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a b s t r a c t

The isotropic 3-dimensional harmonic oscillator potential can
serve as an approximate description of many systems in atomic,
solid state, nuclear, and particle physics. In particular, the ques-
tion of 2 particles binding (or coalescing) into angular momen-
tum eigenstates in such a potential has interesting applications.
We compute the probabilities for coalescence of two distinguish-
able, non-relativistic particles into such a bound state, where the
initial particles are represented by generic wave packets of given
average positions and momenta. We use a phase-space formula-
tion and hence need the Wigner distribution functions of angular
momentum eigenstates in isotropic 3-dimensional harmonic os-
cillators. These distribution functions have been discussed in the
literature before but we utilize an alternative approach to obtain
these functions. Along the way, we derive a general formula that
expands angular momentum eigenstates in terms of products of
1-dimensional harmonic oscillator eigenstates.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Harmonic oscillator potentials are commonly used to approximate the low-energy behavior of
ttractive interactions between two particles. Their applications range from vibrational states in
olecules to the excitation spectra of heavy quark–antiquark bound states. In many of these in-
tances, one has to deal with energy eigenstates of the isotropic harmonic oscillator in 3 dimensions
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hat are simultaneously classified by their angular momentum. For example, the famous J/ψ meson
s a bound state of a charm quark c and a charm antiquark c̄ with spin j = 1. The two valence quarks
n the J/ψ are in a spin s = 1 configuration, and their orbital angular momentum is l = 0 [1]. It
is useful for applications in nuclear and particle physics to compute the probability for a given
c − c̄ two-particle state to coalesce into a J/ψ bound state, and to distinguish this process from the
coalescence into other mesons, such as a χc1, which is a cc̄ bound state with l = 1 and j = 1. Such
coalescence, or recombination, processes of quarks have found applications in the description of
hadronization, which is the process for quarks and gluons to form bound states due to confinement
of the strong force [2–13].

In this work, we want to lay out a general formalism to compute recombination probabilities
of two particles into bound states with well-defined orbital angular momentum quantum number
l, in which the interaction is given by an isotropic harmonic oscillator potential in 3 dimensions.
Although this work is motivated by applications to meson bound states formed by quark–antiquark
pairs, the formalism can be applied to other systems in which an isotropic harmonic oscillator
potential presents a suitable approximation, e.g. the recombination of nucleons and hyperons into
light nuclei [14–22] and hypernuclei [23], as well as the recombination of hadrons into hadronic
molecules [9,24,25]. The observables computed and approximations made in those cases in nuclear
and particle physics differ somewhat from applications of recombination in atomic and plasma
physics, where the focus is typically on the photon radiation emitted by these processes. Photons
are often the primary observables for the latter, in particular for recombination into atoms in the
early Universe where they form the Cosmic Microwave Background. The de-excitation of electrons
in Coulomb-like potentials through the absorption and emission of photons plays a fundamental
role and has been discussed in detail since the 1950s [26,27]. In contrast, in the formation of
hadrons and nuclei in nuclear reactions, the recombined final states themselves are of interest.
Moreover, electromagnetic final-state radiation is suppressed due to the relatively small value of
the electromagnetic fine structure constant compared to the strong coupling constant. Energy and
momentum conservation in 2 → 1 and 3 → 1 recombination processes has to be rather provided
by spectators, although the detailed modeling of this aspect is often omitted.

For this work, we will assume that the information available about the initial two particles are
their average positions and momenta at a fixed point in time. If no other information is known, the
minimum assumption to make is that both particles are given by Gaussian wave packets around
those average values with certain widths.1 The nature of the information given as input leads
one naturally to consider a phase-space formalism for the calculation. Therefore, we revisit the
Wigner distribution functions of angular momentum eigenstates of the isotropic 3-D harmonic
oscillator. These were first calculated, to our knowledge, for a different application in nuclear physics
by Prakash and Shlomo [28]. A few special cases of Wigner functions with low orbital angular
momentum have also been given in Refs. [15,24,29,30]. While Prakash and Shlomo used Moshinsky
brackets in their derivation [31], we will take a different path. Since the Wigner distributions for
the 1-D harmonic oscillator are well known, see e.g. Refs. [32,33], we expand the 3-D angular
momentum eigenstates in terms of states factorized into 1-D eigenstates. This allows us to compute
the 3-DWigner distributions from their 1-D counterparts. Generally, Wigner distributions of angular
momentum eigenstates in 3-D seem to have not received much attention in the literature. An
exception, to some extent, are eigenstates in the Coulomb potential, see e.g. Refs. [34,35]. However,
elegant analytic expressions have been found for angular momentum eigenstates of the harmonic
oscillator in the 2-D case by Simon and Agarwal in Ref. [36].

The coalescence of two particles into energy eigenstates without well-defined orbital angular
momentum was already discussed by some of us in [37]. We had found that for a particular ratio
of initial wave packet widths to the width of the harmonic oscillator potential, the probability is
simply a Poisson distribution in the energy quantum number N of the bound state. We will confirm
this result. Moreover, we will be able to see how the initial angular momentum L of the coalescing

1 For the particular applications in nuclear physics we have in mind, this limited knowledge of the initial state
usually applies. Expectation values for positions and momenta of particles are computed in classical approximations,
e.g. Boltzmann-type transport, with little additional information available.
2



M. Kordell II, R.J. Fries and C.M. Ko Annals of Physics 443 (2022) 168960

p
d
q
f
a
m
0
a

e
e
W
o
G

t
(
o

H

t

q

articles determines the partition of probabilities into excited states with the same energy N but
ifferent orbital angular momentum quantum numbers l. Utilizing a phase-space formulation of
uark coalescence allows us to interpret our mathematical results quite intuitively. The preference
or particular final-state quantum numbers connects directly to the relation between initial relative
verage momenta and positions of the coalescing particles. For the rest of this manuscript, angular
omentum will refer to orbital angular momentum. We will assume the two particles to have spin
and to be distinguishable. However, our results will apply to initial particles of any spin as long
s the spin–orbit coupling can be neglected.2
Our work presents three main results. In the next section, we derive general expressions for the

xpansion coefficients of 3-D angular momentum eigenstates of the harmonic oscillator in terms of
igenstates factorized into 1-D eigenstates. In Section 3, we use these coefficients to compute the
igner distributions for angular momentum eigenstates of given quantum number l and averaged
ver the magnetic quantum number m.3 We then compute the coalescence probabilities for two
aussian wave packets in Section 4. Finally, we discuss the implications of our results in Section 5.

2. Angular momentum eigenstates

2.1. Conventions

Let us begin by stating our conventions and notations. We consider the isotropic 3D-harmonic
oscillator with Hamiltonian

H =
p2

2m
+

1
2
mω2r2, (1)

where p and r are the usual momentum and position operators, m is the mass (the reduced mass
in case of a 2-body system described by a harmonic oscillator potential), and ω describes the
strength of the potential. It will be helpful to briefly introduce our conventions for the 1-D harmonic
oscillator before we proceed. With the corresponding 1-D Hamiltonian H = p2/2 m + ω2x2/2, we
will use the set of orthonormal eigenfunctions

φn(x) =

√
ν

2nn!
√
π
Hn (νx) e−

ν2x2
2 , (2)

where eigenstates are labeled by integers n ≥ 0, and the corresponding energies are En =

h̄ω
(
n +

1
2

)
. It will turn out to be convenient to introduce the inverse natural length scale4 of the

oscillator ν =
√
mω/h̄. The Hn are the usual Hermite polynomials.

Returning to the 3-D case, we note that two sets of energy eigenfunctions are usually used in
he literature.
a) Factorized eigenstates (FE) utilize the factorizability of the Hamiltonian in the three cartesian co-
rdinates, leading to eigenfunctions that are products of the 1-D harmonic oscillator eigenfunctions

Φn1n2n3 (x, y, z) = φn1 (x)φn2 (y)φn3 (z) . (3)

ere, the three integer quantum numbers ni ≥ 0 (i = 1, 2, 3) label the eigenstates with energies

En1n2n3 = h̄ω
(
n1 + n2 + n3 +

3
2

)
. (4)

2 For the coalescence of spin-1/2 quarks, this assumption is usually made.
3 The averaging over m can be easily left out but leads to considerably lengthier results. They are not needed for the

applications we have in mind (the particular j3 of a meson is not measured in most experiments) and we do not present
hem here. Ref. [28] makes the same choice for their applications.
4 It will be unnecessary to denote mass by m from here on, and we will rather use this letter to denote the magnetic
uantum number.
3
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b) Angular momentum eigenstates (AME) are simultaneous eigenstates to H , L2 and L3, where
= (L1, L2, L3) is the angular momentum operator. They can be expressed in spherical coordinates
r, θ, φ) as

Ψklm(r, θ, φ) =

√
ν32k+l+2k!

√
π (2k + 2l + 1)!!

(νr)le−
ν2r2
2 L

(
l+ 1

2

)
k

(
ν2r2

)
Ym
l (θ, φ) , (5)

here the L

(
l+ 1

2

)
k are associated (or generalized) Laguerre polynomials and the Ym

l (θ, φ) = Ym
l (r̂)

re spherical harmonics, with r̂ = r/r denoting the unit position vector. The energy of a state is
given by the integer radial and angular momentum quantum numbers k, l ≥ 0 as

Eklm = h̄ω
(
2k + l +

3
2

)
. (6)

As usual, the magnetic quantum number m is an integer and is bounded such that −l ≤ m ≤ l.

2.2. Expansion of angular momentum eigenstates in terms of factorized eigenstates

It will be useful to express angular momentum eigenstates in terms of factorized eigenstates to
utilize the enormous amount of results available for the 1-D harmonic oscillator in the literature.
Therefore, we want to find the expansion coefficients Cklm,n1n2n3 in the equation

Ψklm(r) =

∑
n1n2n3

Cklm,n1n2n3Φn1n2n3 (r) . (7)

As we are dealing with complete and properly normalized sets of states, we have the explicit
expression

Cklm,n1n2n3 =

∫
d3rΦ∗

n1n2n3 (r)Ψklm(r) . (8)

It is straightforward to compute these integrals for any given small values for the sets of quantum
numbers, see Table 1. We have not found a general expression for these coefficients in the literature,
so we dedicate the remainder of this section to compute it.

Let us first note that the sum in Eq. (7) is restricted to the subspace of degenerate factorized
eigenstates with the same energy eigenvalue E = h̄ω(N +

3
2 ) as the left hand side. Here N ≡

1+n2+n3 = 2k+l is the integer energy quantum number, and the dimension of the corresponding
energy-degenerate subspace is dN =

1
2 (N + 1)(N + 2).

The value of the general integral in Eq. (8) can be readily obtained from a more general integral
hat involves replacing the special functions in the integrand with their generating functions. This
ill lead to integrals to be Gaussian and exponential in nature, and the difficulty is shifted to taking
he correct derivatives to recover the original expressions. We will use the well-known generating
unctions for Hermite and associated Laguerre polynomials,

h(t, u) = e−t2+2ut
=

∞∑
n=0

Hn(u)
tn

n!
, (9)

l(α)(s, u) = (1 − s)−α−1e−
su
1−s =

∞∑
n=0

L(α)n (u)sn , (10)

as well as a variant of the Herglotz generating function for spherical harmonics [38],

y(v, λ; r) = eva·r =

∞∑
l=0

l∑
m=−l

√
4π

2l + 1
r lvlλm

√
(l + m)!(l − m)!

Ym
l

(
r̂
)
. (11)

In the above, we have defined the auxiliary vector

a =

(
−
λ

+
1
,−i

λ
− i

1
, 1
)
, (12)
2 2λ 2 2λ
4



M. Kordell II, R.J. Fries and C.M. Ko Annals of Physics 443 (2022) 168960

o

s
r

L

W
o

Table 1
Coefficients Cklm,n1n2n3 appearing in the expansion given in Eq. (7), for the lowest energy eigenstates.

N = 0
k = 0 l = 0

(n1, n2, n3) (0, 0, 0)
m = 0 1

N = 1

k = 0 l = 1

(n1, n2, n3) (1, 0, 0) (0, 1, 0) (0, 0, 1)
m = 1 −

1
√
2

i
√
2

0
m = 0 0 0 1
m = −1 1

√
2

i
√
2

0

N = 2

k = 0 l = 2

(n1, n2, n3) (2, 0, 0) (1, 1, 0) (0, 2, 0) (0, 1, 1) (0, 0, 2) (1, 0, 1)
m = 2 1

2 −
i

√
2

−
1
2 0 0 0

m = 1 0 0 0 i
√
2

0 −
1

√
2

m = 0 −
1

√
6

0 −
1

√
6

0
√

2
3 0

m = −1 0 0 0 i
√
2

0 1
√
2

m = −2 1
2

i
√
2

−
1
2 0 0 0

k = 1 l = 0

(n1, n2, n3) (2, 0, 0) (1, 1, 0) (0, 2, 0) (0, 1, 1) (0, 0, 2) (1, 0, 1)

m = 0 −
1

√
3

0 −
1

√
3

0 −

√
1
3 0

which satisfies a2 = 0. The spherical harmonics can be recovered from this Laurent series by means
f

Ym
l

(
r̂
)

=

√
2l + 1
4π

√
(l − m)!
(l + m)!

1
l!
∂ l

∂vl

∂ l+m

∂λl+m

[(
λ

r

)l

y(v, λ; r)

]
λ=0
v=0

, (13)

imilar to the formulas to recover the Hermite and associated Laguerre polynomials from their
espective series,

Hn(u) =
∂nh(t, u)
∂tn

⏐⏐⏐⏐⏐
t=0

, L(α)n (u) =
1
n!
∂nl(α)(s, u)

∂sn

⏐⏐⏐⏐⏐
s=0

. (14)

By replacing each special function implicit in Eq. (8) by its generating function, Hni → h,
(α)
k → l(α), Ym

l → r−ly, we define a generating function F for the coefficients in Eq. (8) as

F(t1, t2, t3, s, v, λ) =

√
2k+l+2−n1−n2−n3k!

n1!n2!n3!(2k + 2l + 1)!!
ν l+3

π
(1 − s)−l− 3

2

×

∫
d3r e−ν2r2e−(t2−2νt·r)e−

sν2r2
1−s eva·r . (15)

e have introduced the vector t = (t1, t2, t3) of auxiliary variables used for the generating functions
f the Hermite polynomials. The coefficients Cklm,n1n2n3 can then be generated from F as derivatives

with respect to the auxiliary variables

Cklm,n1n2n3 =

√
2l + 1
4π

√
(l − m)!
(l + m)!

1
k!l!

∂n1+n2+n3+k+2l+m

∂tn11 ∂t
n2
2 tn33 ∂sk∂vl∂λl+m

λlF

⏐⏐⏐⏐⏐ t1=t2=t3=0
s=v=λ=0

. (16)

To compute the integral in F , we define the displacement vector

U =
1 − s (

νt +
v
a
)
, (17)
ν2 2
5



M. Kordell II, R.J. Fries and C.M. Ko Annals of Physics 443 (2022) 168960

a

t

T

w

c
g

2

i
q
t

T
o
l
b

nd rewrite the integrand in the last line of Eq. (15) as

e−
ν2
1−s (r−U)2e−t2+

ν2
1−s U

2
. (18)

This is a Gaussian in r, and the integral in Eq. (15) can now be readily evaluated to give a closed
expression for the generating function of the expansion coefficients

F(t1, t2, t3, s, v, λ) =

√
π2k+l+2−n1−n2−n3k!

n1!n2!n3!(2k + 2l + 1)!!
ν l

(1 − s)l
e−t2+

ν2
1−s U

2
. (19)

Next, we have to execute the derivatives in Eq. (16). We note that, since a2 = 0, the square of
he displacement vector U is a linear function in the auxiliary variable v,

U2
=

(1 − s)2

ν2
t2 +

(1 − s)2

ν3
v t · a . (20)

he l derivatives with respect to v thus generate a factor (1− s)l(t · a)l/ν l in Eq. (19), which cancels
all powers of (1−s) outside of the exponential. Subsequently setting v = 0 simplifies the derivatives
with respect to s to derivatives of exp[−st2], which simply generates k powers of −t2. Hence, we
have

Cklm,n1n2n3 =
(−1)k

l!

√
(l − m)!
(l + m)!

√
(2l + 1)2k−l−n1−n2−n3

n1!n2!n3!k!(2k + 2l + 1)!!
∂n1+n2+n3+l+m

∂tn11 ∂t
n2
2 tn33 ∂λl+m

Q lt2k
⏐⏐⏐⏐⏐ t1=t2=t3=0

λ=0

,(21)

here we have defined

Q = 2λ t · a = t1(1 − λ2) − it2(1 + λ2) + 2t3λ . (22)

Although not completely explicit, Eq. (21) delivers a rather compact notation for the expansion
oefficients. It is well suited for quick analytic computations of coefficients for arbitrary k, l. Table 1
ives the complete set of coefficients up to N = 2k + l = 2.

.3. Further discussion of the expansion coefficients

Although carrying out the derivatives in Eq. (21) for the general case leads to tedious expressions,
t reveals useful constraints that severely restrict the number of coefficients that are non-zero. We
uote the two most important constraints at the beginning of this subsection and will then proceed
o justify them. We find that the Cklm,n1n2n3 are non-zero only if

2k + l = n1 + n2 + n3 (23)
and

l + m − n3 = 0mod 2 . (24)

he first constraint simply reflects the fact that the energy eigenvalues of the functions involved
n the left-hand and right-hand sides in Eq. (7) need to be equal. The second constraint, forcing
+ m − n3 to be even, is less obvious but useful. It sets about half of the remaining coefficients to
e zero.
To compute the derivatives with respect to components of t, we apply the Binomial Theorem

and Leibniz’s product rule several times to expand the derivatives of the term Q lt2k. We can resolve
several of these sums after setting t = 0. The remaining sums read

∂n1+n2+n3

∂tn11 ∂t
n2
2 tn33

Q lt2k
⏐⏐⏐⏐⏐
t=0

= k!l!δn1+n2+n3,2k+l

∑
j1+j2+j3=k

2jµ≤nµ,µ=1,2,3

(
n1
2j1

)(
n2
2j2

)(
n3
2j3

)

×
(2j1)!(2j2)!(2j3)! (1 − λ2)

n1−2j1 (−i(1 + λ2))
n2−2j2 (2λ)n2−2j3 . (25)
j1!j2!j3!
6
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his is where energy conservation emerges as a constraint, ensured by the Kronecker-δ in the ex-
ression above. After taking the remaining derivatives with respect to λ, the expansion coefficients
re

Cklm,n1n2n3 = (−1)k
√
(2l + 1)2k−l−n1−n2−n3

√
n1!n2!n3!k!(l − m)!(l + m)!

(2k + 2l + 1)!!
S . (26)

he expression S contains the residual sums

S =

n1,n2,n3∑
j1,j2,j3=0
j1+j2+j3=k

2n3−2j3 in2−2j2

j1!j2!j3!(n1 − 2j1)!(n2 − 2j2)!(n3 − 2j3)!

κ+j3∑
ρ=0

(−1)ρ
(
n1 − 2j1
ρ

)(
n2 − 2j2
κ + j3 − ρ

)
, (27)

ith additional constraints on the indices j1 and j2 in the sum as 2j1 ≥ n1−l and 2j1+2j2 ≥ n1+n2−l,
nd overall constraints as given in Eqs. (23) and (24). In the above, we have used the shorthand
otation

κ =
1
2
(l + m − n3) , (28)

which is an integer due to Eq. (24). The sum over ρ in S represents a value of the Gaussian
hypergeometric function 2F1 at the point −1. To be specific, we have

S =

n1,n2,n3∑
j1,j2,j3=0
j1+j2+j3=k

2n3−2j3 in2−2j2

j1!j2!j3!(n1 − 2j1)!(n2 − 2j2)!(n3 − 2j3)!

×

(
n2 − 2j2
κ + j3

)
2F1(−κ − j3,−n1 + 2j1; 1 − κ − j3 + n2 − 2j2; −1) . (29)

Eqs. (26) and (29) with the additional constraints given constitute the main result of this
ubsection. A closed expression can be given in the important case k = 0 as

C0lm,n1n2n3 =

√
(l + m)!(l − m)!

22ln1!n2!n3!(2k + 2l − 1)!!

(
n2
κ

)
2F1(−κ,−n1; 1 − κ + n2; −1) . (30)

. Wigner representation of angular momentum eigenstates

.1. Wigner distributions and review of the 1-D case

We define the generalized Wigner transformation, applied to a wave function ψ1(r) and a
omplex conjugate wave function ψ∗

2 (r). The transformation yields the phase-space distribution

Wψ2,ψ1 (r, q) =

∫
d3r′

(2π h̄)3
e

i
h̄ r

′
·q
ψ∗

2

(
r +

1
2
r′
)
ψ1

(
r −

1
2
r′
)
, (31)

which in general can take complex values. We recover ordinary, real-valued Wigner distributions
for the special case ψ1 = ψ2.

We use corresponding definitions in the 1-D case. Using the short-hand notation Wn′ n = Wφn′ ,φn
,

the Wigner distributions for the energy eigenstates of the 1-D harmonic oscillator from Eq. (2)
are [32,33]

Wn′ n(x, q) =
(−1)n

′

π h̄

√
n′

n
u

n−n′
2 e−u/2e−i(n−n′)ζ L(n−n′)

n′ (u) , (32)

where u = 2
(
q2/(h̄2ν2) + ν2x2

)
and tan ζ = q/(h̄ν2x). Deviating from Ref. [33], we are keeping

physical units. The formulas have been adjusted accordingly. The diagonal Wigner functions Wnn
for the 1-D harmonic oscillator are included as a special case [37]. The lesser known Wn′ n for n ̸= n′

are the off-diagonal Wigner distributions for the harmonic oscillator energy eigenstates.
7
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Later, we will utilize the generating function for these generalized Wigner functions, which is
discussed at length in Ref. [33],

G(α, β; x, q) =
1
π h̄

e
αβ−

(
νx− α+β

√
2

)2
−

(
q
h̄ν+i α−β

√
2

)2
. (33)

We recover the Wigner functions as

Wn′ n(x, q) =
1

√
n!n′!

∂n+n′

∂αn′
βn

G(α, β; x, q)

⏐⏐⏐⏐⏐
α=β=0

. (34)

ith these results from the literature lined up, we are now ready to compute the Wigner distribu-
ions for the isotropic 3-D harmonic oscillator using the expansion coefficients from the previous
ection.

.2. Wigner distributions in 3-D

We define the shorthand notation Wklm = WΨklm,Ψklm for the diagonal Wigner distributions
of energy and angular momentum eigenstates. If one is not interested in the magnetic quantum
number, e.g. if the polarization of a bound state in the harmonic oscillator is not considered, one
would rather like to consider the m-averaged distributions

Wkl =
1

2l + 1

∑
−l≤m≤l

Wklm . (35)

The m-dependent distributions are easy to compute but difficult to visualize due to a lack of
symmetries. We will focus on the m-averaged distributions in the following as the applications we
have in mind usually do not require knowledge of the angular momentum projection. Combining
Eqs. (31), (7), and (3) with the results of the previous subsection, we see that

Wkl(r, q) =

∑
n1,n2,n3
n′1,n

′
2,n

′
3

Dkl

(
n1, n2, n3

n′

1, n
′

2, n
′

3

)
Wn′

1n1
(r1, q1)Wn′

2n2
(r2, q2)Wn′

3n3
(r3, q3) . (36)

he expansion coefficients for Wigner distributions of m-averaged angular momentum eigenstates
n terms of their factorized counterparts are

Dkl

(
n1, n2, n3

n′

1, n
′

2, n
′

3

)
=

1
2l + 1

∑
m

C∗

klm,n′
1n

′
2n

′
3
Cklm,n1n2n3 . (37)

The constraints (23) and (24) immediately put constraints on these coefficients, which we do not
spell out here in detail.

Working out the algebra readily delivers the m-averaged distributions. We tabulate them here
up to N = 3:

W00 =
1

π3h̄3 e
−

q2

h̄2ν2
−ν2r2

, (38)

W01 = W00

(
−1 +

2
3
ν2r2 +

2
3

q2

h̄2ν2

)
, (39)

W02 = W00

(
1 +

4
15
ν4r4 −

4
3
ν2r2 +

16
15

r2q2

h̄2 −
8
15

(r · q)2

h̄2 −
4
3

q2

h̄2ν2
+

4
15

q4

h̄4ν4

)
, (40)

W10 = W00

(
1 +

2
3
ν4r4 −

4
3
ν2r2 −

4
3
r2q2

h̄2 +
8
3
(r · q)2

h̄2 −
4
3

q2

h̄2ν2
+

2
3

q4

h̄4ν4

)
, (41)

W03 = W00

(
−1 +

8
ν6r6 −

4
ν4r4 + 2ν2r2 −

16 r2q2
2

(
1 −

3
ν2r2 −

3 q2
2

)

105 5 5 h̄ 14 14 h̄ ν2

8
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Fig. 1. Phase-space distributions Wkl for m-averaged angular momentum eigenstates for the lowest k- and l-states as
unctions of r = |r| and q = |q|. The thick black or white lines indicate nodes where Wkl = 0. Distributions that depend
on the scalar product r · q are plotted for several values of the angle θ given by cos θ = r · q/rq.

+
8
5
(r · q)2

h̄2

(
1 −

2
7
ν2r2 −

2
7

q2

h̄2ν2

)
+2

q2

h̄2ν2
−

4
5

q2

h̄4ν4
+

8
105

q6

h̄6ν6

)
, (42)

W11 = W00

(
−1 +

4
15
ν6r6 −

22
15
ν4r4 + 2ν2r2 +

4
5
r2q2

h̄2

(
1 −

1
3
ν2r2 −

1
3

q2

h̄2ν2

)
−

56
15

(r · q)2

h̄2

(
1 −

2
7
ν2r2 −

2
7

q2

h̄2ν2

)
+2

q2

h̄2ν2
−

4
15

q4

h̄4ν4
+

22
15

q6

h̄6ν6

)
. (43)

he 3-D isotropic oscillator exhibits SO(3) symmetry together with a symmetry νr ↔ q/(h̄ν).
oth of these symmetries are also obeyed by the Wigner functions when averaged over m. The
istributions Wkl only depend on scalar products r2 = |r|2, q2 = |q|

2 and r · q. This makes their
isualizations as functions of r , q and θ , the angle between the vectors r and q, straightforward. We
lot several Wkl as functions of r and q in Fig. 1 for various values of θ . The Wigner distributions are
ell-behaved with no oscillations at large arguments r and q, unlike those seen in the Coulomb-case
ven in the ground state [34,35]. Rather, the ground state distribution is positive definite, and the
umber of node lines increases slowly with k and l.
Our results are consistent with those given for the cases of low values of k and l in Refs.

[15,24,29,30]. Also, Shlomo and Prakash [28] have given expressions for the Wigner functions in

the general case using Moshinsky brackets [31]. However, just as in our case, a closed expression is

9
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ifficult to achieve. We have confirmed for a few explicit cases that our results coincide with their
esults as well.

. Coalescence into angular momentum eigenstates

.1. Differential and total coalescence probabilities

In the following, we want to describe the process of two quasi-free particles coalescing into
bound state described by the wave function of a 3-D isotropic harmonic oscillator potential,

.e., at short distances the particles are subject to forces approximated by those of a harmonic
scillator. The mass m appearing in Eq. (1) is then the reduced mass of the two particles. Quasi-free
ere means that the particles initially will be assumed to be described by Gaussian wave packets
entered around points (r1, p1) and (r2, p2) in phase space. To be precise, the Wigner distributions
re assumed to have the form

Wi (xi, ki) =
1

π3h̄3 e
−

(xi−ri)
2

2δ2
−2 δ

2

h̄2
(ki−pi)2 (44)

for i = 1, 2. We assume both wave packets to be isotropic with common spatial width δ. These latter
restrictions can be lifted, in principle, if more information is known about the initial state particles.
For the applications we have in mind, the full quantum information is usually poorly known and
quasi-classical information, identified with the peaks of the Gaussians, together with a minimal
smearing consistent with the uncertainty principle must often suffice. We are also restricting the
discussion here to the case of particles of equal mass. For applications to two particles of unequal
mass the definitions of center-of-mass and relative coordinates below must be adjusted accordingly.

In order to describe the position and motion of the bound state after coalescence, we introduce
the center-of-mass coordinate and total momentum of the coalescing wave packets as

X =
1
2
(x1 + x2) , K = k1 + k2 . (45)

We will assume a complete set of states representing plane waves with momentum Pf . Applying
the Wigner transformation Eq. (31) to a plane wave state of momentum Pf ,

ψPf (X) =
1

(2π h̄)3/2
e

i
h̄ Pf ·X , (46)

yields the distribution

W̃Pf (K) =
1

(2π h̄)3
δ(3)

(
K − Pf

)
. (47)

hese distributions W̃ differ from ordinary Wigner distributions as they are not normalized to one,
mirroring their wave function in that respect.5

In the Wigner formalism, the probability P̃klm,Pf d
3Pf for the coalescence process to result in a

ound state with momentum Pf and quantum numbers k, l, m is given by the phase-space overlap
integral between initial and final states,

P̃klm,Pf = (2π h̄)6
∫

d3x1d3x2d3k1d3k2W̃Pf (K)Wklm (∆x,∆k)W1(x1, k1)W2(x2, k2) . (48)

Here, Wklm is the Wigner function of the harmonic oscillator bound state with quantum numbers
k, l,m, and we have introduced the relative coordinate and momentum

∆x = x1 − x2 ,∆k =
1
2
(k1 − k2) . (49)

5 Unlike ordinary Wigner distributions, they are also not bounded.
10
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After recasting the integrals in Eq. (48) into integrals over these center-of-mass and relative
coordinates, one can easily take the integrals over X and K to arrive at

Pklm,Pf = 8JPi,Pf e
−

r2

4δ2
−4 δ

2

h̄2
p2
∫

d3∆x d3∆kWklm (∆x,∆k) e−
∆x2

4δ2
+

1
2δ2

∆x·re
−4 δ

2

h̄2
∆k2+8 δ

2

h̄2
∆k·p

, (50)

where we have introduced another set of relative coordinates for the centroid phase-space coordi-
nates of the initial wave packets:

r = r1 − r2 , (51)

Pi = p1 + p2 , p =
1
2
(p1 − p2) . (52)

The distribution

JPi,Pf =
δ3

π3/2h̄3 e
−
δ2

h̄2
(Pf −Pi)

2

(53)

describes the overlap of the initial momentum of the two coalescing particles, represented by the
centroid momentum Pi, with the final momentum eigenstate characterized by Pf . It is simply a
Gaussian with a width

√
2h̄/δ, which corresponds to a random superposition of the fluctuations

with widths h̄/δ around the two initial momenta p1 and p2. Thus, the quantum uncertainty in the
inal momentum of the meson reflects the quantum uncertainties in the initial quark momenta.

JPi,Pf is properly normalized to one with respect to integration over Pf . For the rest of this section,
e will only deal with the probability for coalescence into any final-state motion of the bound state

Pkl =

∑
m

∫
d3Pf P̃klm,Pf . (54)

e also sum over the magnetic quantum number m as we will not consider the different
olarization states of the bound state. From Eq. (50), we obtain

Pkl = 8e
−

r2

4δ2
−4 δ

2

h̄2
p2
∫

d3∆x d3∆kWkl (∆x,∆k) e−
∆x2

4δ2
+

1
2δ2

∆x·re
−4 δ

2

h̄2
∆k2+8 δ

2

h̄2
∆k·p

. (55)

The result for any particular final-state momentum can be quickly recovered by adding the
appropriate factor JPi,Pf to Eq. (55). We note that the coalescence probability Pkl(r, p) will simply
be a function of the displacement vector of the centroids of two particles in phase space (r, p) and
of the final-state quantum numbers k and l, as expected. In an abuse of language, we will, for sake
of brevity, sometimes refer to the positions of the centroids as the ‘‘positions’’ and ‘‘momenta’’ of
the particles from here on.

Rather than computing the remaining integrals directly using the results from Section 3.2, we
once more utilize the expansion into factorized 1-D eigenstates and apply the results for coalescence
in one dimension. To this end, we apply the overlap integral Eq. (55) to the Wigner distributions in
factorized form in Eq. (36). After summing over m, we obtain a representation of the coalescence
probabilities

Pkl =

∑
n1,n2,n3
n′1,n

′
2,n

′
3

Dkl

(
n1, n2, n3

n′

1, n
′

2, n
′

3

)
P̂n′

1n1
P̂n′

2n2
P̂n′

3n3
, (56)

where the P̂n′n are quasi-probabilities obtained from off-diagonal 1-D Wigner functions Wn′n
through the equivalent of Eq. (55) in 1-D, i.e. (i = 1, 2, 3),

P̂n′n = 2e
−

r2i
4δ2

−
4δ2

h̄2
p2i
∫

d∆xi d∆ki Wn′n (∆xi,∆ki) e
−
∆x2i
4δ2

+
1

2δ2
∆xirie

−4 δ
2

h̄2
∆k2i +8 δ

2

h̄2
∆kipi

. (57)

We briefly discuss these 1-D Wigner functions in the following.
11
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.2. Computing the probabilities — 1-D case

Let us recall the generating function Eq. (33). We define a generating function for the quasi-
robabilities in analogy with the previous equation as

I(α, β; ri, pi) = 2e
−

r2i
4δ2

−
4δ2

h̄2
p2i
∫

d∆xi d∆ki G(α, β;∆xi,∆ki)

× e−
∆x2i
4δ2

+
1

2δ2
∆xirie

−4 δ
2

h̄2
∆k2i +8 δ

2

h̄2
∆kipi

. (58)

The integrals over ∆xi and ∆ki can then be readily taken. The result is

I(α, β; ri, pi) = 2e−αβ 2νδ
1 + 4ν2δ2

e
−

r2i
4δ2

−
4δ2

h̄2
p2i e

( ri
2δ +

√
2δν(α+β)

)2
1+4ν2δ2 e

(
4νδ2

pi
h̄ −

i√
2
(α−β)

)2
1+4ν2δ2 . (59)

e can recover the quasi-probabilities P̂n′n for particular states n′ and n by applying the derivatives
n Eq. (34) to I(α, β; ri, pi).

The probabilities depend on two scale parameters: the size of the harmonic oscillator potential
/ν and the size δ of the incoming wave packets. We will see that the case ν−1

= 2δ plays a special
ole. It resembles a resonant case in which two wave packets fit neatly into the potential. We define
he dimensionless ratio

ζ = 2δν . (60)

We can recast the previous result in terms of ν and ζ as

I =
2ζ

1 + ζ 2
e−αβe

−
r2i ν

2

ζ2
−

p2i ζ
2

ν2 h̄2 e

(
riν
ζ

+
ζ

√
2
(α+β)

)2
1+ζ2

+

(
piζ

2
νh̄ −

i√
2
(α−β)

)2
1+ζ2 . (61)

The pseudo-probabilities for the few lowest orders are

P̂00 =
2ζ

1 + ζ 2
e−vi (62)

P̂01 = P̂00

√
2

(1 + ζ 2)νh̄

(
ipiζ 2 + riν2h̄

)
(63)

P̂10 = P̂∗

01 (64)

P̂11 = P̂00
2

(1 + ζ 2)2ν2h̄2

(
p2i ζ

4
+ r2i ν

4h̄2) (65)

here

vi =
r2i ν

2

1 + ζ 2
+

p2i
h̄2ν2(1 + ζ 2)

. (66)

Eq. (61) exhibits an interesting symmetry. The generating function I is invariant under simulta-
eous replacements

ζ ↔
1
ζ

, riν ↔
pi
νh̄

, (α + β) ↔ i(α − β) . (67)

Hence, for the diagonal probabilities P̂nn, for which an equal number of derivatives of I with respect
o α and β are taken, replacing ζ by 1/ζ amounts to interchanging the dimensionless coordinate
nd momentum variables. In other words, ζ scales the relative contributions that ri and pi make to
he probability. This is elucidated in Fig. 2, which shows the areas of P̂nn ≥ 0.2 in the ri − pi-plane
or several probabilities. The symmetry around ζ = 1 is clearly visible. For ζ > 1, i.e. for a bound
tate size larger than twice the size of the wave packet, recombination favors incoming particles at
12
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w
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4

Fig. 2. Areas of probability P̂nn ≥ 0.2 for n = 0 (left panel), n = 1 (center panel), and n = 2 (right panel). The symmetric
scale ratio ζ = 1 is shown as well as ζ = 4 and ζ = 1/4.

larger distance and smaller relative momenta, while the opposite is true for ζ < 1, when the bound
state size is smaller. However, ‘‘on average’’ these cases lead to the same coalescence probabilities.
To be more precise, when particle pairs are sampled from a distribution in which ri and pi are
homogeneously distributed, the probabilities sum to∫

dri

∫
dpi I(α, β; ri, pi) = 2π h̄eαβ , (68)

which is independent of ζ . Such a sampling represents coalescing particles at infinite temperature,
which is not a realistic physical system. However, it illustrates that while the value of ζ matters for
individual cases, the overall dependence on ζ is weaker when applied to distributions of particles,
to the point that it disappears in the homogeneous case. In the following, we will restrict our
discussion to the case ζ = 1, in which the algebra simplifies substantially. For some of the
applications in nuclear physics we have in mind, temperatures are typically not large compared
to the masses of the particles, T ∼ m. At the same time, the widths of wave packets are usually not
well constrained, and we ultimately seek statistical answers for large ensembles of particles, thus
ζ = 1 should give reasonable estimates. However, the more general case might be important for
particular applications, and can in principle be worked out from the results in this subsection.

In the case ζ = 1, the generating function simplifies to

I(α, β; r, p) = e
−
ν2r2
2 −

p2

2h̄2ν2 e
α√
2

(
νr−i p

h̄ν

)
e
β

√
2

(
νr+i p

h̄ν

)
. (69)

The coalescence probabilities now take particularly simple forms, and they are given by

P̂n′ n(ri, pi) =
e−vi

√
n!n′!

(
νr
√
2

+ i
p

√
2νh̄

)n (
νr
√
2

− i
p

√
2νh̄

)n′

(70)

here ζ is set to one in vi. For n = n′ these probabilities have already been derived in Ref. [37]. For
̸= n′ they are complex, as expected.

.3. Computing the probabilities in the 3-D case

We can now finally apply Eq. (56) and obtain the coalescence probabilities into angular momen-
tum eigenstates. For the few lowest values of k and l, they read

P00 = e−v , (71)

P01 = e−vv , (72)

P02 =
1
e−v

(
2
v2 +

1
t
)
, (73)
2 3 3
13



M. Kordell II, R.J. Fries and C.M. Ko Annals of Physics 443 (2022) 168960

N
r
θ

i
e
s
(
i
w
p

4

t
p
d

P10 =
1
2
e−v

(
1
3
v2 −

1
3
t
)
, (74)

P03 =
1
3!

e−v

(
2
5
v3 +

3
5
vt
)
, (75)

P11 =
1
3!

e−v

(
3
5
v3 −

3
5
vt
)
. (76)

In the above, we have used the short-hand notations

v =
ν2r2

2
+

p2

2h̄2ν2
, (77)

t =
1
h̄2

[
p2r2 − (p · r)2

]
=

1
h̄2 L

2 , (78)

where L = r×p is the relative angular momentum of the initial particles, given by the centroids of
their respective wave packets, and L = |L|. As in the 1-D case, ζ = 1 leads to results in which
the dimensionless distance and momentum differences are symmetric. The case ζ ̸= 1 can be
treated similarly if needed. In Fig. 3, we show the coalescence probabilities Pkl, summed over m,
for two Gaussian wave packets interacting with an isotropic 3-D harmonic oscillator potential. The
plots show probabilities as functions of relative coordinates r = |r| and p = |q| as well as their
dependence on the scalar product r · p for several values of the angle θ given by cos θ = r · p/rp.

It was first pointed out in Ref. [37] that in the 1-D case the probability to coalesce into a state
with energy quantum number n is given by the Poisson distribution. It was also shown, using
factorization into 1-D eigenstates, that this behavior extends to the 3-D case if n is replaced by
the energy quantum number N = n1 + n2 + n3. This result directly translates into the probability
for coalescence into angular momentum eigenstates with energy N = 2k + l, since the eigenspace
in the corresponding Hilbert space is the same. Indeed, we confirm this behavior in our calculation.
Based on the lowest orders in N = 2k + l, the probability to coalesce into a state with energy N is∑

2k+l=N

Pkl = e−v v
N

N!
, (79)

As a corollary, unitarity for the coalescence process is obvious. For a fixed energy quantum number
N , the splitting of probabilities between states of different radial and orbital angular momentum
quantum numbers is governed by the squared classical angular momentum th̄2 of the centroids of
the initial wave packets. As expected, larger angular momentum quantum numbers l are favored
by larger t , defined in Eq. (78). Fig. 4 compares the coalescence probabilities for two states with

= 3, P03 and P11. At fixed values of r and p, the probabilities to coalesce into the k = 1
adially excited states drops with increasing angle θ between r and p, reaching a minimum at
= π/2. Conversely, the probability to coalesce into an orbital angular momentum excited state

ncreases with θ . In other words, particles that initially move towards each other, or away from
ach other (θ ≈ 0 or π ) tend to coalesce into lower orbital angular momentum but radially excited
tates of the appropriate energy, while particles that move orthogonally to their distance vector
θ ≈ ±π/2) prefer higher orbital angular momentum bound states. This translation between the
nitial classical angular momentum L and the preferred quantum numbers (k, l) is as expected. Thus,
e are justified to write the probabilities as P(v, t), indicating their dependence on the squared
hase-space distance and squared orbital angular momentum.

.4. Applications to distributions of coalescing particles

Let us briefly turn to the question of how we can use the results from the previous subsection
o compute yields of bound states from the coalescence of particles that are given by classical
article distributions f (r, p). This can be achieved by interpreting, in a semi-classical limit, the

istributions to represent the centroid phase-space coordinates of the Gaussian wave packets used

14
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Fig. 3. Coalescence probabilities Pkl , summed over m, for two Gaussian wave packets interacting through an isotropic 3-D
armonic oscillator potential. Plots show probabilities as functions of relative coordinates r = |r| and p = |q|. Probabilities
hat depend on the scalar product r · p are plotted for several values of the angle θ given by cos θ = r · p/rp.

Fig. 4. Coalescence probabilities P03 and P11 , summed over m, as a function of the angle θ between the relative positions
nd momenta of the particles, for fixed magnitudes r = 1/ν and p = h̄ν of relative position and momentum. The (0, 3)
nd (1, 1) states both have energy quantum number N = 3.
15
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n our calculation. Following Eq. (48), the number of particles with final-state quantum numbers
lm and final momentum in an infinitesimal volume around Pf is

dNklm,Pf = d3Pf

∫
d3r1d3p1f1(r1, p1)

∫
d3r2d3p2f2(r2, p2)

× (2π h̄)6
∫

d3x1d3x2d3k1d3k2WPf (K)Wklm (∆x,∆k)W1(x1, k1)W2(x2, k2) . (80)

he Gaussian wave packets Wi are defined as in Eq. (44) with centroids (ri, pi). Using the results
rom the previous section, we can write the differential yield, summed over magnetic quantum
umbers m, as

dNkl,Pf

d3Pf
=

∫
d3r1d3p1f1(r1, p1)

∫
d3r2d3p2f2(r2, p2)JPi,Pf Pkl , (81)

here JPi,Pf (see Eq. (53)) reflects the Gaussian smearing of initial particle momenta. In the semi-
lassical approximation, J approaches a δ-function J → δ(3)(Pi − Pf ). This formula has often been
sed in the nuclear physics literature on coalescence, see e.g. [14–22], and is consistent with our
pproach in the semi-classical limit of a sharp final momentum for the bound state.

. Summary and discussion

This work presents three main results. First, Eq. (26) gives a general expression for the coeffi-
ients needed to expand angular momentum eigenstates of the isotropic 3-D harmonic oscillator
nto factorized eigenstates that utilize products of 1-D eigenstates. A closed form can be given
or k = 0 states. The 1-D harmonic oscillator has been studied exhaustively, and the expansion
oefficients pave a path to utilizing 1-D results to derive novel statements for the isotropic 3-D
armonic oscillator.
Second, we have used this technique to derive Wigner phase-space distributions in terms of

heir 1-D counterparts, see Eq. (36). Explicit expressions are given in Eqs. (38) through (43), which
re products of Gaussians in the dimensionless phase-space coordinate

√
r2ν2 + q2/(h̄2ν2) and

olynomials of degree N in r2, q2 and r · q. The scalar product r · q produces a dependence on
he relative orientation of the coordinate and momentum vectors. Our results reproduce previous
esults from the literature.

Finally, we have considered the coalescence of two non-relativistic particles, approximated by
aussian wave packets, interacting through a harmonic oscillator potential. Coalescence probabil-
ties into angular momentum eigenstates can once more be expressed through the corresponding
-D coalescence probabilities using the expansion coefficients from Section 2. Particularly simple
esults emerge if the size of the initial wave packets and the width of the harmonic oscillator
otential obey a 1:2 ratio (ζ = 1). In that case, the probabilities for coalescence into states with
nergy quantum number N is given by the Poisson distribution with respect to the energy quantum
umber N and the squared phase-space distance of the particles, as given by the centroids of the
ave packets. Probabilities for different angular momentum states l with the same energy quantum
umber N are differentiated by the relative angular momentum L of the initial particles. Deviations
rom ζ = 1 lead to a relative rescaling of the relative distance and momentum in the probability,
ith larger initial wave packets favoring smaller relative distances but allowing for larger relative
omentum.
While various applications can be envisioned, the formalism as discussed here readily applies

o the coalescence of quark–antiquark pairs into mesons. Let us briefly sketch out this scenario
sing mesons as given by the quark model. In spectroscopic notation, these mesons can be classified
s n2s+1Lj [1], where L denotes orbital angular momentum by the usual letters S, P , D, F , etc., for

l = 0, 1, 2, 3, . . ., respectively, and n = k+1 is the radial quantum number shifted by one, with ‘‘1’’
now referring to the radial ground state. The spin degeneracy of the two quark-system is denoted
by 2s + 1, with the eigenvalue s(s + 1)h̄2 of the squared spin operator S2. The two spin-1/2 quarks
can couple to a s = 0 singlet state or a s = 1 triplet state. Spin and orbital angular momentum of
16
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he quarks further couple to the total angular momentum given by the quantum number j, with
ts 3-component mj, satisfying |l − s| ≤ j ≤ l + s as usual. A physical meson state M = n2s+1Lj,
ith meson spin orientation mj, is in general a superposition of pure orbital angular momentum
nd spin eigenstates

Ψ
(M)
jmj,ls

=

∑
mj=m+ms

djmj;lm,smsΨklmχsmsζ0 , (82)

here we have suppressed the dependence of phase-space coordinates in the notation for brevity.
s,ms is the spin wave function, the djmj;lm,sms are the appropriate SU(2) Clebsch–Gordon coefficients,
nd ζ0 denotes the color singlet SU(3) wave function of the two-quark state. Quarks and antiquarks
an be represented similarly by their Gaussian wave packets and superpositions of spin and color
igenstates.
As an example, let us assume a statistical distribution of spins and colors of the initial quarks,

hich we take to be an up quark u and an anti-down quark d̄. Leaving details of the spin and color
lgebra to a future discussion [39], and neglecting the effects of confinement,6 we simply state the
inal probabilities for coalescence of these quarks if their relative squared phase-space distance is
and squared relative angular momentum is t . For the lowest mass ud̄-meson states, pions and
-mesons as well as their heavier relatives, the probabilities are

π+ 11S0 :
1

4 × 9
P00(v, t) , (83)

ρ+ 13S1 :
3

4 × 9
P00(v, t) , (84)

b+

1 (1235) 11P1 :
1

4 × 9
P01(v, t) , (85)

a+

0 (1450) 13P0 :
3

4 × 9 × 9
P01(v, t) , (86)

a+

1 (1260) 13P1 :
3 × 3

4 × 9 × 9
P01(v, t) , (87)

a+

2 (1320) 13P2 :
3 × 5

4 × 9 × 9
P01(v, t) , (88)

π+(1300) 21S0 :
1

4 × 9
P10(v, t) , (89)

ρ+(1450) 23S1 :
3

4 × 9
P10(v, t) , (90)

The widths 1/ν of the wave functions can be inferred in many cases from the measured charge radii
of the mesons [37,39].

In applying the quark coalescence model for hadron production, the expressions given in the
above paragraph need to be weighted by the quark and antiquark phase-space distribution functions
and integrated over the phase space. For quarks that are uniformly distributed in space and have
thermal momentum spectra, it has been shown in Ref. [24] that the yield of hadrons depends
sensitively on their angular momentum quantum number and is suppressed as the latter increases.
This effect was found crucial in describing the reduced production of Λ(1520) in relativistic heavy
ion collisions after taking into account its p-wave nature via the coalescence production [30],
compared to that given by the statistical hadronization model, which only depends on its mass
and degeneracy. The general wave-packet weighted Wigner functions derived in our study allows
one to take into account also the effect of radial excitations of hadrons on their production in
relativistic heavy ion collisions. Consequences of this effect applied to the coalescence of quarks
will be explored elsewhere [39].

6 Confinement would imply correlations between quark colors and cannot be captured by the assumption of a statistical
distribution.
17
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