
THEME ARTICLE: JUPYTER IN COMPUTATIONAL SCIENCE

Jupyter: Thinking and StorytellingWith
Code and Data
Brian E. Granger , Amazon Web Services and California Polytechnic State University, San Luis Obispo, CA,
93401, USA

Fernando P�erez, UC Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Project Jupyter is an open-source project for interactive computing widely used
in data science, machine learning, and scientific computing. We argue that even
though Jupyter helps users perform complex, technical work, Jupyter itself
solves problems that are fundamentally human in nature. Namely, Jupyter
helps humans to think and tell stories with code and data. We illustrate
this by describing three dimensions of Jupyter: 1) interactive computing;
2) computational narratives; and 3) the idea that Jupyter is more than software.
We illustrate the impact of these dimensions on a community of practice in earth
and climate science.

Project Jupytera is an open-source software
project and community that builds software,
services, and open standards for interactive

computing across dozens of programming languages.
The core of Jupyter is the Jupyter Notebook,1 an open
document format and web application that enables
users to compose and share interactive programs that
combine live code with narrative text, equations, inter-
active visualizations, images, and more. Jupyter was
spawned from its parent project, IPython, in 2014 as
usage of the Notebook grew outward from its origins
in scientific computing and the Python programming
language to the emerging worlds of data science and
machine learning, and a host of other programming
languages, such as Julia and R. Organizationally,
Jupyter is community governed and fiscally sponsored
by the nonprofit NumFOCUS foundation.b

Since the release of the Notebook in 2011, Jupyter
has created a number of other open-source subpro-
jects that address other aspects of this space, which
are as follows.

1) JupyterLab:c the project’s next-generation,
extensible notebook user interface.

2) nbconvert:d for converting notebooks to other
formats.

3) Jupyter Widgets:e for building interactive graphi-
cal interfaces in notebooks

4) Voil�a:f for turning notebooks into dashboards
and web applications.

5) JupyterHub:g for multiuser deployments of
Jupyter.

6) Binder:h a service for turning Git repositories into
live Jupyter servers for ad-hoc exploration of
notebook-based content.

7) nbviewer:i a service for previewing notebooks
hosted online, etc.

Today, Jupyter Notebooks have become ubiquitous
across computational education and research, sci-
ence, data science, and machine learning. Many mil-
lions of users and tens of thousands of organizations
use Jupyter on a daily basis. As of early 2021, there
are more than 10 million public Jupyter Notebooks
on GitHub alone.j Major research collaborations

This work is licensed under a Creative Commons Attribution
4.0 License. For more information, see https://creativecom-
mons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MCSE.2021.3059263
Date of current version 25 March 2021.

ahttps://jupyter.org
bhttps://numfocus.org

chttps://github.com/jupyterlab/jupyterlab
dhttps://github.com/jupyter/nbconvert
ehttps://github.com/jupyter-widgets/ipywidgets
fhttps://github.com/voila-dashboards/voila
ghttps://github.com/jupyterhub/jupyterhub
hhttps://mybinder.org
ihttps://nbviewer.jupyter.org
jhttps://github.com/parente/nbestimate

March/April 2021 Published by the IEEE Computer Society Computing in Science & Engineering 7

https://orcid.org/0000-0002-5223-6168
https://orcid.org/0000-0002-5223-6168
https://orcid.org/0000-0002-5223-6168
https://orcid.org/0000-0002-5223-6168
https://orcid.org/0000-0002-5223-6168
https://nbviewer.jupyter.org


and communities across physics, chemistry, biology,
economics, earth science, etc., leverage Jupyter as a
foundational tool for their computational work, collab-
oration, education, and knowledge dissemination.
Entire curricula at universities andmassive open online
courses are based on Jupyter. All major cloud providers
and multiple startups offer products and services
based on Jupyter notebooks.

Given the scope of Jupyter’s usage and the con-
straints of this article, it is impossible to do justice to
all of the remarkable things that users are doing with
Jupyter. Instead, we refer the reader to the talks from
JupyterCon 2020,k along with the papers in this issue
of CISE for further exploration.

Similarly, this article cannot do justice to every-
thing that the large, diverse, and widespread commu-
nity of Jupyter contributors has built, both on the
software and community sides. Everything we
describe here rests on a 20-year open collaboration
where stakeholders from academia, industry, govern-
ment, and more have participated as peers. More
information about the Jupyter Distinguished Contribu-
tors and Steering Council can be found in the project’s
website.l

As cofounders and codirectors of Jupyter, the two
of us have been asked to introduce Jupyter to readers
of this CISE issue, which represent a small fraction of
the content from JupyterCon 2020. At the same time,
2021 marks the 10th anniversary of the Jupyter Note-
book and the 20th anniversary of IPython. As such, we
believe that it is worth pausing and asking two ques-
tions: What are the main ideas of Jupyter and why
have Jupyter Notebooks turned out to be so useful to
such a wide range of users and domains?

The overarching idea of Jupyter is that humans
matter. The context of this statement is that in data
science and computationally intensive research and
development, the weight of technical concerns often
dominates: algorithms, programming languages, sys-
tems and software architecture, etc. In this context,
human concerns and problems are often secondary at
best. Jupyter lives in this universe: Its software and
users are technically sophisticated and its primary
usage case is solving complex problems with code
and data. In spite of this, we claim that the primary
problems that Jupyter solves are uniquely human.
What are these human problems that Jupyter solves?
To answer this, we briefly discuss following three
dimensions of Jupyter.

1) Interactive computing.
2) Computational narratives.
3) The idea that Jupyter is more than software.

We conclude by describing how these ideas have
enabled communities of practice to be created across
a broad range of computational domains.

INTERACTIVE COMPUTING
At the most basic level, Jupyter provides an architec-
ture and applications for interactive computing. We
claim that interactive computing solves a human
problem: It enables humans to leverage computers
and data to perform a broad spectrum of human
tasks: decide, analyze, understand, accept, reject, dis-
cover, question, predict, create, hypothesize, test,
evaluate, and play. Or more simply, Jupyter helps
humans to think. This is seen in a human-centered
definition of interactive computing.

For our purposes, an interactive computation is a
persistent computer program that runs with a “human
in the loop,” where the primary mode of interaction is
through the same human iteratively writing/running
blocks of code and looking at the results.

First, these programs are persistent and stateful:
The program has working memory, which records the
results of previous computations, and which are avail-
able in subsequent computations. Second, the user
provides input to the program by writing code instead
of using graphical, touch, or other interfaces. Third, in
contrast to graphical user interfaces or most of soft-
ware engineering, in this flavor of interactive comput-
ing, a single human is both the user and author of the
program. Fourth, in contrast to software engineering,
there is no externally specified goal or design target.
Instead, the user explores and discovers their goal as
they gain understanding from iteratively executing the
code and thinking about the results and their data.

This definition of interactive computing is rooted in
the modern scientific computing community. Tools
such as IDL (1977), Maple (1982), MATLAB (1984), and
Mathematica (1988) offer this mode of interaction. It
should not be surprising that the two of us grew up as
physicists using these interactive computing tools as a
foundational part of our computational work flows.
Indeed, we created IPython and Jupyter initially because
we wanted the same type of interactive computing
experience in the Python programming language.

We acknowledge that our definition of interactive
computing here is somewhat narrow. The entire field
of human–computer interaction (HCI) is concerned
with how humans interact with computers across all

khttps://www.youtube.com/c/JupyterCon/videos
lhttps://jupyter.org/about

8 Computing in Science & Engineering March/April 2021

JUPYTER IN COMPUTATIONAL SCIENCE

https://www.youtube.com/c/JupyterCon/videos


modes of interaction. Of the many ways to interact
with computers, writing code is perhaps the most
inhumane (imagine if we had to write code to post to
Twitter or send emails...). Why is writing code so effec-
tive for some tasks and activities?

From a computer-centered perspective, interactive
computing has been formalized by modeling these
systems as persistent Turing machines coupled to an
environment (the human user).2 More colloquially, the
simplest expression of an interactive computation is
the REPL, or read–eval–print loop. In a REPL, the pro-
gram repeatedly reads lines of code, evaluates that
code, and then prints the result. Simple terminal-
based interactive shells such as IPython, as well as
the Jupyter Notebook, follow this pattern with minor
variations. But the computer-centered perspective
does not answer the question posed earlier: What is
the value of an REPL from the human perspective?

To answer this, let us flip the REPL around and cast
it from the perspective of the human user. The user
has a counterpart to the computer’s read–eval–print
loop: a “write–eval–think loop” (WETL). The user
first writes a block of code to import data, train a
model, create a visualization, implement an algorithm,
etc. (which the computer then reads). The user, then,
asks the computer to evaluate that block of code
(which the computer does). And then, after the com-
puter displays the result, the user looks at that result
and thinks about what to do next. Is this what I
expected to see? How is X related to Y? Why was an
exception raised? What might I predict using this data-
set and what features would be useful? In short, the
user is thinking with code and data.

As this iteration proceeds, the human user and
computer work together and converse through code
and its output. Because the language of this conver-
sation is a programming language such as Python, the
user is able to think about complex technical prob-
lems, algorithms, and data. This idea of a computer
being used as a thinking companion is not new:

[Human]-computer symbiosis is an expected
development in cooperative interaction
between [humans] and electronic com-
puters...to enable [humans] and computers
to cooperate in making decisions and con-
trolling complex situations without inflexible
dependence on predetermined programs.
In the anticipated symbiotic partnership,
[humans] will set the goals, formulate the
hypotheses, determine the criteria, and per-
form the evaluations. Computing machines
will do the routinizable work that must be

done to prepare the way for insights and
decisions in technical and scientific
thinking.3

Ultimately, understanding, and the responsibility
of making decisions based on this understanding, are
fundamentally human activities. As a tool for interac-
tive computing, Jupyter enables users to apply com-
putation and data to challenging questions in
contexts as diverse as climate change, policy, public
health, research, business operations, justice, legisla-
tion, and more.

COMPUTATIONAL NARRATIVES
While IPython and other REPLs/WETLs offer an inter-
active computing experience that enables users to
think with code and data, they lack permanence. More
specifically, these tools help a user to think in the
moment, but when a session is closed there are no
persistent artifacts that can be used to share, dissemi-
nate, or reproduce the work. This is the second human
problem that Jupyter solves and brings us to the idea
of a computational narrative.

Narrative is universal. Humans are evolved to cre-
ate, share, and consume narratives or stories.4;5 All
known cultures practice storytelling and regardless of
culture or education, humans acquire the ability and
inclination to create and process stories at a young
age.4 Much of our waking hours are spent producing
and consuming narratives. Indeed, it is difficult to
have a conversation without telling a story:

Storytelling and understanding are function-
ally the same thing...intelligence is bound up
with our ability to tell the right story at the
right time.6

This narrative-centered aspect of human under-
standing stands in contrast to computers, which are
optimized to consume, produce, and process data. In
order for data and the computations that process and
visualize those data to be useful to humans, they
must be embedded into a narrative—a computational
narrative—that tells a story for a particular audience
and context.m

Computational notebooks were introduced by
Mathematica in 1988; the Jupyter Notebook is our
concrete realization of the computational narrative,
with a web-based architecture designed for

mSee H. Porter Abbott’s Cambridge Introduction to Narrative
(2008) for an excellent overview of narrative that covers the
topic in a manner that applies naturally to computational
narratives.

March/April 2021 Computing in Science & Engineering 9

JUPYTER IN COMPUTATIONAL SCIENCE



extensibility, programming language independence,
and an open document format. The raw events of this
narrative are the input (code) and output of the itera-
tions of the REPL/WETL of the underlying interactive
computation. Around that, the user can add narrative
text including equations, multimedia content, etc.

Computational narratives built on the Jupyter
Notebook solve a number of human problems. First,
they make interactive computations reproducible as a
natural byproduct of work. Second, they provide an
artifact that can be shared with others, version-con-
trolled, used for communicating results, etc. Third,
because Jupyter notebooks use an open format, they
can be converted into other forms, including websites,
books, online documentation, and dashboards.

These human uses of computational narratives
illustrate how and why the ways that Jupyter note-
books are used are so dramatically different from tradi-
tional software engineering tools where the goal is for
one group of people to write software that is subse-
quently deployed to and used by an entirely different

group of users. While Knuth’s literate programming par-
adigm8 weaves human-oriented documentation into
the software engineering process, a computational
narrative is distinct in its incorporation of interactive
computing as the central element. The outcome here
is not a software product but ideas and understanding
that are “deployed” to other humans.

MORE THAN SOFTWARE
While Jupyter’s open-source software is obviously
central to the project, over the years, we have devel-
oped a broader perspective that guides the project
and has been a primary factor in its growth and adop-
tion: Jupyter is more than merely software. More spe-
cifically, Jupyter also builds and consists of services,
open standards and protocols, and community.

For many users, content in their domain is the first
reason to learn about Jupyter: services such as nbviewer
and Binder allow them to read, share, and execute
computational narratives about topics of relevance to

FIGURE 1. Example Jupyter notebook that solves the Lorenz differential equations,7 open in JupyterLab. This notebook has live

interactive code, headings, narrative text, equations, visualizations, and interactive controls that are organized into a human-

centered computational narrative.

10 Computing in Science & Engineering March/April 2021

JUPYTER IN COMPUTATIONAL SCIENCE



them, fromblog posts to research papers and interactive
textbooks. The Jupyter software and services directly
support these learning and knowledge sharing goals.

Next, in addition to building software, Project
Jupyter has developed open standards and protocols
for interactive computing that our software imple-
ments. This has allowed third parties to build an eco-
system of interoperable software without explicitly
sharing code. The JSON-based Jupyter Notebook doc-
ument formatn enables first- and third-party tools to
use and combine Jupyter Notebooks for a wide range
of purposes such as: i) third-party user interfaces for
working with Jupyter Notebooks (Colab,o nteract,p

CoCalc,q VSCoder), and ii) tools for converting note-
books and displaying them online as standalone web-
sites, books, etc., or within other applications
(nbviewer, Jupyter Book,s GitHub,t Authoreau). Jupyter
has also developed a network protocol to communi-
cate between interactive computing user interfaces
(the Jupyter Notebook, JupyterLab, terminal-based
REPLs, etc.) and the server-side computational pro-
cesses that run users’ code (called kernels in Jupyter’s
architecture). This kernel message protocolv has
enabled third parties to perform the following.

1) To adapt Jupyter’s runtime architecture to novel
deployment scenarios.

2) To build more than 100 different kernels support-
ingmost programming languages in use today.w

3) To build alternate interactive computing applica-
tions that reuse Jupyter’s runtime architecture.

Furthermore, Jupyter’s software offers multiple
programmatic APIs, which facilitate customization
and extension without forking or copying the entire
code base. For example, the Jupyter server usually
stores users’ files on a local filesystem. However, the
server offers an API that third parties have leveraged
to store notebooks on Amazon S3, relational data-
bases, and Google Drive. Users can install and use any
combination of these extensions. The architecture of
Jupyter’s next-generation user interface, JupyterLab,
also illustrates this pattern: the entire application is a

set of extensions that are standalone JavaScript pack-
ages. These can be composed into new tools that
meet the needs of the users, without the project hav-
ing to implement every conceivable feature.

This brings us to community. In addition to being
software, Jupyter is a community of users, developers,
and stakeholders from all walks of life. While IPython
and Jupyter were initially built by a small team of
developers, today more than 1500 people have con-
tributed to our codebase and many more build con-
tent anchored in our ecosystem. Furthermore,
hundreds of third-party developers participate in this
community and build extensions, applications, and
content that leverage Jupyter. The pinnacle of the
community is Jupyter users, who number in the mil-
lions. This community is not accidental: The core
Jupyter team has invested significant effort into wel-
coming new contributors, helping users, planning and
running community events (Jupyter Community Work-
shops,x JupyterDays and JupyterCony), and training
and mentoring junior developers and designers. Criti-
cally, we have developed, and continue to refine, an
open governance model that seeks to meet the needs
of such diverse stakeholders, whose combined effort
has enabled the impact of Jupyter to grow in an
organic manner that far exceeded the resources of
the core contributors.

These additional dimensions of Jupyter beyond
software are visualized in Figure 2.

COMMUNITIES OF PRACTICE (CoP)
CoP are groups of people motivated by a common set
of problems or topics, who collectively develop
accepted practices, often aimed at the advancement
of knowledge in a specific professional domain.9 A cen-
tral element of CoP is, therefore, the ability to fluidly
share knowledge, and in particular, to share it in ways
that enable others to reuse the shared work and build
upon it. Jupyter has become an enabling technology
for CoP that operate in technical spaces where com-
puting, data analysis, and programming are central.

Several elements in the Jupyter ecosystem play
complementary roles in support of CoP. Most promi-
nently, the computational narratives of Jupyter note-
books support both individual exploration of ideas and
sharing of the resulting knowledge in a reusable, repro-
duciblemanner that encourages feedback and collabo-
ration. In turn, a body of knowledge encoded in such

nhttps://pypi.org/project/nbformat
ohttps://colab.research.google.com
phttps://github.com/nteract/nteract
qhttps://cocalc.com
rhttps://code.visualstudio.com
shttps://jupyterbook.org
thttps://github.com
uhttps://www.authorea.com
vhttps://github.com/jupyter/jupyter_client
whttps://github.com/jupyter/jupyter/wiki/Jupyter-kernels

xhttps://blog.jupyter.org/jupyter-community-workshops-call-
for-proposals-for-jan-aug-2020-710f687e30f4
yhttps://jupytercon.com

March/April 2021 Computing in Science & Engineering 11

JUPYTER IN COMPUTATIONAL SCIENCE

https://colab.research.google.com
https://code.visualstudio.com
https://www.authorea.com
https://blog.jupyter.org/jupyter-community-workshops-call-for-proposals-for-jan-aug-2020-710f687e30f4
https://blog.jupyter.org/jupyter-community-workshops-call-for-proposals-for-jan-aug-2020-710f687e30f4


narratives fuels the cycle of collaboration
that builds the CoP. These narratives are particularly
valuable in research and education, fields where explo-
ration, discovery, reproducibility, and shared under-
standing of complex problems are key objectives.

Furthermore, other aspects of Jupyter beyond
Notebooks support the growth of CoP, as we illustrate
now.

Notebook sharing: When the IPython Notebook
was released in 2011, sharing work in notebooks
would require the recipient to also have the software
installed to view it, or to ask the author to convert the
notebook to a widely used format such as HTML or
PDF. The nbviewer service made this conversion a
one-click action. Originally prototyped by M. Busson-
nier in 2012, it enabled anyone to easily share the ren-
dered HTML version of any publicly available
notebook as a link that readers could access with a
web browser. We observed a rapid rise of notebook
sharing via blogs and social media, as people would
publish their work in this format. This pattern of shar-
ing has continued and expanded as other platforms,
such as GitHub, have added built-in notebook render-
ing. Today, Jupyter Book facilitates sharing entire col-
lections of notebooks that form complete interactive
“textbooks.” These can be hosted online as static
HTML websites at no cost via tools such as GitHub
Pages, and as live, executable notebooks via Binder.

Group usage: While the Notebook was designed as
a single-user application running on a personal com-
puter, basing it on web technologies made it possible
to host it on a remote or cloud-based server while pro-
viding an identical user experience. JupyterHub, first
released in 2015 by Min Ragan-Kelley and other mem-
bers of the team, offered this capability: It could host
Notebooks on a remote server for multiple concurrent
users, with authenticated access. This made it

possible for groups to work on shared infrastructure.
University courses were an obvious and early use
case: we both teach courses in data science at our
respective universities, hosted entirely on cloud-based
JupyterHubs. This pattern has been adopted by many
colleges and universities and has even reached K-12
education with efforts like the Callysto project in Can-
ada.z Research groups and industry teams similarly
adopted JupyterHub as a tool to build shared compu-
tational infrastructure. Today, scientific HPC facilities
including NERSC, NCAR, and Compute Canadaaa offer
national-level infrastructure accessible to scientists
through the web browser thanks to HPC-hosted
JupyterHubs.

Reproducible sharing: While nbviewer allows the
sharing of static narratives, with the release of Binder,
originally prototyped by Jeremy Freeman and Andrew
Osheroff in late 2015, it became possible to share a live,
executable version of one ormore notebookswith simi-
lar ease. Binder turns a repository of notebooks with
explicitly declared dependencies into a live, ephemeral
container in the cloud that can be accessed with a web
browser and where the user can immediately execute
all the code for free without having to download or
install any of the underlying software.

These examples from the Jupyter architecture and
ecosystem illustrate how open, modular tools amplify
the value of individual notebooks and support the
sharing of knowledge in ways that facilitate CoP. We
have seen CoP that use Jupyter heavily in fields as
diverse as bioinformatics, high-energy physics, data
science, machine learning, music, economics, etc. A
compelling example is the geoscience and climate
CoP built around the Pangeo project,bb “A community
platform for Big Data geoscience,” which we discuss
in more detail now.

Pangeo, an NSF-funded project from the Earth-
Cube program, defines itself as “first and foremost a
community of people working collaboratively to
develop software and infrastructure to enable Big
Data geoscience research.” The Pangeo team identi-
fied the following problems limiting progress in mod-
ern geoscience and climate research: fluid access to
large-scale datasets, lack of technological sophistica-
tion in the tools available to scientists, and reproduc-
ibility. Originally led by Ryan Abernathey and Joe
Hamman, the Pangeo team identified that open-
source tools already met these challenges fairly well,

FIGURE 2. Jupyter has a layered ecosystem that 1) is founded

on a diverse community of users and contributors who

2) establish open standards and protocols, by 3) building

extensible software, which is 4) deployed in services and ena-

bles the authoring and sharing of content. These layers build

on each other, are each irreplaceable, and drive innovation.

zhttps://www.callysto.ca
aahttps://computecanada.ca and https://syzygy.ca
bbhttps://pangeo.io

12 Computing in Science & Engineering March/April 2021

JUPYTER IN COMPUTATIONAL SCIENCE

https://www.callysto.ca


through with a “last-mile problem” of configuration,
deployment, and documentation for the specific
needs of the earth and climate science community.

Pangeo adopted JupyterHub, configured with Xar-
ray for access to numerical datasets, and Dask for dis-
tributed computing, as the backbone of their platform.
The open, vendor-agnostic nature of the Jupyter tools
made it possible for Pangeo to be deployed in the cloud
or on HPC hardware, thus bridging the traditional prac-
tices of scientific computing with today’s cloud-hosted
tools and datasets. They have deployed custom tools
such as a Dask plugin that provides real-time feedback
of distributed processing in JupyterLab, and specialized
Binders with Dask support that help this CoP meet the
challenge of reproducibility in large-scale workflows.

Pangeo’s adoption of Jupyter has enabled it to
grow and develop in a number of directions where
Jupyter plays a key role, which are as follows.

› HackWeeks10 are events that combine educa-
tion in computational methods with community
building and research prototyping around
domain-specific topics. A number of HackWeeks
have been hosted on Pangeo Hubs, including
satellite data analysis for cryosphere science
using NASAs ICESat-2, oceanography, broad-
spectrum geosciences, and large-scale climate
modeling with the CMIP6 data.

› The Pangeo Gallerycc offers live collections of
notebooks hosted on Dask-enabled Binder
deployments. Topics covered range from techni-
cal infrastructure (e.g., using Dask for scalable
computing, illustrations of the Pangeo software
stack, or performance benchmarks for cloud-
based data analysis) to domain science (e.g., anal-
ysis of Landsat8 imagery, processing of remote
sensing and simulation-based ocean data, study
of the National Weather Model, modeling of
water levels under hurricanes, reproducing key
papers in global climatemodeling, etc.).

› The Jupyter meets the Earthdd project connects
developments in Jupyter with research use
cases in the geosciences, including some from
the Pangeo-supported HackWeeks on ICESat-2
and CMIP6.

› Project Pythiaee develops new learning materials
for the analysis of geoscience data using the Sci-
entific Python ecosystem. These last two

projects are co-led by members of Pangeo and
funded under the same NSF EarthCube umbrella.

The Pangeo community has built successful dem-
onstrations of how to conduct large-scale science in
the cloud, and this need exists in areas beyond geosci-
ence. Other domain communities are leveraging this
approach for their own needs, such as the PanNeuro
effort led by Ariel Rokem and others at the University
of Washington, and we see this as a positive sign that
Jupyter’s infrastructure has broad reach for different
communities.

The Jupyter team has always sought to create
tools that are not open, but vendor-agnostic, modular,
and extensible. While the Pangeo CoP has their own
specific needs and requirements, the same building
blocks can be customized, extended, and deployed by
other CoP and service providers to other usage cases.
The key point here is how the open-source building
blocks of Jupyter for interactive computing and
computational narratives unlock new practices and
collaboration patterns in these communities.

IN CLOSING
This takes us back to the main idea of this article,
which we believe summarizes the past, present, and
future direction of Project Jupyter. Jupyter helps indi-
viduals and groups to leverage computation and data
to solve complex, technical, but human-centered
problems of understanding, decision making, collabo-
ration, and community practice. Furthermore, we
believe that open-source, community governed, mod-
ular and extensible software that is built using the
principles and practices of human-centered design
are particularly effective in tackling these challenges.

ACKNOWLEDGMENTS
The authors would like to thank Lorena Barba and
Hans Fangohr for their editorial work on this special
issue and for helpful comments on this article. The
authors also would like to thank Lindsey Heagy for
helpful feedback and work on Figure 2. Most impor-
tantly, the authors thank all IPython/Jupyter contribu-
tors, whose work over two decades has made this
project possible, as well as the broader Scientific
Python community that Jupyter relies on. The work of
Brian Granger and Fernando P�erez on Project Jupyter
was supported in part by the Alfred P. Sloan Founda-
tion, in part by the Gordon and Betty Moore Founda-
tion, in part by the Helmsley Charitable Trust, and in
part by Schmidt Futures. The work of Fernando P�erez
was supported by the NSF EarthCube Program under

cchttp://gallery.pangeo.io
ddhttps://bit.ly/jupytearth
eehttps://ncar.github.io/ProjectPythia

March/April 2021 Computing in Science & Engineering 13

JUPYTER IN COMPUTATIONAL SCIENCE

https://bit.ly/jupytearth


Award 1928406 and Award 1928374. The work of Brian
Granger was also supported by Amazon Web Services
with time to contribute to Jupyter and this article.

REFERENCES
1. T. Kluyver et al., “Jupyter notebooks—A publishing

format for reproducible computational workflows,” in

Positioning and Power in Academic Publishing: Players,

Agents and Agendas. Amsterdam, The Netherlands:

IOS Press, 2016, doi: 10.3233/978-1-61499-649-1-87.

2. D. Goldin, S. A. Smolka, and P. Wegner, Interactive

Computation. Berlin, Germany: Springer-Verlag, 2006.

3. J. C. R. Licklider, “Man–computer symbiosis,” IRE Trans.

Human Factors Electron., vol. HFE-1, no. 1, pp. 4–11,

Mar. 1960, doi: 10.1109/thfe2.1960.4503259.

4. M. S. Sugiyama, “Narrative theory and function: Why

evolution matters,” Philosophy Literature, vol. 25, no. 2,

pp. 233–250, 2001, doi: 10.1353/phl.2001.0035.

5. K. Young and J. L. Saver, “The neurology of narrative,”

SubStance, vol. 30, no. 1/2, pp. 72–84, 2001,

doi: 10.2307/3685505.

6. R. Schank, Tell Me a Story: Narrative and Intelligence

(Rethinking Theory). Evanston, IL, USA: Northwestern

Univ. Press, 1995.

7. E. N. Lorenz, “Deterministic nonperiodic flow,”

J. Atmospheric Sci., vol. 20, no. 2, pp. 130–141, 1963, doi:

10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

8. D. E. Knuth, “Literate programming,” Comput. J., vol. 27,

no. 2, pp. 97–111, Feb. 1984, doi: 10.1093/comjnl/27.2.97.

9. E. Wenger, “Communities of practice: Learning as a

social system,” Syst. Thinker, vol. 9, no. 5, pp. 2–3, 1998.

10. D. Huppenkothen, A. Arendt, D. W. Hogg, K. Ram, J. T.

VanderPlas, and A. Rokem, “Hack weeks as a model for

data science education and collaboration,” Proc. Nat.

Acad. Sci. USA, vol. 115, no. 36, pp. 8872–8877, Aug. 2018,

doi: 10.1073/pnas.1717196115.

BRIAN E. GRANGER is currently a Principal Technical Pro-

gram Manager with Amazon Web Services, Seattle, WA, USA,

in the AI Platform team and has spent the last decade as a

Professor of Physics and Data Science with Cal Poly State

University, San Luis Obispo, CA, USA. His research interests

include building open-source tools for interactive computing,

data science, and data visualization. He received the Ph.D.

degree in theoretical atomic, molecular, and optical physics

from the University of Colorado Boulder, Boulder, CO, USA.

He is a cofounder of Project Jupyter, a cofounder of the Altair

project for statistical visualization, and an active contributor

to a number of other open-source projects focused on data

science in Python. He is an Advisory Board Member of Num-

FOCUS and a Faculty Fellow of the Cal Poly Center for Inno-

vation and Entrepreneurship. Along with other leaders

of Project Jupyter, he was a recipient of the 2017 ACM Soft-

ware System Award. Contact him at bgranger@calpoly.edu

and brgrange@amazon.com.

FERNANDO P�EREZ is currently an associate professor in sta-

tistics with UC Berkeley, Berkeley, CA, USA, and a scientist

with Lawrence Berkeley National Laboratory, Berkeley. He

builds open-source tools for humans to use computers as

companions in thinking and collaboration, mostly in the scien-

tific Python ecosystem (IPython, Jupyter & related projects).

His current research interests include questions in geoscience

and how to build the computational and data ecosystem to

tackle problems such as climate change with collaborative,

open, reproducible, and extensible scientific practices. He

received the Ph.D. degree in physics from the University of Col-

orado Boulder, Boulder, CO, USA. He is a cofounder of the

2i2c.org initiative, the Berkeley Institute for Data Science,

and the NumFOCUS Foundation. He is a National Academy

of Science Kavli Frontiers of Science Fellow and a member

of the Python Software Foundation. He was a recipient of

the 2017 ACM Software System Award and the 2012 FSF

Award for the Advancement of Free Software. Contact him

at fernando.perez@berkeley.edu.

14 Computing in Science & Engineering March/April 2021

JUPYTER IN COMPUTATIONAL SCIENCE

http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1109/thfe2.1960.4503259
http://dx.doi.org/10.1353/phl.2001.0035
http://dx.doi.org/10.2307/3685505
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1073/pnas.1717196115

