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Renewable energy development can bolster local economies through job creation, local tax revenues, and
reduced energy costs; however, communities most in need of economic development and employment
opportunities often see lower levels of renewable energy deployment. We sought to identify areas where
disadvantaged community indicators and high generation potential from cost-effective renewable energy
opportunities intersect and deployment could lead to economic development and job creation. Through a
geospatial intersection of energy burden, environmental hazard, and sociodemographic data with tech-
nical generation potential and the levelized cost of energy for multiple renewable energy technologies,
we calculated county-level correlations and identified trends across disadvantaged community indicators
and renewable energy deployment potential. Data sources and tools included the Low-Income Energy
Affordability Data (LEAD) tool, the Environmental Justice Screening and Mapping (EJSCREEN) tool, the
State and Local Planning for Energy (SLOPE) platform, and the Renewable Energy Integration and
Optimization (REopt�) model. Metrics include levelized costs and generation potential for utility-scale
photovoltaics (PV), rooftop PV (residential and commercial), distributed PV plus storage, land-based
wind, geothermal, and hydropower development. This research and the associated county-level data
set are intended to inform national- and state-level energy-related assistance programs, economic devel-
opment efforts, and infrastructure programs seeking to prioritize investments in disadvantaged
communities.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
Introduction

The U.S. clean energy transition is at an inflection point. Declin-
ing costs and technological breakthroughs in renewable energy are
driving the market toward a future in which energy generation and
consumption are completely transformed. At the same time, cli-
mate change is accelerating, prompting urgency in scaling up clean
energy transitions. Moreover, significant rural-urban and racial
disparities persist, reflected in indicators of wealth, environmental
hazard exposure, and renewable energy adoption [1-8]. Providing
disadvantaged communities (DACs) with data on the most cost
competitive and highest generation potential renewable energy
technologies in their county can enable more strategic energy
planning and local development efforts. Similarly, prioritizing
renewable energy investments in communities with a high preva-
lence of environmental hazard exposure and other DAC indicators
can enhance equity in the transition to a clean energy economy
and broaden access to renewable energy benefits.

The U.S. has ambitious climate goals, including a ‘‘carbon
pollution-free power sector by 2035, a net-zero economy by
2050,” and a 50% reduction in greenhouse gas emissions by 2030
[9,10]. In addition, the Biden administration’s Justice40 initiative
aims to ‘‘deliver 40% of the overall benefits of climate investments
to disadvantaged communities and inform equitable research,
development, and deployment” [11]. In response, the U.S. Depart-
ment of Energy (DOE) created a beta Energy Justice Dashboard
and dedicated $15.5 million to increasing solar development in
underserved areas [12,13]. To generate data that can inform deci-
sion making and investment prioritization in working toward
these directives, we sought to use energy justice concepts to iden-
tify where DAC indicators overlap with high-potential, cost-
effective renewable energy development opportunities.
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The concept of energy justice arose from both the environmen-
tal justice and climate justice movements, which emerged in the
1980s and early 21st century respectively [14]. Energy justice is a
framework in which energy resources are readily available, afford-
able, and environmentally sustainable [15]. Incorporated into the
framework are the environmental justice concepts of intragenera-
tional and intergenerational distributive justice (the equitable dis-
tribution of environmental burdens and benefits across current
and future generations) and procedural justice (transparency in
decision making and the meaningful participation of all stakehold-
ers, especially those who have historically been marginalized and
excluded from the decision-making process) [15,16]. Energy justice
is rarely a priority in energy development, as local communities in
general, and nonwhite communities in particular, are often
marginalized in energy-siting decision making [16,17]. Further,
investment prioritizations, such as subsidies, are currently
accessed predominantly by higher-income individuals, who are
less likely to experience environmental hazard exposures and
other DAC indicators, than lower-income individuals [18,19].

There is evidence of distributive and procedural injustices in the
distribution of wealth and environmental hazard exposure in the
United States across the rural-urban continuum and between racial
groups. For example, the Great Recession of 2007 to 2009 exacer-
bated the persistent racial wealth gap [7,8]. Rural areas have also
yet to recover from the Great Recession and have seen income
and employment increase more slowly than in urban areas [20].
Poverty rates in metropolitan counties in the United States are
increasing at a faster pace than rural and micropolitan counties,
though rural counties still experience the country’s highest rates
of poverty [6]. These income disparities are compounded because
low-income households generally have higher energy burdens
than more affluent households, meaning that a higher proportion
of their income is spent on household energy [2,4,21]. Racial dis-
Table 1
Data Sets Used to Intersect DACs with Renewable Energy Deployment Potential.

Data set Data resolution Metric

EJSCREEN Census block group Less than high sc
Low-income
Minority
Air toxics cancer
Air toxics respira
Diesel particulate
PM2.5 concentrati
Ozone concentrat
Traffic proximity
Lead paint indica
Proximity to risk
Proximity to trea
Proximity to nati
Wastewater disch

LEAD Census tract Energy burden
Rural Atlas County Employment in m

Farming-depende
Persistent-povert
Rural-urban cont
Unemployment

SLOPE County Technical generat
Levelized cost of
Capital cost for g

REopt Utility service area Cost savings estim

Note. The metrics with 5-year ranges are single-value estimates generated by the Americ
small populations [46].

2

parities in energy burden, even when controlling for income, also
exist, with Black and Hispanic households having higher energy
burdens than non-Hispanic, white households in some parts of
the country [2,4,22]. Similarly, rural areas have higher energy bur-
dens than urban areas across the United States [4,23]. Further, not
only do households with a higher energy burden experience
increased financial strain, high energy burden is also associated
with adverse health impacts. Outdated building infrastructure that
often leads to a higher energy burden can also lead to or exacerbate
existing health problems, such as respiratory illness. Moreover,
high energy burdens can result in low-income households forego-
ing medical treatment to pay for energy expenses, which can lead
to poorer overall health and premature mortality [21,24].

Disparities in environmental hazard exposure, which is associ-
ated with adverse human health impacts, also exist [19,25,26].
Individuals living in urbanized areas are at higher risk of exposure
to fine particulate matter (PM2.5), a major environmental health
risk, than those living in rural areas [27]. In addition, not only do
Black and Hispanic individuals and low-income individuals have
greater residence-based exposure to PM2.5, but they are also at
increased risk of PM2.5-related mortality than non-Hispanic, white
individuals and higher-income individuals respectively, even
across similar exposure levels [5,26,27,28,29]. There are also dis-
parities in non-air-based pollution, such as lead exposure.
Although there is evidence that disparities in lead exposure are
declining, Black and Hispanic children and low-income children
have been found to have higher blood lead levels than white chil-
dren and higher-income children [30-34]. Given these distribu-
tional and procedural inequities, disadvantaged communities are
thus defined herein as communities with high prevalence of the
socioeconomic factors and/or high exposure to the environmental
hazards described in Table 1.
Year

hool (HS) education 2013–2017
2013–2017
2013–2017

risk 2014
tory hazard index 2014
matter (PM) 2014
on 2016
ion 2016
and volume 2017
tor 2013–2017
management plan (RMP) facilities 2019
tment, storage, and disposal facilities (TSDF) 2019
onal priorities list (NPL) sites 2019
arge indicator 2017

2018
ining, quarrying, and O&G extraction 2015–2019
nt counties 2015
y counties 2015
inuum code 2013

2020
ion potential for PV and wind 2020
energy for PV, wind, geothermal, and hydropower 2020
eothermal and hydropower 2020
ates for solar-plus-storage 2019

an Community Survey that provide more statistical reliability to representations of
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The current transition to renewable energy technologies can
provide cleaner energy and bolster local economies through job
creation and local tax revenues. Communities with higher rates
of poverty, unemployment, and pollution exposure, however, often
see lower levels of renewable energy deployment. Residential pho-
tovoltaic (PV) adopters are more likely to have higher incomes, be
more educated, and live in white-majority census geographies
than non-adopters [1,35,36]. Communities defined as DACs using
CalEnviroScreen [37] tend to have lower levels of residential PV
adoption than non-DACs [38]. Additionally, low-income house-
holds in the United States receive far fewer clean energy tax credits
than higher-income households [18]. Reames [3] intersected resi-
dential PV deployment potential, defined as the ‘‘proportion of
solar-suitable, single-family rooftops,” and actual residential PV
deployment with several socioeconomic and demographic
characteristics—including low-income community status, percent-
age of the population with less than a high school education, and
percentage of nonwhite individuals—in four cities across the Uni-
ted States [p. 3]. Reames [3] found lower residential PV adoption
among low-income individuals and among racial/ethnic minori-
ties. He also found that, although certain low-income communities
have greater potential to deploy residential PV than higher-income
communities, PV adoption disparities still exist. In addition, Sigrin
and Mooney [39] found that low-to-moderate income (LMI) resi-
dential buildings in the United States make up 43% of the U.S. pop-
ulation and contain 42% of the residential rooftop PV technical
potential (i.e., the maximum generation and capacity if PV was
installed on all suitable rooftops), further illustrating the gap in
deployment.

As the deployment of renewable energy technologies increases,
there is an opportunity to create a more equitable energy system.
Although previous work has examined select sociodemographic
factors across renewable energy deployment and potential metrics,
to the authors’ knowledge, our work is the first to establish a data
set that incorporates the potential of multiple renewable energy
technologies and both sociodemographic information and environ-
mental hazard exposures, allowing for easier and more accessible
analysis across these metrics. Thus, recognizing the disproportion-
ate access to renewable energy benefits from disadvantaged com-
munities, we sought to map DAC indicators and other community
characterization metrics in the contiguous United States to corre-
sponding favorable renewable energy opportunities to enable pri-
oritization of DACs in federal and state clean energy investments
and programs. The resulting data set of comparative generation
potential and cost metrics by county can also inform
community-level energy planning and prioritization.
Method

Disadvantaged community indicators, including rural-urban
classifications, race, income, unemployment, and employment in
mining, quarrying, and oil and gas (O&G) extraction, were geospa-
tially intersected with deployment opportunity metrics for utility-
scale PV, residential rooftop PV, commercial rooftop PV, distributed
PV plus storage (solar-plus-storage), land-based wind, geothermal,
and hydropower. Using exploratory correlational analyses, we
identified patterns in renewable energy technical potential and
cost for these seven renewable technologies across the DAC met-
rics (see Section 3.1). We also conducted two case studies to high-
light the ways in which our data set can be used to prioritize
renewable energy technology deployment for any given DAC and
identify the DACs with the highest opportunity for specific renew-
able energy technologies (see Section 3.2).
3

Materials

To intersect DACs with renewable energy potential, we used the
U.S. Environmental Protection Agency’s (EPA) Environmental Jus-
tice Screening and Mapping (EJSCREEN) tool [40], the DOE’s Low-
Income Energy Affordability Data (LEAD) tool [41], the U.S. Depart-
ment of Agriculture’s (USDA) Atlas of Rural and Small-Town Amer-
ica (the Rural Atlas) [42], the State and Local Planning for Energy
(SLOPE) platform [43], and the Renewable Energy Integration and
Optimization (REopt�) platform [44]. Each of these data sets were
incorporated into one master data set using RStudio. See Table 1
for an overview of each data set and their associated metrics.

The Rural Atlas, SLOPE, and REopt data sets were originally
resolved at the county level, whereas the EJSCREEN and LEAD data
sets were originally resolved at the census block group and census
tract levels respectively. Thus, to create the master data set, the
EJSCREEN and LEAD data sets were aggregated to the county level.
We avoided mean aggregation for the EJSCREEN and LEAD data
because highly impacted communities could be missed using this
method. For example, a highly energy-burdened census tract, if
surrounded by census tracts in the same county with low energy
burdens, would be hidden; thus, we aggregated using national
quintiles by the processes described in the next several sections.
Data sets were then merged by matching the five-digit county Fed-
eral Information Processing Series (FIPS) codes, which are unique
county identifiers maintained by the American National Standards
Institute [45].

EJSCREEN xxx
This analysis used 14 EJSCREEN sociodemographic and environ-

mental hazard metrics, each of which are resolved at the census
block group level and described in Table 2 [47,48]. To aggregate
the EJSREEN metrics to the county level, we created indicators
for each of the metrics. Although a single environmental indicator
combining each of the 11 environmental hazard metrics might
help identify communities most in need (i.e., those that are most
exposed to environmental hazards), the EPA advises against this
because viewing the metrics separately provides a more complete
picture of hazard exposure across the country [47,p. 25]. In addi-
tion, indicator creation requires making determinations about
weighting the metrics, and determining the importance of the var-
ious weighting criteria (e.g., public health or financial implications)
is subjective and should be established by local communities; thus,
we investigated each metric independently and created 14 distinct
indicators through the following process (see Figure 1).

First, to aggregate EJSCREEN to the county level, we used the
ntile function from the tidyverse in RStudio to assign a quintile
score to each block group. Quintiles were created for each of the
14 metrics across all block groups to describe how well the block
group compares to the nation as a whole. For example, if a census
block group scored within the fifth quintile (80th–100th percentile)
for a given metric, it was given a score of 5. If the block group
scored within the fourth quintile (60th–80th percentile) for a given
metric, it was given a score of 4, and so forth (see Appendix A for
the descriptive statistics for each metric within each quintile).
Lastly, we calculated the proportion of census block groups within
each county that fell within each of the five quintiles, creating
county-level proportion scores.

We then created the sociodemographic indicators using the
fourth- and fifth-quintile proportion scores to create a weighted
sum for each county. We used the fourth and fifth quintiles to
highlight the counties most representative of the sociodemo-
graphic metrics. We began with the proportion score from the
fourth and fifth quintiles for each metric (i.e., the proportion of
block groups in each county that fell within the fourth and fifth
quintiles). Counties with quintile bins greater than .20 have a dis-



Figure 1. Flowchart Describing the Indicator Creation Process.

Table 2
EJSCREEN Metric Descriptions.

Type Metric Definition

Sociodemographic Less than high school education Percentage of individuals who have less than a high school education in each census block group
Low-income Percentage of households in each census block group that make less than or equal to twice the federal poverty

level
Minority Percentage of Hispanic or nonwhite individuals within each census block group

Environmental
hazard*

Cancer risk (air toxics) Lifetime cancer risk due to inhalation of outdoor air toxics
Diesel particulate matter
concentration

Hazardous air pollutants, measured in lg/m3

Lead paint indicator Percentage of occupied housing units in each census block group that were built before 1960
National priorities list sites
proximity

Superfund sites where remediation is needed; number of sites ‘‘within five km of the average block group
resident, divided by distance” in kilometers (p. 56)

Ozone concentration Summer average daily maximum 8-hour concentration in parts per billion (ppb)
PM2.5 concentration Average annual concentrations of fine particles in the air, measured in lg/m3

Respiratory hazard index (air
toxics)

Ratio of exposure concentration to health-based reference concentration

Risk management plan proximity Facilities that house hazardous materials for which a risk management plan must be established; number of
sites ‘‘within five km of the average block group resident, divided by distance” in kilometers (p. 56)

Treatment, storage, and disposal
facilities proximity

Hazardous waste disposal sites; number of sites ‘‘within five km, divided by distance” in kilometers (p. 59)

Traffic proximity Average annual daily vehicle counts divided by the distance in meters
Wastewater discharge Water pollutant concentrations divided by the distance in meters

Source [47].
*Each environmental hazard metric is associated with adverse human and environmental health impacts. A higher score for each metric indicates an increased presence of the
hazard within each census block group.
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proportionately high number of census block groups in those bins;
thus, we subtracted .20 from the fourth-quintile proportion and
from the fifth-quintile proportion to determine how much the val-
ues exceed the national distribution. We then summed the fourth
and fifth quintile values and weighted the fifth quintile value more
heavily.1 The final indicator score for each sociodemographic metric
was thus a weighted sum of the proportion of census block groups in
the fourth and fifth quintiles in excess of .20 by county.

We created the environmental hazard indicators using the fifth-
quintile proportion score for each county. The fifth quintile alone
was used because that quintile is associated with a sharp increase
in risk score assigned by EJSCREEN for most of the environmental
metrics (see Appendix A). The maximum air toxics cancer risk
scores, for example, in the first through fourth quintiles are 24,
29, 33, and 38, respectively, and the maximum score in the fifth
quintile is 1505. Further, scores within the fifth quintile for two
of the metrics mark the point at which the EPA has set a break
point for public health risk; the EPA public health limits for PM2.5

and ozone are 2.0 lg/m3 and 70 ppb, respectively, both of which
fall within the fifth quintile range for their given metric [49,50].
This indicates that all counties that fall within the fourth quintile
or lower do not exceed the annual public health limit for these
metrics. The final indicator score for each environmental hazard
metric was thus the proportion of census block groups in the fifth
quintile in excess of .20 by county.
2 We arrived at the weights through the following process. Using LEAD data, we
determined that energy burden increases as income decreases. Households earning
less than 30% of the median income, or approximately $20,000 in the U.S. [53], have
an average energy burden of 16%, and households earning between 30%–60% of the
median income, or between approximately $20,000–$40,000, have an average energy
burden of 6% (see Figure 2) [41]. In addition, energy consumption increases with
income. Households in the lowest two income brackets consume an annual average of
57.0 and 68.9 million Btu respectively, including electricity, natural gas, fuel oil/
kerosene, and propane, whereas households earning $140,000 or more per year
consume an average of 111.2 million Btu [54], [55]. This means that although those at
the lowest income bracket consume the least amount of energy, they have the highest
LEAD xxx
The LEAD tool provides data on energy expenditures and

income level for counts of housing unit types [41] (see Figure 2).
We used the LEAD tool’s census tract-level calculations for energy
burden and aggregated the data to the county level. Energy burden
is defined as the proportion of household income spent on housing
energy costs [41,p. 1]. To aggregate energy burden to the county
level, national quintiles were not used because the LEAD data have
a skewed distribution (skewness = 6.3) and the national quintile
calculation produced 20th, 40th, 60th, and 80th energy burden per-
centiles of 2%, 3%, 3%, and 4% respectively, which fails to provide
meaningful energy burden cut-off points. Previous research identi-
fies energy burden exceeding 6% as a high energy burden [51], and
Cook and Shah [52,p. 3] reported a scale of energy burden describ-
ing households that spend less than 4% of annual income on energy
as ‘‘not burdened,” those that spend between 4% and 7% on energy
as ‘‘energy stressed,” those that spend between 7% and 10% as ‘‘en-
ergy burdened,” and those that spend greater than 10% as ‘‘energy
impoverished.” To go beyond an energy burden binary, we use the
Cook and Shah [52] scale to create the energy burden indicator
through the following process.

We first applied the Cook and Shah [52] scale to each census
tract. Energy burdens less than 4% received a score of one, energy
burdens greater than or equal to 4% and less than 7% received a
score of two, energy burdens greater than or equal to 7% and less
than or equal to 10% received a score of three, and energy burdens
greater than 10% received a score of four. We then calculated the
percentage of census tracts within each county in each category:
not burdened, energy stressed, energy burdened, and energy impover-
ished. According to previous research [51], we focused on energy
burdens exceeding 6%; thus, we took an average of the energy-
burdened and energy-impoverished proportions from each county
1 The weights applied to the fifth quintile were calculated by dividing the national
mean score for the fifth quintile by the national mean score for the fourth quintile. For
example, for the low-income EJSCREEN metric, the mean fourth quintile score was .44
and the mean fifth quintile score was .66 (see Appendix A). Thus, we weighted the
fifth quintile by 1.5 for the low-income indicator. Using the same process, we
weighted the fifth quintile for the minority indicator by 1.7 and the fifth quintile for
the less than high school education indicator by 2.1.

5

and weighted the averages to account for higher burdens among
energy-impoverished households. The resulting energy burden
indicator is thus a weighted average of the percentage of census
tracts labeled as energy burdened and energy impoverished by
county.2

Rural Atlas
This analysis uses five metrics from the USDA Rural Atlas [56]

(see Table 3). Two of the metrics—unemployment and percentage
employed in mining, quarrying, and O&G extraction—are raw
scores taken from the Rural Atlas’ Jobs data set. Quintiles were cal-
culated to provide an indication of how county scores compared
across the nation. To assign quintile scores for these two metrics,
we used the ntile function in RStudio’s tidyverse. If a county’s raw
value was within the first quintile, it was assigned a score of one.
If a county’s raw value was within the second quintile, it was
assigned a score of two, and so forth. Quintile scores were used
to identify specific DAC targets but were not used in the correlation
analyses. The other three Rural Atlas metrics used in this analysis—
the rural-urban continuum code, farming dependence, and persis-
tent poverty—originated from the Rural Atlas County Classifica-
tions data set, which assigned scores to each county based on
certain criteria (see Table 3). This analysis uses the last three met-
rics unmanipulated.

SLOPE xxx
The DOE and National Renewable Energy Laboratory’s SLOPE

platform provides modeled energy efficiency, renewable energy,
and sustainable transportation data at city, county, and state levels
[43]. From SLOPE, we used estimates for technical generation
potential, levelized cost of energy (LCOE), and capital costs. Techni-
cal generation potential, or simply technical potential, is the mod-
eled maximum generation in megawatt hours (MWh) per year that
could be produced by a given technology if all suitable land or roof-
top area were used. Technical potential considers resource avail-
ability and quality but not market conditions, transmission
capacity, or integration into the electricity grid [58]3. LCOE is the
cost to generate electricity ($/MWh), assumes new construction,
and considers the technology’s capital costs, operation and mainte-
nance costs, performance costs, capacity factors, labor markets,
and interconnection costs [59]. For utility PV, residential PV, com-
mercial PV, and land-based wind, we used the technical potential
data set and the 2020 data from the LCOE data set [58,59]. For
geothermal and hydropower, we used the 2020 LCOE and capital
cost data from the LCOE data set [59]. For all technologies, we used
the median technical potential, LCOE, and capital cost estimates.
Technical definitions and assumptions for all technologies can be
found in Table 4.
energy burden. To account for this lower consumption, census tracts with a score of
four (i.e., those that are energy impoverished with energy burdens exceeding 10%)
were assigned a weight of 1.2 because they would need to consume 1.2 times more
energy to consume as many Btus as the next largest income bracket. Census tracts
with a score of three (i.e., those that are energy burdened with energy burdens
between 7%–10%) were assigned a mid-point weight of 1.1 because their energy
burdens fall between the lowest two income brackets.

3 Modeled annual technical generation potential for commercial PV includes
buildout on rooftops of both commercial and industrial buildings.



Figure 2. Average Energy Burden in the United States by Area Median Income Level, Used to Calculate Weights for County Energy Burden Indicator Scores. Source [41].

Table 3
Rural Atlas Metric Descriptions.

Metric Definition

Farming-dependent
counties

Yes/no binary of farming dependence, defined as a
county in which farms account for at least 25% of a
county’s earnings or at least 15% of total county jobs

Mining, quarrying,
and O&G jobs

Percentage of labor force employed in mining,
quarrying, and oil and gas extraction

Persistent-poverty
counties

Yes/no binary of persistent poverty, defined as a
county in which the poverty level was consistently at
or greater than 20% in the 1980 census, the 1990
census, the 2000 census, and the 2007–2011
American Community Survey

Rural-urban
continuum code

Ranges from 1 (most urban and metropolitan) to 9
(most rural and non-metropolitan); includes
measures of population sizes and, for non-
metropolitan areas, adjacency to metropolitan areas*

Unemployment Percentage of unemployed individuals, defined as
those over age 16 who are unemployed and actively
seeking employment

Sources. Rural-urban continuum code [57]; all others [42].
*For example, a score of one indicates a county with a population of at least 1
million people, and a score of nine indicates a rural county not adjacent to a
metropolitan area with a population of less than 2500.

4 The assessment [60] modeled potential savings for 2,541 scenarios generated by
varying common utility rates at reference sites partitioned by climate zone, state, and
solar resource intensity. The assessment included service territories for all investor-
owned-utilities (IOUs) and non-IOUs with more than 400,000 customers in 2010, as
well as the 45 biggest non-IOUs by area.

E. Ross, M. Day, C. Ivanova et al. Renewable Energy Focus 41 (2022) 1–14
We grouped SLOPE county-level data for each technology into
quintiles using the ntile function in RStudio’s tidyverse to indicate
how county scores compared across the nation. Quintile scores
were used to identify specific DAC targets but were not used in
the correlation analyses. If a county’s raw value was within the first
quintile, it was assigned a score of one. If a county’s raw value was
within the second quintile, it was assigned a score of two, and so
forth. For the technical potential metrics, a higher score indicates
that more potential exists for energy generation development of
a given technology in that county. For LCOE and capital cost met-
rics, a higher score indicates relatively higher costs for a given
technology in that county.
6

REopt
We used cost-savings estimates for solar-plus-storage from the

REopt model to assess the geographic locations for which commer-
cial solar-plus-storage is most economically viable. The REopt
model, developed by the National Renewable Energy Laboratory,
is a techno-economic, mixed-integer linear program that determi-
nes the technology type, sizing, and dispatch strategy for a cost-
optimal renewable energy system [62,p. 1,2]. REopt cost-savings
estimates were derived from a recent nationwide assessment of
the economic viability of commercial solar-plus-storage systems
conducted by Kwasnik and others [60]4, assumptions for which
can be found in Table 4.

The data were reaggregated from utility subdivisions to the
county-level using county geometries from the U.S. Census Bureau,
intersecting the REopt data with the U.S. county shapefile, calculat-
ing the percentage of overlap between reference sites and counties,
and scaling the cost savings for each site within the county by per-
centage overlap. These scaled savings were then summed for each
county. REopt county-level data were then grouped into quintiles
using the ntile function in RStudio’s tidyverse. The 53% percent of
counties with cost-savings estimates of $0 (N = 1649) were
removed from the quintile calculation so that the quintiles were
based only on counties with cost savings greater than $0. If a
county’s raw value was within the first quintile, it was assigned
a score of one. If a county’s raw value was within the second quin-
tile, it was assigned a score of two, and so forth. The quintile scores
were used to identify specific DAC targets; however, for the corre-
lation analyses, we used the raw cost-savings estimates and
included counties with cost savings estimates of $0.



Table 4
Technology Definitions, Metrics, and Assumptions

Technology Source Definition Metrics and
Assumptions

Utility PV SLOPE Uses ground-mounted,
tracking, large-capacity
systems to convert solar
energy into electricity

Technical potential:
Single-axis tracking, 20
MW capacity systems
[58]
LCOE:
100 MW capacity facility
and several cost inputs
(see [59])

Residential
PV

SLOPE Uses residential building
roof-mounted, fixed tilt,
small-capacity systems
to convert solar energy
into electricity

Technical potential;
LCOE:
Site-specific; calculated
for representative
census blocks and
aggregated to the county
level [58,59]

Commercial
PV

SLOPE Uses commercial and
industrial building roof-
mounted, fixed tilt,
medium-capacity
systems to convert solar
energy into electricity

Technical potential;
LCOE:
Site-specific; calculated
for representative
census blocks and
aggregated to the county
level [58,59]

Land-based
wind

SLOPE Uses utility-scale, large-
capacity onshore wind
turbines to convert wind
energy into electricity

Technical potential:
2.6-MW nameplate
capacity turbine, 121 m
rotor diameter, and 90 m
hub height [58]
LCOE:
200 MW facility capacity
and several cost inputs
(see [59])

Geothermal SLOPE Converts energy from
naturally occurring
underground reservoirs
of hot water into
electricity

Capital cost; LCOE:
Site-specific and
considers the
hydrothermal resource
temperature and well
productivity and depth
[59]

Hydropower SLOPE Converts potential
energy from flowing
water into electricity

Capital cost; LCOE:
Site-specific and
considers new stream
reach and non-powered
dam development but
not upgrades to existing
facilities [59]

Solar-plus-
storage

REopt Behind-the-meter
battery energy storage
systems (BESS) coupled
with rooftop solar for
commercial buildings

Cost savings:
Medium office building
loads, varied by climate
zone; fixed PV array
costs of $1,600/kW, BESS
power costs of $840/kW,
and BESS energy costs of
$420/kWh (among other
inputs; see [60,61])

5 Technical potential is the amount of generation per year that could be produced
by a given technology if all suitable land or rooftop area is used. LCOE is the cost to
generate electricity per MWh (see Section 2.1.4).
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Results and discussion

Identifying intersections of DAC indicators and renewable energy
development potential

To identify areas of overlap between the DAC indicators and
renewable energy development potential, we identified correla-
tions between the sociodemographic and environmental hazard
indicators and the raw renewable energy technical potential and
cost estimates using RStudio (see Table 5 for the correlation). These
correlations indicate possible avenues for renewable energy devel-
opment, given the metrics considered in this analysis. The data
sources supported analysis within the 48 contiguous states and
Washington, D.C., creating a data set with 3,108 counties (see
Appendix B for the number of counties with data for each metric).
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A higher score on the rural classification indicates a more rural
county. Higher scores on the other indicators represent a greater
presence of the metric in each county. For example, a higher score
on the unemployment metric indicates a higher proportion of
unemployed individuals in each county [41,47,56,58] (see section
2.1). Thus, for the technical potential5 metrics, positive correlations
mean that as the environmental hazard or sociodemographic indica-
tor score increases, potential tends to increase, indicating that those
communities might have opportunities for technology development
with high generation potential. For the capital cost and LCOE met-
rics, negative correlations mean that as the environmental hazard
or sociodemographic indicator score increases, costs for a technology
tend to decrease, indicating that those communities might have
opportunities for development of that technology at lower costs rel-
ative to the costs in other communities. For solar-plus-storage, pos-
itive correlations mean that as the environmental or
sociodemographic indicator score increases, cost savings tend to
increase, indicating that those communities might have opportuni-
ties for cost savings from solar-plus-storage. The strongest correla-
tions for each technology are described in the following sections.

Commercial and residential PV
Commercial and residential PV share similar relationships at

similar strengths across each sociodemographic and environmen-
tal hazard indicator. Technical potential is generally higher in
urban areas due to higher concentrations of commercial and resi-
dential buildings. LCOE for commercial and residential PV tends
to be lower in areas with higher concentrations of minority indi-
viduals, higher percentages of mining, quarrying, and O&G extrac-
tion jobs, and higher concentrations of individuals with less than a
high school education. As technical potential is generally higher in
areas in closer proximity to traffic and TSDFs and higher concentra-
tions of diesel PM and PM2.5, residential and commercial PV may
also present a targeted investment opportunity in certain environ-
mental justice communities.

Utility PV
Utility PV correlations indicate relatively high development

potential in many areas with higher concentrations of minority
individuals and in many areas with greater ozone exposure. Low
LCOE for utility PV in areas with concentrations of individuals with
less than a high school education and low-income individuals and
high technical potential in areas with high mining, quarrying, and
O&G jobs indicate that there could be an opportunity for utility PV
in communities in need of workforce development who may be
transitioning away from fossil fuel production.

Land-based wind
LCOE for land-based wind tends to be lower in rural areas and in

areas with closer proximity to RMP facilities. Greater technical
potential for land-based wind correlates relatively strongly with
higher levels of employment in mining, quarrying, and O&G extrac-
tion, with rural status, and with greater ozone exposure, indicating
that wind development might present an economic development
opportunity in communities transitioning away from fossil fuel
production, while potentially drawing on skilled workers from
these industries.

Geothermal
Hydrothermal utility-scale generation from geothermal

resource is not feasible in most counties. As a result, only 304
counties had geothermal data points. Areas with relatively lower-



Table 5
Correlations Between Renewable Energy Potential and Cost Metrics and Environmental and Sociodemographic Indicators.

Note: Blue shades indicate positive correlations, with darker blue indicating a stronger positive correlation. Pink shades indicate negative correlations, with darker pink
indicating a stronger negative correlation. The lightest shade indicates a correlation between ±.10 and ±.30, and the darkest shade indicates a correlation greater than ±.30.
White indicates either a negligible correlation (r < .10) or a correlation with p > .10. A p-value less than .05 indicates a significant relationship, and a p-value greater than or
equal to .10 indicates a nonsignificant relationship. A p-value greater than or equal to .05 and less than .10 is considered marginally significant.
*** p < .001, ** p < .01, * p < .05, + p < .10.
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cost geothermal generation are associated with higher air toxics
respiratory hazard, closer proximity to traffic and TSDFs, and
higher rates of unemployment.

Hydropower—non-powered dams and new stream reach development
For hydropower capital costs and LCOE, the strongest relation-

ship is between capital costs and proximity to RMP facilities; how-
ever, none of the correlations with hydropower are relatively
strong.

Solar-plus-storage
Cost savings for solar-plus-storage had relatively weak correla-

tions with the DAC indicators but did tend to be higher in areas clo-
ser to traffic, indicating that the technology might have the
potential to be broadly developed in these areas.

Case studies

While correlations between DAC and renewable energy metrics
can identify trends across counties, perhaps the highest value of
this new data set is in the array of county-level metrics it provides.
The data set created for this analysis could help identify which
renewable energy technologies have comparatively high potential
and low costs for any given DAC and, similarly, to identify the DACs
with high opportunity for specific renewable energy technologies.
In the next two sections, we provide example analyses of these
types.

Identifying a county with high need and high potential
Costilla County in southern Colorado scores relatively highly on

several DAC indicators (see Table 6). The county is categorized as
completely rural and a persistent poverty county by the USDA’s
Rural Atlas. It is also categorized as a farming-dependent commu-
nity and exceeds the 60th percentile for unemployment and for
employment in mining, quarrying, and O&G extraction. More than
80% of its census block groups are in the highest quintile for per-
centage of low-income individuals, and its two census tracts are
considered energy burdened, as defined by Cook and Shah [52]. Half
Table 6
DAC and Renewable Energy Deployment Potential Indicators in Costilla County, CO.

Metric Raw value Indicator
score

Utility PV
Technical potential 91,650,546

MWh
4th quintile

LCOE $45/MWh 1st quintile
Land-based wind
Technical potential 10,961,518

MWh
4th quintile

LCOE $38/MWh 2nd quintile
Solar-plus-storage
Cost savings $3,363 4th quintile
Unemployment rate 7.2% 4th quintile
Mining, quarrying, and O&G

employment
.86% 4th quintile

Low-incomea 59% 0.88
Energy burdenb 8% 0.55
Less than high school educationa 22% 0.93
Hispanic or nonwhite individualsa 69% 0.81
Ozone concentrationa 49 ppb 0.80

a Unweighted average taken across Costilla County’s four census block groups.
b Unweighted average taken across Costilla County’s two census tracts.
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its census block groups are in the highest quintile for percentage of
the population with less than a high school education. Addition-
ally, 80% of its census block groups fall in the highest quintile for
percentage of Hispanic or nonwhite individuals. All the county’s
census block groups score in the highest quintile for the ozone
indicator.

The renewable energy metrics for Costilla County indicate sub-
stantial opportunity for job creation and investment from renew-
able energy development. Utility PV technical potential is in the
fourth quintile and LCOE is in the first quintile, indicating higher
technical potential and lower cost than the average U.S. county.
The county has similarly high potential and relatively low LCOE
compared to other counties for land-based wind. Solar-plus-
storage also presents an opportunity, as the cost savings associated
with solar-plus-storage are in the fourth quintile. In sum, our anal-
ysis found that Costilla County may have high need and high
renewable potential. Utility PV, land-based wind, and solar-plus-
storage deployment have relatively favorable conditions to create
jobs and increase local tax revenues for Costilla County community
members.

Identifying top DAC opportunities for utility PV development
As discussed, utility PV has relatively high potential in areas

with higher ozone concentrations and higher employment in min-
ing, quarrying, and O&G extraction. To demonstrate the usefulness
of the data set in increasing equity in investment decision making,
we identified the top ten DACs with potential for development of
utility PV, considering the DAC metrics of ozone and mining, quar-
rying, and O&G employment. To generate this list, we filtered the
data set to include only counties that fall in the highest quintile
for utility PV technical potential and the lowest quintile for utility
PV LCOE. We also filtered the data set to include only counties with
the highest score for the ozone indicator that fall in the highest
quintile for mining, quarrying, and O&G jobs. We then sorted the
data set first by highest percentage employed in mining, quarrying,
and O&G extraction; then by highest utility PV technical potential;
and finally, by lowest utility PV LCOE. Table 7 identifies the top ten
counties resulting from this process.

Counties in Table 7 have strong potential for utility PV develop-
ment relative to national averages. Additionally, between 16.3%
and 27.3% of these counties’ labor forces are employed in mining,
quarrying, and O&G extraction, and each county is considered
non-metropolitan. Finally, each of the counties’ census block
groups falls within the fifth quintile for ozone. This indicates that
utility PV development could present an economic development
opportunity in these communities if they are to transition away
from fossil fuel production. Queries assessing the top DAC opportu-
nities for additional combinations of technologies and DAC metrics
can also be performed with our data set.

General discussion, limitations, and future directions

Our data set can contribute to energy justice by enabling con-
sideration of distributive justice in relation to renewable energy
development. For example, decision-makers can use the data set
to prioritize marginalized communities with renewable energy
investments without sacrificing generation potential. Further steps
can ensure the benefits of renewable energy development are
absorbed by the community, for example by establishing local hire
provisions to set aside jobs for community members. Communities
can use the data set to investigate the DAC indicators in their area
and prioritize renewable energy technology development based on



Table 7
Top Ten DACs for Utility PV Development Considering Ozone Concentrations and Employment in Mining, Quarrying, and O&G Extraction.

County Technical Potential (MWh) LCOE ($/MWh) Employed in mining, quarrying, and O&G (%) Ozone Indicator Score Rural-Urban Continuum Code

Loving, TX 117,310,996 39 27.3 .80 9
Andrews, TX 260,067,236 39 24.0 .80 6
Campbell, WY 316,499,376 44 23.0 .80 5
Yoakum, TX 131,520,286 41 21.6 .80 7
Winkler, TX 147,923,745 39 21.2 .80 6
Weston, WY 213,349,257 44 18.8 .80 7
Ward, TX 145,515,427 39 18.7 .80 6
Hemphill, TX 109,192,439 41 18.1 .80 7
Lea, NM 771,322,461 41 17.8 .80 5
Uintah, UT 182,290,073 47 16.3 .80 7

E. Ross, M. Day, C. Ivanova et al. Renewable Energy Focus 41 (2022) 1–14
comparative potential. Researchers outside the U.S. can also use
our work as a template for their own investigations into energy,
incorporating tools relevant to their regions. For example, the Envi-
ronmental Justice Atlas (EJAtlas) is a tool that documents environ-
mental justice conflicts around the world and could be used to
examine distributive justice in other regions by intersecting envi-
ronmental concerns with renewable energy development potential
[63].

The energy justice principle of procedural justice, however, is
missing from our analysis; our work was conducted without input
from community members. Thus, decision-makers will need to
incorporate and rely on community guidance to ensure community
agency. Mobilizing local knowledge [14,p. 178] increases equity in
renewable energy investment decision making, and thus, involving
community members meaningfully in the decision-making process
is a key component of energy justice and can increase local accep-
tance of renewable energy projects [64]. We have provided a start-
ing point, but communities must determine the factors and
strategies that are most important and relevant for them.

For this reason, community, decision-, and policymakers need
to rely on the correlations reported in this work in addition to
other important factors. The correlations highlighted in this anal-
ysis describe the tendency for any two given metrics to be
related, and many counties do not follow these patterns. Future
research at a more granular geospatial level is needed, especially
in counties with large populations, to inform county-specific or
regional investment decisions and to determine the renewable
energy technologies with the highest potential for a given area
or DAC. Further, although many of the correlations found in this
analysis are strong relative to the correlations found across all
technologies and metrics considered, they generally do not
explain a large portion of variance. More exploration into the cor-
relates of renewable energy development potential is needed to
determine whether the correlations found in this research are
strong in the context of renewable energy development potential.
The correlations found in this research also do not imply causa-
tion; thus, the relationships might not replicate beyond the
geographies considered here, and renewable energy deployment
might not directly mitigate the challenges faced by DACs. Finally,
although our analysis found that some DAC metrics (e.g., energy
burden) are not correlated with the renewable energy metrics,
renewable energy development could still be highly beneficial
to such communities (e.g., by reducing energy burden). A lack
of correlation might indicate a greater need for enacting policies
that make renewable energy technologies more financially viable,
and our data set can help to support those types of analyses.
Additionally, the expansion of distributed energy resources
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(DERs; e.g., rooftop PV) has both energy justice benefits and
drawbacks [65]. For instance, regardless of whether DERs have
relative financial viability in a community, DERs that are unaf-
fordable to DACs will exacerbate existing inequalities, and thus,
program and policy interventions are required to expand access
to the benefits of DERs for DACs. Our analysis can help policy-
makers establish criteria for program participation by aiding in
DAC definition and identification. Policymakers prioritizing DACs
and targeting renewable energy development in specific counties
or regions can also use our data set to match DAC status with
technical potential and LCOE. In this way, the appropriate tech-
nology, based on technical potential and LCOE, can be prioritized
in the appropriate areas, maximizing the benefits of the
technology.

Our analysis highlighted opportunities for renewable energy
development in DACs considering three broad categories of met-
rics: socioeconomic, environmental hazard, and renewable energy
deployment potential metrics. The benefits and drawbacks, how-
ever, of renewable energy deployment for DACs cannot be
assessed by these metrics alone, and there are other important
factors to consider when developing new technologies. Certain
renewable energy technologies might generate more jobs than
others, and some might reduce energy burden more than others.
Environmental impacts also vary across technologies and geogra-
phies, and in some cases, renewable energy technologies are
themselves associated with environmental justice concerns [66].
Additionally, the development of renewable energy technologies
does not necessarily equate to net economic benefit where
fossil-based jobs and local revenues may decrease. Finally, and
importantly, support for renewable energy development varies
across communities. Our analyses do not quantify these effects,
and optimal renewable energy development intersections with
DACs might change if these additional factors are considered.
Future research can thus expand on the metrics included in this
analysis to make these additional considerations. For example,
the National Renewable Energy Laboratory’s Jobs and Economic
Development Impact (JEDI) models can be applied to examine
the number of local jobs that could be generated from maximum
deployment of each renewable technology. DER adoption rates
could also be incorporated into the data set to examine adoption
patterns across DACs and renewable energy development poten-
tial. Additionally, a metric to estimate community support and
policy readiness for renewable energy development can further
illustrate feasibility. For instance, a policy metric could be used
that assesses the level of renewable energy-supportive policy that
exists in a jurisdiction. Our data set can provide a pathway into
these investigations.
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Conclusion

Data presented in this research can inform renewable energy
development strategies for disadvantaged communities. We first
looked at the correlations between DAC metrics and renewable
energy deployment potential metrics. The strongest correlations
indicate that mining, quarrying, and O&G extraction counties tend
to have higher wind resources, which represents an opportunity
for developing new sources of stable income and employment in
energy transitions. Counties with larger populations of minority
individuals tend to have good opportunity for commercial and res-
idential rooftop PV development, and counties with higher propor-
tions of individuals with less than a high school education tend to
have good opportunity for utility PV development. Counties in clo-
ser proximity to traffic and TSDFs and those with higher diesel pol-
lutant concentrations tend to have higher potential for the
development of commercial and residential rooftop PV. Counties
with higher ozone concentrations tend to have higher potential
to develop utility PV and land-based wind, in addition to having
relatively lower-cost commercial and residential PV opportunities.
Finally, counties with higher respiratory hazard due to air toxics
tend to have relatively lower-cost geothermal opportunities.

We also identified how individual communities can use our
data set to better understand their comparative renewable energy
development opportunities and to inform more strategic economic
development and energy planning. The Costilla County, Colorado
example showed relatively high potential for utility PV, land-
based wind, and solar-plus-storage development. In addition, we
identified several rural counties in Texas, Wyoming, New Mexico,
and Utah that have high employment in mining, quarrying, and
O&G extraction, are exposed to high concentrations of ozone, and
have good potential to develop utility PV.

Transitioning to a low-carbon energy economy is inevitable if
we are to limit future climate change [67]; transitioning equitably,
however, is not. We risk exacerbating existing inequalities if we
Table A1
Descriptive Statistics for the Metrics from EJSCREEN.

Metrics Quintile 1 Quin

Min–
max

Mean Min–

Less than high school education (%) 0–.03 .01 .03–
Low-income (%) 0–.14 .08 .14–
Minority (%) 0–.07 .03 .07–
Cancer risk from air toxics (see [47]) 8.8–

23.8
20.1 23.8

Diesel particulate matter concentration (lg/m3) 0.01–
0.19

0.13 0.19

Lead paint indicator (%) 0–.05 .01 .05–
National priorities list sites proximity (# of sites/km) 0–0.02 0.01 0.02

Ozone concentration (ppb) 25.0–
38.2

34.2 38.2

PM2.5 concentration (lg/m3) 4.01–
7.40

6.43 7.40

Respiratory hazard index from air toxics (see [47]) 0.09–
0.31

0.25 0.31

Risk management plan proximity (# of sites/km) 0–0.12 0.07 0.12

Treatment, storage, and disposal facilities proximity (#
of sites/km)

0–0.13 0.06 0.13

Traffic proximity (vehicle count/m) 0–43.7 16.1 43.7

Wastewater discharge (see [47]) 0–
0.00002

0.000003 0.00
0.00
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fail to prioritize energy justice and expand access to the benefits
of renewable energies to DACs. Our analysis and resulting data
set can enable prioritization of renewable energy investments in
DACs, help to bring the benefits of renewable energy to frontline
communities, and ultimately help make the transition to low-
carbon energies more equitable.
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Appendix A

See Table A1.
tile 2 Quintile 3 Quintile 4 Quintile 5

max Mean Min–max Mean Min–
max

Mean Min–max Mean

.07 .05 .07–.12 .10 .12–.21 .16 .21–1.0 .33

.25 .19 .25–.36 .30 .36–.52 .44 .52–1.0 .66

.19 .13 .19–.38 .27 .38–.70 .52 .70–1.0 .88
–28.6 26.3 28.6–33.1 30.8 33.1–

38.4
35.6 38.4–

1,505
44.8

–0.32 0.25 0.32–0.47 0.39 0.47–
0.69

0.57 0.69–6.08 1.08

.18 .11 .18–.38 .28 .38–.65 .51 .65–1.0 .80
–0.05 0.03 0.05–0.08 0.06 0.08–

0.16
0.11 0.16–9.0 0.46

–41.6 40.1 41.6–43.8 42.8 43.8–
46.3

44.9 46.3–75.9 52.1

–8.22 7.83 8.22–8.78 8.51 8.78–
9.41

9.10 9.41–16.5 10.48

–0.38 0.34 0.38–0.46 0.42 0.46–
0.55

0.50 0.55–4.10 0.65

–0.21 0.16 0.21–0.53 0.35 0.53–
1.2

0.84 1.2–18 2.5

–0.59 0.29 0.59–1.7 1.10 1.7–4.2 2.7 4.2–442 22.4

–161 95.4 161–409 270 409–
1,027

658 1027–
37,576

3145

002–
04

0.0001 0.0004–
0.003

0.001 0.003–
0.05

0.01 0.04–
429,574

76.5
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Appendix B

See Table B1.
Table B1
Number of Counties with Data for Each Metric.

Source Metric N (counties)

EJSCREEN Less than HS education 3108
Low-income 3108
Minority 3108
Cancer risk 3108
Diesel PM 3108
Lead paint 3108
NPL proximity 3108
Ozone 3108
PM2.5 3108
Respiratory hazard 3108
RMP proximity 3108
TSDF proximity 3108
Traffic proximity 2970
Wastewater discharge 2889

LEAD Energy burden 3107
Rural Atlas All metrics 3108
SLOPE Technical potential

Commercial PV 3107
Residential PV 3107
Utility PV 3108
Land-based wind 3108

LCOE
Commercial PV 3107
Residential PV 3107
Utility PV 3102
Land-based wind 3102
Geothermal 304
Hydropower 3060

Capital costs
Geothermal 304
Hydropower 3060

REopt Cost savings
Solar-plus-storage 3108
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