Temporal Regular Path Queries

Marcelo Arenas, Pedro Bahamondes
Universidad Catolica & IMFD, Chile
marenas @ing.puc.cl, pibahamondes @uc.cl

Abstract—In the last decade, substantial progress has been
made towards standardizing the syntax of graph query languages,
and towards understanding their semantics and complexity of
evaluation. In this paper, we consider temporal property graphs
(TPGs) and propose temporal regular path queries (TRPQs)
that incorporate time into TPG navigation. Starting with de-
sign principles, we propose a natural syntactic extension of
the MATCH clause of popular graph query languages. We
then formally present the semantics of TRPQs, and study the
complexity of their evaluation. We show that TRPQs can be
evaluated in polynomial time if TPGs are time-stamped with
time points, and identify fragments of the TRPQ language that
admit efficient evaluation over a more succinct interval-annotated
representation. Finally, we implement a fragment of the language
in a state-of-the-art dataflow framework, and experimentally
demonstrate that TRPQ can be evaluated efficiently.

Index Terms—graph query languages, temporal query lan-
guages

I. INTRODUCTION

The importance of networks in scientific and commercial
domains is undeniable. Networks are represented by graphs,
and we will use the terms network and graph interchangeably.
Considerable research and engineering effort is devoted to the
development of effective and efficient graph representations
and query languages. Property graphs have emerged as the de
facto standard, and have been studied extensively, with efforts
underway to unify the semantics of query languages for these
graphs [1], [2]. Many interesting questions about graphs are
related to their evolution rather than to their static state [3]—
[11]. Consequently, several recent proposals seek to extend
query languages for property graphs with time [12]-[16].

Our focus in this paper is on incorporating time into path
queries. More precisely, we (a) outline the design principles
for a temporal extension of Regular Path Queries (RPQs) with
time; (b) propose a natural syntactic extension of state of the
art query languages for conventional (non-temporal) property
graphs, which supports temporal RPQs (TRPQs); (c) formally
present the semantics of this language; (d) study the com-
plexity of evaluation of several variants of this language; (e)
implement a practical fragment of this language in a dataflow
framework; and (f) empirically demonstrate that TRPQs can
be evaluated efficiently. We show that, by adhering to the
design principles that draw on decades of work on graph
databases and on temporal relational databases, we are able
to achieve polynomial-time complexity of evaluation, paving
the way to implementations that are both usable and practical,
as supported by our implementation and experiments.

Amir Aghasadeghi, Julia Stoyanovich
New York University, USA
amirpouya@nyu.edu, stoyanovich@nyu.edu

A. Running example

As a preview of our proposed methods, consider Figure 1
that depicts a contact tracing network for a communicable
disease with airborne transmission between people in enclosed
locations on a university campus. In this network, different
actors and their interactions are presented as a temporal
property graph or TPG for short. (We will define temporal
property graphs formally in Section III).

As in conventional property graphs [1], nodes and edges in
a TPG are labeled. The graph in Figure 1 contains two types of
nodes, Person and Room (representing a classroom), and three
types of edges: bi-directional edges meets and cohabits
(lives together), and directed edge visits. Nodes and edges
have optional properties that are associated with values. For
example, node n; of type Person has properties name with
value 'Ann' and risk with value 'low'. As another example,
edge es of type meets has property loc with value 'park’'.

The purpose of the graph in Figure 1 is to allow identi-
fication of individuals who may have been exposed to the
disease. In particular, we are interested in identifying poten-
tially infected individuals who are considered high risk, due
to age or pre-existing conditions. These types of questions
can be naturally phrased as temporal regular path queries
(TRPQs) that interrogate reachability over time. We will give
an example of a TRPQ momentarily.

To support TRPQs, all nodes and edges in a TPG are
associated with time intervals of validity (or intervals for short)
that represent consecutive time points during which no change
occurred for a node or an edge, in terms of its existence or
property values. For example, node n; (Ann) is associated
with the interval [1, 9], signifying that n; was present in
the graph and took on the specified property values during 9
consecutive time points. As another example, node no (Bob)
exists during the same interval as ni, but undergoes a change
in the value of the property risk at time 4, when it changes
from 'low' to 'high'. We represent a change in the state
of an entity (a node or an edge) with nested boxes inside an
outer box that denotes the entity in Figure 1.

Now, consider an example of a TRPQ that extends the
syntax of Cypher to retrieve the list of high-risk people (x)
who met someone (y), who subsequently tested positive for
an infectious disease:

MATCH (x:Person {risk = 'high'})-
/FWD/ :meets/FWD/NEXTx/- (y:Person {test =
ON contact_tracing

'pos'})

n2 : Person

name =Ann

name =Bob

|
risk=1low "L,e},ii‘g,%,e%iﬁ risk=1low
time=[1, 9] L i ime =
! H loc:cafe:: time=[1, 4]
. time=[3,3]::
e ‘ name =Bob
4 A
! ! isk=high
! : loc=park : ! rtl's [;gg]
. me= (5,
————————— | time=[5,6] Hme

num=1101
bldg=MATH
time=[3, 7]

Fig. 1.

~

name =Eve
risk=1low

name=Mia num=750
risk=high

time=[1,7]

bldg=CS
time=[3, 8]

L | _
‘ | ’Le9 : visitst
' time=[7, 8], . [
]

s |
,,,,,

name =Eve
risk=1low
time=[2, 8]

name =Eve

risk=1low
v\}eiﬂyiziﬁeieitisl
! loc:cafe:
[EE——
: time=[5,6]:

test =pos

time=[9, 9] name = Zoe

risk=high
time=[1, 8]

time=[10,11]

A TPG used for contact tracing. The graph contains two types of nodes, Person and Room, and three types of edges: bi-

directional edges meets and cohabits, and directed edge visits. Person nodes have properties name, risk ('high' or 'low')
of complications, and test ('pos' or 'neg') of disease status. Eve (node ng) tested positive for a communicable disease at time 9.

This contact tracing query produces the following temporal
binding table when evaluated over the TPG in Figure 1:

[x x time y y time |
nr 5 ne 9
nr 6 ne 9
ns 4 ne 9

B. Summary of our approach

In the remainder of this paper, we formally develop the
concepts that are necessary to evaluate this and other useful
TRPQs over TPGs. We adopt a conceptual TPG model that
naturally extends property graphs with time, and is both simple
and sufficiently flexible to support the evolution of graph
topology and of the properties of its nodes and edges. We
evaluate TRPQs on TPGs under point-based semantics [17], in
which operators adhere to two principles: snapshot reducibility
and extended snapshot reducibility, discussed in Section II.
Our conceptual TPG model admits two logical representations
that differ in the kind of time-stamping they use [18]. One
associates objects with time points, while the other associates
them with time intervals, for a more compact representation.

Design principles. We carefully designed our TRPQ lan-
guage based on the following principles:

Navigability: Include operators that refer to the dynamics
of navigating through the TPG: temporal navigation refers to
movements on the graph over time, and structural navigation
refers to movements across locations in its topology.

Navigation orthogonality: Temporal and structural naviga-
tion operators must be orthogonal, allowing non-simultaneous
single-step temporal and structural movement.

Node-edge symmetry: The language should treat nodes and
edges as first-class citizens, supporting equivalent operations.

Static testability: Testing is independent of navigation.

Snapshot reducibility: When time is removed from a
query, pairs of temporal objects satisfying the query should
correspond to pairs of objects in a single snapshot of the graph,
and every pair satisfying the query in the snapshot of the TPG
should correspond to a path satisfying it in the TPG.

By adhering to these principles, we achieved polynomial-
time complexity of evaluation for TPGs that are time-stamped
with time points, and also identified a significant fragment
of the language that can be efficiently evaluated for interval
time-stamped TPGs. In addition to theoretical results, these
principles also allowed us to efficiently implement TRPQs by
decoupling non-temporal and temporal processing.

Paper organization: We first give some background on
temporal graph models and path query languages in Section II.
We then formally define temporal graphs in Section III. We
go on to propose a syntax for adding time to a practical graph
query language in Section IV. Next, in Section V, we give the
precise syntax and semantics of the language, and study the
complexity of evaluating it. We describe an implementation of
our language over an interval-based TPG in Section VI, and
present results of an experimental evaluation in Section VII.
We conclude in Section VIII. Additional complexity results
and proofs, and supplementary experiments are available in
technical report [19]. System implementation and experimental
evaluation are available at https://github.com/amirpouya/tpath.

II. BACKGROUND AND RELATED WORK

Substantial research has been undertaken in the area of
temporal relational databases since the 1980s, producing a
significant body of work [20], which includes representation of
time [21]-[23], semantics of temporal models [24], temporal

https://github.com/amirpouya/tpath

algebras [25], and access methods [26]. Results of some of
this work are part of the SQL:2011 standard [27].

a) Temporal graph models: Temporal graph models dif-
fer in what temporal semantics they encode, what time rep-
resentation they use (time point, interval, or implicitly with
a sequence), what entities they time-stamp (graphs, nodes,
edges, or attribute-value assignments), and whether they rep-
resent evolution of topology only or also of the attributes.
With a few exceptions, discussed next, the current de facto
standard representation of temporal graphs is the snapshot
sequence, where a state of a graph is associated with either a
time point or an interval during which the graph was in that
state [28]—[38]. This representation supports operations within
each snapshot under the principle of snapshot reducibility,
namely, that applying a temporal operator to a database is
equivalent to applying the non-temporal variant of the operator
to each database state [17]. For example, the G* system [15]
stores a temporal graph as a snapshot sequence and provides
two query languages, the procedural PGQL and the declarative
DGQL. PGQL includes operators such as retrieving graph
vertices and their edges at a given time point, along with non-
graph operators like aggregation, union, projection, and join.
Neither PGQL nor DGQL support temporal path queries.

The fundamental disadvantage of using the snapshot se-
quence as the conceptual representation of a temporal graph
is that it does not support operations that explicitly reference
temporal information. Semantics of operations that make ex-
plicit references to time are formalized as the principle of
extended snapshot reducibility, where timestamps are made
available to operators by propagating time as data [17]. Con-
sidering that our goal in this work is to support temporal
regular path queries, having access to temporal information
during navigation is crucial.

In response to this important limitation of the snapshot
sequence representation, proposals have been made to anno-
tate graph nodes, edges, or attributes with time. Moffitt and
Stoyanovich [16] proposed to model property graph evolution
by associating intervals of validity with nodes, edges, and
property values. They also developed a compositional tem-
poral graph algebra that provides a temporal generalization of
common graph operations including subgraph, node creation,
union, and join, but does not include reachability or path
constructs. In our work, we adopt a similar representation of
temporal graphs, but focus on temporal regular path queries.

b) Paths in temporal graphs: Specific kinds of path
queries over temporal graphs have been considered in the
literature. Wu et al. [39]-[41] studied path query variants
over temporal graphs, in which nodes are time-invariant and
edges are associated with a starting time and an ending time.
(Nodes and edges do not have type labels or attributes.) The
authors introduced four types of “minimum temporal path”
queries, including the earliest-arriving path and the fastest
path, which can be seen as generalizations of the shortest
path query for temporal graphs. They proposed algorithms
and indexing methods to process minimum temporal path and
temporal reachability queries efficiently.

Byun et al. [12] introduced ChronoGraph, a temporal graph
traversal system in which edges are traversed time-forward.
The authors show three use cases: temporal breadth-first
search, temporal depth-first search, and temporal single-source
shortest-path, instantiated over Apache Tinkerpop. Johnson et
al. [14] introduced Nepal, a query language that has SQL-
like syntax and supports regular path queries over temporal
multi-layer communication networks, represented by temporal
graphs that associate a sequence of intervals of validity with
each node and edge. The key novelty of this work are time-
travel path queries to retrieve past network states. Finally,
Debrouvier et al. [13] introduced T-GQL, a query language
for TPGs with Cypher-like syntax [42]. T-GQL operates over
graphs in which (a) nodes persists but their attributes (with
values) can change over time, and so are associated with
periods of validity; and (b) edges are associated with periods of
validity but their attributes are time-invariant. This asymmetry
in the handling of nodes and edges is due to the authors’
commitment to a specific (lower-level) representation of such
TPGs in a conventional property graph system. Specifically,
they assume that Objects (representing nodes), Attributes,
and Values are stored as conventional property graph nodes,
whereas time intervals are stored as properties of these nodes.
Temporal edges are, in turn, stored as conventional edges,
with time interval as one of their properties. T-GQL supports
three types of path queries over such graphs, syntactically
specified with the help of named functions: (1) “Continuous
path” queries retrieve paths valid during each time point—
snapshot semantics. (2) “Pairwise continuous paths” require
that the incoming and the outgoing edge for a node being
traversed must exist during some overlapping time period. (3)
“Consecutive paths” encode temporal journeys; for example,
to indicate a way to fly from Tokyo to Buenos Aires with a
couple of stopovers in a temporal graph for flight scheduling.
Consecutive paths are used in T-GQL for encoding earliest
arrival, latest departure, fastest, and shortest path queries.

A more detailed comparison of our proposal with other
temporal query languages is given in Section V-C. In summary,
our proposal differs from prior work in that we develop a
general-purpose query language for temporal paths, which
works over a simple conceptual definition of temporal property
graphs and is nonetheless general enough to represent different
kinds of temporal and structural evolution of such graphs. Our
language is syntactically simple: it directly, and minimally,
extends the MATCH clause of popular graph query languages,
and does not rely on custom functions. In fact, as we show
in Section V-B, there is a simple way to define its formal
semantics, which allows us to develop efficient algorithms for
query evaluation.

III. A TEMPORAL GRAPH MODEL

In this section, we formalize the notion of temporal property
graph, which extends the widely used notion of property graph
[11, [2], [42] to include explicit access to time. In this way,
we can model the evolution of the topology of such a graph,
as well as the changes in node and edge properties.

A temporal property graph defines a point-based represen-
tation of the evolution of a property graph, which is a simple
and suitable framework to represent and reason about this
evolution. However, time-stamping objects with time points
may be impractical in terms of space overhead. This motivates
the development of interval-based representations, which are
common for temporal models for both relations (e.g., [18],
[43]) and graphs (e.g., [12], [13], [16]). In this section, we also
define a succinct representation of temporal property graphs
that uses interval time-stamping. Notice that point-based tem-
poral semantics requires this succinct representation to be
temporally coalesced: a pair of value-equivalent temporally
adjacent intervals should be stored as a single interval, and
this property should be maintained through operations [44].

A. Temporal property graphs

Assume Lab, Prop and Val to be sets of label names,
property names and actual values, respectively. We define
temporal property graphs over finite sets of time points. Time
points can take on values that correspond to the units of time
as appropriate for the application domain, and may represent
seconds, weeks, or years. For the sake of presentation, we
represent the universe of time points by N: a temporal domain
() is a finite set of consecutive natural numbers, that is,) =
{i € N| a <i<b} for some a,b € N such that a < b.

Definition III.1. A temporal property graph (TPG) is a tuple
G=(Q N, E, p, \ & o), where

o Q is a temporal domain; N is a finite set of nodes, E is a
finite set of edges, and V N E = {;

e p: E — (N x N) is a function that maps an edge to its
source and destination nodes;

e \: (NUE) — Lab is a function that maps a node or an
edge to its label;

e £: (NUE) x Q — {true, false} is a function that maps a

node or an edge, and a time point to a Boolean. Moreover,

if £(e,t) = true and p(e) = (v1,v3), then £(v1,t) = true

and &(va,t) = true.

o: (NUE) X Prop x Q — Val is a partial function that

maps a node or an edge, a property name, and a time point

to a value. Moreover, there exists a finite number of triples

(0,p,t) € (NUE) X Prop x Q) such that o (o, p, t) is defined,

and if o(0,p,t) is defined, then £(o,t) = true.

Observe that 2 in Definition III.1 denotes the temporal
domain of G, a finite set of linearly ordered time points starting
from the time associated with the earliest snapshot of G,
and ending with the time associated with its latest snapshot,
where a snapshot of G refers to a conventional (non-temporal)
property graph that represents the state of G at a given time
point. Function p in Definition III.1 is used to provide the
starting and ending nodes of an edge, function A\ provides the
label of a node or an edge, and function ¢ indicates whether
a node or an edge exists at a given time point in 2 (which
corresponds to true). Finally, function ¢ indicates the value of
a property for a node or an edge at a given time point in).

Two conditions are imposed on TPGs to enforce that they
conceptually correspond to sequences of valid conventional
property graphs. In particular, an edge can only exist at a
time when both of the nodes it connects exist, and that a
property can only take on a value at a time when the cor-
responding object exists. Moreover, observe that by imposing
that o (o, p, t) be defined for a finite number of triples (o, p, t),
we are ensuring that each node or edge can have values for
a finite number of properties, so that each TPG has a finite
representation. Finally, Definition III.1 assumes, for simplicity,
that property values are drawn from the infinite set Val. That
is, we do not distinguish between different data types. If a
distinction is necessary, then Val can be replaced by a domain
of values of some k different data types, Valy, ..., Valy.

Recall our running example discussed in Section I-A and
shown in Figure 1. This example illustrates Definition III.1; it
shows a TPG used for contact tracing for a communicable
disease, with airborne transmission between people (repre-
sented by nodes with label Person) in enclosed locations (e.g.,
nodes with label Room). This TPG has a temporal domain
Q = {1,...,11}, although any set of consecutive natural
numbers containing {} can serve as the temporal domain of
this TPG, for example the set {0, ..., 15}. The TPG is a multi-
graph: ny and ng are connected by two edges, es and es.

In the TPG in Figure 1, Person nodes have properties
name, risk ('low' or 'high'), and test ('pos' or 'neg').
For example, Eve, represented by node ng, is known to have
tested positive for the disease at time 9. Note that each node
and edge refers to a specific time-invariant real-life object or
event. A TPG records observed states of these objects. In
fact, real-life objects correspond to a sequence of temporal
objects, each with a set of properties. For instance, node no
corresponds to a sequence of 9 temporal objects, one for each
time point 1 through 9. These are represented in the figure by
two boxes inside the outer box for ns, one for each interval
during which no change occurred: [1,4] with name Bob, and
low risk, and [5, 9] with name Bob, and high risk. To simplify
the figure, we do not show internal boxes for nodes or edges
associated with a single time interval, such as n; and eg.

B. Interval-timestamped temporal property graphs

An interval of N is a term of the form [a, b] with a,b € N
and a < b, which is used as a concise representation of
the set { € N | a < ¢ < b} between its starting point a
and its ending point b. Each TPG G = (Q, N, E,p, \,§,0)
can be transformed into an Interval-timestamped Temporal
Property Graph (ITPG), by putting the consecutive time points
with the same values into the interval. More precisely, an
ITPG I = (Y, N, E, p,\,&',0’) encoding G is defined in the
following way. The temporal domain Q@ = {i € N | a < i < b}
of G is replaced by the interval ' = [a,b], and N, E, p, \ are
the same as in G. Moreover, £’ is a function that maps each
object 0 € (NUE) to a set of maximal intervals where o exists
according to function &. For example, for Q = {1,2,3,4,5}
and node n such that £(n,1) = &(n,2) = &(n,3) =£(n,5) =
true and &(n,4) = false, it holds that ' = [1,5] and

&'(n) ={[1,3],[5,5]}. Notice that &’(n) could not be defined
as {[1,2],[3,3],[5,5]} since [1,2] is not a maximal interval
where n exists. In other words, the set of intervals in £'(n)
has to be coalesced. Finally, function ¢’ is generated from o
in a similar way as &’. The formal definition of ITPG can be
found in technical report [19].

IV. ADDING TIME TO A PRACTICAL
GRAPH QUERY LANGUAGE

The main goal of this paper is to introduce a simple
yet general query language for temporal property graphs. In
this section, we give a guided tour of the query language,
using the TPG shown in Figure 1 as the running example.
All queries, except those presented alongside their equivalent
rewritings, are numbered Q1 through 912, and will be used in
the experimental evaluation in Section VII.

The MATCH clause is a fundamental construct in popular
graph query languages such as Cypher [42], PGQL [45], and
G-Core [2]. By using graph patterns, the MATCH clause allows
to bind variables with objects in a property graph, giving rise
to binding tables that are subsequently processed by the other
components of the query language. As an important step to-
wards the construction of a temporal graph query language, we
show how the MATCH clause can be extended to bind variables
with temporal objects in a TPG. In particular, we show how
the syntax and semantics of the query language G-Core [2]
can be extended to accommodate temporal graph patterns.
As the syntax and semantics of G-Core are compatible with
those of Cypher [42] and PGQL [45], these languages can
accommodate such temporal graph patterns as well. These
languages play a fundamental role in the ongoing graph query
language standardization effort [46], and our proposal can
provide a natural temporal extension for this standard.

Our proposed syntax for temporal regular path queries can
be summarized as the following extension of the MATCH clause:

MATCH (x)-/path/-(y) ON graph

Here, graph is either a TPG or an ITPG, and path is an
expression that can contain temporal and structural navigation
operators, together with some other functionalities like testing
the label of a node or an edge, and verifying the value of a
property of a node or an edge. We will present the formal
semantics of the language in Section V.

As a first example, assume that contact_tracing is the
TPG shown in Figure 1. Then, the following G-Core expres-
sion extracts the list of people from contact_tracing:

Q1 MATCH (x:Person) ON contact_tracing

The operator ON specifies that contact_tracing is the input
graph, and (x:Person) indicates that x is a variable to be
assigned nodes with label Person from the input graph. The
evaluation of a MATCH clause in G-Core results in a table
consisting of bindings that assign to each variable an object
from the input graph: a node, an edge, a label, or a property
value. The result of evaluating Q1 is the binding table:

(=]

ni
n2
n3
ne
nr

At this point, two observations should be made: (i) G-
Core does not consider contact_tracing as a temporal
property graph, so no explicit time is associated with the
objects in a binding table; (ii) Cypher [42] and PGQL [45]
produce the same bindings as G-Core when evaluating the
previous MATCH clause. How should this clause be evaluated
if contact_tracing is considered as a temporal property
graph? The first issue is that variables in the MATCH clause are
to be assigned temporal objects; for example, (x:Person)
indicates that x is a variable to be assigned a temporal object
(v,t), where v is a node with label Person that exists at time
point t. This issue is addressed by adding an extra column
for each variable to indicate the time point when that variable
exists (table entries appear side-by-side to save vertical space):

[x x time |[x x time
ni 1 no 1
ni 9 ny 8

Observe that the time point ¢ for each value v of x is stored in
the column x_time. Hence, the binding x — n1, x_time — 1
is in the resulting table, since n; is a node with label Person
that exists at time point 1 in contact_tracing, and similarly
for the other bindings. This illustrates that TRPQs without
temporal navigation operate under snapshot reducibility, a
design principle discussed in Section I-B.

Having explained how bindings to temporal objects are
represented, we can now illustrate the main features of our
query language. As in other popular graph query languages, we
use curly brackets to indicate restrictions on property values.
As our first example, consider the following MATCH clause:

Q2 MATCH (x:Person {risk = 'low'})
ON contact_tracing

The expression {risk = 'low'} is used to indicate that the
value of property risk must be 'low'. The following binding
table is the result of evaluating the previous MATCH clause:

[x x time |[x x_time |[x x_time
ni 1 ng 1 ne 2
ni 9 ng 4 ne 11

Observe that the binding x +— no, x_time > 4 is in this table,
since no is a node such that the label of ny is Person, no
exists at time point 4, and the value of property risk is 'low’
for ny at time point 4, and likewise for the other bindings in
this table. As a second example, consider the following query:

Q3 MATCH (x:Person {risk =
ON contact_tracing

'low' AND time = '1'})

In this case, we use the reserved word time to indicate that we
are considering temporal objects at time point 1. The following
is the result of evaluating this MATCH clause:

no 1

Other operators can limit the time under consideration, for
example, to consider temporal objects at time less than 10:

Q4 MATCH (x:Person {risk =
ON contact_tracing

'"low' AND time < '10'})

Now, suppose that we want to retrieve the pairs of low- and
high-risk people who have met, alon% with information about
their meeting. For this, we can use the following query:

Q5 MATCH (x:Person {risk = 'low'})-

[z:meets]->(y:Person {risk = 'high'})
ON contact_tracing
The result of evaluating this MATCH clause is:
[x x_time z z_time y y_time
ni 5 el 5 ng 5
ni 6 el 6 no 6
n2 1 €2 1 ns 1
no 2 €2 2 n3 2

As in other popular graph query languages [2], [42], [45], an
expression of the form -[:meets]-> indicates the existence
of an edge with label meets. We assign the variable z to the
temporal object that represents that edge.

Importantly, an expression of the form —[. . .]—> represents
the structural navigation operator that is conceptually evaluated
over the snapshots (temporal states) of the graph. This is
the reason why each binding in the resulting table has the
same value in columns x_time, z_time, and y_time . For
example, the binding x — n1, x_time — 5, z — €1, z_time

— 5, y — Ng, y_time — 5 is in this table, since n; is a
low-risk person at time point 5, ny is a high-risk person at
time point 5, and there exists an edge e; with label meets
between n; and no at time point 5.

To ensure that our proposal is practically useful, a minimum
requirement is that queries can be evaluated in polynomial time
over TPGs. Hence, we have to choose very carefully how
structural navigation is combined with temporal navigation,
and how we refer to time in the query language, as the
complexity can quickly become intractable when navigation
patterns are combined with functionalities for comparing prop-
erty values [47]. In fact, there is even a fixed query () for which
this negative result holds [47]. This means that the problem
of computing, given a graph G as input, the answer to () over
G is intractable in data complexity [48].

The basic temporal navigation operators in our language are
PREV and NEXT that move by one unit of time into the past
and into the future, respectively. Consider the following query:

Q6 MATCH (x:Person {test =
/PREV/- (y:Person)
ON contact_tracing

'pos'}) -

Here, x and y are temporal objects that correspond to the
same real-world object —a node of type Person. In this
case, x has the value 'pos' in the property test, meaning
that x tested positive at some time point, and y denotes the
same node at the time immediately before testing positive.

Temporal navigation allows single-step temporal movement,
and is orthogonal to structural navigation, following naviga-
tion orthogonality, discussed in Section I-B. Note that PREV
and NEXT reference timestamps, operating under extended
snapshot reducibility [17], discussed in Section II.

This example illustrates the use of notation -/.../- to
specify a pattern that a path connecting objects x and y

must satisfy. In general, such a pattern is a regular ex-
pression that can include temporal and structural opera-
tors (see formal definition in Section V). In this exam-
ple, assuming that the temporal object (01,t1) corresponds
to (x:Person {test = 'pos'}), and the temporal object
(02,t2) corresponds to (y:Person), then the expression —/
PREV/- indicates that (01, ¢1) must be connected with (02, t2)
through a path conforming to PREV, that is, to = #; — 1.
Importantly, —/PREV/- is evaluated under the restriction that
no structural navigation must have occurred, given the sepa-
ration between temporal and structural navigation that we are
arguing for in this work. Hence, we conclude that 02 = o;.
The following binding table is the result of evaluating Qé:

[x x time y y_time

[ne 9 ng 8 |

Temporal and structural navigation can be combined to re-
trieve information about which room person x was visiting
immediately before she received a positive test result:

MATCH (x:Person {test = 'pos'})-

/PREV/- (y:Person)-[:visits]->(z:Room)
ON contact_tracing

The result of evaluating this MATCH clause is:

[x x time y y time =z z_time

[ne 9 ng 8 n4 8 |

Observe that the temporal operator PREV moves from
(%, x_time) to (y, y_time), while the structural operator
-[:visits]-> moves from (y, y_time) to (z, z_time).
Hence, temporal and structural navigation are carried out
separately. Besides, observe that the intermediate variable y
is not needed when retrieving the list of rooms that person
x was visiting, we just included it to show the paths that
are constructed when using different operators. The following
simplified MATCH clause

MATCH (x:Person {test = 'pos'})-

/PREV/-()-[:visits]->(z:Room)
ON contact_tracing

can be used to obtain the desired answer:

[x x time z z_time

l ne 9 N4 8]

At this point the reader may be wondering why the language is
asymmetric, and it includes different notation for temporal and
structural navigation. We have kept the notation —=[...]-> to
be compatible with graph query languages used today [2], [42],
[45], but an important feature of our proposal is the use of
notation —/.../- to include regular expressions combining
temporal and structural operators. Hence, we include two basic

structural navigation operators, BWD (“backward”) and FWD
(“forward”), that are analogous to the temporal operators PREV
and NEXT. Assume that an edge is given

(1) (1), ()
which, in the formal TPGs notation (see Definition III.1),
represents the fact that p(e) = (n,n'), &(n,t) = rrue,

&(e,t) = true, and &(n',t) = true. Then, operator FWD moves
forward from node n to edge e, or from edge e to node n’,
while keeping time ¢ unchanged. That is, FWD operates in a
TPG snapshot corresponding to time ¢. Similarly, operator BWD
moves backwards from node n’ to edge e, and from edge e to
node n in a TPG snapshot corresponding to time ¢. Thus, we
can rewrite the previous MATCH clause as follows:

Q7 MATCH (x:Person {test = 'pos'})-
/PREV/FWD/ :visits/FWD/- (z:Room)
ON contact_tracing

The regular expression PREV/FWD/ :meets/FWD uses the con-
catenation operator / to indicate that operator PREV has to
be executed first followed by the expression FWD/:visits
/FWD, which is executed in the same way. (The precise
syntax and semantics of such expressions are presented in
Section V.) Observe that in our query language, the expres-
sion —[:visits]-> is equivalent to —/FWD/:visits/FWD
/-. This is because, given an edge of the form of Expression
(1), the first operator FWD moves from n to e, then :visits
checks that the label of e is visits, and finally the last
operator FWD moves from e to n’, thus obtaining the same
result as using the operator —[:visits]-> in an edge of the
form of Expression (1).

So far we only looked at expressions that navigate one
step at a time, temporally or structurally. Our language also
supports the Kleene star, indicating zero or more occurrences
of an operator. For example, Q8 retrieves the list of rooms
person x visited at any time prior to receiving a positive test
(including also at the time when x received the test):

Q8 MATCH (x:Person {test = 'pos'})-

/PREV*/FWD/ :visits/FWD/- (z:Room)
ON contact_tracing

producing the following temporal bindings:

x x_time

ns3 4
ny 5
ny 6
Observe that the term ({test = 'pos'}) does not include a

variable, as we are not storing the contacts who tested positive
to avoid stigmatizing them, and only record those who are
potentially at risk for complications.

Moreover, our query language allows to specify the number
of times an operator is used. Thus, assuming that the time unit
in contact_tracing is 5 minutes, we can retrieve the list
of high-risk people who met someone who tested positive for
an infectious disease 1 hour prior to the meeting:

Q10 MATCH (x:Person {risk = 'high'})-
/FWD/ :meets/FWD/PREV[0,12]-
({test = 'pos'})
ON contact_tracing

Next, consider the following notion of close contact for an
infectious disease: If person a visits the same room as person
b, and b tests positive for this disease at most two weeks
after they visited the same room as a, then a is considered
to have been in close contact with an infected person. The
MATCH clause below retrieves high-risk people who have been
in close contact with an infected person:

Q11 MATCH (x:Person {risk = 'high'})-
/FWD/:visits/FWD/:Room/BWD/:visits/
BWD/NEXT[0,12]/-({test = 'pos'})

ON contact_tracing

Observe that, as was the case for edge labels, node labels can
be used inside an expression —/. . ./-, and so -/ :Room/- in
the expression above is equivalent to — (:Room) —. The query
011 produces the following binding table:

ns 7
ny 7
ny 8

[x x time z z_time
ne 9 ng 8
ne 9 ng 7
ne 9 ns 6
ne 9 ns 5

As another example, we can retrieve the high-risk people

As the final example, assume that if person a meets with
person b, and b tests positive for an infections disease at
most two weeks after their meeting, then a should also be
considered to have been in close contact with an infected
person. Q11 can be extended to consider this additional case:

MATCH (x:Person {risk = 'high'})-

/ (FWD/ :meets/FWD/NEXT[0,12]) +
(FWD/:visits/FWD/:Room/BWD/:visits/
BWD/NEXT[0,12])/-({test = 'pos'})

ON contact_tracing

This query produces the following bindings:

who met someone who subsequently tested positive for an
infectious disease:
Q9 MATCH (x:Person {risk = 'high'})-

/FWD/ :meets/FWD/NEXTx/- ({test = 'pos'})
ON contact_tracing

Recall that the temporal operator NEXT moves in time by one
unit into the future. This query returns the following temporal
bindings when evaluated over the graph in Figure 1:

[x x_time |[x x_time
ns 4 ny 6
ns 7 ny 7
ny 5 ny 8

As usual in regular expressions, operator + represents union.
Thus, the regular expression in the previous MATCH clause
indicates that the results of FWD/ :meets/FWD/NEXT[0,12]

should be put together with the results of FWD/:visits/
FWD/ :Room/BWD/ :visits/BWD/NEXT[0,12]. Observe that

parentheses are used to have unambiguous expressions that
can be parsed in a unique way. For example, the previous
expression can be rewritten as follows to avoid using the
temporal operator NEXT[0,12] twice. (Observe the required
use of parentheses to get the desired effect.)
Q12 MATCH (x:Person {risk = 'high'})-
/ (FWD/ :meets/FWD +
FWD/:visits/FWD/:Room/BWD/:visits/

BWD) /NEXT[0,12]/-({test = 'pos'})
ON contact_tracing

In this section, we illustrated the main features of our proposed
language and showed how popular graph query languages [2],
[42], [45] can be extended to include these features. We will
define the syntax and the semantics of our language next.

V. TEMPORAL REGULAR PATH QUERIES

In this section, we provide a formal syntax and semantics
for the expression path described in the previous section,
and study the complexity of evaluating it. In Section V-A, we
extend the widely used notion of regular path query [1], [49]-
[51] to deal with temporal objects in TPGs, which gives rise
to the language NavL[PC,NOI]. Moreover, we show in Section
V-A how NavL[PC,NOI] provides a formalization of the prac-
tical query language proposed in the previous section. Then
we define the semantics of NavL[PC,NOI] in Section V-B, by
following the definition of widely used query languages such
as XPath and regular path queries [1], [49]-[55]. Moreover, we
study in Section V-B the complexity of the evaluation problem
for NavL[PC,NOI] for TPGs and ITPGs. Finally, we provide in
Section V-C a comparison of our proposal with other temporal
query languages. Proofs and additional results can be found
in technical report [19].

A. Syntax of NavL[PC, NOI], and its relationship with the
practical query language

Recall that labels, property names, and property values are
drawn from the sets Lab, Prop, and Val, respectively. Then
the expressions in NavL[PC,NOI], which are called temporal
regular path queries (TRPQs), are defined by the grammar:

path ::= test | axis | (path/path) |

(path + path) | path[n,m] | path[n,_| (2)

where n and m are natural numbers such that n < m.
Intuitively, test checks a condition on a given node or edge at a
given time point, axis allows structural or temporal navigation,
(path/path) is used for the concatenation of two TRPQs,
(path + path) allows for the disjunction of two TRPQs,
path[n,m| allows path to be repeated a number of times that
is between n and m, whereas path[n, _] only imposes a lower
bound of at least n repetitions of expression path. The Kleene
star path™ can be expressed as path[0, _], and the expression
path[_, n] is equivalent to path|0, n].

Conditions on temporal objects are defined by the grammar:

test == Node | Edge | ¢ | p—v | <k | 3 |

(?path) | (testV test) | (testAtest) | (—test) (3)

where ¢ € Lab, p € Prop, v € Val, and k € N. Intuitively, test
is meant to be applied to a temporal object, that is, to a pair
(0,t) with object o and time point ¢t. Node and Edge test
whether the object is a node or an edge, respectively; the term
¢ checks whether the label of the object is ¢; the term p — v
checks whether the value of property p is v for the object at
the given time point; 3 checks whether the object exists at the
given time point; and < k checks whether the current time
point is less than k. Further, test can be (?path), where path
is an expression satisfying grammar (2), meaning that there
is a path starting on the tested temporal object that satisfies
path. Finally, test can be a disjunction or a conjunction of a
pair of test expressions, or a negation of a test expression.
Furthermore, the following grammar defines navigation:

axis =

F|B|[N|P)

Operators F', B move structurally in a TPG: F moves forward
in the direction of an edge, and B moves backward in the
reverse direction of an edge. Operators N, P move temporally
in a TPG: N moves to the next time point, and P moves to
the previous time point.

Having a formal definition of the syntax of NavL[PC,NOI],
we show that this language provides a formalization of the
practical query language of Section IV. More precisely, tempo-
ral navigation operators PREV and NEXT in the practical query
language correspond to the analogous operators P and N in
NavL[PC,NOI], respectively, while structural navigation oper-
ators BWD and FWD in the practical query language correspond
to the operators B and F in NavL[PC,NOI], respectively. Then
consider the following MATCH clause over an arbitrary TPG:

MATCH (x:Person {test =
ON graph

'pos'})-/PREV/-(y)

Our task is to construct a query path in NavL[PC,NOI] such
that the evaluation of this MATCH clause over graph is equiv-
alent to the evaluation of path over this TPG. The following
expression satisfies this condition:

(Node A Person A test — pos)/P/(Node A 3)

Observe that (Node A Person A test +— pos) is used to
check whether the following conditions are satisfied for a
temporal object (0,t): o is a node with label Person and
with value pos in the property test at time point ¢. Notice
that, by definition of TPGs, the fact that test — pos holds at
time ¢ implies that node o exists at this time point. Hence,
(Node A Person A test — pos) is used to represent the
expression (x:Person {test = 'pos'}). Moreover, tem-
poral navigation operator P is used to move from the temporal
object (o, t) to a temporal object (0,t) such that ¢’ =t—1, so
that it is used to represent the expression —/PREV/-. Finally,
the condition (Node A 3) is used to test that o is a node that
exists at time ¢’. Observe that we explicitly need to mention the
condition J, as expressions in NavL[PC,NOI] do not enforce
the existence of temporal objects by default. The main reason

to choose such a semantics is that there are many scenarios
where moving through temporal objects that do not exists is
useful, in particular when these temporal objects only exist at
certain time points. For example, if a room is unavailable for
some time, then the temporal path expression

(Room A —3)/(N/=3)[0,_]/(Room A 3)

can be used to look for the next time the room is available.
Here, (N/—=3)[0,_] moves through an arbitrary number of
time points during which the room is unavailable, until the
condition 3 holds, and the room becomes available.

As a second example, consider query Q8 from Section
IV. Based on the previous discussion, such a query can be

represented as the following TRPQ:

(Node A Person A test — pos)/
(P/3)[0,_]/F/(visits A 3)/F /(Node A Room),

where all temporal objects must exist, as required in Sec-
tion I'V. Note that we have not explicitly included the existence
condition on the last room node, as the existence of an edge
at time point ¢ implies, according to the definition of TPGs,
the existence of its starting and ending nodes.

As an additional example, consider query Q12 from Sec-
tion IV, which uses many of the features of NavL[PC,NOI].
This query corresponds to the temporal path expression:

(Node A Person A risk — high)/(F/(meets A 3)/F +
F/(visits A 3)/F /Room/B/(visits A 3)/B)/
(N/3)[0,12]/(INode A test — pos)

As our final example, consider query 94 from Section IV. The
use of a condition over the reserved word time is represented
in NavL[PC,NOI] by the condition < k. For example, time
< '10"' is represented by the condition < 10, as a temporal
object (o,t) satisfies < 10 if, and only if, ¢ < 10. Hence, 04
is equivalent to the following query in NavL[PC,NOI]:

(Node A Person A risk — low A <10)

Notice that abbreviations can be introduced for some of the
operators described in this section, and some other common
operators, to make notation of the formal language easier to
use. For example, we could use condition = k, which is written
in NavL[PC,NOI] as (< k + 1 A =(< k)), and operator NE
that moves by one unit into the future if the object that is
reached exists. However, as such operators are expressible in
NavL[PC,NOI], we prefer to use a minimal notation in this
formal language to simplify its definition and analysis.

B. Semantics and complexity of NavL[PC,NOI]

Let G = (Q,N,E, p,\,§,0) be a TPG. Given an expres-
sion path in NavL[PC,NOI], the evaluation of path over G,
denoted by [path], is defined by the set of tuples (o, t,0’,t")
such that there exists a sequence of temporal objects starting
in (o,t), ending in (¢o/,t'), and conforming to path. More
precisely, assume that src(e) = v; and tgt(e) = vo whenever
p(e) = (v1,v2), and assume that PTO(G) = (N U E) x Q x

(NUE) x Q. Then the evaluation of the axes in grammar (2)
is defined as:

[Fle = {(v,t,e,t) € PTO(G) | src(e) =v} U
{(e,t,v,t) € PTO(G) | tgt(e) = v}
[Ble = {(v,t,e,t) € PTO(G) | tgt(e) = v} U
{(e,t,v,t) € PTO(G) | src(e) = v}
[N]e {(0,t1,0,t2) € PTO(G) | to =t1 + 1}
[Ple = {(o,t1,0,t2) € PTO(G) | ta =1t; — 1}

Moreover, assuming that, path, path; and path, are expres-
sions in NavL[PC,NOI], we have that:

[(pathy /pathy)[¢ = {(o1,t1,02,t2) € PTO(G) |
(o,t) : (01,t1,0,t) € [path;]a
and (o,t,09,%2) € [pathy]c},
[(path, + path,)]c = [path[c U [path,]c,

[path[n,m]le = | [path*]c,
k=n

[pathln, Jle = | [path*]a,

k>n

where pathk is defined as the concatenation of path with
itself k times. Finally, the evaluation of an expression test,
defined according to grammar (3), is a navigation expression
that stays in the same temporal object if test is satisfied:
[testle = {(o,t,0,t) € PTO(G) | (o,t) [= test}. Hence,
to conclude the definition of the semantic of NavL[PC,NOI],
we need to indicate when a temporal object (o,t) satisfies a
condition test, which is denoted by (o,t) |= test. Formally,
this is recursively defined as follows (omitting the usual
semantics for Boolean connectives):

o If test = Node, then (o,1) |=test if 0 € N;

o If test = Edge, then (o,t) = test if 0 € E;

o If test = ¢, with £ € Lab, then (o,t) |= test if A(0) = ¢;

o If test = p — v, with p € Prop and v € Val, then (o,t) =
test if o(o,p,t) is defined and o (o, p,t) = v;

o If test = 3, then (o,t) |= test if &(o,t) = true;

o If test = < k, then (o,t) = test if t < k;

o If test = (?path) for an expression path conforming to
grammar (2), then (o,t) |= test if there exists a temporal
object (0',t') in G such that (o,t,0’,t') € [path]g.

To define the evaluation of an expression path over a interval-
timestamped temporal property graph I, we just need to
translate / into an equivalent TPG and consider the previ-
ous definition. Formally, assuming that can(-) is a canonical
translation from an ITPG into an equivalent TPG, we have
that: [path]; = [path]can(r).-

Having a formal definition of TRPQs allows not only to
provide an unambiguous definition of the practical query lan-
guage of Section IV, but also to formally study the complexity
of evaluating this language. Assuming that G is a class of
graphs and £ is a query language, define Eval(G, L) as the
problem of verifying whether (o,t,0’,t') € [path]q, for an

input consisting of a graph G € G, an expression path in £
and a pair (o,t), (o/,t") of temporal objects in G. By studying
the complexity of Eval(G, L) for different fragments £ of
NavL[PC,NOI], we can understand how the use of the operators
in NavL[PC,NOI] affects the complexity of the evaluation
problem, and which operators are mode difficult to implement.

Assume that NavL[PC] is the fragment of NavL[PC,NOI] ob-
tained by disallowing numerical occurrence indicators, while
NavL[NOI] is the fragment of NavL[PC,NOI] obtained by
disallowing path conditions.

Theorem V.1. The following results hold.

1) Eval(TPG, NavL[PC,NOI]) and Eval(ITPG, NavL[PC])
can be solved in polynomial time.

2) Eval(ITPG, NavL[NOI]) is X5-hard, and Eval(ITPG,
NavL[PC,NOI]) is PSPACE-complete.

The results of this section can guide future implementations
of NavL[PC,NOI] over interval-timestamped TPGs. The main
insight is that, while EvalITPG, NavL[NOI]) and Eval(ITPG,
NavL[PC,NOI]) are intractable, the language including only
path conditions can be efficiently evaluated over such graphs.

C. A comparison with T-GQL and Cypher

T-GQL is a recently proposed temporal query language [13]
developed on top of Cypher [42], a popular graph query
language. We now compare our TRPQs with T-GQL, and
with the alternative of implementing a temporal graph query
language that encodes time intervals as lists directly in Cypher.

First, consider the five design principles of our language,
described in Section I-B. Since Cypher’s data model does not
explicitly consider time, it is not surprising that it does not
satisfy navigability, navigation orthogonality, static testability,
or snapshot reducibility, and only node-edge symmetry is
satisfied. T-GQL satisfies navigability, navigation orthogonal-
ity and snapshot reducibility, but it treats nodes and edges
differently, violating node-edge symmetry. Moreover, T-GQL
test conditions do not satisfy static testability.

Second, consider the complexity of the query evaluation
problem. As shown in Theorem V.1, our query language can be
evaluated in polynomial time over temporal property graphs. In
contrast, the evaluation problem for Cypher is intractable, even
if we focus on non-temporal property graphs (i.e., a temporal
property graph consisting of a single timestamp). In fact, a
fixed query that checks for the existence of two disjoint paths
from the same source node to the same destination node can
be expressed in Cypher and is known to be NP-hard [42].
Whether these intractability results carry over T-GQL is not
clear, as an exact characterization of T-GQL as a fragment of
Cypher has not yet been provided.

Finally, we compare the expressive power of our proposal
with Cypher and T-GQL. As Cypher is a general purpose graph
query language, it is not surprising that every query in our pro-
posal can be expressed in it, but at the cost of using unnatural
and expensive time interval encodings. However, we can show
that some natural TRPQs cannot be expressed in T-GQL. First,
consider a graph for travel scheduling that includes different

transportation services, such as flights, trains, and buses. By
the definition of consecutive path in [13], it is not possible
to express a query in T-GQL that indicates how to go from
one city to another combining different transportation services,
which can be easily expressed in our proposal. As a more
fundamental example, consider a query that retrieves paths
that combine an arbitrary number of temporal journeys, some
of them moving to the future and some to the past. Such a
combination of temporal journeys cannot be specified in T-
GQL, while it can be handled by our proposal.

VI. IMPLEMENTATION

We implement a fragment of NavL[PC,NOI] that includes
all queries of Section IV over interval-timestamped TPGs.
We use Rust and the Itertools library [56], which efficiently
implements dataflow operators, supports lazy evaluation of
expressions, and collects data only when necessary. For multi-
threaded implementation, we use Rayon-Rs [57], an interface
over dataflow operators. Our algorithms can be implemented
using any system that supports the dataflow model, such
as Apache Spark [58], Apache Flink [59], Timely [60] and
Differential dataflow [61].

We represent a TPG as a pair of interval-timestamped
temporal relations Nodes(id, label,properties,time)
and Edges(id, src,tgt, label, properties,time), where
properties are a set of key-value pairs. For example, for
node no and edge e; from Figure 1, we have:

Nodes
[id 1label properties time |
ny Person {name = 'Bob', risk = 'low'} [l,4]
ny Person {name = 'Bob', risk = 'high'} [5,9]
Edges
[id src tgt label properties time |
e1 ni no meets {loc = 'cafe'} [3, 3]
el ni no meets {loc = 'park'} [5, 6]

By the formal definition of TRPQs in Section V, we know
that temporal and structural navigation operators are orthog-
onal, in the sense that the language allows non-simultaneous
single-step time and structural movements. Hence, we break
down the evaluation of a TRPQ into Step 1: evaluating the
structural navigation portion of the path expression over the
interval-based TPG; Step 2: evaluating the temporal naviga-
tion portion of the path expression over the interval-based
intermediate result; and Step 3: if needed, transforming the
intermediate result into a point-wise representation for the final
portion of evaluation and materialization.

Evaluation of conventional path queries in Step 1 is a well-
studied problem [1], [51]. In this work, we select an optimized
select-project-join execution plan for each query in Section IV,
and then implement these plans using Itertools operators in
Rust.We implement in-memory hash-join that uses interval-
based reasoning to identify temporally-aligned [25] matches.
For example, for 95, we compute the intersection of the
validity intervals for x, y and z. For TRPQs without temporal
navigation (Q1-Q5), the final bindings table can be returned

TABLE I
TEMPORAL PROPERTY GRAPHS USED IN EXPERIMENTS.

nodes # edges # temp. nodes # temp. edges
Gl 1,000 12,000 3,500 14,000
G2 2,000 30,000 7,000 35,000
G3 4,000 84,000 14,000 94,000
G4 6,000 158,000 20,000 180,000
G5 8,000 253,000 28,000 282,000
G6 10,000 371,000 34,000 413,000
G7 25,000 2,046,000 85,000 2,215,000
G8 50,000 7,370,000 170,000 8,048,000
G9 75,000 15,717,000 256,000 17,554,000
G10 100,000 28,996,000 340,000 32,255,000

after this step, and it can remain temporally coalesced. For
example, the coalesced binding table for @5 will contain:

[x x_time z z_time v y_time]
ni [5,6] e1 [5,6] n2 [5.6]
ng [1,2] €2 [1,2] n3 [1,2]

The interpretation of this temporally coalesced result is
snapshot-based: we bind x = ny, z = e, y= no, with x_time
=y time = z_time = 5, and similarly for time 6.

Step 2: To evaluate the femporal navigation portion of the
path expression, we use interval-based reasoning to join and
prune out potential matches that do not satisfy the temporal
constraint. For example, for 97, we can limit the validity
interval of z to the time immediately before x was tested
positive. Note that interval intersection and union can be
computed in constant time based on interval boundaries.

Step 3: For the final portion of query evaluation, we may
need to use point-wise reasoning for temporal navigation. For
example, Q8 retrieves the list of rooms z that person x visited
at or prior to the time of testing positive. The PREV operator
is defined over time points, and we need to compare pairs of
time points of x and z to correctly identify person-room pairs.
Furthermore, result generation for TRPQs that use temporal
navigation must compute point-based bindings. Returning to
our example, in the result of 08, x_time may or may not
be the same as z_time, and so we cannot use an interval
representation for the output bindings such as (ng, [5,6], ns,
[3,5]), because such a representation is inherently snapshot-
based and it does not uniquely map to a set of point-wise
temporal bindings over ng and ns.

An exception are TRPQs that return a single variable,
such as Q©9-012. Results of such queries can be returned
temporally coalesced for compactness, although this rarely
translates to savings in the running time of query execution,
because temporal constraints must be check over a point-based
representation for these queries in Step 3, as discussed above.

VII. EXPERIMENTAL EVALUATION

All experiments were run as a multi-threaded Rust applica-
tion on a single cluster node with 64 GB of RAM and an Intel
Xeon Platinum 8268 CPU, using the Slurm scheduler [62]. Ac-
cording to our results (Figure 3), performance for demanding
queries was best at 16 CPU cores, and we use this setting in
all experiments, unless noted otherwise. Reported execution
times are averages of 5 runs. In most cases, the coefficient of
variation of the running time was less than 6% (max 10%).

TABLE II
EXECUTION TIME OF QUERIES Q1 THROUGH Q12 FOR GRAPH G10.

interval-based time (s) total time (s) output size
Ql 0.004 0.004 341,278
Q2 0.017 0.017 278,931
Q3 0.016 0.016 26,494
Q4 0.038 0.038 116,021
Q5 4.546 4.546 743,714
Q6 0.096 0.173 86,553
Q7 0.036 0.079 47,287
Q8 0.025 0.379 1,277,729
Q9 0.828 0.983 1,234,922
Q10 0.899 1.509 3,927,763
Q11 1.375 4.986 22,961,108
QI2 2.434 6.455 26,888,871

A. Experimental datasets

We built interval-timestamped TPGs (per Sec. III-B) similar
to Figure 1 using a trajectory dataset generated by Ojagh et
al. [63] to study COVID-19 contact tracing. The authors
tracked 20 individuals on the University of Calgary campus,
and used that data to simulate trajectories of individuals vis-
iting campus locations, recording the times when individuals
entered and exited those locations. The synthetic dataset of
Ojagh et al. records time up to a second. To make this
data more realistic, we (i) made temporal resolution coarser,
mapping timestamps to 5-min windows, and (ii) associated
individuals with locations where they spent at least 2.5 min.

Our goal was to have an interval-timestamped graph
with two types of nodes, Person and Room (representing
classrooms), and two types of edges, visits and meets.
To achieve this, we represented 100,000 individuals as
Person nodes, with their periods of validity corresponding to
visits of classrooms. Next, from among 410 unique locations in
the dataset, we selected 100 most frequently visited as nodes
of type Room, with periods of validity defined by the times
of first entrance and last exit. Then, we added a visits
edge between each person and each room they visit, with
an appropriate time interval. We used information about the
remaining 310 locations to add bi-directional meets edges
between a pair of individuals who were at the same location
at the same time. Finally, we randomly selected 18% of the
Person nodes (proportion of the Canadian population aged
65+) as high risk for disease complications, and fixed this
property over the lifespan of those nodes.

To study the impact of graph size on performance, we
created graphs at different scale factors by randomly selecting
a subset of the Person nodes of a given size, and keeping
only the valid edges. To study the impact of query selectivity
on performance, we selected between 2% and 10% of the
Person nodes as positive for COVID-19, assigning the time of
a positive test uniformly at random from the temporal domain
of the graph, and keeping the selected nodes as positive for
the remainder of their lifespan.

Table I summarized the temporal graphs used in our exper-
iments. The largest graph has 100,000 unique Person nodes,
100 unique Room nodes, and a temporal domain of 48 time
points, each representing a 5-minute window. This corresponds
to 340,000 temporal nodes and over 32 million temporal edges.

1.5{¢Q1 Q7 6 Q5 =Ql12 o
«#Q2 , Q8 «» Q11 /
= Q3 Q9 R x
T1.0{+Q4 QL0 o
g e 8
£ g
‘=05 =)
*fo——— p
0.0 g:f—‘,;x % 0 muee
0 50000 100000 0 50000 100000
of nodes # of nodes

Fig. 2. Effect of graph size on query execution time, on G1-G10.

i «Ql +Q5 +Q9 8
12| #Q2 +Q6 « QL0 [
o\ =Q3 . Q7 «Qll — 7
’g 9 \..\ +Q4 Q8 xQ12 § W
& N~ &
6 ’\\'__" c
£ —— £
=]
3 2
P P — 5L Q10 #Q11 £ Q12
0 8 16 24 32 40 48 0 8 16 24 32 40 48

of cores temporal navigation step

Fig. 3. Effect of parallelism on G10. Fig. 4. Effect of temp. nav. on G10.

5/eQ6 +Q9 Q11 % Q12 x
Q7 +Ql0 /
Q8 /

IS
N W
(S)

time(sec)
time(sec)
S

N

\,5
\

EPO—
e 9

o [pud

-
v o
n\

2 4 6

8 10 2 4 6
positivity rate %

8 10
positivity rate %

Fig. 5. Effect of positivity rate on query execution time, on G10.

B. Results

For the first experiment, we executed queries Q1-Q12,
discussed in Section IV, over graph G10 (Table I). Table II
shows the execution time of each query in seconds, and its
output size in the number of tuples in the bindings table. Recall
from Section VI that Steps 1 and 2 of query evaluation act on
the interval representation or TRPG, while Step 3 expands the
output of Step 2 into a point-based representation to check any
remaining temporal constraints. Our implementation uses lazy
evaluation. Decoupling the execution times of Steps 1 and 2
for the purpose of measurement would degrade performance,
and we report these times jointly as “interval-based time” in
Table II. Queries Q1-05 do not use temporal navigation, and so
interval-based time and total time coincide and the output can
remain temporally coalesced. In contrast, Q6-Q12 use temporal
navigation; they require both interval-based and point-based
processing, and the output for these queries is point-based.

We observe that most queries execute in less than 1 sec. The
most challenging queries, Q11 and @12, both produce over 22
million tuples in the output and take at most 6.5 sec.

In the second experiment, we execute all queries over
graphs G1-G10 to study the impact of graph size on query
performance. Figure 2 shows this result, with the number of
unique Person nodes on the z-axis, and execution time in
seconds on the y-axis. Observe that the running time increases
linearly for all queries except @5, Q9, and Q10 where the

time increases approximately quadratically with increasing
graph size. Increase in the running time is nearly perfectly
explained by the increase in the size of the output. For
example, increasing input size by a factor of x10 nodes and
x100 edges (G6 to G10) increases output size of Q11 (resp.
012) by a factor of 18.39 (resp. 19.29), and it increases the
execution time by a factor of 18.89 (resp. 19.29).

In our third experiment, we studied the impact of parallelism
on performance. Figure 3 shows the result of this experiment
over the largest graph, G10, with the number of CPU cores
on the zx-axis and execution time in seconds on the y-axis.
(The number of threads is the number of CPUs + 1.) Observe
that the most demanding queries @5, Q10, Q11, and Q12
substantially benefit from increased parallelism, with best
performance at 16 cores. For example, 912 executes in 6.45
sec on 16 cores, down from 13 sec on 1 core.

Queries 06-Q11 all select Person nodes that at some point
had a positive COVID-19 test. In our next experiment, we
vary the positivity rate from 2% to 10%, thus impacting query
selectivity, and study its effect on execution time. Figure 5
shows the result of this experiment over the largest graph,
G10, with positivity rate on the z-axis and execution time on
the y-axis, showing a linear relationship.

Finally, we consider the effect of temporal navigation on
query performance. We select queries Q10, Q11 and Q12
because they all contain a temporal navigation operator with a
numerical occurrence indicator (PREV [n,m] in Q10 and NEXT
[n,m] in Q11 and Q12). We set n = 0, and vary the maximum
number of temporal navigation steps m between 4 and 48 in
increments of 4. Figure 4 shows the result over G10 with m on
the z-axis and query execution time on the y-axis. We observe
that increasing m increases the execution time linearly, and
plateaus when m reaches 16.

VIII. CONCLUSIONS AND FUTURE WORK

We considered temporal property graphs (TPGs) and pro-
posed temporal regular path queries (TRPQs) that incorporate
time into TPG navigation. Starting with design principles, we
proposed a natural syntactic extension of the MATCH clause
of popular query languages, formally presented the semantics
of TRPQs, and studied the complexity of their evaluation. We
also demonstrated that a fragment of the TRPQ language can
be implemented efficiently. We hope that our work on the
syntax and semantics, the positive complexity results, and our
implementation and evaluation will pave the way to usable
and practical production-level implementations of TRPQs.

An interesting future direction is to add support for aggre-
gation and grouping, to incorporate our methods into existing
graph processing systems like GraphX [64], Portal [65] or
Neo4j [66], and to investigate a range of systems questions.

IX. ACKNOWLEDGEMENTS

M. Arenas and P. Bahamondes were funded by ANID -
Millennium Science Initiative Program - Code ICN17_002 and
Fondecyt grant 1191337. This research was supported in part
by NSF Award No. 1916505, and by NYU IT High Perfor-
mance Computing resources, services, and staff expertise.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

R. Angles, M. Arenas, P. Barcel6, A. Hogan, J. L. Reutter, and
D. Vrgoc, “Foundations of modern query languages for graph
databases,” ACM Comput. Surv., vol. 50, no. 5, pp. 68:1-68:40, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3104031

R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher, C. Gutierrez,
T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest,
and H. Voigt, “G-core: A core for future graph query languages,”
in Proceedings of the 2018 International Conference on Management
of Data, ser. SIGMOD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1421-1432. [Online]. Available:
https://doi.org/10.1145/3183713.3190654

M. Goetz, J. Leskovec, M. McGlohon, and C. Faloutsos, “Modeling
blog dynamics,” in Proceedings of the Third International Conference
on Weblogs and Social Media, ICWSM 2009, San Jose, California,
USA, May 17-20, 2009, E. Adar, M. Hurst, T. Finin, N. S.
Glance, N. Nicolov, and B. L. Tseng, Eds. San Jose, CA:
The AAAI Press, 2009, pp. 26-33. [Online]. Available: http:
/laaai.org/ocs/index.php/ICWSM/09/paper/view/152

J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. Web, vol. 1, no. 1, p. 5-es, May 2007.
[Online]. Available: https://doi.org/10.1145/1232722.1232727

J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Microscopic
evolution of social networks,” in Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 462-470. [Online]. Available:
https://doi.org/10.1145/1401890.1401948

P. Sarkar, D. Chakrabarti, and M. I. Jordan, “Nonparametric link
prediction in dynamic networks,” in Proceedings of the 29th Interna-
tional Coference on International Conference on Machine Learning, ser.
ICML’12. Madison, WI, USA: Omnipress, 2012, p. 1897-1904.

S. Asur, S. Parthasarathy, and D. Ucar, “An event-based framework
for characterizing the evolutionary behavior of interaction graphs,”
ACM Trans. Knowl. Discov. Data, vol. 3, no. 4, Dec. 2009. [Online].
Available: https://doi.org/10.1145/1631162.1631164

A. Beyer, P. Thomason, X. Li, J. Scott, and J. Fisher, “Mechanistic
insights into metabolic disturbance during type-2 diabetes and obesity
using qualitative networks,” Transactions on Computational Systems
Biology XII, Special Issue on Modeling Methodologies, vol. 12,
pp. 146-162, 2010. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-11712-1_4

J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, “A gene-coexpression
network for global discovery of conserved genetic modules,” Science,
vol. 5643, no. 302, pp. 249—255, 2003.

J. Chan, J. Bailey, and C. Leckie, “Discovering correlated spatio-
temporal changes in evolving graphs,” Knowledge and Information
Systems, vol. 16, no. 1, pp. 53-96, 2008.

P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph
similarity for anomaly detection,” J. Internet Services and Applications,
vol. 1, no. 1, pp. 19-30, 2010. [Online]. Available: http://dx.doi.org/10.
1007/s13174-010-0003-x

J. Byun, S. Woo, and D. Kim, “Chronograph: Enabling temporal graph
traversals for efficient information diffusion analysis over time,” I[EEE
Trans. Knowl. Data Eng., vol. 32, no. 3, pp. 424-437, 2020. [Online].
Available: https://doi.org/10.1109/TKDE.2019.2891565

A. Debrouvier, E. Parodi, M. Perazzo, V. Soliani, and A. Vaisman, “A
model and query language for temporal graph databases,” VLDB Journal,
2021.

T. Johnson, Y. Kanza, L. V. S. Lakshmanan, and V. Shkapenyuk,
“Nepal: a path query language for communication networks,” in
Proceedings of the I1st ACM SIGMOD Workshop on Network Data
Analytics, NDA@SIGMOD 2016, San Francisco, California, USA, July
1, 2016, A. Arora, S. Roy, and S. Mehta, Eds. ACM, 2016, pp.
6:1-6:8. [Online]. Available: https://doi.org/10.1145/2980523.2980530
A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan,
J. H. Hwang, and W. S. Han, “The G* graph database: efficiently
managing large distributed dynamic graphs,” Distributed and Parallel
Databases, vol. 33, no. 4, pp. 479-514, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10619-014-7140-3

V. Z. Moffitt and J. Stoyanovich, “Temporal graph algebra,” in
Proceedings of The 16th International Symposium on Database
Programming Languages, ser. DBPL *17. New York, NY, USA:

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

(35]

Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3122831.3122838

M. H. Bohlen, C. S. Jensen, and R. T. Snodgrass, “Temporal Statement
Modifiers,” ACM Transactions on Database Systems, vol. 25, no. 4, pp.
407-456, 2000.

A. Montanari and J. Chomicki, Time Domain.
Springer US, 2009, pp. 3103-3107. [Online].
//dx.doi.org/10.1007/978-0-387-39940-9_427

M. Arenas, P. Bahamondes, A. Aghasadeghi, and J. Stoyanovich,
“Temporal regular path queries,” CoRR, vol. abs/2107.01241, 2021.
[Online]. Available: https://arxiv.org/abs/2107.01241

L. Liu and M. T. Zsu, Encyclopedia of Database Systems, 1st ed.
Boston, MA: Springer Publishing Company, Incorporated, 2009.

J. Clifford and A. U. Tansel, “On an algebra for historical relational
databases: Two views,” in Proceedings of the 1985 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’85.
New York, NY, USA: Association for Computing Machinery, 1985, p.
247-265. [Online]. Available: https://doi.org/10.1145/318898.318922
C. S. Jensen, M. D. Soo, and R. T. Snodgrass, “Unifying
temporal data models via a conceptual model,” Information Systems,
vol. 19, no. 7, pp. 513 — 547, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0306437994900132

R. Snodgrass and I. Ahn, “A taxonomy of time databases,” in
Proceedings of the 1985 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’85. New York, NY, USA:
ACM, 1985, pp. 236-246. [Online]. Available: http://doi.acm.org/10.
1145/318898.318921

M. H. Bohlen, R. Busatto, and C. S. Jensen, “Point Versus Interval-
based Temporal Data Models,” in Proceedings of the 14th IEEE
ICDE. Orlando, FL: IEEE, 1998, pp. 192-200. [Online]. Available:
http://people.cs.aau.dk/{ ~}csj/Thesis/pdf/chapter7.pdf

A. Dignos, M. H. Bohlen, and J. Gamper, “Temporal alignment,”
in Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 433—444. [Online].
Available: https://doi.org/10.1145/2213836.2213886

B. Salzberg and V. J. Tsotras, “Comparison of access methods for
time-evolving data,” ACM Computing Surveys, vol. 31, no. 2, pp.
158-221, jun 1999. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=319806.319816

K. G. Kulkarni and J. Michels, “Temporal features in SQL: 2011,”
SIGMOD Record, vol. 41, no. 3, pp. 34-43, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2380776.2380786

K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther, “Pattern
mining in frequent dynamic subgraphs,” in Proceedings of the Sixth
International Conference on Data Mining, ser. ICDM *06. USA:
IEEE Computer Society, 2006, p. 818-822. [Online]. Available:
https://doi.org/10.1109/ICDM.2006.124

A. Fard, A. Abdolrashidi, L. Ramaswamy, and J. Miller, “Towards
Efficient Query Processing on Massive Time-Evolving Graphs,” in
Proceedings of the Sth IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing, 2012, pp. 567—
574. [Online]. Available: http://eudl.eu/doi/10.4108/icst.collaboratecom.
2012.250532

A. Ferreira, “Building a reference combinatorial model for MANETS,”
IEEE Network, vol. 18, no. 5, pp. 24-29, 2004.

A. Kan, J. Chan, J. Bailey, and C. Leckie, “A query based approach for
mining evolving graphs,” in Proceedings of the Eighth Australasian Data
Mining Conference - Volume 101, ser. AusDM ’09. AUS: Australian
Computer Society, Inc., 2009, p. 139-150.

U. Khurana and A. Deshpande, “Efficient snapshot retrieval over
historical graph data,” in Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ser. ICDE ’13. USA:
IEEE Computer Society, 2013, p. 997-1008. [Online]. Available:
https://doi.org/10.1109/ICDE.2013.6544892

“Storing and Analyzing Historical Graph Data at Scale,”
in Proceedings of the 19th International Conference on Extending
Database Technology, EDBT’16, Bordeaux, France, 2016, pp. 65-76.
[Online]. Available: http://arxiv.org/abs/1509.08960

M. Lahiri and T. Berger-Wolf, “Mining Periodic Behavior in Dynamic
Social Networks,” in 2008 Eighth IEEE International Conference on
Data Mining, 2008, pp. 373-382.

C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On Querying Historical
Evolving Graph Sequences,” Proceedings of the VLDB Endowment,
vol. 4, no. 11, pp. 726-737, 2011.

MA:
http:

Boston,
Available:

http://doi.acm.org/10.1145/3104031
https://doi.org/10.1145/3183713.3190654
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/152
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/152
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1401890.1401948
https://doi.org/10.1145/1631162.1631164
http://dx.doi.org/10.1007/978-3-642-11712-1_4
http://dx.doi.org/10.1007/978-3-642-11712-1_4
http://dx.doi.org/10.1007/s13174-010-0003-x
http://dx.doi.org/10.1007/s13174-010-0003-x
https://doi.org/10.1109/TKDE.2019.2891565
https://doi.org/10.1145/2980523.2980530
http://dx.doi.org/10.1007/s10619-014-7140-3
https://doi.org/10.1145/3122831.3122838
http://dx.doi.org/10.1007/978-0-387-39940-9_427
http://dx.doi.org/10.1007/978-0-387-39940-9_427
https://arxiv.org/abs/2107.01241
https://doi.org/10.1145/318898.318922
http://www.sciencedirect.com/science/article/pii/0306437994900132
http://doi.acm.org/10.1145/318898.318921
http://doi.acm.org/10.1145/318898.318921
http://people.cs.aau.dk/{~}csj/Thesis/pdf/chapter7.pdf
https://doi.org/10.1145/2213836.2213886
http://portal.acm.org/citation.cfm?doid=319806.319816
http://portal.acm.org/citation.cfm?doid=319806.319816
http://doi.acm.org/10.1145/2380776.2380786
https://doi.org/10.1109/ICDM.2006.124
http://eudl.eu/doi/10.4108/icst.collaboratecom.2012.250532
http://eudl.eu/doi/10.4108/icst.collaboratecom.2012.250532
https://doi.org/10.1109/ICDE.2013.6544892
http://arxiv.org/abs/1509.08960

[36]

[37]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

K. Semertzidis, E. Pitoura, and K. Lillis, “Timereach: Historical
reachability queries on evolving graphs,” in Proceedings of the 18th
International Conference on Extending Database Technology, EDBT
2015, Brussels, Belgium, March 23-27, 2015, G. Alonso, F. Geerts,
L. Popa, P. Barcel6, J. Teubner, M. Ugarte, J. V. den Bussche, and
J. Paredaens, Eds. Brussels, Belgium: OpenProceedings.org, 2015, pp.
121-132. [Online]. Available: https://doi.org/10.5441/002/edbt.2015.12
K. Sricharan and K. Das, “Localizing anomalous changes in
time-evolving graphs,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, Snowbird, Utah USA,
2014, pp. 1347-1358. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2588555.2612184

L. Yang, L. Qi, Y. Zhao, B. Gao, and T. Liu, “Link analysis using
time series of web graphs,” in Proceedings of the Sixteenth ACM
Conference on Information and Knowledge Management, CIKM 2007,
Lisbon, Portugal, November 6-10, 2007, M. J. Silva, A. H. F. Laender,
R. A. Baeza-Yates, D. L. McGuinness, B. Olstad, @. H. Olsen, and A. O.
Falcao, Eds. ACM, 2007, pp. 1011-1014.

H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems
in temporal graphs,” Proc. VLDB Endow., vol. 7, no. 9, pp. 721-732,
2014. [Online]. Available: http://www.vldb.org/pvldb/vol7/p721-wu.pdf
H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu, “Efficient
algorithms for temporal path computation,” IEEE Trans. Knowl. Data
Eng., vol. 28, no. 11, pp. 2927-2942, 2016. [Online]. Available:
https://doi.org/10.1109/TKDE.2016.2594065

H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and
time-based path queries in temporal graphs,” in 32nd IEEE International
Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016. 1EEE Computer Society, 2016, pp. 145-156. [Online].
Available: https://doi.org/10.1109/ICDE.2016.7498236

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An evolving query language for property graphs,” in
Proceedings of the 2018 International Conference on Management
of Data, ser. SIGMOD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1433-1445. [Online]. Available:
https://doi.org/10.1145/3183713.3190657

A. Dignos, M. H. Bohlen, and J. Gamper, “Temporal alignment,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May
20-24, 2012, K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano,
and A. Fuxman, Eds. ACM, 2012, pp. 433-444. [Online]. Available:
https://doi.org/10.1145/2213836.2213886

M. H. Bohlen, R. T. Snodgrass, and M. D. Soo, “Coalescing in temporal
databases,” in VLDB’96, Proceedings of 22th International Conference
on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay),
India, 1996, pp. 180-191.

O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi,
“Pgql: A property graph query language,” in Proceedings of
the Fourth International Workshop on Graph Data Management
Experiences and Systems, ser. GRADES "16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2960414.2960421

Association of ISO Graph Query Language Proponents, “GQL standard,”
2020, https://www.gqlstandards.org.

L. Libkin, W. Martens, and D. Vrgoc, “Querying graphs with data,” J.
ACM, vol. 63, no. 2, pp. 14:1-14:53, 2016.

M. Y. Vardi, “The complexity of relational query languages (extended
abstract),” in Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, ser. STOC ’82. New York, NY, USA:
Association for Computing Machinery, 1982, p. 137-146. [Online].
Available: https://doi.org/10.1145/800070.802186

[49]

[50]

(51]

[52]
[53]

[54]

[55]
[56]
(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

S. Abiteboul and V. Vianu, “Regular path queries with constraints,”
in Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ser. PODS ’97. New
York, NY, USA: Association for Computing Machinery, 1997, p.
122-133. [Online]. Available: https://doi.org/10.1145/263661.263676

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi,
“Rewriting of regular expressions and regular path queries,” Journal
of Computer and System Sciences, vol. 64, no. 3, pp. 443-465, 2002.

P. Barcel6 Baeza, “Querying graph databases,” in Proceedings of
the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, ser. PODS "13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 175-188. [Online]. Available:

https://doi.org/10.1145/2463664.2465216

J. Clark and S. DeRose, “XML path language (XPath) version 1.0,”
W3C Recommendation 16 November 1999.

M. Marx, “Conditional XPath,” ACM Trans. Database Syst., vol. 30,
no. 4, pp. 929-959, 2005.

G. Gottlob, C. Koch, and R. Pichler, “Efficient algorithms for processing
XPath queries,” ACM Trans. Database Syst., vol. 30, no. 2, pp. 444491,
2005.

J. Robie, M. Dyck, and J. Spiegel, “XML path language (XPath) 3.1,”
W3C Recommendation 21 March 2017.
Rust-Itertools, “‘rust-itertools/itertools.”
//github.com/rust-itertools/itertools
Rayon-Rs, “Rayon-rs/rayon: Rayon: A data parallelism library for rust.”
[Online]. Available: https://github.com/rayon-rs/rayon/

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and 1. Stoica, “Apache spark: a unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56-65,
2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013,
pp. 439-455.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard, “Differential
dataflow,” in CIDR, 2013.

A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on job scheduling strategies for
parallel processing. Springer, 2003, pp. 44-60.

S. Ojagh, S. Saeedi, and S. H. Liang, “A person-to-person and person-to-
place covid-19 contact tracing system based on ogc indoorgml,” ISPRS
International Journal of Geo-Information, vol. 10, no. 1, p. 2, 2021.

J. Gonzalez, Y. Low, and H. Gu, “Powergraph: Distributed graph-
parallel computation on natural graphs,” in OSDI’12 Proceedings
of the 10th USENIX conference on Operating Systems Design
and Implementation, 2012, pp. 17-30. [Online]. Available: https:
/lwww.usenix.org/system/files/conference/osdil2/osdil2-final- 167.pdf
A. Aghasadeghi, V. Z. Moffitt, S. Schelter, and J. Stoyanovich,
“Zooming out on an evolving graph,” in Proceedings of the 23rd
International Conference on Extending Database Technology, EDBT
2020, Copenhagen, Denmark, March 30 - April 02, 2020, A. Bonifati,
Y. Zhou, M. A. V. Salles, A. Bohm, D. Olteanu, G. H. L. Fletcher,
A. Khan, and B. Yang, Eds. OpenProceedings.org, 2020, pp. 25-36.
[Online]. Available: https://doi.org/10.5441/002/edbt.2020.04

“Neo4j: What is a graph database?” https://neodj.com/developer/
graph-database/#property-graph, [Online; accessed 18-July-2017].

[Online]. Available: https:

https://doi.org/10.5441/002/edbt.2015.12
http://dl.acm.org/citation.cfm?doid=2588555.2612184
http://dl.acm.org/citation.cfm?doid=2588555.2612184
http://www.vldb.org/pvldb/vol7/p721-wu.pdf
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1109/ICDE.2016.7498236
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/2213836.2213886
https://doi.org/10.1145/2960414.2960421
https://www.gqlstandards.org
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/263661.263676
https://doi.org/10.1145/2463664.2465216
https://github.com/rust-itertools/itertools
https://github.com/rust-itertools/itertools
https://github.com/rayon-rs/rayon/
http://doi.acm.org/10.1145/2934664
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://doi.org/10.5441/002/edbt.2020.04
https://neo4j.com/developer/graph-database/#property-graph
https://neo4j.com/developer/graph-database/#property-graph

	Introduction
	Running example
	Summary of our approach

	Background and Related Work
	A Temporal Graph Model
	Temporal property graphs
	Interval-timestamped temporal property graphs

	Adding Time to a Practical Graph Query Language
	Temporal Regular Path Queries
	Syntax of NavL[PC, NOI], and its relationship with the practical query language
	Semantics and complexity of NavL[PC,NOI]
	A comparison with T-GQL and Cypher

	Implementation
	Experimental Evaluation
	Experimental datasets
	Results

	Conclusions and Future Work
	Acknowledgements
	References

