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ABSTRACT

The cross-border mobility of malaria cases poses an obstacle to malaria elim-
ination programs in many countries, including Nepal. Here, we develop a novel
mathematical model to study how the imported malaria cases through the Nepal-
India open-border affect the Nepal government’s goal of eliminating malaria by
2026. Mathematical analyses and numerical simulations of our model, validated by
malaria case data from Nepal, indicate that eliminating malaria from Nepal is possi-
ble if strategies promoting the absence of cross-border mobility, complete protection
of transmission abroad, or strict border screening and isolation are implemented.
For each strategy, we establish the conditions for the elimination of malaria. We
further use our model to identify the control strategies that can help maintain a low
endemic level. Our results show that the ideal control strategies should be designed
according to the average mosquito biting rates that may depend on the location and
season.
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1. Introduction

Malaria continues to pose a global health burden and is one of the leading causes of
death in many developing countries [10]. In 2019, about 229 million cases of malaria
and 409 thousand malaria-related deaths were estimated worldwide, mainly in African
countries [29, 70]. Despite the continuous control efforts with programs targeting elimi-
nation, malaria cases have slightly increased globally for the past few years. According
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to the WHO reports, the total number of worldwide malaria cases in 2016, 2017,
2018, 2019, and 2020 are 214, 217, 219, 228, and 229 million, respectively. In pursuit
of malaria elimination, broad access to human mobility has been a primary obstacle
to successful malaria control in many countries, including Nepal [22]. In particular,
the human mobility between low and high endemic countries results in the importa-
tion of malaria cases from high to low endemic countries, causing potentiality for the
resurgence of malaria in low endemic countries. Notably, the cross-border migrants
contribute to the transfer of malaria cases from high to low endemic countries [45].
For example, even though the elimination of malaria from Spain was declared in 1964,
about 10,000 cases were reported, mostly in travelers and migrants, in a later year.
Similarly, about 12,000 to 15,000 cases of malaria are imported to European Union
(EU) every year, with the majority to France, the UK, and Germany from West Africa
[30, 33, 69]. Given the significant obstacle to malaria elimination due to human mo-
bility across borders, studying the impact of the imported cases through cross-border
mobility on the malaria elimination programs is critical.

Nepal is one of the countries facing the direct consequence of a cross-border transfer
of malaria cases due to its open border provision with India. Although the malaria
elimination programs in Nepal started in 1958 [24], the trend of malaria cases remained
fluctuated between 1963 and 2018, with a peak in 1985 (more than 42,321 cases)
[20, 49]. After 1985, the number of cases steadily declined, and the transmission rate
eventually reached a low level of 0.08 per 1000 annual parasite incidence (API) among
the risk population in 2018 [68]. With this booming trend, the Nepal government
has set the goal of zero indigenous malaria by 2022 and malaria elimination by 2026
[28]. However, the porous border between Nepal and India has been a severe concern
for achieving these goals because even though the number of total cases declined from
2009 (3500 cases) to 2018 (1065 cases) by 69%, the net imported cases increased during
this period by approximately 40 to 58% [49]. Most of these imported cases reported a
history of travel to malaria-endemic areas of India [28]. An increase in imported cases
has posed an uncertainty about the elimination programs to meet Nepal’s goal set.
Mathematical modeling can provide a valuable tool to predict the potential impact of
such imported cases on malaria elimination from Nepal.

Since the first differential equation-based model introduced by Ronald Ross in 1911
[25], various mathematical models have been developed to study the impact of control
and prevention policies on the incidence of malaria in many endemic regions [5, 17,
18, 35, 41, 51, 57]. These models have been further extended by incorporating age
structure, loss of immunity, the effect of social, economic, and environmental factors,
human migration, drug resistance of vector, the impact of bed-nets, multi-groups,
and multi patches [3, 6, 9, 15, 19, 31, 36, 42, 43, 46–48, 55, 63–65]. Even though
some mathematical models [7, 16, 39, 54, 62] include cross-border mobility, there
remains uncertainty on the various aspects of the role of imported cases in vector-borne
disease, particularly malaria transmission. Except for some descriptive, analytical, and
retrospective studies[21, 24, 58, 61, 68], none of the previous models focused on the
dynamics of indigenous and imported malaria cases in the context of Nepal, which is
in critical condition of achieving the 2026 malaria elimination goal due to cross-border
mobility of migrant workers.

Motivated from a previous study [66], which addressed the impact of cross-border
mobility on HIV-AIDS epidemics in Nepal, we develop a novel transmission dynam-
ics model of malaria by incorporating the imported cases through the cross-border
mobility into a basic malaria model. Using the data of malaria cases in Nepal, we
estimate the critical parameters of malaria dynamics in Nepal. We thoroughly analyze
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our model to study the impact of cross-border mobility on disease eradication and
threshold dynamics. We further use our model to predict the future trend of imported
and indigenous malaria cases and evaluate the different control strategies to achieve
the malaria elimination goal by 2026.

2. Mathematical Model

2.1. Model Formulation

To develop a transmission dynamics model of malaria, we divide the total population
of the home country into two groups: the population living in the home country (NhH)
and the population living abroad as migrant workers (NhM ). Each of these groups is
further divided into three subgroups: susceptible (ShH), infectious (IhH), and recov-
ered (RhH) in the home country and susceptible (ShM ), infectious (IhM ), and recovered
(RhM ) living abroad as migrant workers. Moreover, we consider susceptible and in-
fectious mosquito populations in the home country (SvH , IvH) and abroad (SvA, IvA).
We note that the migrant workers, NhM , are included in the total human population
abroad (NhA) and thus the corresponding abroad groups, susceptible (ShA), infectious
(IhA), and recovered (RhA) include ShM , IhM , and RhM , respectively.

In our model, malaria transmission occurs from infected mosquitoes to susceptible
humans and from infected humans to susceptible mosquitoes through mosquito bites.
We assume that b and b′ are the per capita biting rates of mosquitoes in the home
country and abroad, respectively. αvh and α′vh are the probability in the home country
and abroad, respectively, that an infectious mosquito transmit malaria to a susceptible
human in a single bite. Similarly, αhv and α′hv are the probability in the home country
and abroad, respectively, that the malaria is transmitted from infectious human to
a susceptible mosquito in a single infectious bite. For the home country, the total
number of bites (per time) from all the infectious mosquitoes is bIvH (infectious bites).
Among these bites, the susceptible humans get bIvHShH

NhH
infectious bites. Therefore, the

incidence rate of humans (i.e., the new human infections per unit time) is bαvhIvHShH
NhH

[2,

13, 14, 32, 40, 73, 74]. Similarly, the incidence rate for humans in abroad is b′α′
vhIvAShA
NhA

.
Also, the total number of bites (per time) made by the susceptible mosquitoes in the
home country is bSvH . Among these bites, the total number of bites from the infectious
humans (infectious bites) is bSvHIhH

NhH
. Therefore, the Incidence rate of mosquitoes (i.e.,

the new mosquito infections per unit time) is bαhvIhHSvH
NhH

. Similarly, the incidence rates

for mosquitoes in abroad is b′α′
hvIhASvA
NhA

.
The infectious humans recover with the rate γh, and the recovered individuals lose

their immunity and move back to the susceptible class at the rate q. Because of the
short lifespan of mosquitoes, we do not consider the recovered class for the mosquitoes
population. The parameters Λ and dh represent the recruitment rate and the natural
death rate of humans, respectively, while the parameters φ and dv represent the recruit-
ment rate and the death rate of mosquitoes, respectively. We assume that η represents
the per capita cross-border mobility rate for susceptible populations (ShH , ShM ) and
recovered populations (RhH , RhM ). Since infected individuals may behave differently
in their travels from and to the home country, we take p and θ as the cross-border
mobility rate for infectious individuals from and to the home country, respectively.
In the model, θIhM and bαvhIvHShH

NhH
represent the imported and indigenous malaria

incidence at home country, respectively.
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Figure 1.: Malaria transmission dynamics with cross-border mobility. The
upper SI-SIRS (inside red dashed line) and lower SI-SIRS (inside blue dashed line)
represent the dynamics of malaria abroad and in the home country. The solid arrows
represent the transfer of populations, and the dotted arrows represent the interaction
between the susceptible human and infectious female Anopheles mosquitoes and in-
fectious humans with susceptible female Anopheles mosquitoes. Here, subscripts H,
A, and M refer to home, abroad, and migrant, respectively, and the subscript h and v
refer to human and vector (mosquito), respectively.

The schematic diagram of our model is presented in Fig. 1. The system of equations
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describing the transmission dynamics of malaria discussed above is as follows:

S′hH = Λ + ηShM + qRhH −
bαvhIvH
NhH

ShH − (η + dh)ShH , (1)

I ′hH =
bαvhIvH
NhH

ShH + θIhM − (p+ dh + δh + γh)IhH , (2)

R′hH = γhIhH + ηRhM − (η + dh + q)RhH , (3)

S′vH = φ− bαhvIhH
NhH

SvH − dvSvH , (4)

I ′vH =
bαhvIhH
NhH

SvH − dvIvH , (5)

S′hM = ηShH + qRhM −
b′α′vhIvA
NhA

ShM − (dh + η)ShM , (6)

I ′hM =
b′α′vhIvA
NhA

ShM + pIhH − (θ + δh + dh + γh)IhM , (7)

R′hM = γhIhM + ηRhH − (η + dh + q)RhM , (8)

S′vA = φ−
b′α′hvIhA
NhA

SvA − dvSvA, (9)

I ′vA =
b′α′hvIhA
NhA

SvA − dvSvA − dvIvA. (10)

2.2. Approximation to incidence rate abroad

Since the detailed dynamics of malaria abroad makes the model extremely complex
and uncertain, we introduce an index ψ(t) called Annual Parasite Incidence (API),
for which the data are publicly available. We introduce this index into the model to
approximate the incidence rate abroad. Here ψ(t) is defined as the number of positive

cases of malaria per population under surveillance, i.e., ψ(t) =
IhA(t)

NhA(t)
. The incidence

rate of humans in abroad is given by

λ′h =
b′α′vhIvA(t)

NhA(t)
=
b′α′vhIvA(t)

IhA(t)
ψ(t).

Both b′α′vhIvA(t) and IhA(t) are differentiable functions in the interval [0, T ], where T
is the final time of the disease dynamics considered. Assuming that IhA(t) 6= 0, ∀ t ∈
[0, T ], the mean value theorem of integral calculus allows us to approximate the inte-

gral of the continuous function
b′α′vhIvA(t)

IhA(t)
with a constant ζ =

b′α′vh
T

∫ T
0

IvA(t)

IhA(t)
dt ≈

b′α′vh
IvA(t0)

IhA(t0)
for some t0 ∈ (0, T ). Thus, we approximate the incidence rate abroad by

λ′h = ζψ(t) and estimate the value of ζ from the data fitting. With this approximation,
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the system (1-10) reduces to the system of the following eight differential equations.

S′hH = Λ + ηShM + qRhH −
bαvhIvH
NhH

ShH − (η + dh)ShH , (11)

I ′hH =
bαvhIvH
NhH

ShH + θIhM − (p+ dh + δh + γh)IhH , (12)

R′hH = γhIhH + ηRhM − (η + dh + q)RhH , (13)

S′vH = φ− bαhvIhH
NhH

SvH − dvSvH , (14)

I ′vH =
bαhvIhH
NhH

SvH − dvIvH , (15)

S′hM = ηShH + qRhM − ζψ(t)ShM − (dh + η)ShM , (16)

I ′hM = ζψ(t)ShM + pIhH − (θ + δh + dh + γh)IhM , (17)

R′hM = γhIhM + ηRhH − (η + dh + q)RhM . (18)

3. Parameters and model validation

3.1. Data

In this study, we used the data containing both indigenous and imported malaria cases
in Nepal. Since the total cases were not classified as imported and indigenous before
2009, we considered the data only from 2009 to 2019 for our model fitting. The primary
data sources related to malaria cases in Nepal are the National Malaria Surveillance
Guidelines 2019 published by the Government of Nepal, Ministry of Health and Pop-
ulation Department of Health Services Epidemiology and Disease Control Division
(EDCD) [21, 49]. In addition, we also obtained the data of Annual Parasitic Incidence
(API) of India from the Malaria Site India [50, 59].

3.2. Parameter estimation

The population of Nepal was estimated to be 23,151,423 in 2001 [71] and 26,494,504
in 2011 [72]. Taking the average population growth per year from 2001 to 2011,
we estimated the population of Nepal in 2009 (the base year of our dynamics, i.e.,
t = 0) to be 25,825,888. About 5.5 million Nepalese, including 1.9 million male work-
ers, were living abroad [37], mostly in India. These migrant workers bring malaria
upon their return home, contributing the significant number of imported malaria
cases in Nepal [28]. Note that the majority of Nepalese migrants working in In-
dia are male [66]. Therefore, we took NhM (0) = 1.9 million. With 5.5 million liv-
ing abroad, the population inside Nepal is approximately 20,325,888. Since most of
the hilly and mountainous regions of Nepal are considered risk free zone of malaria,
leaving only about 48% of Nepalese residing in other regions in high, moderate or
low risk area [53], we estimated NhH(0) = 9, 756, 426. Moreover, we used the in-
formation from the data and divided the total population into different compart-
ments and obtained ShH(0) = 9, 754, 000, IhH(0) = 2, 000, RhH(0) = 426, ShM (0) =
1, 898, 300, IhM (0) = 1, 400, RhM (0) = 300, SvH(0) = 9, 754, 176, and IvH(0) = 2, 250.
About 37.5% of the total migrant workers (∼ 179, 464) traveled from Nepal to India
in 2009 [27]. This allows us to estimate per capita annual mobility rate of migrants

6



from Nepal to India as η =
Number of migrants from Nepal to India

Total risk population of malaria in Nepal
=

179, 464

9, 756, 426
=

0.0183 (per human per year).
The Crude Birth Rate (CBR), i.e., the number of live birth per year per 1,000 people,

of Nepal for the year 2009 was 23.189 [72], which implies the human recruitment rate

per year for the population in the risk area is Λ = 48% of
23.189× 25, 825, 888

1000
=

287, 460. Since the average life expectancy of Nepalese individuals in 2009 was 67.178
years [4], the natural death rate of humans per year is taken as dh = 0.0149. The
number of deaths due to malaria in the base year [26] was 6, so we calculated δh =
0.0017 per year. The duration of immunity for recovered people varies widely from
region to region, and we took the immunity period to be 3 months, i.e., q = 4 per
year [14]. For model fitting, we assumed that all the cases are recorded and that
malaria-infected Nepalese do not move to India as workers while sick. Therefore, we
took p=0.

The population of female Anopheles mosquitoes has been estimated to be 1-10 times
the human population [11, 14, 32]. Thus we took the mosquito population equal to
base year human population 9, 756, 426. Based on the previous studies [1, 8, 12, 14, 32],
we took the probability of disease transmission, per bite, from an infectious mosquito
to a susceptible human as αvh = 0.0195, and from an infectious human to a susceptible
mosquito as αhv = 0.63. Similarly, the human recovery rate and the mosquito death
rate were obtained from previous studies as γh = 1.85 per year and dv = 27.9113 per
year [1, 8, 12, 14, 32]. The remaining parameters, θ, ζ, and b, were estimated from the
data fitting.

3.3. Model fitting to the data

As per the national planning of malaria elimination by 2026, the government of Nepal
introduced the strategic plan in 2014, which includes the distribution of Long Lasting
Insecticide Treated Nets (LLINs) and Indoor Residual Spraying (IRS) intended to
reduce mosquito bites [28]. Thus in our model fitting, we allow the different biting
rates for the period before (b = b1) and after (b = b2) 2014.

The available data are the yearly indigenous malaria incidence, the yearly imported
malaria incidence, and the total malaria incidence in Nepal. From the solution of
our model, the indigenous, the imported, and the total malaria incidences at time t,
denoted by L(t), I(t), and T (t), respectively, can be computed using the following
expressions:

L(t) =
bαvhShHIvH

NhH
, I(t) = θIhM , T (t) =

bαvhShHIvH
NhH

+ θIhM . (19)

The model system of differential equations was solved numerically using the fourth-
order Runge-Kutta method. Using the solutions, we obtained the best-fit parameters
using the nonlinear least-squares regression method that minimizes the following sum
of the squared residuals:

J(φ) =

n∑
k=1

[
(L(tk)− L̄(tk))

2 + (I(tk)− Ī(tk))
2 + (T (tk)− T̄ (tk))

2
]
, (20)

where L(tk), I(tk), T (tk) and L̄(tk), Ī(tk), T̄ (tk) are the model predicted incidences
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and those given in the available data. In our data fitting, we used the total 30 data
points to estimate four parameters Φ = (θ, ζ, b1, b2). The ratio of data to the free
parameters used in our model, i.e., 7:1 , is well within the recommended range of 5:1
to 10:1[56]. Also, three types of data (indigenous, imported, and total) included in
fitting provide additional feature of malaria infection. To obtain the confidence limits
for the estimated parameters, we computed standard errors from the sensitivity matrix
S using the techniques described previously [52]. Furthermore, we computed the rank
of the matrix STS and found the matrix to be of the full rank (rank = 4), which
ascertain the identifiability of these parameters of the model [44]. All computations
were carried out in MATLAB (The MathWorks, Inc.).

In Fig. 2, we present the model prediction, along with the data, of the indigenous,
the imported, and the total malaria incidence. The model fits have captured the dy-
namics pattern of the multiple data well, and the model prediction is also consistent
with the cumulative data (Fig. 2), thereby validating the model. All estimated pa-
rameters, as well as the fixed parameters, are provided in Table 2. As indicated by
the data [28], the model solutions also show the decreasing trend of the malaria cases
from 2009, with the indigenous case being more than the imported case until 2014.
However, after 2014, the imported case overtook the indigenous case, indicating the
alarming situation originating from the imported cases.

(a) (b)

Figure 2.: Model fitting to the data. (a) Solution of the fitted model along with the
data of indigenous, imported, and total malaria incidences in Nepal, and (b) Model
prediction of cumulative indigenous, cumulative imported, and cumulative total cases
in Nepal.

Our estimates show that the biting rate of mosquitoes is b1 = 48.0 (95% CI: [38.13,
57.87]) before 2014, and b2 = 39.5 (95% CI: [29.63, 49.37]) after 2014. These estimated
values are consistent with the values provided in many previous studies [14, 32]. Sim-
ilarly, we estimated the disease import rate θ = 0.98 (95% CI: [0.42, 1.54]) and the
parameter corresponding to the incidence rate in India ζ = 0.00105 (95% CI: [0.0005,
0.0016]).
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Description State variables Base Value Reference

Risk humans population in Nepal NhH(0) 9,756,426 Calculated
Susceptible humans in Nepal ShH(0) 9,754,000 Calculated
Infectious humans in Nepal IhH(0) 2,000 Assumed
Recovered humans in Nepal RhH(0) 426 Assumed

Susceptible Migrants in India ShM (0) 1,898,300 [28]
Infectious Migrants in India IhM (0) 1,400 Assumed
Recovered Migrants in India RhM (0) 300 Assumed

Susceptible mosquitoes in Nepal SvH(0) 9,754,176 Assumed
Infectious mosquitoes in Nepal IvH(0) 2,250 Assumed

Table 1.: Base value of demographic variables of malaria in Nepal

4. Model analysis

Note that our model is non-autonomous due to the presence of time-dependent param-
eter ψ(t). Since ψ(t) depends on the policy implemented abroad, the time-dependent
nature of this parameter remains unknown, and the analysis of this non-autonomous
model is complicated and uncertain. Therefore, for the purpose of analysis, we consider

the autonomous form of the model by taking a constant k = (ζ/T )
∫ T

0 ψ(t)dt as an
approximation to the incidence rate abroad.

4.1. Basic properties of model: positivity and boundedness

In this section, we show that the solutions of all the state variables are non-negative
and bounded in order to demonstrate that the model is well-posed and biologically
valid for describing malaria transmission dynamics. The results are presented in the
following theorem.

Theorem 4.1. If ShH(0) > 0, IhH(0) ≥ 0, RhH(0) ≥ 0, ShM (0) ≥
0, IhM (0) ≥ 0, RhM (0) ≥ 0, SvH(0) > 0, IvH(0) ≥ 0, then the solution set
{ShH(t), IhH(t), RhH(t), ShM (t), IhM (t), RhM (t), SvH(t), IvH(t)} of the system
(11 - 18) is always non-negative and bounded.

Proof. See Appendix A.1.

Using the above conditions, we derive that for any ε > 0, there exists tε > 0 such
that the solution of the system with t ≥ tε lies in the compact set Ω = Ωh×Ωv, where

Ωh =

{
(ShH , IhH , RhH , ShM , IhM , RhM ) ∈ <6

+ : Nh ≤
Λ

dh
+ ε

}
and

Ωv =

{
(SvH , IvH) ∈ <2

+ : Nv ≤
φ

dv
+ ε

}
.
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Description Parameters Base value and unit Reference

Probability of malaria transmission
from an infectious mosquito (per bite)

to a susceptible human αvh 0.0195 [1, 12]
Probability of malaria transmission

from an infectious human to
a susceptible mosquito (per bite) αhv 0.63 [8, 12, 38]

Humans recruitment rate Λ 287,460 Number×yr−1 Calculated
Per capita recovery

rate of humans γh 1.85 yr−1 [1, 12]
Per capita natural birth and

death rate of mosquitoes dv 27.9113 yr−1 [1, 12]
Per capita disease induced

death rate of humans δh 0.00171yr−1 Calculated
Per capita natural death

rate of humans dh 0.0149yr−1 Calculated
Per capita mobility rate

of healthy humans η 0.0183yr−1 Calculated
Per capita disease import

rate of humans θ 0.98 yr−1 Estimated
[ 0.4172, 1.5428]

Per capita disease export
rate of humans p 0 yr−1 Assumed

Per capita rate of Immunity
loss of humans q 4 yr−1 [14]

Parameter related with
incidence rate in India ζ 0.00105 yr−1 Estimated

[0.0005, 0.0016]
Per capita biting rate of mosquitoes

at home country up to 2014 b1 48 yr−1 Estimated
[39.6537, 66.3463]

Per capita biting rate of mosquitoes
at home country after 2014 b2 39.5 yr−1 Estimated

[29.6318, 49.3682]

Table 2.: Model parameters of incidence of malaria in Nepal

4.2. Existence of equilibria

For convenience, we let ShH = x, IhH = y, RhH = z, ShM = X, IhM = Y, RhM =
Z, SvH = l, and IvH = m, and we take (x∗, y∗, z∗, l∗,m∗, X∗, Y ∗, Z∗) to represent the
equilibrium point of the system (11 -18). For simplicity, we assume that also for the
infectious compartments, the mobility rate is equal in both ways, from home to abroad
and vice versa, i.e., θ = p. Taking,

λ∗h = βh
m∗

N∗hH
, λ∗v = βv

y∗

N∗hH
, βv = bαhv, βh = bαvh, (21)
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the system (11-18) provides

x∗ =
P

K1 +K2 λ∗h
, y∗ =

Q1 +Q2λ
∗
h

K1 +K2 λ∗h
, z∗ =

Q3 +Q4λ
∗
h

K1 +K2 λ∗h
,

X∗ =
S1 + S2λ

∗
h

K1 +K2 λ∗h
, Y ∗ =

T1 + T2λ
∗
h

K1 +K2 λ∗h
, Z∗ =

U1 + U2λ
∗
h

K1 +K2 λ∗h
, (22)

where P, Q1, Q2, Q3, Q4, S1, S2, T1, T2, U1, U2, K1, K2 are non-negative con-
stants with the combination of model parameters computed using Wolfram Mathe-
matica. The closed-forms of these expressions are provided in Supplementary Material
A(page 1-3). With some algebraic manipulation, we obtain

N∗hH =
P +Q1 +Q3 + λ∗h(Q2 +Q4)

K1 +K2 λ∗h
, λ∗v =

βv(Q1 +Q2λ
∗
h)

P +Q1 +Q3 + λ∗h(Q2 +Q4)
,

m∗ =
φβv(Q1 +Q2λ

∗
h)

dv
(
βvQ1 + dvP +Q1dv +Q3dv + (Q2dv +Q4dv + βvQ2)λ∗h

) , l∗ =
φ−m∗dv

dv
.

(23)

Then, from (21) and (23), we obtain

a0λ
∗3
h + a1λ

∗2
h + a2λ

∗
h + a3 = 0, (24)

where,

a0 = Q2Q4dvβv + 2Q2Q4d
2
v +Q2

2dvβv +Q2
2d

2
v +Q2

4d
2
v > 0,

a1 = PQ2dvβv + 2PQ2d
2
v + 2PQ4d

2
v +Q2Q3dvβv +Q1Q4dvβv + 2Q2Q3d

2
v + 2Q1Q4d

2
v

+ 2Q1Q2dvβv + 2Q1Q2d
2
v + 2Q3Q4d

2
v −K2Q2φβhβv,

a2 = P 2d2
v + PQ1dvβv + 2PQ1d

2
v + 2PQ3d

2
v +Q1Q3dvβv + 2Q1Q3d

2
v +Q2

1dvβv +Q2
1d

2
v

+Q2
3d

2
v −K2Q1φβhβv −K1Q2φβhβv,

a3 = −K1Q1φβhβv ≤ 0.

Since the primary focus of our study is to evaluate the impact of imported cases via
cross-border mobility on the local malaria transmission and control, we now analyze
the existence of equilibria for four important cases stated based on the mobility and
outside transmission parameters η, θ, and k. The cases we consider are: (I) η = 0, θ =
0, k 6= 0 (absence of cross-border mobility); (II) η 6= 0, θ 6= 0, k = 0 (complete
protection of transmission abroad); (III) η 6= 0, θ = 0, k 6= 0 (strict border screening
and isolation); and (IV) η 6= 0, θ 6= 0, k 6= 0 (presence of cross-border mobility, no
protection, and no border screening or isolation). We now perform equilibria analysis
for each of these four cases in the following subsections.

4.2.1. Case-I: η = 0, θ = 0, k 6= 0 (absence of cross-border mobility)

In this case, Q1, Q3, S1, T1, U1 are zero and P 6= 0, K1 6= 0, implying that one
root of (24) is zero, i.e., λ∗h = 0. Then, from (22) and (23), we obtain a disease-free
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equilibrium point, E0, given by

E0 =

(
Λ

dh
, 0, 0,

φ

dv
, 0, 0, 0, 0

)
.

We now derive the epidemic threshold index, R0, corresponding to this disease-free
equilibrium point (E0) by using the second-generation matrix method [23, 67] (the
details are provided in Appendix A.2) and obtain

R0 =

√
φdhβhβv

Λ(dh + δh + γh)d2
v

.

We also confirm that our expression of R0 is consistent with the one derived from the
first principle [34, 67] (see Appendix A.3). The other two roots of (24) are given by

λ∗h =
−a1 ±

√
a2

1 − 4a0a2

2a0
. Note that a0 > 0. Also, it is easy to verify that if R0 > 1,

then a2 < 0, which implies one value of λ∗h, i.e.
−a1 +

√
a2

1 − 4a0a2

2a0
, is positive. This

provides us with one endemic equilibrium point of the system. Similarly, if R0 < 1,
then a2 < 0. In this case, the system provides either two positive values of λ∗h, i.e. two
endemic equilibrium points, if a1 < 0 or no positive λ∗h, i.e., no endemic equilibrium
point, if a1 > 0.

4.2.2. Case-II: η 6= 0, θ 6= 0, k = 0 (complete protection of transmission abroad)

In this case, Q1, Q3, T1, U1 are zero, and P, S1, K1 are positive, which shows one
of λ∗h to be zero from (24). Then from (22) and (23), we obtain another disease-free
equilibrium point, E01, given by

E01 =

(
Λ (dh + η)

dh (dh + 2η)
, 0, 0,

φ

dv
, 0,

ηΛ

2ηdh + d2
h

, 0, 0

)
.

We also obtain the epidemic threshold index, R1, corresponding to this disease-free
equilibrium point, E01, as follows (see Appendix A.4)

R1 = R0

√
1 +

η (dh + γh + δh) + (η − θ) dh
(dh + η) (dh + γh + δh + 2θ)

.

Note that the migrant workers presumably travel less while they are infected. This
implies η−θ ≥ 0 and hence R1 ≥ R0 in general. Similar to Case I above, we can easily
verify that if R1 > 1, we obtain only one endemic equilibrium point, and if R1 < 1, we
obtain two equilibrium points (or no equilibrium point) depending on whether a1 < 0
(or a1 > 0).

4.2.3. Case-III: η 6= 0, θ = 0, k 6= 0 (strict border screening and isolation)

In this case, Q1 is 0, and K1, P, Q3, S1, T1, U1 are positive. One root of the equation
(24) is zero, giving a disease-free equilibrium point, E02. However, this disease-free
equilibrium condition asserts the absence of the disease only within the home country
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while allowing the disease among migrants abroad. The expression for E02 is given by

E02 =

(
P

K1
, 0,

Q3

K1
,
φ

dv
, 0,

S1

K1
,
T1

K1
,
U1

K1

)
,

and the corresponding epidemic threshold index is (see Appendix A.5)

R2 =

√
PK1φβhβv

(P +Q3)2d2
v (dh + γh + δh)

.

Note that η = 0 implies R2 = R0 as expected. Again, as in Case I and II above, here
also we obtain only one endemic equilibrium point for R2 > 1 and two equilibrium
points (or no equilibrium point) depending on whether a1 < 0 (or a1 > 0) for R2 < 1.

4.2.4. Case-IV: η 6= 0, θ 6= 0, k 6= 0 (presence of cross-border mobility, no
protection, and no border screening or isolation)

In this case, a3 6= 0 implying λ∗h 6= 0 (from (24)) and m∗ 6= 0 (from (21)). This
implies that the disease-free equilibrium point does not exist, indicating that malaria
eradication is not possible as long as there is a presence of cross-border mobility,
absence of protection abroad, and absence of border screening and isolation.

To analyze possible endemic equilibrium points, we represent α, β, and γ to be the

three possible roots of the cubic equation (24). The product of roots, αβγ = −a3

a0
.

Since a0 > 0 and a3 < 0, αβγ > 0. This shows that all three roots can not be negative
real numbers. Also, (24) can not have one negative real root and two complex roots
because otherwise, two complex roots α = a + ib, β = a − ib and one negative real
root γ provides αβγ = (a2 + b2)γ < 0, which is not possible here. Thus, the equation
(24) provides at least one positive value of λ∗h, and hence the system admits at least
one endemic equilibrium point.

To identify whether the system has 1, 2, or 3 endemic equilibrium points, we first
transform the equation (24) in terms of the equilibrium infected humans, y∗, to obtain
FL(y∗) = FR(y∗), where FL(y∗) = −M2y

∗−M3 and FR(y∗) = M0(y∗)3 +M1(y∗)2. The
equilibrium values of y∗, i.e., y∗1, y

∗
2, y

∗
3, are then given by the intersection of the curves

FL(y) and FR(y) (Fig. 3). As shown in Fig. 3, the slope −M2 of the linear function
FL(y), which can be explained in terms of the infection rate βh, can help determine
the existence of 1, 2, or 3 equilibria. An increase in βh (i.e., a decrease in the slope
of FL(y)) makes the equilibrium point y∗1 and y∗3 move to the right and y∗2 move to
the left, eventually giving y∗1 = y∗2 corresponding to two equilibria y∗1 = y∗2 and y∗3
(Fig. 3b). Increasing βh further, y∗1 and y∗2 disappear, and only one equilibrium point
y∗3 exists. Since the equilibrium point y∗3 attains the highest value, we can correspond
this situation to the worst-case scenario, i.e., a high endemic level. Similarly, decreasing
βh (i.e., increasing the slope of the linear function FL(y)) causes y∗1 and y∗3 to move
to the left and y∗2 to move to the right. At some point, y∗2 and y∗3 coincide with each
other, giving only two equilibrium points y∗1 and y∗2 = y∗3. If βh is decreased further,
then y∗2 and y∗3 disappear, leaving only y∗1 as an endemic equilibrium point. Since y∗1
corresponds to the smallest equilibrium point, the case in which the only y∗1 exists
can be considered as the endemic condition with the minimum burden. Therefore,
increasing the slope −M2 (for example, decreasing βh), making it less than its threshold
value (corresponding to y∗2 = y∗3), can be a vital control strategy to maintain the
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endemic at a low level.

(a) (b) (c)

Figure 3.: Endemic equilibriums. (a) Graphs of FL(y) and FR(y) with possible three
intersections corresponding to three endemic equilibrium points. (b) Graphs of FL(y)
and FR(y) with exactly two endemic equilibrium points y∗1 = y∗2 and y∗3. Decreasing
the slope of FL(y) further gives only one equilibrium point y∗3 (a high epidemic level).
(c) Graphs of FL(y) and FR(y) with exactly two endemic equilibrium points y∗1 and
y∗2 = y∗3. Increasing the slope of FL(y) further gives only one equilibrium point y∗1 (a
low epidemic level).

In summary, the parameter a3, which is always non-positive, provides an important
threshold for disease-free equilibrium to occur (a3 = 0). As long as a3 6= 0 (i.e., a3 < 0),
there is no DFE, and the system always provides at least one endemic equilibrium.
The absence of DFE with at least one endemic equilibrium can be attributable to
ongoing infection abroad and the importation of malaria cases through cross-border
mobility, making a3 6= 0. When a3 = 0 (presence of DFE), 1 or 2 endemic equilibrium
points exist according to the sign of other parameters (a1, a2), which depend upon the
thresholds R0, R1, or R2. Similarly, when a3 < 0 (absence of DFE), 1 to 3 endemic
equilibrium points exist according to the sign of other coefficients.

4.3. Stability analysis and uniform persistence

In this section, we provide some analytical results related to the stability and uniform
persistence of the system, specifically, the local stability of the disease-free equilibrium
points and the uniform persistence for Case-I and Case-II. In addition, for Case-III,
we provide the local stability of the disease-free equilibrium point that corresponds
to the absence of disease within the home country only. We were unable to prove the
uniform persistence for Case-III and Case-IV because of the complexity of the model,
presumably due to the absence of the overall disease-free equilibrium point in these
cases.

4.3.1. Case-I: η = 0, θ = 0, k 6= 0 (absence of cross-border mobility)

We prove the local stability of the disease-free equilibrium E0 as stated in the following
theorem.

Theorem 4.2. The disease free equilibrium point E0 of the system (11-18) is locally
asymptotically stable if R0 < 1, and unstable if R0 > 1.
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Proof. See Appendix B.1.

From the eigenvalues of the Jacobian matrix J at E0 (Appendix B.1), we have the
following lemma.

Lemma 4.3. For the Jacobian matrix J , the following statements hold:

(1) R0 = 1 if and only if S(J) = 0,
(2) R0 > 1 if and only if S(J) > 0,
(3) R0 < 1 if and only if S(J) < 0,

where S(J) : = max{Re(λ) : λ is eigenvalue of the jacobian of system at DFE E0}.

We now establish that R0 > 1 can also provide a condition for the uniform persis-
tence of the disease in the home country in the absence of cross-border mobility. Here,
we use the following notations and definitions.

Ωo = {(ShH(t), IhH(t), ..., IvH(t)) ∈ <5
+ : ShH(t) > 0, IhH(t) > 0, ..., IvH(t) > 0},

∂Ωo = {(ShH(t), IhH(t), ..., IvH(t)) ∈ <5
+ : IhH(t) = 0 or IvH(t) = 0},

Ω = Ωo ∪ ∂Ωo = <5
+.

In the absence of cross-border mobility, it is enough to consider only the decoupled
system (11-15). We assume that τ(t)P is the solution maps generated by the decoupled
system (11-15) with initial value P . We denote M∂ = {P ∈ ∂Ωo : τ(t)P ∈ ∂Ωo}, and
ω(P ) = {y : τ(t)P → y as t → ∞}. We first state and prove the following three
lemmas.

Lemma 4.4. The sets Ωo and ∂Ωo are positively invariant under the flow induced by
the decoupled system (11-15) of the home country.

Proof. See Appendix B.2.

Lemma 4.5. Every forward orbit of τ(t) in M∂ converge to E0, i.e, E0 is the fixed
point of τ(t) and acyclic in M∂.

Proof. See Appendix B.3.

Lemma 4.6. If R0 > 1, then there exists ρ > 0 such that

lim
t→∞

Sup ‖τ(t)P − E0‖ ≥ ρ, ∀P ∈ Ωo.

i.e E0 is uniform weak repeller with τ(t).

Proof. See Appendix B.4.

We are now ready to state the following theorem, which establishes the condition
for malaria persistence in Nepal when cross-border mobility is absent.

Theorem 4.7. Let R0 > 1, then the decoupled system (11-15) of home country is
uniformly persistent with respect to (Ωo, ∂Ωo) in the sense that there is a positive
constant σ > 0 such that every solution (ShH(t), IhH(t), RhH(t), SvH(t), IvH(t)) of
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(11-15) with (ShH(0), IhH(0), RhH(0), SvH(0), IvH(0)) ∈ Ωo satisfies

lim
t→∞

Inf IhH ≥ σ, lim
t→∞

Inf IvH ≥ σ (25)

Proof. Assume that R0 > 1, then it follows from Lemma 4.3 that S(J) > 0. Let
τ(t)P is the solution maps generated by the decoupled system (11-15) with initial
value P ∈ Ωo. Clearly, the system {τ(t)}t≥0 admits the global attractor in <5

+. From
the Lemma 4.5, E0 is a fixed point of τ(t) and acyclic in M∂, every solution in M∂
approaches E0. Moreover, Lemma 4.6 implies that E0 is an isolated invariant set in Ω
and W s(E0)∩Ωo = φ. By the acyclicity theorem of uniform persistence for maps [75],
it follows that τ(t) is uniformly persistent with respect to (Ωo, ∂Ω0). Hence there exists
σ > 0 such that lim

t→∞
Inf IhH ≥ σ, lim

t→∞
Inf IvH ≥ σ. This completes the proof.

4.3.2. Case-II: η 6= 0, θ 6= 0, k = 0 (complete protection of transmission abroad)

The local stability of the disease-free equilibrium E01, corresponding to the case
when complete protection of transmission is in force outside Nepal, is given by the
following theorem.
Theorem 4.8. The disease free equilibrium point E01 of the system (11-18) is locally
asymptotically stable if R1 < 1, and unstable if R1 > 1.

Proof. See Appendix B.5.

We also have the following lemma.

Lemma 4.9. For the Jacobian matrix J1 (Appendix B.5), the following statements
hold:

(1) R1 = 1 if and only if S(J1) = 0,
(2) R1 > 1 if and only if S(J1) > 0,
(3) R1 < 1 if and only if S(J1) < 0.

We also prove that R1 > 1 provides the condition for uniform persistence of the
disease with dynamics given by the system (11-18) with η 6= 0, θ 6= 0, k = 0. Here,
we use the following notations and definitions.

Ωo = {(ShH(t), IhH(t), ..., RhM (t)) ∈ <8
+ : ShH(t) > 0, IhH(t) > 0, ..., RhM (t) > 0},

∂Ωo = {(ShH(t), IhH(t), ..., RhM (t)) ∈ <8
+ : IhH(t) = 0 or IvH(t) = 0 or IhM (t) = 0}.

To prove uniform persistence of {τ(t)}t≥0 with respect to (Ωo, ∂Ωo), we need the
following three lemmas.

Lemma 4.10. The sets Ωo and ∂Ωo are positively invariant under the flow induced
by the system (11-18).

Proof. See Appendix B.6.

Lemma 4.11. Every forward orbit of τ(t) in M∂ converge to E01.

Proof. See Appendix B.7
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Lemma 4.12. If R1 > 1, then there exists ρ > 0 such that

lim
t→∞

Sup ‖τ(t)P − E01‖ ≥ ρ, ∀P ∈ Ωo.

i.e E01 is uniform weak repeller with τ(t).

Proof. See Appendix B.8.

With the help of the above lemmas, we now establish the following persistence
theorem.

Theorem 4.13. If R1 > 1, then the system (11-18) is uniformly persistent with
respect to (Ωo, ∂Ωo) in the sense that there is a positive constant σ > 0 such
that every solution (ShH(t), IhH(t), RhH(t), SvH(t), IvH(t), ShM (t), IhM (t), RhM (t))
with (ShH(0), IhH(0), RhH(0), SvH(0), IvH(0), ShM (0), IhM (0), RhM (0)) ∈ Ωo satisfies
lim
t→∞

Inf IhH ≥ σ, lim
t→∞

Inf IvH ≥ σ, lim
t→∞

Inf IhA ≥ σ.

Proof. Assume that R1 > 1, then it follows from Lemma 4.9 that S(J1) > 0. Let
τ(t)P is the solution maps generated by the system (11-18) with the initial value P .
Clearly, the system {τ(t)}t≥0 admits the global attractor in <8

+. Here, the stable set
of E01 is W s(E01) = {P ∈ d(τ(t)P,E01) → 0 as t → ∞}. From the Lemma 4.11,
E01 is a fixed point of τ(t) and acyclic in M∂, every solution in M∂ approach to
E01. Moreover, Lemma 4.12 implies that E01 is an isolated invariant set in Ω and
W s(E01) ∩ Ωo = φ. By the acyclicity theorem of uniform persistence for maps [75], it
follows that τ(t) is uniformly persistent with respect to (Ωo, ∂Ω0). Hence there exist
σ > 0 such that lim

t→∞
Inf IhH ≥ σ, lim

t→∞
Inf IhM ≥ σ, lim

t→∞
Inf IvH ≥ σ. This completes

the proof.

4.3.3. Case-III: η 6= 0, θ = 0, k 6= 0 (strict border screening and isolation)

In this case, the local stability of the corresponding disease-free equilibrium point,
E02, is given by the theorem below. As mentioned earlier, this disease-free equilibrium
asserts the disease-free only within the home country while allowing infected migrants
abroad.

Theorem 4.14. The disease free equilibrium point E02 of the system (11-18) is locally
asymptotically stable if R2 < 1, and unstable if R2 > 1.

Proof. See Appendix B.9.

4.4. Analysis of simplifications implemented in the model

4.4.1. Approximation with autonomous sytem

Note that our model is non-autonomous due to the time-dependent parameter ψ(t),
representing the API of India. However, for analytical tractability (Subsection 4.1, 4.2,
and 4.3 ), we approximated the model with the autonomous system. Moreover, since
the future API of India can not be obtained, the simulation results for model prediction
and control programs (Section 5) are computed based on the autonomous model with
the current API of India. In this section, we examine the potential error that we an-
ticipate from the autonomous model. For this, we compared the predicted cumulative
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cases for both autonomous and non-autonomous systems for the period 2009-2019 (see
in page-1 of Supplementary Material B). We observed that the predicted cumulative
cases by the autonomous model remain within 5% of the non-autonomous model. For
example, from 2009 to 2019, the difference in cumulative cases from the two model
systems is only 1000 out of 20,000 base cases. Therefore, the autonomous model pro-
vides a reasonable approximation to the non-autonomous model, and the study’s main
finding remains the same in both models.

4.4.2. Approximations to the exposed class of mosquitoes and pathogen transmission
from recovered humans

Because of the limited data availability, we have not included two potential phe-
nomena: the incubation period of mosquitoes and pathogen transmission from re-
covered humans. However, these phenomena have been considered in some previous
studies[14, 47]. While these phenomena may not significantly impact the primary ob-
jective of this study, namely the impact of imported cases on the malaria elimination
program, we also considered an extended model with these two phenomena incorpo-
rated. Fitting this extended model to the data with the same initial values of state
variables and parameters (Table 1 and Table 2), we obtained the transmission prob-
ability from recovered human to susceptible mosquitoes per bite to be r = 0.35 and
the incubation period of mosquito as 1/σ = 10 days, consistent with previous studies
[14, 32]. Notably, per capita mosquito biting rates of b1 = 56 and b2 = 48, estimated
with the extended model, are within the 95% confidence interval of the estimates from
the simplified model.

Moreover, the cumulative case during 2020-2026 predicted by the extended model
is 1425, which is close to the estimate of 1348 by the simplified model. Similarly, the
predicted new cases in the year 2026 by the extended model is 195, while that by
the simplified model is 191. Therefore, the qualitative and quantitative differences be-
tween the two models with and without the exposed class of mosquitoes and pathogen
transmission from recovered humans are not significant, asserting the robustness of
the simplified models(see in page 2-4 of Supplementary Material B).

5. Malaria epidemic prediction and potential control in Nepal: Model
simulations

We use our model to predict the malaria epidemic in Nepal and evaluate the potential
control strategies. In particular, we focus on whether the goal of malaria elimination
from Nepal by 2026 set by the government of Nepal can be achieved with the current
trend and/or potential strategies. We take the year 2020 as the base year and estimate
the imported and indigenous malaria cases during the period 2020-2026, and assess the
number of possible control strategies that can be implemented for malaria elimination.

5.1. Basic malaria epidemic outcome in Nepal

For the basic simulations, we take the API of India, ψ(t), a constant value corre-
sponding to the year 2018. We compute the model predicted values of indigenous and
imported new cases for 2020-2026 (Fig. 4a). We observe that if the current trend
continues, the indigenous malaria cases follow a decreasing trend, but the imported
cases increase slightly. We predict the indigenous malaria cases in Nepal will decrease
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to a yearly incidence of 67 cases in 2026, while the imported cases will remain 124 per
year in 2026. As a result, the annual total incidence will remain 191 cases in the year
2026. With this incidence rate, the cumulative indigenous cases and imported cases
for the period 2020 to 2026 will reach 540 and 808, respectively, making a total of
1348 cases of malaria in Nepal in this period (Fig. 4b). While the magnitude remains
relatively low, a slightly elevated level of new cases in 2026, mainly because of the
imported cases, shows that the importation of malaria cases from India might remain
an obstacle to the Nepal government’s goal of malaria elimination by 2026.

(a) (b)

Figure 4.: Model prediction of the malaria epidemic in Nepal. (a) The model
prediction of the annual incidence of indigenous, imported, and total malaria cases
from 2020 to 2026; and (b) the model prediction of the cumulative cases of indigenous,
imported and total malaria infection from 2020 to 2026.

5.2. Impact of the transmission abroad on the epidemic in home country

As revealed in the model-predicted epidemic trend, the transmission of malaria abroad
that may eventually cause higher imported cases can be a determinant factor for
achieving an elimination goal by 2026. The model parameter k, which represents the
impact of API of India, can be used to study how the transmission dynamics abroad
can impact the epidemic outcome in Nepal. According to the data API of India has had
a decreasing trend for the last few years. If the decreasing trend continues, imported
cases in Nepal are expected to reduce in the coming years. Our model predicts that
the malaria incidence in the year 2026 decreases linearly as the % reduction of API of
India increases (Fig. 5). For example, reducing the current API (base value k = 0.1)
by 50% brings down the annual malaria incidence from 191 to 95 in 2026. The linear
dependency of cumulative cases on the % reduction of India API is also seen with a
50% reduction from the base case bringing the cumulative cases from 1,348 to 869
during the period 2020-2026 (Fig. 5). These results indicate that the API of India
can have an important role in the cases in the home country and eventually on the
success of the Nepal government’s malaria elimination goal.
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Figure 5.: Impact of the API of India. Reduction of total malaria incidence at the
year 2026 (Left) and reduction of cumulative malaria cases from 2020-2026 (Right)
with Annual Parasitic Incidence (API) of India taking its value 0.1 for the base year
2020.

5.3. Control of malaria in Nepal

We consider four potential control strategies: (1) Insecticide-treated nets (ITN), (2) In-
door Residual Spraying (IRS), (3) Border screen and isolation (BSI), and (4) Migration
reduction (MR). Implementation of ITN reduces the mosquito biting rate. Assuming
φITN represents the effectiveness of ITN (assuming 100 % coverage), the implementa-
tion of this strategy transforms b→ (1−φITN )b in our model. Similarly, IRS increases
mosquito death, transforming our model as dv → φIRSdv, where φIRS ≥ 1 is the
enhancement of mosquito death rate due to IRS. We denote the effectiveness of BSI
by φBSI , 0 ≤ φBSI ≤ 1 so that the implementation of this strategy results in the
transformation θ → (1 − φBSI)θ, i.e., reduction of the disease import rate θ by a
proportion φBSI . The last strategy, MR, can be attributed to promoting various em-
ployment opportunities within the country, thereby reducing the cross-border mobility
for seeking employment in India. The strategies can be incorporated into our model
by transforming η → (1− φMR)η, θ → (1− φMR)θ, where φMR, 0 ≤ φMR ≤ 1 is the
effectiveness of MR.

The mosquito biting rate is one of the most critical parameters of malaria trans-
mission. While we estimated the low biting rate from the data fitting, the estimated
value is the average annual rate. In reality, the biting rate can be uncertain as it is
affected by various environmental (seasonal), social, and economic factors. To include
broader possible scenarios, we present the results for two different biting rates, low
biting rate (base case b = 39.5 and high biting rate (approximately two times higher
than the base case, b = 100).

5.3.1. Control strategies for elimination

The analytical results that we proved in subsection 4.2 inform us that malaria can be
eliminated from the home country if one of the following conditions can be achieved:
absence of cross-border mobility (case I in 4.2.1), full protection of transmission abroad
(case II in 4.2.2), and strict border screening and isolation (case III in 4.2.3). According
to our theorems, in case I, II, and III, the malaria gets eliminated if (R0 < 1, a10 > 0),
(R1 < 1, a11 > 0), and (R2 < 1, a12 > 0), respectively, where a10, a11, and a12 are
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corresponding values of a1 for case I, II, and III, respectively. We now evaluate whether
the control strategies (φITN , φIRS , φBSI , and φMR) can bring the model to satisfy
the condition of eliminating malaria in Nepal.

Our results show that for the low biting rate condition, the elimination of malaria
can be achieved in Nepal regardless of whether any of the control strategies are applied
or not because R0 < 1, R1 < 1, R2 < 1 and a10 > 0, a11 > 0, a12 > 0 remain always true
(Fig. 6, first row). However, for the high biting rate condition, R0 < 1, R1 < 1, R2 < 1
and a10 > 0, a11 > 0, a12 > 0 can not be achieved without the control strategies, i.e.,
for φITN = φBSI = φMR = 0, and φIRS = 1 (Fig. 6, second row). In this case, (φBSI)
and (φMR) have no impact on R and a1. Therefore, the control strategies related
to the infected migrant workers and the mobility across the border are not enough
for malaria elimination if the biting rate is high. In the high biting rate condition,
(R0 < 1, a10 > 0), (R1 < 1, a11 > 0), and (R2 < 1, a12 > 0), i.e., the elimination
of malaria, can be obtained if the level of φITN is greater than 0.35, 0.65, and 0.35,
respectively, or the level of φIRS is greater than 1.45, 2.60, 1.50, respectively (Fig. 6,
second row).

Figure 6.: Condition for malaria elimination in Nepal. Threshold indices R0,
R1, R2, a10, a11, a12 as a function of controls φITN , φIRS , φBSI , and φMR for a low
(first row) and high (second row) mosquito biting conditions. Note that the malaria
is eliminated if R0 < 1, a10 > 0, R1 < 1, a11 > 0, and R2 < 1, a12 > 0, respectively,
where a10, a11, and a12 are corresponding values of a1 for case I (absence of cross-
border mobility), case II (full protection of transmission abroad), and case III (strict
border screening and isolation), respectively.

5.3.2. Control strategies for minimal burden

Here we perform simulations to show how the control strategies ITN, IRS, BSI, and
MR impact the annual malaria incidence in 2026 and the cumulative malaria cases for
2020-2026 (Figs. 7 and 8). In the low mosquito biting rate condition (Fig. 7, first row),
our model predicts that the 50% effectiveness of ITN (i.e., φITN = 0.5) reduces the
annual malaria incidence in the year 2026 from 191 to 135. As a result, the cumulative
cases for 2020-2026 will be reduced from 1,348 to 1001 (Fig. 8, first row). An increase
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in IRS by 1.5 times (i.e., φIRS = 1.5) will result in an annual incidence rate of 161
in 2026 and a cumulative cases of 1,167 for 2020-2026. Similarly, 50% effectiveness of
BSI and MR will reduce the annual incidence rate in the year 2026 to 114 and 100,
respectively, and the cumulative cases for 2020-2026 to 903 and 889, respectively.

In a high mosquito biting rate condition (Fig. 7, second row, and Fig. 8, second row),
our model predicts that the 50% effectiveness of ITN (i.e., φITN = 0.5) reduces the
annual malaria incidence in the year 2026 from 4.25 million to 257 and the cumulative
cases for 2020-2026 from 7.8 million to 1,684. Similarly, an increase in IRS by 1.5 times
(i.e., φIRS = 1.5) will result in an annual incidence rate of 106 hundred thousand in
2026 and a cumulative cases of 128 hundred thousand for 2020-2026. 50% effectiveness
of BSI and MR will reduce the annual incidence rate in the year 2026 to 4.23 million
and 4.13 million, respectively, and the cumulative cases for 2020-2026 to 7.5 million
and 6.98 million, respectively.

While each control strategy can maintain a minimum malaria burden, their effect
may vary quantitatively. Among these control strategies, MR appears to be the most
effective in controlling malaria in Nepal in low mosquito biting rate conditions, while
ITN is the most effective control in the high biting rate condition. This indicates
that the ideal control strategy may depend on the locations and seasons in which
low or high mosquito biting rates are expected. We note that due to the existing
open border relationship with a long history between Nepal and India, reducing the
cross-border mobility of migrant workers may not be a viable option to implement.
Therefore, the optimal border screen and isolation of returning migrant workers along
with local approaches, ITN and IRS, can be the most impactful option for controlling
and possibly eliminating malaria in Nepal.

Figure 7.: Effects of control strategies on the annual incidence rate. The
model-predicted annual incidence rate in the year 2026 for various levels of ITN, IRS,
BSI, and MR control in a low biting rate scenario (first row) and a high biting rate
scenario (second row).
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Figure 8.: Effects of control strategies on the cumulative cases. The model-
predicted cumulative cases for 2020-2026 for various levels of ITN, IRS, BSI, and MR
control in a low biting rate scenario (first row) and a high biting rate scenario (second
row).

In the above calculation, we assumed the 100% coverage of ITN. However, 100%
is unlikely to be achieved, especially in resource-limited countries like Nepal. Thus
we further observe model prediction for varying coverage and efficacy of ITN. The
proportion of coverage ψITN , 0 ≤ ψITN ≤ 1, and efficacy φITN , 0 ≤ φITN ≤ 1, can be
incorporated in our model transforming b→ (1− φITNψITN ) b. As presented in Fig. 9,
our simulations show that 100% efficacy and 100% coverage of ITN significantly reduce
the malaria cases in the high mosquito biting case, but the effect is not significant in
the low mosquito biting case. Since Nepal’s estimated mosquito biting rate is low, even
the 100% coverage and 100% efficacy will reduce malaria cases in 2026 from 191 to
121 only. Thus, in addition to ITN, optimal control strategies should also focus on
adequately managing imported cases to eliminate malaria from Nepal by 2026.

6. Conclusion

Despite a significant decline of malaria cases worldwide, many countries are currently
facing difficulty achieving malaria elimination goals from those countries, mainly due
to cross-border mobility of migrant workers potentially bringing malaria from abroad.
Nepal provides a typical example, which is recently suffering from higher imported
cases from India through open-border, posing a severe threat to the Nepal govern-
ment’s goal of eliminating malaria by 2026. In this study, we developed a novel math-
ematical model validated by the data from Nepal and used our model to analyze the
effects of cross-border mobility on the malaria elimination programs for low-endemic
countries like Nepal.
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(a) (b)

(c) (d)

Figure 9.: Sensitivity of coverage and efficacy of ITN. The model-predicted
annual incidence rate in 2026 for various levels of efficacy and coverage of ITN in a
low biting rate scenario (a) and a high biting rate scenario (b). The model-predicted
cumulative cases for 2020-2026 for various levels of efficacy and coverage of ITN in a
low biting rate scenario (c) and a high biting rate scenario (d).

Our model analyses and simulations show that malaria can be eliminated from
Nepal if strategies promoting the absence of cross-border mobility, complete protec-
tion of transmission abroad, or strict border screening and isolation are implemented.
In each of these potential strategies, we formulated threshold conditions for the sta-
bility of the disease-free equilibriums, providing the level of control strategies, such
as ITN, IRS, BSI, and MR, to assert the elimination of malaria from Nepal. In some
cases, we mathematically proved the persistence of malaria in Nepal. In one of the
cases, namely strict border screening and isolation, our unique model can provide
the disease-free condition only within the home country while allowing the disease
among migrants abroad. In reality, such disease-free equilibrium is the most viable
condition regarding the elimination of malaria from Nepal because achieving elimina-
tion from both countries can be challenging with the control strategies by the Nepal
government’s policy only without making combined strategies by both countries. In
addition, we used our model to thoroughly assess all control strategies considered,
ITN, IRS, BSI, and MR, to maintain the low level of malaria-endemic in both low and
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high mosquito biting rate scenarios. Interestingly, our model predicts that MR is the
most effective control strategy for the low mosquito biting rate condition, while ITN is
the most effective control strategy for the high mosquito biting rate condition. These
interesting results suggest that the best control strategy may depend on locations and
seasons that determine whether the biting rate is low or high.

There are several limitations of our study. We approximated the incidence rate
abroad (India) using the API data of India. The analysis of the full model with ac-
curate dynamics of humans and mosquitoes abroad, along with data from India, can
help improve our results. Although the frequent movement of humans and mosquitoes
between bordering cities and the movement of mosquitoes through cross-border trans-
portation may be important, we have not considered these factors in our model because
the data of imported cases due to these movements are not available. Therefore, our
results are more relevant to the infection importation through cross-border mobility of
migrant workers. Our model parameters are estimated with the limited data of malaria
cases in Nepal. Uncertainty on the model parameters can be clarified if more frequent
data are available. While we estimated the mosquito population based on the previous
studies, the implemented values may pose some uncertainties. However, our further
simulations show that changing the mosquito population size to a realistic limit does
not significantly impact on the main qualitative conclusions of our study. Also, some
districts of Nepal are directly connected with India making them more vulnerable in
comparison to other areas. Therefore, an extension of our model may be necessary to
incorporate the spatial heterogeneity of the malaria risk across districts of Nepal.

We also note that we could not prove the persistence theory in Case III (strict
border screening and isolation) and Case IV (presence of cross-border mobility, no
protection, and no border screening or isolation) because there is no complete disease-
free equilibrium in these cases. Extensive mathematical theory may be needed to show
the persistence of the disease in such complicated cases. Our analyses show that for
some choice of parameters (for example, those making a1 < 0), the disease may persist
even if the threshold numbers R0 (Case I in 4.2.1), R1 (Case II in 4.2.2), and R2 (Case
III in 4.2.3) are less than 1, indicating a possibility of backward bifurcations. Therefore,
a detailed bifurcation analysis for each case (I, II, and III) can be an essential work,
which we plan to pursue in future research.

In summary, our model for malaria transmission dynamics, incorporating cross-
border mobility between a low endemic country (Nepal) and a high endemic country
(India), can provide important insights into an obstacle that cross-border mobility
may create to malaria elimination programs. Our analytical and simulation results
informing control policies that bring malaria elimination or maintain the epidemic
at a low level are helpful for policymakers if implemented in conjunction with more
accurate data.
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Appendix A.

A.1. Proof of Theorem 4.1

First, we prove that all the solutions are bounded. From Eqs. (11), (12), and (13), we
get

dShH
dt

= Λ + qRhH + ηShM −
bαvhShHIvH

NhH
− (η + dh)ShH

> −bαvhShHIvH
NhH

− (η + dh)ShH

⇒ ShH > ShH(0) exp

(
−
∫ t

0
(
bαvhIvH
NhH

+ η + dh)dt

)
≥ 0;

dIhH
dt

=
bαvhShHIvH

NhH
+ θIhM − (θ + dh + δh + γh)IhH ≥ −(θ + dh + δh + γh)IhH

⇒ IhH ≥ IhH(0) exp

(
−
∫ t

0
(θ + dh + δh + γh)dt

)
≥ 0;

and
dRhH
dt

= γhIhH + ηRhA − (η + dh + q)RhH ≥ −(η + dh + q)RhH

⇒ RhH ≥ RhH(0) exp

(
−
∫ t

0
(η + dh + q)dt

)
≥ 0.

Similarly, from Eqs. (16), (17), and (18), we get

dShM
dt

= ηShH + qRhM − (k + dh + η)ShM ≥ −(k + dh + η)ShM

⇒ ShM ≥ ShM (0) exp

(
−
∫ t

0
(η + k + dh)dt

)
≥ 0;

dIhM
dt

= kShM + θIhH − (θ + δh + dh + γh)IhM ≥ −(θ + δh + dh + γh)IhM

⇒ IhM ≥ IhM (0) exp

(
−
∫ t

0
(θ + dh + δh + γh)dt

)
≥ 0;

and
dRhM
dt

= γhIhM + ηRhH − (η + dh)RhM ≥ −(η + dh + q)RhM

⇒ RhM ≥ RhM (0) exp

(
−
∫ t

0
(η + dh + q)dt

)
≥ 0.

Also, from (14) and (15),

dSvH
dt

= φ− bαhvSvHIhH
NhH

− dvSvH > −bαhvSvHIhH
NhH

− dvSvH

⇒ SvH > SvH(0) exp

(
−
∫ t

0
(
bαhvIhH
NhH

+ dv)dt

)
≥ 0;

and
dIvH
dt

=
bαhvSvHIhH

NhH
− dvIvH ≥ −dvIvH

⇒ IvH ≥ IvH(0) exp

(
−
∫ t

0
(dv)dt

)
≥ 0.

30



Hence the solution set {(ShH(t), IhH(t), RhH(t), ShM (t), IhM (t), RhM (t), SvH(t), IvH(t))}
of the system (11 - 18) is always non-negative. We now prove that these non-negative
solutions are bounded. Adding (11) - (13) and (16) - (18), we obtain

dNh

dt
= Λ− dhNh − δhIhH − δhIhM ≤ Λ− dhNh,

which implies limt→∞Nh ≤ Λ
dh

. Hence, the human population, Nh(t), is ultimately
bounded.
Again, adding (14) and (15), we obtain

dNv

dt
= φ− dvNv,

which implies limt→∞Nv =
φ

dv
. Hence, the mosquito population Nv(t) is ultimately

bounded. Thus all state variables representing the populations are non-negative and
bounded.

A.2. Derivation of the epidemic index R0 from the next generation
matrix method

From the system (11-18), the newly infectious matrix Fi and its Jacobian matrix F at
the disease-free equilibrium point E0 are

Fi =



βhShHIvH
NhH

βvSvHIhH
NhH

kShM


, F =


0 βh 0

βv φ dh
Λdv

0 0

0 0 0

 .

Again, the transfer matrix Vi and its Jacobian matrix V at the disease-free equilibrium
point,

Vi =


(θ + δh + γh + dh)IhH − θ IhM

dvivH

(θ + γh + δh + dh)IhA − θ IhH

 , V =


dh + δh + γh 0 0

0 dv 0

0 0 γh + δh + dh

 .

Here the dominant eigenvalue of FV −1 gives the following epidemic index.

R0 =

√
φdhβhβv

(dh + γh + δh) Λd2
v

.
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A.3. Derivation of R0 from the first principle method

The overall basic reproduction number (R0) of malaria is equal to the geometric mean
of the basic reproduction numbers of malaria transmission from an infected human
to susceptible mosquitoes (RH) and the transmission of malaria from an infected

mosquito to susceptible humans (RV ). Here
b

NhH
is the average number of bites made

by a mosquito to a human in unit time. Each mosquito bites at a constant rate,
whereas the rate at which humans are bitten will vary with respect to the density
of mosquitoes within the area. The expected number of infected mosquitoes from an
infected human in his infectious period (assuming that all mosquitoes are susceptible)

is given by RH =
b αhv N

0
v

(dh + δh + γh)N0
h

=
bαhvφdh

(dh + δh + γh)Λdv
. Similarly, the expected

number of susceptible humans that become infected due to contact with one infected
mosquito in its infectious period (assuming that all humans are susceptible) are given

by RV =
b αvhN

0
h

N0
hdv

=
bαvh
dv

. Then, we get

R0 =
√
RH ×RV =

√
φdhβhβv

Λ(dh + δh + γh)d2
v

.

A.4. Derivation of the epidemic index R1

From the system (11-18), the newly infectious matrix Fi and its Jacobian matrix F at
the disease-free equilibrium point E01 are

Fi =



bαvhShHIvH
NhH

bαhvSvHIhH
NhH

kShM


, F =


0 βh 0

φdhβv (dh + 2η)

Λdv (dh + η)
0 0

0 0 0

 .

Again, the transfer matrix Vi and its Jacobian matrix V at the disease-free equilibrium
point E01 are,

Vi =


(θ + δh + γh + dh)IhH − θ IhM

dvivH

(θ + γh + δh + dh)IhM − θ IhH

 , V =

 dh + γh + δh + θ 0 −θ
0 dv 0
−θ 0 dh + γh + δh + θ

 .

Then the dominant eigenvalue of FV −1 gives the epidemic index R1:

R1 = R0

√
1 +

(η (dh + γh + δh)− θdh)

(dh + η) (dh + γh + δh + 2θ)
.
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A.5. Derivation of the epidemic index R2

From the system (11-18), the newly infectious matrix Fi and its Jacobian matrix F at
the disease-free equilibrium point E02 are

Fi =



bαvhShHIvH
NhH

bαhvSvHIhH
NhH

kShM


, F =


0

Pβh
P +Q3

0

K1φβv
(P +Q3)dv

0 0

0 0 0



Again, the transfer matrix Vi and its Jacobian matrix V at the disease-free equilibrium
point E02 are

Vi =


(θ + δh + γh + dh)IhH − θ IhM

dvivH

(θ + γh + δh + dh)IhM − θ IhH

 , V =

 dh + γh + δh 0 0
0 dv 0
0 0 dh + γh + δh

 .

Then the dominant eigenvalue of FV −1 provides the epidemic index R2.

R2 =

√
PK1φβhβv

(P +Q3)2d2
v (dh + γh + δh)

Appendix B.

B.1. Proof of Theorem 4.2

The local stability of E0 is determined by the following Jacobian matrix of (11-18)

evaluated at E0: J =

(
JH,5×5 05×3

03×5 JA,3×3

)
,

where JH,5×5 =



−dh 0 q 0 −βh
0 −F 0 0 βh
0 γh −G 0 0

0 −φdhβv
Λ

0 −dv 0

0
φdhβv

Λ
0 0 −dv

 , JA,3×3 =

 −H 0 q
k −F 0
0 γh −G

 ,
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F = (dh + γh + δh), G = (dh + q), and H = (dh + k). The roots of the characteristic
polynomial equation of JH are

λ1 = −dh, λ2 = −dh + q, λ3 = −dv,

λ4 =
− (dh + dv + γh + δh)−

√
(dh + dv + γh + δh)2 − 4dv (dh + δh + γh)

(
1−R2

0

)
2

,

λ5 =
− (dh + dv + γh + δh) +

√
(dh + dv + γh + δh)2 − 4dv (dh + δh + γh)

(
1−R2

0

)
2

.

The roots, λ, of the characteristic polynomial equation of the matrix JA are given by

λ3 + e1λ
2 + e2λ+ e3 = 0,

where e1 = 3dh + γh + δh + k + q,

e2 = 2dhγh + 2dhδh + 2kdh + 2qdh + 3d2
h + kγh + kδh + qγh + qδh + kq,

e3 = d2
hγh + d2

hδh + kdhγh + kdhδh + kqdh + kd2
h + qdhγh + qdhδh + qd2

h + d3
h + kqδh.

e1e2 − e3 = 4dhγhδh + 8d2
hγh + 2dhγ

2
h + 8d2

hδh + 2dhδ
2
h + 2k2dh+

6kdhγh + 6kdhδh + 6kqdh + 8kd2
h + 2q2dh + 6qdhγh + 6qdhδh + 8qd2

h+

8d3
h + k2γh + k2δh + 2kγhδh + kγ2

h + kδ2
h + 3kqγh + 2kqδh+

q2γh + q2δh + 2qγhδh + qγ2
h + qδ2

h + k2q + kq2 > 0.

Here, e1, e2, e3, e1e2 − e3 are positive. Using Routh Hurwitz criteria, all the eigen-
values of JA have negative real part. Therefore, all the eigenvalues of JH are negative
when R0 < 1. Thus the disease-free equilibrium point E0 is locally asymptotically
stable if R0 < 1, and unstable if R0 > 1.

B.2. Proof of the Lemma 4.4

For any (ShH(0), IhH(0), RhH(0), SvH(0), IvH(0)) ∈ Ωo, we have from the first and
fourth equations of the system,

ShH(t) = e−
∫ t
0
B(s1)ds1

[∫ t

0
e
∫ s2
0
B(s1)ds1A(s2)ds2 + ShH(0)

]
,

SvH(t) = e−
∫ t
0
F (s1)ds1

[∫ t

0
e
∫ s2
0
F (s1)ds1φ ds2 + SvH(0)

]
,

where, A(t) := Λ + qRhH > 0, B(t) := βhIvH
NhH

+ dh, and F (t) := βvIhH
NhH

+ dv. The
Jacobian matrix J0 corresponding to the second and fifth equations of the system is

J0 =


−βhIvHShH

N2
hH

− (δh + dh + γh)
βhShH
NhH

βvSvH
NhH

(
1− IhH

NhH

)
−dv

 .

34



Since J0 is an irreducible matrix with non negative off diagonal elements then S(J0)
is simple with an associated strongly positive eigenvector [60]. Hence the vector
(IhH(t), IvH(t)) is positive for all t > 0. Again from the third equation of the sys-
tem,

RhH(t) = e−
∫ t
0
D(s1)ds1

[∫ t

0
e
∫ s2
0
D(s1)ds1C(s2)ds2 +RhH(0)

]
where C(t) = γhIhH > 0 and D(t) = dh + q. ShH(t), RhH(t), SvH(t) > 0, ∀t > 0.
Hence the sets Ωo is positively invariant. Since Ω is positively invariant and ∂Ωo is
relatively closed in Ωo, it gives ∂Ωo is also positively invariant. Thus both Ωo and
∂Ωo are positively invariant under the flow induced by the decoupled system (11-15).

B.3. Proof of the Lemma 4.5

Since P ∈M∂ , τ(t)P ∈M∂ for all t ≥ 0. From the definition of M∂ , IvH(t) = 0, ∀t ≥
0. Using IvH(t) = 0 in (15), it follows that IhH(t) = 0 for all t ≥ 0. Then from the
first, third, and fourth equation of (11-15),

dShH
dt

+ dhShH = Λ,
dRhH
dt

+ (dh + q)RhH = 0,
dSvH
dt

+ dvSvH = φ.

Solving the first order linear ordinary differential equations, we have limt→∞ ShH(t) =
Λ

dh
, limt→∞RhH(t) = 0, limt→∞ SvH(t) =

φ

dv
. It follows that any forward orbit of

τ(t) in M∂ converges to E0.

B.4. Proof of the Lemma 4.6

Suppose, if possible, there exists Po ∈ Ωo, such that lim
t→∞

Sup ‖τ(t)Po − E0‖ < ρ.

Since lim
t→∞

NhH(t) ≤ Λ

dh
and lim

t→∞
SvH(t) =

φ

dv
then there exists t2 > 0, ∀t ≥ t2 and a

sufficiently small positive number ρo such that NhH(t) ≤ Λ

dh
+ρo and ShH(t) ≥ Λ

dh
−ρo

and SvH(t) ≥ φ

dv
− ρo. Using these inequalities in Eqs. (12) and (15), we obtain

I ′hH ≥ βh

(
1− 2ρ0

Λ
dh

+ ρ0

)
IvH − (dh + δh + γh)IhH ,

I ′vH ≥
βv

(
φ
dv
− ρo

)
(

Λ
dh

+ ρo

) IhH − dvIvH .
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We consider the corresponding auxiliary equations

I ′hH = βh

(
1− 2ρ0

Λ
dh

+ ρ0

)
IvH − (dh + δh + γh)IhH ,

I ′vH =
βv

(
φ
dv
− ρo

)
(

Λ
dh

+ ρo

) IhH − dvIvH , ∀t ≥ t2. (B1)

Let Jρo be the Jacobian of the system (B1), then

Jρo =


−(δh + dh + γh) βh

(
1− 2ρ0

Λ
dh

+ ρ0

)
βv

(
φ
dv
− ρo

)
(

Λ
dh

+ ρo

) −dv


Since S(J) > 0, there exists a sufficiently small ρo > 0 such that S(Jρo) > 0.

Since Jρo is irreducible and has non-negative off-diagonal elements, it follows that
S(Jρo) is a simple and associates with strongly positive eigenvector ṽ ∈ <2

+, i.e
(IhH(t), IvH(t)) >> 0 ∀t ≥ t2. Then there is a positive number a such that
(IhH(t), IvH(t)) ≥ aṽ and hence the solution of the system (B1) is

V (t) := aeS(Jρo )(t−t2)ṽ , ∀ t ≥ t2

with V (t2) := aṽ. Hence it follows from [60, Theorem B.1] that

(IhH(t), IvH(t)) ≥ aeS(Jρo )(t−t2)ṽ, ∀t ≥ t2.

Since S(Jρo) > 0, then the solution lim
t→∞

IhH(t) → ∞, lim
t→∞

IvH(t) → ∞ which is a

contradiction, and hence lim
t→∞

Sup ‖τ(t)P − E0‖ ≥ ρ, ∀P ∈ Ωo.

B.5. Proof of the Theorem 4.8

The Jacobian matrix of (11-18) at E01 is J1 =

(
A1

4×4 B1
4×4

C1
4×4 D1

4×4

)
, where

A1
4×4 =


−D 0 q η

0 −A 0 0
0 γh −B 0
η 0 0 −dh

 , B1
4×4 =


0 0 0 −βh
θ 0 0 βh
0 η 0 0
0 q 0 0

,



C1
4×4 =


0 θ 0 0
0 0 η 0
0 −C 0 0
0 C 0 0

 , D1
4×4 =


−A 0 0 0
γh −B 0 0
0 0 −dv 0
0 0 0 −dv

,


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A = (dh + γh + δh + θ), B = (dh + η + q), C =
φdhβv (dh + 2η)

Λdv (dh + η)
, and D = (dh + η).

Let λ be eigenvalues of the matrix J1, then the characteristic polynomial is

P (λ) = (dh + λ) (dv + λ) (dh + 2η + λ) (dh + λ+ q) (dh + 2η + λ+ q)Q(λ),

where Q(λ) = λ3 + h1λ
2 + h2λ+ h3,

h1 = 2dh + dv + 2 (γh + δh + θ) ,

h2 =

(
2−R2

1

)
(dv (dh + γh + δh) (dh + γh + δh + 2θ))

dh + γh + δh + θ
+ P1,

h3 =
(
1−R2

1

)
dv (dh + γh + δh) (dh + γh + δh + 2θ) ,

P1 =
(γh + δh)

(
2θ2 + γh (2δh + 3θ) + γ2

h + 3θδh + δ2
h

)
dh + γh + δh + θ

+

dh
(
2θ2 + 6γh (δh + θ) + 3γ2

h + 6θδh + 3δ2
h

)
+ 3d2

h (γh + δh + θ) + d3
h + 2θ2dv

dh + γh + δh + θ
.

This implies that λ = −dh, −dv, (−dh + 2η), −(dh + q), −(dh + 2η + q) are five
eigenvalues. The coefficients h1 is positive and both h2 > 0, h3 > 0 if R1 < 1. Also,

h1h2 − h3 = (2 (dh + γh + δh + θ) + dv)((
2−R2

1

)
dv (dh + γh + δh) (dh + γh + δh + 2θ)

dh + γh + δh + θ
+ P1

)
−
(
1−R2

1

)
dv (dh + γh + δh) (dh + γh + δh + 2θ)

=
(
3−R2

1

)
dv (dh + γh + δh) (dh + γh + δh + 2θ) +

2P1(dh + γh + δh + θ) + P2 > 0, if R1 < 1.

where P2 = dv

(
(2−R2

1)dv(dh+γh+δh)(dh+γh+δh+2θ)
dh+γh+δh+θ + P1

)
. Thus all the eigenvalues have

negative real parts and hence E01 is locally asymptotically stable if R1 < 1 . If R1 > 1,
then h0 and h3 have opposite signs, which implies at least one λ to be positive. Hence,
the disease-free equilibrium point E01 is unstable if R1 > 1.

B.6. Proof of the Lemma 4.10

For any (ShH(0), IhH(0), RhH(0), SvH(0), IvH(0), ShM (0), IhM (0), RhM (0)) ∈ Ωo, we
have from the first and fourth equations of the system (11-18)

ShH(t) = e−
∫ t
0
B(s1)ds1

[∫ t

0
e
∫ s2
0
B(s1)ds1A(s2)ds2 + ShH(0)

]
,

SvH(t) = e−
∫ t
0
F (s1)ds1

[∫ t

0
e
∫ s2
0
F (s1)ds1φ ds2 + SvH(0)

]
,

where A(t) := Λ + ηShM + qRhH > 0, B(t) := βhIvH
NhH

+ η+dh, and F (t) := βvIhH
NhH

+dv.
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Again, the Jacobian J0 corresponding to the second, seventh, and fourth equations
of the system is

J0 =


−βhIvHShH

N2
hH

− (θ + δh + dh + γh) θ
βhShH
NhH

θ −(θ + δh + dh + γh) 0
βvSvH
NhH

(
1− IhH

NhH

)
0 −dv

 .

Since J0 is an irreducible matrix with non-negative off-diagonal elements then S(J0)
is simple with an associated strongly positive eigenvector [60]. Hence the vector
(IhH(t), IhM (t), IvH(t)) is positive ∀t > 0. From the third, sixth, and eighth equa-
tions of the system (11-18), we get

RhH(t) = e−
∫ t
0
D(s1)ds1

[∫ t

0
e
∫ s2
0
D(s1)ds1C(s2)ds2 +RhH(0)

]
,

ShM (t) = e−
∫ t
0
H(s1)ds1

[∫ t

0
e
∫ s2
0
H(s1)ds1G(s2)ds2 + ShM (0)

]
,

RhM (t) = e−
∫ t
0
D(s1)ds1

[∫ t

0
e
∫ s2
0
D(s1)ds1L(s2)ds2 +RhM (0)

]
,

where C(t) := γhIhH + ηRhM > 0, D(t) := η + dh + q, G(t) := ηShH + qRhM >
0, and H(t) := η + dh + k, and L(t) := γhIhM + ηRhH > 0. This shows
ShH(t), RhH(t), SvH(t), ShM (t), RhM (t) > 0, ∀t. Hence the set Ωo is positively invari-
ant. Since Ω is positively invariant and ∂Ωo is relatively closed in Ωo, it gives ∂Ωo is
also positively invariant. Thus both Ωo and ∂Ωo are positively invariant under the flow
induced by the system (11-18).

B.7. Proof of the Lemma 4.11

Since P ∈M∂ then τ(t)P ∈M∂ for all t ≥ 0 then IvH(t) = 0 for all t ≥ 0. Substituting
IvH(t) = 0 in (15), it follows that IhH(t) = 0 for all t ≥ 0. Again from (12), it follows
that IhM (t) = 0 for all t ≥ 0. Now from (13) and (18),

dz

dt
= ηZ − (dh + η + q) z,

dZ

dt
= ηz − (dh + η + q)Z. (B2)

Here, (B2) is a system of ordinary linear homogeneous differential equations with
constant coefficients, which implies both z(t), Z(t) tend to zero as t approaches to ∞.
Also, from (11) and (16), it follows the system of linear non-homogeneous ordinary
differential equations with constant coefficients

dx

dt
= Λ + ηX − (dh + η)x,

dX

dt
= ηx− (dh + η)X. (B3)
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implies that x(t), X(t) converge to
Λ (dh + η)

dh (dh + 2η)
and

ηΛ

2ηdh + d2
h

, respectively, as t

approaches ∞. Also, limt→∞ SvH(t) =
φ

dv
. Thus every forward orbit of τ(t) in M∂

converges to E01.

B.8. Proof of the Lemma 4.12

If possible suppose that there exists Po ∈ Ωo, such that lim
t→∞

Sup ‖τ(t)Po − E01‖ < ρ.

Since lim
t→∞

NhH(t) ≤ Λ

dh
, lim
t→∞

ShH(t) =
Λ (dh + η)

dh (dh + 2η)
, lim
t→∞

ShM (t) =
ηΛ

2ηdh + d2
h

, and

lim
t→∞

SvH(t) =
φ

dv
, then there exists t2 > 0 and a sufficiently small positive number ρo

such that NhH(t) ≤ Λ

dh
+ ρo, ShH(t) ≥ Λ (dh + η)

dh (dh + 2η)
− ρo, ShM (t) ≥ ηΛ

2ηdh + d2
h

− ρo,

and SvH(t) ≥ φ

dv
− ρo. Here

kShM =
b′αvhIvAShM

NhA
=
b′αvhIvAIhAShM

IhANhA
≥ b′αvhIvAIhAShM

M1NhA
, (|IhA(t)| ≤M1 6= 0, ∀t)

≈ k1IhAShM , where
b′αvhIvA
NhAM1

≈ k1,Using Mean value theorem

≈ k1k2IhMShM = k3IhMShM , IhM (t) ⊂ IhA(t), ∀ t.

Here k = 0 implies k1 ≈ 0 and hence k3 ≈ 0. Using these inequalities in equations
(12), (15), (17), it follows that

I ′hH ≥
βh

(
Λ (dh + η)

dh (dh + 2η)
− ρo

)
Λ

dh
+ ρo

IvH + θIhM − (θ + dh + δh + γh)IhH ,

I ′vH ≥
βv

(
φ

dv
− ρo

)
(

Λ

dh
+ ρo

) IhH − dvIvH ,

I ′hM ≥ k3

(
ηΛ

2ηdh + d2
h

− ρo
)
IhM + θIhH − (θ + δh + dh + γh)IhM ,

∀ t ≥ t2.
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We now consider the following corresponding auxiliary equations

I ′hH =

βh

(
Λ (dh + η)

dh (dh + 2η)
− ρo

)
Λ

dh
+ ρo

IvH + θIhM − (θ + dh + δh + γh)IhH ,

I ′vH =
βv

(
φ
dv
− ρo

)
(

Λ
dh

+ ρo

) IhH − dvIvH ,

I ′hM = k3

(
ηΛ

2ηdh + d2
h

− ρo
)
IhM + θIhH − (θ + δh + dh + γh)IhM , ∀ t ≥ t2. (B4)

Let J1ρo be the Jacobian matrix of the system (B4) at the disease-free equilibrium
point E01

J1ρo =



−(θ + δh + dh + γh)

βh

 Λ (dh + η)

dh (dh + 2η)
−ρo


Λ

dh
+ρo

θ

βv

(
φ
dv
− ρo

)
(

Λ
dh

+ ρo

) −dv 0

θ 0 −(θ + δh + dh + γh)


.

Since R1 > 1 then from lemma 4.9 S(J1) > 0, then there exists a sufficiently small
ρo > 0 such that S(J1ρo) > 0. Here, J1ρo is irreducible and has non-negative off-
diagonal elements, it follows that S(J1ρo) is a simple and associates with strongly
positive eigenvector ṽ ∈ <3

+ i.e.,

(IhH(t), IhM (t), IvH(t)) >> 0 ∀, t > t2.

Then there is a positive number a such that (IhH(t), IhM (t), IvH(t)) ≥ aṽ.
Hence the solution of the system (B4) is

V (t) := aeS(J1ρo )(t−t2)ṽ, ∀t ≥ t2 with V (t2) := av.

It follows from [60, Theorem B.1] that

(IhH(t), IhM (t), IvH(t)) ≥ aeS(J1ρo )(t−t2)ṽ, ∀ t ≥ t2.

Since S(J1ρo) > 0, then the solution

lim
t→∞

IhH(t)→∞, lim
t→∞

IhM (t)→∞, lim
t→∞

IvH(t)→∞.

This is a contradiction, and hence

lim
t→∞

Sup ‖τ(t)P − E01‖ ≥ ρ, ∀P ∈ Ωo.
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B.9. Proof of the Theorem 4.14

The Jacobian matrix of (11-18) at E02 is J2 =

(
A2

4×4 B2
4×4

C2
4×4 D2

4×4

)
, where

A2
4×4 =


−a 0 q 0
0 −b 0 0
0 γh −a 0

0 − K1φβv
(P +Q3)dv

0 −dv

 , B2
4×4 =


− Pβh
P +Q3

η 0 0

Pβh
P +Q3

0 0 0

0 0 0 η
0 0 0 0

 ,

C2
4×4 =


0

K1φβv
(P +Q3)dv

0 0

η 0 0 0
0 0 0 0
0 0 η 0

 , D2
4×4 =


−dv 0 0 0

−dh − η − k 0 q
0 k −b 0
0 0 γh −a

 ,

a = dh + η + q and b = dh + γh + δh. Let λ be eigenvalues of the matrix J2, then the
characteristic polynomial is,

P (λ) = (dv + λ) Q(λ) R(λ),

where Q(λ) = λ2 + λ (dh + dv + γh + δh) +
(
1−R2

2

)
dv (dh + γh + δh), and R(λ) =

p0λ
5 +p1λ

4 +p2λ
3 +p3λ

2 ++p4λ+p5. λ = −dv is one eigenvalue, and other eigenvalues
are given by Q(λ) = 0 and R(λ) = 0. From Q(λ) = 0, the eigenvalues are

λ2 =
1

2

(
−
√

(dh + dv + γh + δh) 2 − 4
(
1−R2

2

)
dv (dh + γh + δh)− (dh + dv + γh + δh)

)
,

λ3 =
1

2

(√
(dh + dv + γh + δh) 2 − 4

(
1−R2

2

)
dv (dh + γh + δh)− (dh + dv + γh + δh)

)
.

Clearly, λ2 < 0 and λ3 < 0 if R2 < 1. Furthermore, using Wolfram Mathe-
matica, we showed p0, p1, p2, p3, p4, p5 are positive, p1p2p3 − p2

3 − p2
1p4 > 0, and(

p1p2p3 − p2
3 − p2

1p4

)
(p1p4 − p5) > (p1p2 − p3)2 p5 + p1p

2
5 (see page 4-18 of Supple-

mentary Material A). Then using the Routh Hurwitz theorem, we conclude that all
the eigenvalues have negative real parts if R2 < 1. Hence E02 is locally asymptotically
stable if R2 < 1 and unstable if R2 > 1.
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