the AA model and beads in the 
CG model were updated with the microcanonical ensemble (NVE) for 
2.5 ns, and the thermal conductivity of PVC was averaged in the three 
principal directions. 

RNEMD 
The RNEMD approach imposes heat flux by periodically exchanging 

kinetic energy between two atoms in two different regions and calcu
lates the induced temperature gradient as system response. RNEMD is 
based on the Muller-Plathe algorithm (Müller-Plathe, 1997), where the 
periodic simulation box is divided into N bins (N is an even number) 
along the dimension of interest (e.g. x), followed by swapping the kinetic 
energy every user-defined number of steps between Nswap atoms with 
the highest kinetic energy in the 1st bin and Nswap atoms with the lowest 
kinetic energy in the (N/2+1)th bin. This process eventually establishes 
two symmetric temperature gradients dT/dx on both sides of the 
simulation box that can be plugged into Fourier’s law (law of heat 
conduction) to calculate thermal conductivity: 

Q = −κAdT/dx (12)  

where Q is the swapped kinetic energy, A is the cross-sectional area 
perpendicular to the x dimension, and T is temperature. In this study, N 
= 40 and Nswap = 10 were used, and the swapping was performed every 
1,000 time steps. 

Table 2 
Prior values obtained for the force field parameters.  

Force field parameters (priors) Value 

r0 (Å) 3.6 
Kr (kcal/mol/Å2) 10.0 
θ0 (◦) 127.0 
Kθ (kcal/mol/rad2) 5.0 
KΦ (kcal/mol) 5.8 
ε (kcal/mol) 2.2 
σ (Å) 5.5  

Fig. 5. Comparison of strain-stress response of the AA model with that of the 
7,000-bead CG model defined by the CG-FF values. The error bars represent one 
standard deviation from the mean values of three simulations with different 
seed numbers. 
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2.4.4. End-to-end distance 
In the physical chemistry of polymers, the vector that starts from one 

end of a polymer chain (first monomer in the chain) and points to the 
other end of the chain (last monomer in the chain) is called the end-to- 
end vector. The end-to-end distance of a polymer chain is defined as the 
magnitude of the end-to-end vector. The end-to-end distance is used to 
evaluate whether the developed CG-MD model retained the structural 
features of the corresponding AA-MD model. 

Here, the end-to-end distances of the AA-MD model and CG-MD 
model made of 7,000 monomers (7 chains of 1,000 monomers) were 
calculated and compared against each other. 

3. Results and discussion 

3.1. Priors 

The priors obtained for the CG-FF parameters are shown in Table 2. 
These values were used to define the interactions in the CG model 
comprising seven chains of 1,000 beads each. The simulation yielded a 
density of 1.18 g/cm3, which agrees well with that of 1.22 g/cm3 

computed for the AA model. 
The stress-strain responses of the CG and AA models are compared in 

Fig. 5. The elapsed (wall-clock) time associated with the CG simulation 
was less than an hour, down substantially from the almost 24 hours it 
took for the AA simulation to finish, showing a considerable efficiency 
achieved by coarse-graining. The softness and hardness of CG bead in
teractions depend on the value of individual CG-FF parameters and in
terplays thereof. Here, the reproduction of structural features of the AA 
model by the CG model was considered secondary in favor of simplicity 
and computational cost. Also, the literature suggests that CG-MD pre
dictions can overestimate the mechanical properties of AA models (An 
et al., 2018; Duan et al., 2019; Shireen et al., 2022). Larger errors in the 
CG-MD results over AA-MD results in Fig. 5 are associated with uncer
tainty in averaging over 7,000 beads in the CG models compared with 
42,000 atoms in the AA-MD model. Moreover, in MD simulations, high 
deformation rates (10−4 Å/fs) and fast ensemble sampling (time step of 
0.5 fs) contribute to uncertainty propagation when the number of 
beads/atoms in a sample is relatively low. 

The failure of the priors to fully capture the strain-stress response of 
the AA model could be attributed to the following reasons:  

• Simplifications in CG models 

One downside to converting AA models to CG models is losing intra- 
bead information. Each bond in the CG model of PVC, for instance, 
represented 11 bonds in the AA model. Although this simplification was 
the main impetus for creating CG models in the first place, the lost in
formation associated with it introduced some errors into the CG model 
predictions.  

• Chain length effect 

The CG model parameters were quantified by studying the behavior 
of only 24 beads of a 1,000 bead model. In contrast, the comparison step 
involved simulating seven chains consisting of 1,000 beads (7,000 in 
total). This considerable increase in the number of chains influences the 
mechanical properties of polymers (Al-Nasassrah et al., 1998; Yazdani 
et al., 2019) because quantities derived from a small number of beads 
might not generalize to represent the mechanical properties of many 
chains with 1,000-bead for each.  

• Insufficiency of harmonic expressions 

Although the literature is rich in the use of CVFF to describe 

Fig. 6. Performance of SVR models (entire data: [reference + 42 ±% observations] × three iterations) in predicting a) RMSE and b) density.  

Fig. 7. Iterative hyperparameter tuning of the SVR model to minimize the MSE 
of predicted RMSEs. 
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interactions in the CG models of many types of polymers, the harmonic 
expressions inherent in CVFF fail to precisely capture all energy com
ponents among the beads, particularly under large deformations. 
Therefore, one source of uncertainty in the CG model would be the 
uncertainty in the implementation of CVFF to fully replicate the 
extracted properties of AA models.  

• Uncertainties in priors 

Another source of error in CG models could be the uncertainties 
associated with the priors. For example, as previously mentioned, the 
priors of the bond and angle equilibrium parameters (i.e. r0 and θ0) were 
the most frequent values over a long simulation time. These parameters, 
however, are not deterministic and subject to slight fluctuations or 
variations that can contribute to the departure of the CG response from 
the AA response. 

3.2. SVR-assisted calibration of the priors 

The performances of the surrogate models trained using the first 
generation of observations are shown in Fig. 6. R-squared values in the 
range 0.7–0.8 were achieved (Fig. 6), indicating an acceptable accuracy 
for the SVR models given the small size of the dataset. The history of 
hyperparameter tuning of the RMSE SVR model is shown in Fig. 7. Its 
mean squared error (MSE) sharply fell in the first 20 hyperparameter- 
tuning iterations. MSE, meant to punish significant errors in predic
tion, is one of the most common loss functions that is calculated by 
averaging the square of the difference between the model predictions 
and the ground truth across the entire dataset. Its closeness to the square 
of MAE (in other words, the proximity of MAE to RMSE) indicates the 
absence of significant errors in predictions. 

Changes in the RMSE and density of the CG model due to the SVR- 
assisted, iterative calibration of the priors are shown in Fig. 8. Itera
tion 0 corresponds to the reference observation (i.e. priors). Results 

Fig. 8. Changes in RMSE and density of the 7,000-bead CG model resulting 
from SVR-assisted optimization of prior values. 

Fig. 9. Comparison of strain-stress response of AA model and that of PSO-calibrated CG models with a) 7,000 beads, b) 20,000 beads, and c) 40,000 beads; d) 
comparison of strain-stress responses in longitudinal and transverse directions of a CNT-reinforced PVC model. The error bars represent one standard deviation from 
the mean results of three simulations with different seed numbers. Error bars in (d) were small and removed for clarity. 
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indicate that RMSE almost vanished, and density converged to its AA 
value of 1.22 g/cm3 in only four iterations. Since RMSE did not decrease 
monotonically, it was not feasible to define a stopping criterion for the 
iterations, and the iterations were terminated when acceptable accu
racies for the predicted density and stress-strain response at a given 
iteration were achieved. 

Figs. 8a-c compare the stress-strain responses of the AA and PSO- 
calibrated CG models containing 7,000, 20,000, and 40,000 beads. 
Overall, the results show that the CG models well represented the AA 
model and captured its tensile response. The relatively larger error bars 
observed for the 7,000-bead CG model (Fig. 9a) can be attributed to the 

size effect. An exact match is also observed between the AA and CG 
models in composite form (Fig. 9d). The higher accuracy of the CNT- 
filled CG models compared with their pristine counterparts, especially 
in the CNT longitudinal direction, could be attributed to the substan
tially higher stiffness of the CNT that allows it to have a greater 
contribution to carrying the tensile load, leaving little to no meaningful 
contribution from the polymer matrix (Yazdani et al., 2017a, 2019). 
Another observation is that the error bars calculated across three rep
licates (different seed numbers) decreased as the model size increased 
from 7,000 to 20,000 and 40,000 beads (Fig. 9a vs. Fig. 9b and Fig. 9c). 

The PSO-calibrated values of the CG-FF parameters are shown in 
Table 3. Five of the seven parameters had more than ±20% change from 
their priors. Such large deviations point to the inefficiency of traditional 
optimization methods, trial and error, and educated guesses at cali
brating CG models. 

As previously stated, Tg, thermal conductivity, and end-to-end dis
tance of polymer chains were used to examine whether the optimized 
CG-FF would accurately predict the properties that it was not optimized 
against. Consistent with previous studies that showed the accuracy of CG 
models in predicting the Tg of AA models (Duan et al., 2019; Morita 
et al., 2006; Shireen et al., 2022; Yang et al., 2014), the results shown in 
Fig. 10 indicate a very close agreement between the Tg values obtained 

Table 3 
PSO-derived values for CG-FF parameters.  

CG parameter PSO-calibrated value Change wrt prior (%) 

r0 (Å) 5.1 41.7 
Kr (kcal/mol/Å2) 12.5 –25.0 
θ0 (◦) 171.3 34.8 
Kθ (kcal/mol/rad2) 4.9 –2.0 
KФ (kcal/mol) 5.8 0.0 
ε (kcal/mol) 1.1 –50.0 
σ (Å) 3.6 –34.5  

Fig. 10. Variation of volume by varying temperature from 500 K to 100 K with cooling rate of 1 K/ps for a) AA and b) CG models.  

Fig. 11. Temperature profile created by swapping kinetic energy between low-/high-end slabs in RNEMD simulation of a) AA and b) CG models.  
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using the AA and CG models (334 K vs. 336 K). The larger error bars of 
CG-MD models can be attributed to the smaller number of CG beads (7, 
000) than atoms in the AA model (42,000). 

The thermal conductivity of amorphous polymers is typically very 
low and ranges from 0.1 W/m/K to 0.5 W/m/K for different types of 
bulk polymers (Sæther et al., 2021). In this study, based on the EMD 
approach, the thermal conductivity of the CG model was found to be 
0.17 W/m/K, which is close to that of 0.25 W/m/K for the AA model. 

The temperature profiles created by swapping the kinetic energy 
between the edge and middle slabs of PVC are shown in Fig. 11. The 
thermal conductivity of the AA and CG models using the RNEMD 
approach was calculated to be 0.11 and 0.22 W/m/K, respectively, 
which are close to the experimental values of 0.16–0.19 W/m/K (Han 
and Fina, 2011; Mamunya et al., 2002). 

The end-to-end distances of seven chains with 1,000 monomers in 
CG-MD and AA-MD models are shown in Fig. 12. As it is seen, the end-to- 
end distances of both models are fairly similar, indicating that the CG- 
MD model can somewhat retain the structural features of the AA-MD 
model. However, even though the CG-MD model had a reasonably 
good prediction of the end-to-end distance of polymer chains, the ob
servations for bond and angle distributions of monomers were not 
promising, suggesting that further attention should be given to repli
cating the structural features of the CG-MD model in future works. 

4. Conclusion 

A sustainable built environment is critical to propelling a country’s 
economic growth. Polymers and polymer nanocomposites (PNCs) can be 
tuned to offer a lightweight, multifunctional, high-performance alter
native to conventional construction materials and contribute to reducing 
the carbon footprint of the construction industry. Efforts, however, 
should be made to accelerate their transition from demonstration-scale 
to real-world applications by developing verified and validated 
computational paradigms, techniques, and models that can serve as a 
means to investigate the behavior of these materials in different 
circumstances. 

Coarse graining is a promising approach to creating relatively larger 
yet representative models of materials for atomistic and molecular-scale 
simulations. Such simulations require coarse-grained (CG) force fields 
(CG-FFs) to describe interatomic or interparticle interactions among 
atoms and particles. Therefore, efforts should be made to reduce the 

otherwise high computational cost of developing CG-FFs. This study 
developed an approach to parameterize CG-FFs in an energy-conserving 
scheme. The approach involved coupling the particle swarm optimiza
tion (PSO) algorithm as the calibrator (optimizer) with two support 
vector regression (SVR)-based surrogate models (one for density and one 
for the stress-strain response) as the predictors. More specifically, it 
involved four stages: 1) simulating a reference all-atom (AA) model to 
find initial values (priors) for the CG-FF parameters, creating one 
“observation,” 2) systematically perturbing the priors to create addi
tional observations later AA-MD- and CG-MD-simulated to establish 
their stress-strain response, 3) training the two SVR models using the 
observations, and 4) iteratively calibrating the priors using SVR-assisted 
PSO and adding the newly calibrated priors to the SVR dataset to 
improve the accuracy of SVR predictions. The approach was demon
strated by developing a CG-FF for the mechanical properties and density 
of PVC. The CG-FF was also tested for reproducing some properties it 
was not optimized against (glass transition temperature, thermal con
ductivity, and end-to-end distance). Although the CG-FF was reasonably 
accurate in modeling these properties, further investigation is required 
to ascertain whether the underlying dynamics were captured and if the 
CG-FF can predict other thermal properties such as thermal expansion 
and heat capacity. Nevertheless, the presented approach is generic and 
can be used to formulate CG-FFs for simulating other polymers and PNCs 
toward shining light on mechanisms and phenomena governing their 
behavior. Such insight can help produce lighter polymers and PNCs with 
improved properties, in turn reducing embodied carbon and emissions, 
diverting as much waste from landfills as possible, and promoting sus
tainability in the built environment. 
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