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In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with

contributions coming from the data management, algorithms, information retrieval, and recommender systems communities.

In this survey we give a systematic overview of this work, ofering a broad perspective that connects formalizations and

algorithmic approaches across subields. An important contribution of our work is in developing a common narrative

around the value frameworks that motivate speciic fairness-enhancing interventions in ranking. This allows us to unify the

presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-ofs.

In this irst part of this survey, we describe four classiication frameworks for fairness-enhancing interventions, along

which we relate the technical methods surveyed in this paper, discuss evaluation datasets, and present technical work on

fairness in score-based ranking. In the second part of this survey, we present methods that incorporate fairness in supervised

learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We

also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations

for the evaluation of fair ranking methods.

CCS Concepts: · Information systems→Datamanagement systems; · Social and professional topics→Computing

/ technology policy.

Additional Key Words and Phrases: fairness, ranking, set selection, responsible data science, survey

1 INTRODUCTION

The research community recognizes several important normative dimensions of information technology including
privacy, transparency, and fairness. In this survey we focus on fairness Ð a broad and inherently interdisciplinary
topic of which the social and philosophical foundations are still unresolved [17].
Research on fair machine learning has mainly focused on classiication and prediction tasks [8, 17], while

we focus on ranking. As is customary in fairness research, we assume that input data describes individuals Ð
natural persons seeking education, employment, or inancial opportunities, or being prioritized for access to
goods and services. While some of the algorithmic techniques described here can be applied to entities other than
people, we believe that the concept of fairness, along with the corresponding normative frameworks, applies
predominantly to scenarios where data describes people. For consistency, we will refer to the set of individuals in
the input to a ranking task as candidates.

We consider two types of ranking tasks: score-based and supervised learning. In score-based ranking, a given
set of candidates is sorted on the score attribute, which may itself be computed on the ly, and returned in sorted
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candidate A1 A2 X1 X2 X3 X4 Y1 Y2 Y3

b male White 4 5 5 {cs:0.9; art:0.2} 14 9 1

c male Asian 5 3 4 {math:0.9; cs:0.5} 12 9 1

d female White 5 4 2 {lit:0.8; math:0.8} 11 4 6

e male White 3 3 4 {math:0.8; econ:0.4} 10 7 6

f female Asian 3 2 3 {econ:0.9; math:0.5} 8 5 8

k female Black 2 2 3 {lit:0.9;art:0.8} 7 1 9

l male Black 1 1 4 {lit:0.5; math:0.7} 6 6 2

o female White 1 1 2 {econ:0.9; cs:0.8} 4 7 8
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Fig. 1. (a) dataset C of college applicants, with demographic atributes A1 (sex) and A2 (race), numerical atributes X1 (high
school GPA), X2 (verbal SAT), and X3 (math SAT), and atribute X4 (choice) that is a vector extracted from the applicants’
essays; (b) is a ranking τ 1 on Y1, computed as the sum of X1, X2, and X3; (c) is a ranking on Y2, predicted based on historical
performance of STEM (cs, econ, math) majors; (d) is a ranking on Y3, predicted based on historical performance of humanities
(art, lit) majors. In all cases, the top-4 candidates will be interviewed in score order, and potentially admited.

order. In supervised learning-to-rank, a preference-enriched training set of candidates is given, with preferences
among them stated in the form of scores, preference pairs, or lists; this training set is used to train a model that
predicts the ranking of unseen candidates. For both score-based and supervised learning tasks, we typically
return the best-ranked k candidates, the top-k . Set selection is a special case of ranking that ignores the relative
order among the top-k , returning them as a set.
While supervised learning-to-rank appears to be similar to classiication, there is one crucial diference. The

goal of classiication is to assign a class label to each item, and this assignment is made independently for each
item. In contrast, learning-to-rank positions items relative to each other, and so the outcome for one item is not
independent of the outcomes for the other items. This lack of independence has profound implications for the
design of learning-to-rank methods in general, and for fair learning-to-rank in particular.

To make our discussion concrete, we now present our running example from university admissions, a domain
in which ranking and set selection are very natural and are broadly used.

1.1 Running example: university admissions

Consider an admissions oicer at a university who selects candidates from a large applicant pool. When making
their decision, the oicer pursues some or all of the goals listed below. Some of these goals may be legally
mandated, while others may be based on the policies adopted by the university, and include admitting students
who:

• are likely to succeed: complete the program with high marks and graduate on time;
• show strong interest in speciic majors like computer science, art, or literature; and
• form a demographically diverse group in terms of their demographics, both overall and in each major.

Figure 1 shows a dataset C of applicants and illustrates the admissions process. Each applicant submits several
quantitative scores, all transformed here to a discrete scale of 1 (worst) through 5 (best) for ease of exposition: X1

is the high school GPA (grade point average), X2 is the verbal portion of the SAT (Scholastic Assessment Test)
score, and X3 is the mathematics portion of the SAT score. Attribute X4 (choice) is a weighted feature vector
extracted from the applicant’s essay, with weight ranging between 0 and 1, and with a higher value corresponding
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Fig. 2. Functional principle of rankers: (1. and 2.) Structured and text data that correspond to candidates serve as inputs to a
ranker; (3.) The ranker outputs a ranking of the candidates τ .

to stronger interest in a speciic major. For example, candidate b is a White male with a high GPA (4 out of 5),
perfect SAT verbal and SAT math scores (5 out of 5), a strong interest in studying computer science (feature
weight 0.9), and some interest in studying art (weight 0.2).

The admissions oicer uses a suite of tools to sift through the applications and identify promising candidates.
Many of these tools are rankers, illustrated in Figure 4. A ranker takes a dataset of candidates, described by
structured features, text, or both, as input and produces a permutation of these candidates, also called a ranking.
The admissions oicer will take the order in which the candidates appear in a ranking under advisement when
deciding whom to consider more closely, interview, and admit.
These tools include score-based rankers (Sections 2.1) that compute the score of each candidate based on

a formula that the admissions oicer gives, and then return some number of highest-scoring applicants in
ranked order. This scoring formula may, for example, specify the score as a linear combination of the applicant’s
high-school GPA and the two components of their SAT score, each carrying an equal weight. This is done in
Figure 1(a), where a candidate’s score is computed as Y1 = X1 + X2 + X3 and then ranking τ 1 in Figure 1(b) is
produced.

Structured data

Ranker

Text data

Ranking τ

1. 2.

3.

Predictive analytics are also among the admissions oicer’s toolkit. For example, multiple ranking models may
be trained, one per undergraduate major or set of majors, on features X1,X2,X3,X4 of the successful applicants
from the past years, to predict applicant’s standing upon graduation (based, e.g., on their GPA in the major). These
ranking models are then used to predict a ranking of this year’s applicants. In our example in Figure 1(a), feature
Y2 predicts performance in a STEM (Science, Technology, Engineering, Mathematics) major such as computer
science (cs), economics (econ), or mathematics (math) and leads to ranking τ 2 in Figure 1(c), while feature Y3
predicts performance in a humanities major such as literature (lit) or ine arts (art) and leads to ranking τ 3 in
Figure 1(d).
The promising applicants identiied in this wayÐwith the help of either a score-based ranker or a predictive

analyticÐwill then be considered more closely, in ranked order : invited for an interview and potentially admitted.
Let us recall that, in addition to incorporating quantitative scores and students’ choice, an admissions oicer

also aims to admit a demographically diverse group of students to the university and to each major. Further, the
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candidate A1 A2 X1 X2 X3 Y

b male White 4 5 5 14

c male Asian 5 3 4 12

d female White 5 4 2 11

e male White 3 3 4 10

f female Asian 3 2 3 8

k female Black 2 2 3 7

l male Black 1 1 4 6

o female White 1 1 2 4
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Fig. 3. A dataset C of college applicants. Score Y is computed by a score-
based ranker f (X ) = X1 + X2 + X3. Ranking τ 1 of Y in C. Ranking τ 2

with proportional representation by sex at the top-4. Ranking τ 3 with
proportional representation by sex in every prefix of the top-4. The top-4
candidates will be interviewed in score order and potentially admited.

Fig. 4. Functional principle of rankers: (1.
and 2.) Structured and text data that cor-
respond to candidates serve as inputs to a
ranker; (3.) The ranker outputs a ranking of
the candidates τ .

admissions oicer is increasingly aware that the data on which their decisions are based may be biased, in the
sense that this data may carry results of historical discrimination or disadvantage, and that the computational tools
at their disposal may be exacerbating or introducing new forms of bias, or even creating a kind of a self-fulilling
prophecy. (See discussion of the types of bias in Section 3.2.) For this reason, the oicer may elect to incorporate
one or several fairness objectives into the ranking process.

For example, they may assert, for legal or ethical reasons, that the proportion of the female applicants among
those selected for further consideration should match their proportion in the input. Applying this requirement to
ranking τ 1 in Figure 3 (in which we elaborate on the already familiar example in Figure 1) yields ranking τ 2 in
Figure 3. Further, the admissions oicer may assert that, because applicants are interviewed in ranked order, it is
important to achieve proportional representation by sex in every preix of the produced ranking, which yields
ranking τ 3 in Figure 3. In this survey we give an overview of the technical work that would allow an admissions
oicer to compute ranked results under these and other fairness requirements.

1.2 Scope and contributions of the survey

In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers.
And while several surveys on fairness in classiication have been published (e.g., [48, 54], ranking has not yet
received systematic attention. Giving an overview of this large and growing body of work, and the underlying
value frameworks that serve as a basis for classiication, is the primary goal of our survey. Which speciic fairness
requirements an admissions oicer will assert depends on the values they are operationalizing and, thus, on
the mitigation objectives. An important goal of this survey is to create an explicit mapping between mitigation
objectives, which we will characterize in Section 3.3. Without such a mapping, an admissions oicer in our
running example would have a diicult time selecting an appropriate fairness-enhancing intervention, and would
not know which interventions are mutually comparable and which are not.

In our survey we will present a selection of approaches for fairness in ranking that were developed in several
subields of computer science, including data management, algorithms, information retrieval, and recommender
systems. We are aware of several recent tutorials on fairness in ranking at SIGIR 2019 [14], RecSys 2019 [30],
and VLDB 2020 [5], pointing to the need to systematize the work in this area and motivating our survey. Our
goal is to ofer a broad perspective, connecting work across subields. We discuss existing technical methods
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for fairness in score-based ranking in Section 5. Technical work on fairness in supervised learning, with a focus
on information retrieval, is covered in the second part of the survey, where we also highlight representative
examples of fairness in recommender systems and matching.

The primary focus of this survey is on associational fairness measures for ranking, although we do include one
recently proposed causal framework.

1.3 Survey roadmap (Parts I and II)

Part I of this survey is organized as follows:

• We gave a general introduction in Section 1.
• We start with the preliminaries and ix notation in Section 2.
• We present classiication frameworks along which we relate all surveyed technical methods in Section 3.
• We present the evaluation datasets that are used by the surveyed technical methods in Section 4.
• We describe technical work on fairness in score-based ranking in Section 5.
• We summarize Part I in Section 6.

Part II of this survey is organized as follows:

• We introduce Part II of the survey in Section 1.
• We recap the relevant notation in Section 2.
• We describe technical work on fair supervised learning in Section 3.
• We highlight representative work on fairness in recommender systems and matching in Section 4.
• We discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank in Section 5.
• We draw a set of recommendations for the evaluation of fair ranking methods in Section 6.
• We conclude the survey, and identify directions for future work, in Section 7.

2 PRELIMINARIES AND NOTATION

In this section we will build on our running example to discuss score-based and supervised learning-based rankers
more formally, and ix the necessary notation. We summarize notation in Table 1 and illustrate it throughout this
section.

2.1 Score-based ranking

Formally, we are given a set C of candidates; each candidate is described by a set of featuresX and a score attribute
Y. Additionally we are given a set of sensitive attributes A ⊆ X, which are categorical, denoting membership
of a candidate in demographic groups. Sensitive attributes like age or degree of disability may be drawn from
a continuous domain, and several fairness-in-classiication methods for continuous sensitive attributes have
been proposed [36, 47]. However, we are not aware of any work of this kind that applies to fairness in ranking,
and so will assume that sensitive attributes are categorical in the remainder of this survey. A sensitive attribute
A ∈ A may be binary, with one of the values (e.g., A = 1 or A = female, as in Figure 1) denoting membership in a
minority or historically disadvantaged group (often called łprotected groupž) and with the other value (e.g.,A = 0
or A = male) denoting membership in a majority or privileged group. Alternatively, a sensitive attribute may
take on three or more values, for example, to represent ethnicity or (non-binary) gender identity of candidates.

A ranking τ is a permutation over the candidates in C. Letting n = |C|, we denote by τ = ⟨τ1, . . . ,τn⟩ a ranking
that places candidate τi at rank i . We denote by τ (i ) the candidate at rank i , and by τ−1 (a) the rank of candidate a
in τ . We are often interested in a sub-ranking of τ containing its best-ranked k elements, for some integer k ≤ n;
this sub-ranking is called the top-k and is denoted τ 1...k . For example, given a ranking τ = ⟨b, c,d, e, f ,k, l ,o⟩,
τ (3) = d , τ−1 (l ) = 7, and the top-4 is τ 1...4 = ⟨b, c,d, e⟩.
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Table 1. Summary of notation used throughout the survey.

C A set of candidates to be ranked Y the score feature and ground truth for supervised learn-

ing

a,b, c Candidates in C Ŷ the scores predicted by f̂

n Number of candidates |C| Ya the score of candidate a

X a set of features of the candidates in C τ Ranking: permutation of candidates from C

Xa Features of candidate a τ (i ) The candidate at position i in τ

A A set of sensitive features, A ⊆ X v(i ) the position bias of rank i

G A group (subset) of candidates, G ⊆ C U k (τ ) Utility of the top-k candidates in τ

G1 A protected group (subset) of candidates, G1 ⊆ C U k (τ ,G) Utility of the top-k candidates of group G in τ

U A set of users that use the ranking system U (τ ,a) Utility of candidate a in τ

Q A set of queries D (a,b) Disparity in visibility between candidates a and b

f , f̂ a ranker, a ranker learned from training data D (G1,G2) Disparity in visibility between groups G1 and G2

Utility. Because score Y is assumed to encode a candidate’s appropriateness, quality, or utility, a score-based
ranking usually satisies:

Yτ (1) ≥ Yτ (2) ≥ . . . ≥ Yτ (n) (1)

We will ind it convenient to denote byU k (τ ) the utility of τ 1...k . Diferent methods surveyed in this paper
adopt diferent notions of utility, and we will make their formulations precise as appropriate. The simplest method
is to treat τ 1...k as a set (disregarding candidate positions), and to compute the utility of the set as the sum of
scores of its elements:

U k (τ ) =

k
∑

i=1

Yτ (i ) (2)

Another common method incorporates position-based discounts, following the observation that it is more
important to present high-quality items at the top of the ranked list, since these items are more likely to attract
the attention of the consumer of the ranking. For example, we may compute position-discounted utility of a
ranking as:

U k (τ ) =

k
∑

i=1

Yτ (i )

log2 (i + 1)
(3)

For example, the utility at top-4 of τ 1 in Figure 3 is 47 based on Equation 2 and 31.4 based on Equation 3. Note
that the base of the logarithm in the denominator of Equation 3 is empirically determined, and it can be set to
some value b > 1 other than 2.

For these variants of utility and for others, it is often useful to quantify utility realized by candidates belonging
to a particular demographic group G ⊆ C, deined by an assignment of values to one or several sensitive attributes.
For example, G may contain female candidates, or Asian female candidates. We can then compute to the utility
of τ 1...k (per Equation 2) for group G as:

U k (τ ,G) =

k
∑

i=1

Yτ (i ) × 1[τ (i ) ∈ G] (4)
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Here, 1 is an indicator variable that returns 1 when τ (i ) ∈ G and 0 otherwise. Position-discounted utility (per
Equation 3) for group G can be deined analogously. For the ranking τ 1 in Figure 3, U 4 (τ 1, sex = male) = 36,
U 4 (τ 1, sex = male ∧ race = White) = 24, andU 4 (τ 1, sex = male ∧ race = Black) = 0.

Fairness. To satisfy objectives other than utility, such as fairness, we may output a ranking τ̂ that is not simply
sorted based on the observed values ofY as in Equation 1. As is the case for classiication and prediction, numerous
fairness measures have been deined for rankings. These measures can be used both to assess the fairness of a
ranking and to intervene on unfairness, for example, by serving as basis for constraints.
A prominent class of fairness measures corresponds to proportional representation in the top-k treated as a

set, or in every preix of the top-k . These measures are motivated by the need to mitigate diferent types of bias,
based on assumptions about its origins and with a view of speciic objectives (to be discussed in Section 3). For
example, ranking τ 2 in Figure 3 re-ranks candidates to satisfy proportional representation by gender at the top-4
(treating it as a set), swapping candidates e and f . The ranking τ 3 in Figure 3 additionally reorders candidates c
and d to achieve proportional representation by gender in every preix of the top-4.
In addition to fairness measures, diversity measures have also been proposed in the literature [26]. In this

survey we will discuss coverage-based diversity that is most closely related to fairness, and requires that members
of multiple, possibly overlapping, groups, be suiciently well-represented among the top-k , treated either as a set
or as a ranked list. Diversity constraints may, for example, be stated to require that members of each ethnic group,
each gender group, and of selected intersectional groups on ethnicity and gender, all be represented at the top-k
in proportion to their prevalence in the input. The terminology we adopt in this paper is that łcoverage-based
diversityž is a technical notion that can be used to express several fairness objectives. In contrast, fairness is
never purely technical: it is always associated with a value framework and with a socio-technical context of use.
When candidates are re-ranked to meet objectives other than score-based utility, we may be interested to

compute Y-utility loss, denoted LY (τ , τ̂ ). We can use a variety of metrics that quantify the distance between
ranked lists for this purpose, including, for example, the Kendall distance that counts the number of pairs that
appear in the opposite relative order in τ and τ̂ , or one in a family of generalized distances between rankings [42].
However, loss functions that compare rankings τ and τ̂ in their entirety are uncommon. Rather, Y-utility loss is
usually speciied over the top-k . The simplest formulation is:

LkY (τ , τ̂ ) = U
k (τ ) −U k (τ̂ ) (5)

Alternatively, we may normalize this quantity:

LkY (τ , τ̂ ) = 1 −
U k (τ̂ )

U k (τ )
(6)

Further, we may be interested to quantify utility loss for a particular demographic group G. In that case, we
deine the utility of τ and τ̂ for group G, as was done in Equation 4, or analogously for other utility formulations.
Interestingly, underrepresented groups may see a gain, rather than a loss, in Y-utility, because they may receive
better representation at the top-k when a fairness objective is applied.

3 FOUR CLASSIFICATION FRAMEWORKS FOR FAIRNESS-ENHANCING INTERVENTIONS

Operationally, algorithmic approaches surveyed in this paper difer in how they represent candidates (e.g.,
whether they support one or multiple sensitive attribute, and whether these are binary), in the type of bias they
aim to surface and mitigate, in what fairness measure(s) they adopt, in how they navigate the trade-ofs between
fairness and utility during mitigation, and, for supervised learning methods, at what stage of the pipeline a
mitigation is applied. Conceptually, these operational choices correspond to normative statements about the
types of bias being observed and mitigated, and the objectives of the mitigation. In this section we give four
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classiication frameworks that allow us to relate the technical choices with the normative judgments they encode,
and to identify the commonalities and the diferences between the many algorithmic approaches. Figure 5 gives a
structural overview of the frameworks and their sub-categories in the form of a mind map. For each method, we
will highlight which normative choices they make based on this mind map.

Normative Dimensions

Group Structure

Bias Type

Equal Opportunity

Worldview

Intersectional

Atribute Cardinality

Binary

Multinary

Atribute Number One

Multiple
Independent

Combination
Yes

No

Pre-existing

Technical

Emergent

Formal

Formal plus

Substantive
Rawlsian

Luck-egalitarian

WYSIWYG

WAE

Continuous

Fig. 5. A mind map summary of the structure of the four classification frameworks.

3.1 Group structure

Recall that fairness of a method is stated with respect to a set of categorical sensitive attributes (or features).
Individuals who have the same value of a particular sensitive attribute, such as gender or race, are called a group.
In this survey, we consider several orthogonal dimensions of group structure, based on the handling of sensitive
attributes.

Cardinality of sensitive attributes. Some methods consider only binary sensitive attributes (e.g., binary gender,
majority or minority ethnic group), while other methods handle higher-cardinality (multinary) domains of values
for sensitive attributes. If a multinary domain is supported, methods difer in whether they consider one of the
values to be protected (corresponding to a designated group that has been experiencing discrimination), or if
they treat all values of the sensitive attribute as potentially being subject to discrimination.

Number of sensitive attributes. Some methods are designed to handle a single sensitive attribute at a time ( e.g.,
they handle gender or race, but not both), while other methods handle multiple sensitive attributes simultaneously
(e.g., they handle both gender and race).

Handling of multiple sensitive attributes. Methods that support multiple sensitive attributes difer in whether
they handle these independently (e.g., by asserting fairness constraints w.r.t. the treatment of both women and
Blacks) or in combination (e.g., by requiring fairness w.r.t. Black women). Note that any method that supports a
single multinary attribute can be used to represent multiple sensitive attributes with the help of a computed high-
cardinality sensitive attribute. For example, a computed sensitive attribute gender-race-disability can represent
the Cartesian product {male, f emale,non-binary} × {White,Black,Asian} × {disabled,non-disabled }. We may
be tempted to say that such methods take the point of view of intersectional discrimination [23, 46]. However,
as we will discuss in Section 3.3, detecting and mitigating intersectional discrimination is more nuanced, and
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so it is in general not true that if a method takes a Cartesian product of sensitive attribute values then handles
intersectional discrimination, and if a method treats sensitive attributes independently then it does not.

3.2 Type of bias

We study ranking systems with respect to the types of bias that they attempt to mitigate, namely, pre-existing
bias, technical bias, and emergent bias, as deined by [35].

Pre-existing bias. This type of bias includes all biases that exist independently of an algorithm itself and has its
origins in society. For an example of pre-existing bias in rankings, consider the Scholastic Assessment Test (SAT).
College applicants in the US are commonly ranked on their SAT score, often in combination with other features. It
has been documented that the mean score of the math section of the SAT difers across racial groups, as does the
shape of the score distribution. According to a Brookings report that analyzed 2015 SAT test results, łThe mean
score on the math section of the SAT for all test-takers is 511 out of 800, the average scores for blacks (428) and
Latinos (457) are signiicantly below those of whites (534) and Asians (598). The scores of black and Latino students
are clustered towards the bottom of the distribution, while white scores are relatively normally distributed, and
Asians are clustered at the topž [57]. This disparity is often attributed to racial and class inequalities encountered
early in life, and presenting persistent obstacles to upward mobility and opportunity.

Technical bias. This type of bias arises from technical constraints or considerations, such as the screen size or a
ranking’s inherent position bias Ð the geometric drop in visibility for items at lower ranks compared to those at
higher ranks. Position bias arises because in Western cultures we read from top to bottom, and from left to right,
and so items appearing in the top-left corner of the screen attract more attention [7]. A practical implication of
position bias in rankings that do not admit ties is that, even if two items are equally suitable for a searcher, only
one of them can be placed above the other in a ranking, suggesting to the searcher that it is better and should be
prioritized.

Note that, as all rankings carry an inherent position bias, any method that produces rankings with equalized
candidate visibility implicitly addresses this technical bias. However, we will only assign a method to technical
bias mitigation, if the paper is explicitly concerned with it, such as [11].

Emergent bias. This type of bias arises in a context of use and may be present if a system was designed with
diferent users in mind or when societal concepts shift over time. In the context of ranking and recommendation
it arises most notably because searchers tend to trust the systems to indeed show them the most suitable items at
the top positions [53], which in turn shapes a searcher’s idea of a satisfactory answer for their search. These
feedback loops can create a łthe-winner-takes-it-allž situation in which consumers increasingly prefer one
majority product over everything else.

3.3 Mitigation objectives

3.3.1 Worldviews. Friedler et al. [34] relect on the impossibility of a purely objective interpretation of algorithmic
fairness (in the sense of a lack of bias): łIn order to make fairness mathematically precise, we tease out the
diference between beliefs and mechanisms to make clear what aspects of this debate are opinions and which
choices and policies logically follow from those beliefs.ž They model the decision pipeline of a task as a sequence
of mappings between three metric spaces: construct space (CS), observed space (OS), and decision space (DS), and
deine worldviews (belief systems) as assumptions about the properties of these mappings.
The spaces and the mappings between them are illustrated in Figure 6 for the college admissions example.

Individuals are represented by points. CS represents the łtruež unobservable properties of an individual (e.g.,
intelligence and grit), while OS represents the properties that we can measure (e.g., SAT score as a proxy for
intelligence, high school GPA as a proxy for grit) and serves as the feature space of an algorithmic ranker. An
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(a) WYSIWYG (b) WAE

Fig. 6. An illustration of the worldviews from Frieder et al. [34]: łWhat you see is what you getž (WYSIWYG) vs. łWe are all
equalž (WAE). WYSIWYG assumes that the mapping from the construct space (CS) to the observed space (OS) shows very
low distortion. In contrast, WAE assumes that the mapping from CS to OS distorts the structure of the groups in CS, leading
to structural bias.

observation process д(p) = p̂ maps from an individual p ∈ CS to an entity p̂ ∈ OS . An example of such a process
is an SAT test. The decision space DS maps from OS to a metric space of decisions, which for rankings represent
the degree of relevance of an entity p̂ by placing it at a particular position in the ranking.
Note that the mappings between the spaces are prone to distortions, of which those that map from CS to

either OS or DS are by deinition unobservable. Because the properties of these mapping cannot be independently
veriied, a belief system has to be postulated. Friedler et al. [34] describe two extreme cases: WYSIWYG (łwhat
you see is what you getž) and WAE (łwe are all equalž). The former assumes that CS and OS are essentially
the same and any distortion between the two is at most ϵ . The latter assumes that any diferences between the
utility distributions of diferent groups are due to an erroneous or biased observation process д. In our college
admissions example this would mean that any diferences in the GPA or IQ distributions across diferent groups
are solely caused by biased school systems and IQ tests. It is also assumed that д shows diferent biases across
groups, to which the authors refer as group skew.

The authors further deine diferent terms from the Fairness, Accountability, Transparency, and Ethics (FATE)
literature in terms of the underlying group skew. Their fairness deinition is inspired by Dwork et al. [27] and
says that items that are close in construct space shall also be close in decision space, which is widely known
as individual fairness: similar individuals should receive similar outcomes. Group fairness, however, is deined
indirectly through the terms direct discrimination and non-discrimination, requiring that an individual’s treatment
should not depend on their group membership. More formally, direct discrimination is absent if the group skew
of a mapping between OS and DS is less than ϵ . Non-discrimination is present, if the group skew of a mapping
between CS and DS is less than ϵ . Note that the last deinition requires a choice of world view beforehand in
order to be evaluated. If WYSIWYG is chosen, group fairness is given as soon as there is no direct discrimination,
because CS ≈ OS .

We will classify the investigated algorithms in terms of which worldview they choose and which of the three
terms (fairness, direct discrimination, non-discrimination) they aim to optimize.

When categorizing surveyed methods with respect to worldview, we consider whether their fairness objective
aims for equality of outcome or equality of treatment. If the goal of a method is to achieve equality of outcome,
and if it is asserted that OS is not trustworthy because of biased or erroneous distortion д between CS and OS,
then we consider this method to fall under the WAE worldview. If, on the other hand, the goal is to achieve
equality of treatment and it is asserted that the mapping between CS and OS shows low distortion, then the
method falls under the WYSIWYG worldview.
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3.3.2 Equality of Opportunity. Equality of Opportunity (EO) is a philosophical doctrine that aims to remove
morally irrelevant and arbitrary barriers to the attainment of desirable positions. Heidari et al. [39] show an
application of equality of opportunity (EO) frameworks to algorithmic fairness: łAt a high level, in these models
an individual’s outcome/position is assumed to be afected by two main factors: his/her circumstance c and efort
e . Circumstance c is meant to capture all factors that are deemed irrelevant, or for which the individual should
not be held morally accountable; for instance c could specify the socio-economic status they were born into.
Efort e captures all accountability factorsÐthose that can morally justify inequality.ž Several conceptions of
EO have been proposed, difering in what features they consider morally relevant, and in how the relationship
between circumstance and efort is modeled.

Formal EO considers a competition to be fair when candidates are evaluated on the basis of their qualiications,
and the most qualiied candidate wins. This view rejects any qualiications that are irrelevant, such as hereditary
privileges or social status, but it makes no attempt to correct for arbitrary privileges and disadvantages leading up
to the competition that can lead to disparities in qualiications at the time of competition. Formal EO is typically
understood in the algorithmic fairness literature as fairness-through-blindness Ð disallowing the direct impact
from sensitive attributes (e.g., gender and race) on the outcome but allowing them to impact the outcome through
proxies.
Limiting formal EO to fairness through blindness has been challenged in recent work by Khan et al. [40],

who argue for a broader interpretation: łFor example, think of the SAT as a predictor of college success: when
students can aford to do a lot of test prep, scores are an inlated relection of students’ college potential. When
students don’t have access to test prep, the SAT underestimates students’ college potential. The SAT systematically
overestimates more privileged students, while systematically underestimating less privileged students. The test’s
validity as a predictor of college potential varies across groups. That’s also a violation of formal EO. After all, in
the college admissions contest, applicants should only be judged by ‘college-relevant’ qualiicationsśbut this
test’s accuracy as a yardstick for college potential varies with students’ irrelevant privilege’.ž Formal-plus EO,
due to Fishkin [32], addresses this important shortcoming of formal EO, capturing the desideratum that test
performance should not skew along the lines of morally irrelevant factors. Tests that satisfy formal-plus EO
include those that aim to balance error rates [41], as well as equalized odds [38].

Substantive EO doctrines take a broader view of Equal Opportunity Ð one that is not limited to fair competitions.
Instead, they consider whether people have comparable opportunities over the course of a lifetime, including cru-
cial developmental opportunities such as access to education. In order to make such a determination, substantive
doctrines attempt to mitigate the efect of morally arbitrary factors such as gender, race, and socio-economic
status, on people’s relevant qualiications, which are the basis for attaining desirable positions. Importantly, in
contrast to formal and formal plus EO that focus on the current competition, substantive EO aims to make people’s
future prospects comparable.

There are several prominent conceptions of substantive EO. Luck-egalitarian EO (see Dworkin [28] and Roemer
[59]) would distribute outcomes after conditioning people’s morally relevant qualiication score on their morally
irrelevant circumstances. Such an approach may, for example, rank individuals separately by group, and then
take the speciied number of top-ranked individuals from each list.

An alternative iterative approach to equalizing people’s life chances could follow Rawls’ Fair EO, and distribute
outcomes in a way that improves the parity in people’s future prospects of success, setting them up to be
competitive in future competitions, even if it means łunfairnessž in the outcomes of the current competition [56].
In this paper, we will interpret fairness interventions that attempt to model what an individuals’ qualiications
would have looked like, in a world where equally talented people have equal prospects of success, as Rawls’s Fair
EO. Once this has been satisied, we can look more broadly at improving people’s life prospects by applying the
Diference Principle, which explicitly focuses on improving outcomes for the most disadvantaged (i.e., maximizing
the minimum).
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We will classify surveyed approaches with respect to the EO framework based on how their fairness deinition
compares individuals according to some qualiications (e.g., test scores, credit amount, and times of being arrested).
However, such a mapping is elusive if a paper does not clearly state its assumptions about how morally arbitrary
factors afect an individual’s relevant qualiications. Note also that we explicitly map the fairness deinitions, not
the overall approaches. This is because many methods combine a fairness and a utility objective into a single
optimization problem and, by doing so, lose a clear association with a particular framework. As a result, many of
the methods we survey fall between the WAE and WYSIWYG worldviews, and do not cleanly map to a single EO
category. Some are even designed to allow a continuous shift between the frameworks, by providing a tuning
parameter [83].

Some authors [3, 39] categorize the libertarian view as an EO framework. According to this view, any information
about an individual that was legally obtained can be used to make a decision. Because there is no attempt to
equalize access to opportunity, this view corresponds to a narrow notion of procedural fairness, and we do not
categorize it under EO [40]. If a fairness deinition assumes that all individuals are comparable in all dimensions,
as long as there is no gross violations of their privacy during the comparison, then we map this deinition to the
libertarian view.

Worldviews vs. Equality of Opportunity. The diferent worldviews [34] give us an intuitive way of thinking about
the suiciency of diferent EO doctrines. The WYSIWYG worldview assumes that there is no distortion between
the construct space and the observed space, and, in such a setting, formal and formal-plus EO conceptions that
focus on adjudicating outcomes fairly based on observable qualiications are suicient. The WAE worldview, on
the other hand, models structural bias that leads to the mis-measurement of qualiications of certain demographic
groups. One way to correct for this is by adopting a formal-plus EO approach that attempts to eliminate skew
in test performance between groups at the point of competition. Alternatively, the conditions modelled by WAE
may be mitigated by interventions consistent with substantive EO, which seeks to equalize opportunities over a
lifetime by modeling and controlling for causes of the skew.

3.3.3 Intersectional discrimination. Intersectional Discrimination [23, 46] states that individuals who belong to
several protected groups simultaneously (e.g., Black women) experience stronger discrimination compared to
individuals who belong to a single protected group (e.g., White women or Black men), and that this disadvantage
compounds more than additively. This efect has been demonstrated by numerous case studies, and by theoretical
and empirical work [21, 25, 50, 63]. The most immediate interpretation for ranking is that, if fairness is taken
to mean proportional representation among the top-k , then it is possible to achieve proportionality for each
gender subgroup (e.g., men and women) and for each racial subgroup (e.g., Black and White), while still having
inadequate representation for a subgroup deined by the intersection of both attributes (e.g., Black women).
Intersectional concerns also arise in more subtle ways. For example, Yang et al. [78] observed that when

representation constraints are stated on individual attributes, like race and gender, and when the goal is to
maximize score-based utility subject to these constraints, then a particular kind of unfairness can arise, namely,
utility loss can be particularly severe in historically disadvantaged intersectional groups. When discussing speciic
technical methods, we will speak to whether they consider intersectional discrimination and, if so, which speciic
concerns they aim to address.
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Bias candidates C ranking function f ranking τ

intervene on scores intervene on f intervene on τ

BiasTraining Data Model Training Output Rankings

Pre-Processing In-Processing Post-Processing

Fig. 7. Bias mitigation in score-based ranking: intervening
on the score distribution of the candidates in C, on the
ranking function f , or on the ranked outcome.

Fig. 8. Bias mitigation at diferent stages of supervised
learning-to-rank: pre-processing, in-processing, and post-
processing.

3.4 Mitigation method

Bias candidates C ranking function f ranking τ

intervene on scores intervene on f intervene on τ

Score-based and supervised learning based rankers use diferent types of bias mitigation methods.
In score-based ranking, we categorize mitigation methods into those that intervene on the score distribution,

or on the scoring function, or on the ranked outcome, as illustrated in Figure 7. Methods that intervene on the
score distribution aim to mitigate disparities in candidate scores, either before these candidates are processed by
an algorithmic ranker or during ranking. Methods that intervene on the ranking function identify a function that is
similar to the input function but that produces a ranked outcome that meets the speciied fairness criteria. Methods
that intervene on the ranked outcome impose constraints to require a speciic level of diversity or representation
among the top-k as a set, or in every preix of the top-k .

BiasTraining Data Model Training Output Rankings

Pre-Processing In-Processing Post-Processing

In supervised learning, we categorize mitigation methods into pre-processing, in-processing, and post-
processing. This is illustrated in Figure 8, which is analogous to Figure 7. Pre-processing methods seek to
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mitigate discriminatory bias in training data, and have the advantage of early intervention on pre-existing bias.
In-processing methods aim to learn a bias-free model. Finally, post-processing methods re-rank candidates in the
output subject to given fairness constraints [37].
The advantage of post-processing methods in supervised learning is that they provide a guaranteed share of

visibility for protected groups. In contrast, in-processing methods only consider fairness at training time and
make no guarantees about fairness of the test set. However, post-processing methods may be subject to legal
challenges because of due process concerns that may make it illegal to intervene at the decision stage (e.g., Ricci
v. DeStefano [70]). Thus, like all technical choices, the choice of whether to use a pre-, in-, or post-processing
fairness-enhancing intervention is not purely technical, but must also consider the social and legal context of use
of the algorithmic ranker.

4 DATASETS

Before diving into a description of the fair ranking methods, we present the experimental datasets used by
them. We summarize the datasets in Table 2, where we highlight the following aspects: size (usually the number
of candidates), sensitive attributes, scoring attributes, and the surveyed papers that use this dataset in their
evaluation. We then briely describe each dataset, and refer the reader to the description of each method for
details about that dataset’s use: score-based ranking in Section 5 and supervised learning and recommender
systems in the second part of this survey. All datasets are publicly available under the referenced links unless
otherwise indicated.
The papers surveyed here rarely substantiate their choice of an experimental dataset, other than that by the

fact that the dataset was available, and that items in it have scores on which to rank. Both of these reasons can be
seen as purely technical (or even syntactic) rather than conceptual. Unfortunately little explicit attention has
been paid to explaining whether a particular dataset was collected with a ranking task in mind, and why it is
deemed appropriate for the speciic fairness deinition, that is, whether and to what extent the task for which the
dataset was collected or can plausibly be used exhibits unfairness of the kind that the proposed fairness deinition
is designed to address. We see this as an important limitation of empirical studies in fairness in ranking and,
more generally, in algorithmic fairness research, and posit that the use of a dataset must be explicitly justiied.

AirBnB [1]. This dataset consists of 10,201 house listings from three major cities: Hong Kong (4,529 items),
Boston (3,944 items), and Geneva (1,728 items). The gender of the hosts is used as the sensitive attribute, and the
ranking score is computed as the ratio of the rating and the price.

COMPAS (Correctional Ofender Management Proiling for Alternative Sanctions) [55]. This dataset is derived
based on a recidivism risk assessment tool called COMPAS. The dataset contains the COMPAS scores from the
Broward County Sherif’s Oice in Florida in 2013 and 2014, and the proile of each person’s criminal history
collected by ProPublica [2]. In total there are 7,214 data points, with sensitive attributes gender and race.

CS department rankings [24]. This dataset contains information about 51 computer science departments in the
U.S.. The methods in [78, 79] use the number of publications as the ranking score. Two categorical attributes are
treated as sensitive: department size (with values łlargež and łsmallž) and geographic area (with values łNorth
Eastž, łWestž, łMiddle Westž, łSouth Centerž, and łSouth Atlanticž).

DOT (Department of Transportation) [52]. This dataset consists of about 1.3 million records of lights conducted
by 14 U.S. airlines in the irst three months of 2016. The dataset was collected by Asudeh et al. [4] from the light
on-time database that is published by the U.S. Department of Transportation. Three scoring attributes are used
in [4]: departure delay, arrival delay, and taxi-in time. The name of the airline conducting the light is treated as
the sensitive attribute.
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Table 2. Experimental datasets used in the surveyed papers.

Dataset Size Sensitive attrs Score Used in

AirBnB [1] 10,201 houses gender of host rating, price [11, 43]

COMPAS [55] 7,214 people gender, race risk scores [4, 80, 81]

CS departments [24] 51 departments
department size,

geographic region
number of publica-

tions in diferent CS

areas

[78]

DOT [52] 1.3 million lights airline name

departure delay, arrival

delay,

taxi-in time
[4]

Engineering students [69]
5 queries, 650 stu-

dents per query

gender,

high school type

academic performance

after irst year
[82]

Forbes richest U.S. [33] 400 people gender net worth [68]

German credit [58] 1,000 people gender, age
credit amount,

duration
[65, 75, 80, 81]

IIT-JEE [71] 384,977 students birth category, gender,

disability status

test scores [15]

LSAC [62] 21,792 students gender, race LSAT scores [83]

MEPS [51] 15,675 people gender, race, age
number of trips

requiring medical care
[78]

NASA astronauts [49] 357 astronauts major in college light hours [68]

Pantheon [19] 11,341 people occupation popularity of

Wikipedia page

[68]

SAT [60] 1.6M students gender SAT score [81]

StackExchange [67]
253,000 queries

6M documents
domains document relevance [11]

SSORC [61] 8,975,360 papers
gender of authors

(inferred)
number of citations [15]

W3C experts [73]
60 queries, 200

experts per query
gender probability of being an

expert

[82]

XING [76] 40 candidates gender
years of experience,

education
[43, 81]

Yahoo LTR [77]
26,927 queries

638,794 documents
N/A relevance [65]

Yow news [85] unknown source of news relevance [64]

Engineering students [69]. This dataset contains the results of a Chilean university admissions test from
applicants to a large engineering school in ive consecutive years. The task in [82] is to predict the students’
academic performance after the irst year based on their admissions test results and school grades. The sensitive
attributes are gender and whether the applicants graduated from a private or public high school. This dataset is
only accessible upon request, see referenced link for details.
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Forbes richest Americans [33]. This dataset consists of 400 individuals from the 2016 Forbes US Richest list 1,
ranked by their net worth. Gender is the sensitive attribute, with 27 female vs. 373 male individuals in the dataset.

German credit [58]. This dataset, hosted by the UCI machinle learning repository [44], contains inancial
information of 1,000 individuals, and is associated with a binary classiication task that predicts whether an
individual’s credit is good or bad. The sensitive attributes are gender and age, where age is categorized into
younger or older based on a threshold (25 or 35 years old is variably used as the threshold). Attributes credit
amount and duration (how long an individual has had a line of credit) have been used as scoring attributes in fair
ranking papers.

IIT-JEE (The Joint Entrance Exam of Indian Institutes of Technology) [71]. This dataset consists of scores of
384,977 students in the Mathematics, Physics, and Chemistry sections of IIT-JEE 2009, along with their gender,
birth category (see [9]), disability status, and zip code. The students are scored on a scale from 35 to +160 points
in all three sections, with an average total score of +28.36, a maximum score of +424, and a minimum score of 86.

LSAC [62]. This dataset consists of a U.S. national longitudinal bar exam passage data gathered from the class
that started law school in Fall 1991. Data is provided by the students, their law schools, and state boards of bar
examiners over a 5-year period [74]. The dataset consists of 21,791 students, with the sensitive attributes sex and
race. Rankings are produced based on LSAT scores.

MEPS (Medical Expenditure Panel Survey) [51]. This dataset consists of 15,675 people and their information
regarding the amount of health expenditures [18, 22]. The sensitive attributes are gender, race, and age of each
individual, where age is categorized into younger or older based on a threshold (35 years old) in [78, 79]. The
ranking score is based on utilization, deined by the IBM AI Fairness 360 toolkit [10] as the total number of trips
requiring medical care. Utilization is computed as the sum of the number of oice-based visits, the number of
outpatient visits, the number of ER visits, the number of inpatient nights, and the number of home health visits.

NASA astronauts [49]. This dataset consists of 357 astronauts with their demographic information. The method
in [68] ranks this dataset by the number of space light hours, and assigns individuals to categories based on their
undergraduate major, treating is a the sensitive attribute. A total of 83 majors are represented in the dataset, the 9
most frequent are assigned to their individual categories Ð Physics (35), Aerospace Engineering (33), Mechanical
Engineering (30), etc, and the remaining 141 individuals are combined into the category łOtherž, resulting in 10
groups.

SAT [60]. This dataset contains about 1.6 million data points, in which the score column corresponds to an
individual’s results in the US Scholastic Assessment Test (SAT) in 2014 [72]. The sensitive attribute is gender.

SSORC [61]. The Semantic Scholar Open Research Corpus contains the meta-data of 46,947,044 published
research papers in computer science, neuroscience, and biomedicine from 1936 to 2019 on Semantic Scholar. The
meta-data for each paper includes the list of authors of the paper, the year of publication, the list of papers citing
it, and the journal of publication, along with other details. The sensitive attribute is the gender of the authors,
collected by Celis et al. [15]. The ranking score is the number of citations of each paper.

StackExchange [67]. This dataset contains a query log and a document collection using the data from the Stack
Exchange Q&A community (dump as of 13-06-2016) [12]. It consists of about 6 million posts inside the type
łQuestionž or łAnswerž in 142 diverse subforums (e.g., Astronomy, Security, Christianity, Politics, Parenting,
and Travel). The questions are translated into about 253,000 queries, and the respective answers serve as the
documents for the queries. The sensitive attribute is the query domain.

1https://www.forbes.com/forbes-400/list/
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W3C experts [73]. The task behind this dataset corresponds to a search of experts for a given topic based
on a corpus of e-mails written by possible candidates. The sensitive attribute is the gender of the expert. The
experimental setup in [82] investigates situations in which bias is unrelated to relevance: expertise has been
judged correctly, but ties have been broken in favor to the privileged group (i.e., all male experts are followed by
all female experts, followed by all male non-experts, followed inally by all female non-experts).

Xing [76]. This dataset was collected by Zehlike et al. [81] from a German online job market website2. The
authors collected the top-40 proiles returned for 54 queries, and computed an ad-hoc score based on educational
features, job experience and proile popularity. The sensitive attribute is gender, which was inferred based on
the irst name associated with the proile and the proile picture, when available. Items are ranked based on an
ad-hoc score.

Yahoo! LTR [77]. This dataset consists of 19,944 training queries and 6,983 test set queries. Each query has a
variable sized candidate set of documents that needs to be ranked. There are 473,134 training and 165,660 test
documents. The query-document pairs are represented by a 700-dimensional feature vector. For supervision,
each query-document pair is assigned an integer relevance judgments from 0 (bad) to 4 (perfect). The dataset is
used to evaluate the efectiveness of Learning to Rank methods in [65], thus no sensitive attribute is speciied.

Yow news [85]. This dataset contains explicit and implicit feedback from a set of users for news articles in the
łpeoplež topic produced by Yow [86]. The ranking score is the explicitly given relevance ield. The source of news
is treated as the sensitive attribute.

5 SCORE-BASED RANKING

In this section we present several methods for fairness in score-based ranking. Rather than giving a purely
technical comparison, we re-iterate that the choice of a method should be based on assumptions about the nature
of unfairness, and on the fundamental modeling choices. Table 3 summarizes the methods presented in this
section according to the frameworks of Section 3. Additionally, every technical methods is placed on the mind
map in Figure 5, to give a visual summary and as a means to compare the methods.

Recall that, in score-based ranking we categorize mitigation methods into those that intervene on the ranking
process, on the score distribution, or on the scoring function. In Section 5.1, we describe methods that intervene on
the ranked outcome by ensuring proportional representation across groups. Next, in Section 5.2, we discuss several
methods that formulate fairness and coverage-based diversity constraints by specifying bounds on the number of
candidates from groups of interest to be present in preixes of a ranked list. These methods also intervene on
the ranked outcome. Then, in Section 5.3, we describe methods that intervene on the score distributions. Finally,
in Section 5.4, we present a method that treats the fairness objective as a black-box and proposes a geometric
interpretation of score-based ranking to reach the objective by intervening on the ranking function.

5.1 Intervening on the Ranked Outcome: Rank-aware Proportional Representation

To the best of our knowledge, Yang and Stoyanovich [80] were the irst formalize rank-aware fairness, under the
assumption that the scores based on which the ranking is produced encode pre-existing bias.
Consider a ranking in which candidates are assigned to one of two groups, G1 or G2, according to a single

binary sensitive attribute (e.g.,, binary gender), and with one of these groups, G1, corresponding to the protected
group (e.g., the female gender). The fairness measures proposed in this paper are based on the following intuition:
Because it is more beneicial for an item to be ranked higher, it is also more important to achieve proportional

2https://www.xing.com
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Table 3. Classification of score-based ranking methods according to the frameworks in Section 3.

Method Group structure Bias Worldview EO Intersectional

Rank-aware proportional

representation [80]
one binary sensitive attr. pre-existing WAE luck-

egalitarian

no

Constrained ranking

maximization [16]

multiple sensitive attrs.;

multinary;

handled independently
pre-existing WAE

luck-

egalitarian

(1 sensitive

attr. only)

no

Balanced diverse

ranking [78]

multiple sensitive attrs.;

multinary;

handled independently

pre-existing;

technical
WAE luck-

egalitarian

yes

Diverse k-choice

secretary [68]
one multinary sensitive

attr.

pre-existing WAE luck-

egalitarian

no

Utility of selection with

implicit bias [41]
one binary sensitive attr.

pre-existing;

implicit
WAE N/A no

Utility of ranking with

implicit bias [15]

multiple sensitive attrs.;

multinary;

handled independently

pre-existing;

implicit
WAE N/A yes

Causal intersectionally

fair ranking [79]

multiple sensitive attrs.;

multinary;

handled independently
pre-existing WAE Rawlsian yes

Designing fair ranking

functions [4]
any pre-existing any any yes

representation at higher ranks. The idea, then, is to take several well-known proportional representation measures
and to make them rank-aware, by placing them within a framework that applies position-based discounts.

Fairness deinition and problem formalization. Recall from Section 2 that position-based discounting is
commonly used to quantify utility (Eq. 3) or prediction accuracy in a ranking that we will cover in the second
part of this survey. In a similar vein, the use of position-based discounting in Yang and Stoyanovich [80] is a
natural way to make set-wise proportional representation requirements rank-aware. Speciically, the idea is to
consider a series of preixes of a ranking τ , for k = 10, 20, . . . , to treat each top-k preix τ 1...k as a set, to compute
statistical parity at top-k , and to compare that value to the proportion of the protected group in the entire ranking.
(Naturally, perfect statistical parity is achieved when k = n.) The values computed at each cut-of point are
summed up with a position-based discount. Based on this idea, the authors propose three fairness measures that
difer in the speciic interpretation of statistical parity: normalized discounted diference (rND), ratio (rRD), and
KL-divergence (rKL).

Normalized discounted diference (rND) (Equation 7) computes the diference between the proportions of the
protected group G1 at the top-k and in the over-all population. Normalizer Z is computed as the highest possible
value of rND for the given number of items n and protected group size |G1 |.

rND(τ ) =
1

Z

n
∑

k=10,20, ...

1

log2 k

(

|τ 1...k ∩ G1 |

k
−
|G1 |

n

)

(7)

Normalized discounted ratio (rRD) is deined analogously, as follows:
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rRD(τ ) =
1

Z

n
∑

k=10,20, ...

1

log2 k

(

|τ 1...k ∩ G1 |

|τ 1...k ∩ G2 |
−
|G1 |

|G2 |

)

(8)

When either the numerator or the denominator of a term in Eq. 8 is 0, the value of the term is set to 0.
Finally, normalized discounted KL-divergence (rKL) uses Kullback-Leibler (KL) divergence to quantify the

expectation of the logarithmic diference between two discrete probability distributions, Pk that quantiies the
proportions in which groups are represented at the top-k :

Pk =

(

|τ 1...k ∩ G1 |

k
,
|τ 1...k ∩ G2 |

k

)

(9)

and Q that quantiies the proportions in which groups are represented in the over-all ranking:

Q =

(

|G1 |

n
,
|G2 |

n

)

(10)

KL-divergence between Pk andQ , denotedDKL (Pk | |Q ), is computed at every cut-of point k , and position-based
discounting is applied as the values are compounded, with normalizer Z deined analogously as for rND:

rKL(τ ) =
1

Z

n
∑

k=10,20, ...

1

log2 k
DKL (Pk | |Q ) (11)

Note that, unlike rND and rRD, which are limited to a binary sensitive attribute, rKL can handle a multinary
sensitive attribute and so is more lexible.

Experiments and observations. The authors evaluate the empirical behavior of the proposed fairness measures
using real and synthetic datasets. Real datasets used are COMPAS [55] and German Credit [58], see Section 4
for details. Synthetic datasets are generated using an intuitive data generation procedure described below. This
procedure was later used in the work of Zehlike et al. [81] and Wu et al. [75], and is of independent interest.

Recall that G1 represents the protected group and G2 represents the privileged group, and suppose for simplicity
that each group constituted one half of the candidates C. An example is given in Figure 9a, in which C contains
8 candidates, 4 female (G1) and 4 male (G2). The data generation procedure, presented in Algorithm 1, takes
two inputs: a ranking τ of C and a łfairness probabilityž p, and it produces a ranking τ̃ . The input ranking τ is
assumed to be generated by the vendor according to their usual process (e.g., based on candidate scores, as in
Figure 9b). Algorithm 1 splits up τ into two rankings: τ 1 of candidates in G1 and τ 2 of candidates in G2. It then
repeatedly considers pairs of candidates at the top of the lists, τ 1 (1) and τ 2 (1), and decides which of these should
be ranked above the other, selecting τ 1 (1) with probability p and τ 2 (1) with probability 1 − p, and appending the

selected candidate to (̃τ ).
The parameter p speciies the relative preference between candidates in G1 and in G2. When p = 0.5, groups

are mixed in approximately equal proportion for as long as there are items in both groups. This is illustrated
in Figure 9c for the sensitive attribute A1 (gender) and in Figure 9e for the sensitive attribute A2 (race). When
p > 0.5, members of the protected group G1 are preferred, and when p < 0.5 members of the privileged group G2
are preferred. In extreme cases, when p = 0, all (or most) members of G2 will be placed before any members of
G1, as shown in Figure 9d for the sensitive attribute A1 (gender). Note that candidates within a group always
remain in the same relative order in τ̃ as in τ (that is, there is no reordering within a group), but there may be
reordering between groups.
The proposed fairness measures Ðnormalized discounted diference (rND), ratio (rRD), and KL-divergence

(rKL)Ð are evaluated on rankings produced by Algorithm 1 with a range of values for p and with diferent relative
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Algorithm 1: FairGen

Require: Ranking τ , fairness probability p.
{Initialize the output ranking τ̃ .}

1: τ̃ ← ∅

2: τ 1 = τ ∩ G1
3: τ 2 = τ ∩ G2
4: while (τ 1 , ∅) ∧ (τ 2 , ∅) do

5: r = random([0, 1])
{Append the next selected item to τ̃ }

6: if r < p then

7: τ̃ ← pop (τ 1)

8: else

9: τ̃ ← pop (τ 2)

10: end if

11: end while

{If any items remain in τ 1 or τ 2, append them to τ̃ }
12: τ̃ ← τ 1

13: τ̃ ← τ 2

14: return τ̃

candidate A1 A2 Y

b male White 9

c male Black 8

d female White 7

e male White 6

f female White 5

k female White 4

l male White 3

o female Black 2

(a)

τ

b

c

d

e

f

k

l

o

(b)

τ̃

b

d

c

f

e

k

l

o

(c)

τ̃

b

c

e

l

d

f

k

o

(d)

τ̃

b

c

d

o

e

f

k

l

(e)

Fig. 9. (a) A set of applicants for college admissions C, with two binary sensitive atributes: A1 (gender), with protected
group GF = {d, f ,k,o} and privileged group GM = {b, c, e, l }; and A2 (race), with protected group GB = {c,o} and privileged
group GW = {b,d, e, f ,k, l }. Protected values of A1 and A2 are shown in orange, and privileged valuesÐin blue. (b) Ranking τ
sorts the applicants in descending order of their score Y , as shown in Figure 9b, with male candidates appearing in higher
proportion at the top ranks. (c) Ranking τ̃ for A1 mixes candidates in approximately equal proportion by gender, with p = 0.5

in Algorithm 1, and is expected to achieve statistical parity for this atribute, since gender groups are represented in equal
proportion in C. (d) Ranking τ̃ for A1, with p = 0 in Algorithm 1, places all, or most, male applicants about the female
applicants. (e) Ranking τ̃ for A2 (race), with p = 0.5 in Algorithm 1, is expected to achieve equal representation by race at top
ranks, but not statistical parity, since C is not balanced by race.

proportions of G1 and G2 in C. The authors conclude that rKL is the most promising measure both because it is
smooth and because it naturally generalized to multinary sensitive attributes.
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This paper also proposes a bias mitigation methodology, inspired by Zemel et al. [84], that integrates fairness
objectives into an optimization framework that balance fairness against utility, with an experimental evaluation
on the German credit dataset [58] (see details in Sec. 4).
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Fig. 10. Summary of the normative values encoded by Rank-aware proportional representation (Yang and Stoyanovich [80]).

Insights. The fairness deinitions of this paper aim to address pre-existing bias, per classiication in Section 3.2.
Fairness is interpreted as equality of outcomes, suggesting an underlying assumption of WAE, per classiication

in Section 3.3. Assuming the existence of indirect discrimination in candidate scores (i.e., that the observation
process between construct space CS and observable space OS is biased), the paper aims to ensure a similar
representation of groups in the ranked outcomes.
The approach is designed around conditioning qualiication scores on morally-irrelevant circumstances:

candidates are ranked according to score within a demographic group, and a ranked outcome is considered fair if
the groups are mixed in equal proportion when the input is balanced, as in Figure 9a by A1 (gender), or, more
generally, when statistical parity is achieved at high ranks. Assuming that the goal of the competition is to make
future prospects comparable, this is consistent with luck-egalitarian EO, per classiication in Section 3.3. Figure 10
and Table 3 summarize our analysis.

5.2 Intervening on the Ranked Outcome: Diversity Constraints

In Section 5.1 we discussed how fairness measures that are based on (set-wise) proportional representation can
be made rank-aware. The methods described in this section start with the observation that if the total number of
candidates in C, and the number of candidates in each demographic group of interest, is available as input (i.e.,
that these quantities are known a priori or can be estimated), then any measure that aims to equalize or bound
the diference in proportions can be equivalently re-formulated with the help of counts. Speciically, proportional
representation constraints and coverage-based diversity constraint [26] for set selection tasks can be expressed by

specifying a lower-bound LG
k
and an upper-boundU G

k
on the representation of group G ⊆ C among the top-k set

of a ranking. Such constraints can be formulated for one or several demographic groups of interest, and also
for their intersections, and a score-based ranker can then optimize utility under such constraints. Generalizing

beyond set selection, constraints LGp andU Gp can be speciied over every preix of the top-k of a ranked list, with
p ∈ [k], or, more practically, at some speciic cut-of points within the top-k .
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Similarly to the methods of Section 5.1, the methods described in this section are designed to enforce fairness
and diversity in the sense of representation. In contrast Section 5.1, these methods are designed to handle multiple
sensitive attributes simultaneouslyÐindividually or in combination.

5.2.1 Celis et al. [16]. Fairness deinition and problem formalization. The authors formulate the constrained
ranking maximization problem: Consider a set of n candidates C, and the integer k ≪ n, along with 1) the utility
of placing a candidate in a particular position in the ranking, 2) the collection of sensitive attributes (e.g., gender,

race, or disability status) that map candidates to groups G, and 3) a collection of lower-bound constraints LGp

and upper-bound constraints U Gp that, for each preix p ∈ [k] and for each group G ∈ G, bound the number
of candidates from that group that are allowed to appear in the top-p positions of the ranking. The goal is
to output a ranking that maximizes overall utility with respect to the original utility metric, while respecting
the constraints. Note that this problem formulation has the lexibility to explicitly associate a utility with an
assignment of candidate a ∈ C to rank position j ∈ [k], and may already incorporate position-based discounting
(per Equation. 3). However, for consistency and ease of exposition, we will assume that utility score Y is ixed per
candidate.

An example of the constrained ranking maximization problem is given in Figure 11, where the goal is to select
k = 4 candidates, with at least two of each gender (LM4 = 2, LF4 = 2) and at least one of each race (LW4 = 1, LB4 = 1,

LA4 = 1) among the top-k , and with no further constraints on the preixes of the top-k . (For convenience, we are
referring to each groups by the irst letter of the attribute value that deines it, such as M for male and A for Asian).
Ranking τ 1 in Figure 11 is a ranked outcome of the top-4 candidates selected based on utility Y : two of them
are male and two are female, and all are White. Applying diversity constraints on gender and race yields τ 2, a
ranking of the top-4 in Figure 11, selecting the top-scoring White male candidates a and b, and two lower-scoring
female candidates, д and k . Computing total utility as the sum of scores of selected candidates (for simplicity), we
observe thatU (τ 1) = 68 andU (τ 2) = 53 in this example.
Note that the example in Figure 11 is deliberately constructed to highlight disparities in scores due to pre-

existing bias on gender and race: all male candidates are ranked above all female candidates of a given race, and
all Whites are ranked above all Black, who are in turn ranked above all Asians. For this reason, imposing diversity
constraints leads to a substantial drop in score-utility of τ 2 in Figure 11.
In the example we constructed, diversity constraints are satisiable. However, as was shown by Celis et al.

[16], the constrained ranking maximization problem can be seen to generalize various NP-hard problems such as
independent set, hypergraph matching and set packing, and so is hard in the general case. It turns out that even
checking if there is a complete feasible ranking is NP-hard. The authors show that a special case of the problem,
in which each candidate is assigned to (at most) one group, and so the assignment induces a partitioning on
C, can be solved in polynomial time. In this case, diversity constraints can only be speciied with respect to a
single sensitive attribute, which may be binary or multinary, and so can represent multiple sensitive attributes in
combination (see discussion on group structure in Section 3.1).

Recall that the problem formulation allows to associate a utility with an assignment of candidate a ∈ C to rank
position j ∈ [k]. While the nature of these assignments can in principle be arbitrary, many reasonable utility
metrics, including NDCG, Bradley-Terry [13] or Spearman’s rho [66], are non-increasing with increasing rank
position, and with decreasing utility score Y , which is intuitively interpreted to mean that, if Ya ≥ Yb then placing
a above b cannot decrease the utility of the overall ranking. Such metrics are said to be monotone and to satisfy the
Monge property. For this family of utility metrics, the authors propose an exact dynamic programming algorithm
that solves the constrained ranking optimization problem in time polynomial in the number of candidatesm
and size of the selected set k , and exponential in the number of possible assignments of candidates to groups
(typically the product of domain cardinalities of the sensitive attributes, card (A1) × card (A2) = 6 in our example
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candidate A1 A2 Y

a male White 19

b male White 18

c female White 16

d female White 15

e male Black 11

f male Black 11

g female Black 10

h female Black 9

i male Asian 7

j male Asian 7

k female Asian 6

l female Asian 3

τ 1

a

b

c

d

τ 2

a

b

g

k

τ 3

a

c

e

k

(a)

candidate a e b f c d

Y 7 4 8 5 9 3

(b)

candidate a e b f c d

Y 7 4 8 5 9 3

Fig. 11. A set of applicants for college admissions C, with
two sensitive atributes: A1 (gender), with groups GM =
{a,b, e, f , i, j} and GF = {c,d,д,h,k, l }, and A2 (race), with
groups GW = {a,b, c,d }, GB = {e, f ,д,h}, and GA = {i, j,k, l }.
Top-4 ranking τ 1 selects the highest-scoring candidates accord-
ing to Y ; all selected candidates are White, two of them are
female and two are male. The utility of τ 1, computed as the
sum of scores, is 68. Top-4 ranking τ 2 selects highest-scoring
candidates subject to constraints to select at least two candi-
dates of each gender, LM4 = 2, LF4 = 2, and at least one candidate

of each race, LW4 = 1, LB4 = 1, LA4 = 1. The utility of τ 1, com-
puted as the sum of scores, is 53. Top-4 ranking τ 3, subject to
the same diversity constrains as τ 2, but additionally balancing
utility loss within each group. This ranking has utility 52, and
it returns the highest-scoring male, female, White, and Black
candidates.

Fig. 12. An instance of the diverse k-choice secretary problem.
A set of n = 6 college applicants C, are arriving for in-person
interviews. The order of interviews is from let to right, with
a arriving first, followed by e , etc. A candidate’s score Y is re-
vealed when they are interviewed. C is partitioned into two
groups based on (binary) gender, GM = {a,b, c} with nM = 3

candidates, and GF = {d, e, f } withnF = 3 candidates. The goal
is to select k = 2 candidates, with one of every gender (LM

k
= 1,

LF
k
= 1), and to maximize the expected sum of Y -scores subject

to these diversity constraints. (a) using a common warm-up
period yields candidates b and d, selecting the 2nd best male
candidate but the lowest-scoring female candidate (b) separat-
ing warm-up per-group yields candidates b (as before) and f,
the top-scoring female candidate.

in Figure 11). The authors also propose approximation algorithms that allow violations of diversity constraints,
and study the quality of these approximations.

Insights. The focus of this work is on the formal properties of the constrained ranking maximization problem,
including its hardness and approximability under diferent assumptions about the sensitive attributes, the diversity
constraints, and the properties of the utility metric. The paper does not include an experimental evaluation.
The paper states that ł[...] left unchecked, the output of ranking algorithms can result in decreased diversity

in the type of content presented, promote stereotypes, and polarize opinions.ž The goal of imposing diversity
constrains is to counteract pre-existing bias. Further, since these constraints enforce equality of outcomes, the
method relates to the WAE worldview.
When the candidates are partitioned by a single sensitive attribute (either binary or multinary), the method

will select the highest-scoring members of each group to satisfy diversity constraints. Under the assumption that
the goal of the competition is to make future prospects comparable, this is consistent with substantive EO, and
the mechanism is consistent with luck-egalitarian EO. However, when candidates are associated with two or
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Fig. 13. Summary of the normative values encoded by Constrained ranking maximization (Celis et al. [16]).

more sensitive attributes, as is the case in the example in Figure 11, a single utility distribution is assumed, in
the sense that a higher-scoring candidate will be preferred to a lower-scoring one irrespective of their group
membership, whenever constraints permit. This was illustrated ranking τ 2 as shown in Figure 11, where the
highest-scoring White and male candidates were selected among the top-k , but the highest-scoring female, Black,
and Asian candidates were skipped. Based on this observation, the method falls short of satisfying the desiderata
of EO for multiple sensitive attributes. Figure 13 and Table 3 summarize our analysis. We will elaborate on this
speciic concern in the next sub-section.

5.2.2 Yang et al. [78]. Fairness deinition and problem formalization. The authors further investigate the
constrained ranking maximization problem with two or more sensitive attributes, and observe that members of
multiple historically disadvantaged groups may still be treated unfairly by this process. For an intuition, consider
again Figure 11, and recall that the goal is to select the top-4 candidates, with at least two of each gender (LM4 = 2,

LF4 = 2) and at least one of each race (LW4 = 1, LB4 = 1, LA4 = 1). Maximizing utility subject to these constraints being
met yields, ranking τ 2 in Figure 11 that selects the best (according to score) White and male candidates a and b,
but it does not select the best Black, Asian, or female candidates.

Our example was deliberately constructed to highlight the following: if some population groups have system-
atically lower scores, then it costs less to skip their best-scoring members in the name of diversity. This runs
contrary to the nature of the diversity objective, which is to equalize access to opportunity. This also represents
unfairness, under the luck-egalitarian view. To see why, suppose that scores represent efort (e.g., how hard
someone studied to do well on a test), and that we consider it important to reward efort. We may then take
a relative view of efort, and assert that scores are more informative within a group than across groups. Taken
together, this means that the best-scoring individuals from historically disadvantaged groups should have a
chance to be selected among the top-k . Ranking τ 3 in Figure 11 represents a ranked outcome that gets closer to
this objective; it presents τ 3, a top-4 ranking that contains the highest-scoring male, female, White and Black
candidates.
Yang et al. [78] formalize this intuition by stating that, when multiple sensitive attributes (e.g., gender and

race) are considered simultaneously, it is crucial to consider the utility loss that is incurred within each group,
and to balance that loss across groups. The authors propose two measures to quantify in-group utility, IGF-Ratio
and IGF-Aggregated, both taking on values from the range (0, 1], with 1 corresponding to perfect utility within a

ACM Comput. Surv.



Fairness in Ranking, Part I: Score-based Ranking • 1:25

group (no loss), and with high loss corresponding to values close to 0. Both IGF-Ratio and IGF-Aggregated can
be computed over the top-k as a set, or in rank-aware manner, by considering every preix of length p ∈ [k]. In
what follows, we will illustrate one of these measures, IGF-Ratio, taking the set interpretation for simplicity.

IGF-Ratio, quantiies the utility within a group (e.g., female or Black) by computing the ratio of the utility
score of the highest-scoring skipped candidate from that group and the lowest-scoring selected candidate.
Consider again ranking τ 2 in Figure 11. We compute IGF-Ratio(τ 2,GM ) = IGF-Ratio(τ 2,GW ) = 1, since the
highest-scoring male and White candidates were selected. For the female, Black, and Asian groups, we compute

IGF-Ratio(τ 2,GF ) =
Yд
Yc
=

10
16 ; IGF-Ratio(τ 2,GB ) =

Yд
Ye
=

10
11 ; and IGF-Ratio(τ 2,GA) =

Yk
Yi
=

6
7 .

IGF-Aggregated is based on similar intuition as IGF-Ratio, but rather than comparing the utility due to a pair
of items for each group Ð one selected and one skipped Ð it compares the sum of scores of all items from a group
up to a particular position with the sum of scores of all selected items from that group (up to the same position).

The authors go on to use IGF-Ratio and IGF-Aggregated to state that loss in these measures should be balanced
across groups. They implement this requirement as an additional set of constraints, and formalize the induced
optimization problem that (1) meets diversity constraints for each group, (2) balances utility loss across groups,
and (3) maximizes over-all utility subject to (1) and (2), as integer linear programs.

Experiments and observations The authors conduct experiments on two real datasets, CS departments [24]
and MEPS [51] (see details in Section 4). They use these datasets to quantify the feasible trade-ofs between,
diversity, overall utility, and utility loss across groups. Further, they show that utility loss can be balanced
efectively, and that the over-all utility cost of such interventions is low.

Insights Similarly to papers surveyed earlier in this section, the work of Yang et al. [78] aims to address pre-
existing bias by equalizing outcomes, and so relates to the WAE worldview. Further, because of an explicit focus
on ensuring that the best-qualiied candidates from each group have an opportunity to be selected, or to appear
at higher ranks, this work conditions qualiication score on morally irrelevant attributes (group membership),
and so is irmly in the luck-egalitarian EO camp, under the assumption that the goal of the competition is
to make individuals’ future life prospects comparable. The main insight on which this work is based is that
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Fig. 14. Summary of the normative values encoded by Balanced diverse ranking (Yang et al. [78]).

membership in multiple sensitive groups can lead to unfair treatment, and that the efects can be particularly
pronounced for individuals who are multiply marginalized and who may, for example, be denied opportunity
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along the dimensions of both race and gender. This insight is surfacing an important dimension of intersectional
discrimination in algorithmic rankers and is, to the best of our knowledge, the irst approach in this area to have
observed and proposed ways to counteract intersectional efects. Figure 14 and Table 3 summarize our analysis.

5.2.3 Stoyanovich et al. [68]. Fairness deinition and problem formalization The inal method we discuss in
this section aims to incorporate diversity constraints of the kind that were used by Celis et al. [16] and Yang et al.
[78] into online set selection. This setting models a sequence of job or college admissions interviews: candidates
arrive one-by-one and their qualiication score Y is revealed at the time of the interview. Candidates are assumed
to arrive in random order according to score, and their total number n is known or can be estimated. The decision
maker must hire or to reject the candidate being considered as soon as their score Y is revealed, before advancing
to the next candidate in the sequence.

The classic version of this problem, known as the Secretary problem [29, 45], aims to select a single candidate
with the highest score Y . It was shown by Lindley [45] and by Dynkin [29] that the optimal hiring strategy is to
interview s = ⌊ n

e
⌋ candidates without making any ofers (this is called the łwarm-up periodž), and make an ofer

to the irst candidate whose score is better than the best score of the of the irst s candidates (or accept the last
candidate if no better candidate is seen). This strategy yields the highest-scoring candidate with probability 1

e
,

and is said to have łcompetitive ratiož e . Further, this is the best such strategy for the secretary problem (i.e., with
the highest competitive ratio) [31]. This problem has been extended by Babaiof et al. [6] to select k candidates,
maximizing the expected sum of their scores. Stoyanovich et al. [68] postulate the diverse k-choice secretary
problem that enriches the k-choice secretary problem of Babaiof et al. [6] with diversity constraints.
The diverse k-choice secretary problem is formalized as follows: In addition to a qualiication score Y , each

candidate is associated with one of i ≥ 2 groups G based on the value of a single multinary sensitive attribute
(e.g., gender, race, or disability status). Both the total number of candidates n, and the number of candidates in
each group n1 . . .ni , are known ahead of time or can be estimated. The goal of the decision maker is to select k
candidates, maximizing the expected sum of their scores, subject to diversity constraints, stated in the form of

per-group lower-bounds LG
k
and upper-boundsU G

k
. Figure 12 gives an example: a set of n = 6 college applicants, of

whom nM = 3 are male and nF = 3 are female, are being interviewed in the order shown in Figure 12, left-to-right.
The admissions oicer wishes to select k = 2 applicants, with one of each gender, speciied by the lower-bound
constraints LM

k
= 1 and LF

k
= 1.

The key idea in Stoyanovich et al. [68] is that, if score distributions are expected to difer between the groups,
then separate warm-up periods should be conducted for each group to better estimate the scores of that group’s
desirable candidates. As illustrated in the outcome (a) in Figure 12, measuring the higher-scoring male candidates
and the lower-scoring female candidates against the same (higher-scoring) standard will allow high-scoring male
candidates to be selected. However, the female candidates selected in this way are those that happen to be at
the end of the interview queue: they were chosen łat the last minutež to satisfy the diversity constraint. This is
problematic for the reasons we outlined when discussing Yang et al. [78] earlier in this section Ð it withholds
opportunity from the relatively better-qualiied candidates of a historically disadvantaged group, and it can build
bad precedent if the lesser-qualiied candidates from that group are selected but do not perform well on the task.
Outcome (b) in Figure 12 shows the result of a selection in which warm-up was conducted separately per group,
yielding a higher-scoring female candidate.

The authors propose additional techniques to handle cases where the sum of the per-group lower bound is less
than k , leaving the freedom to select high-scoring candidates from any group. Finally, they consider the case
where a constant-size waiting list of candidates is allowed, showing that it can lead to higher-utility outcomes.

Experiments and observations The experimental evaluation of the proposed algorithms for variants of the
diverse k-choice secretary problems is conducted using three real datasets: Forbes richest Americans [33], NASA
astronauts [49], and Pantheon [19] (see details in Section 4). Additional results on synthetic datasets are provided,
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to simulate diferences in score distributions between groups. The evaluation on real datasets shows that the
algorithms can select candidates that meet the desired diversity constraints while paying a very small cost in
terms of the utility loss. The evaluation on synthetic datasets shows that if a diference in the observed scores is
expected between groups, then these groups must be treated separately during processing. Otherwise, a solution
may be derived that meets diversity constraints, but that results in lower utility for the disadvantaged groups.

Insights This work focuses on pre-existing bias that exhibits itself through diferences in expected scores between
groups of candidates. Diversity constraints, and the mechanism used to enact them, aims to equalize outcomes
across groups, and so this method clearly links to the WAE worldview. The core idea in this work is that efort,
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Fig. 15. Summary of the normative values encoded by Diverse k-choice secretary problem (Stoyanovich et al. [68]).

as represented by scores, should be seen as relative: scores are estimated per group, and individuals from a
particular group are evaluated against that group’s score threshold. Thus, under the assumption that the goal of
the fainess intervention is to equalize opportunities over a lifetime, this method is consistent with luck-egalitarian
EO. Figure 15 and Table 3 summarize our analysis.

5.3 Intervening on the Score Distribution

The methods in this subsection work under the assumption that the scores on which candidates are ranked are
subject to pre-existing bias, such that members of minority or historically disadvantaged groups have lower
scores, and thus are ranked less favorably. The approach these methods take is based on correcting for the bias
by adjusting the score distribution before it is given as input to a ranker.

5.3.1 Kleinberg and Raghavan [41] and Celis et al. [15]. Problem formalization The papers discussed in this
section study set selection and ranking in presence of implicit bias; they investigate under what conditions the
utility of the selected set or the top-k would be improved by imposing representation constraints. Kleinberg and
Raghavan [41] consider a score-based set selection task motivated by hiring, in which a set of n candidates C
applies for an open job position, and some k ≪ n of them are selected as inalists to interview. The size of the
selected set k is assumed to be a small constant, with the case k = 2 studied closely in the paper. Candidates in C
belong to one of two groups, G1 or G2, according to a single binary sensitive attribute (e.g.,, binary gender), and
with one of these groups, G1, corresponding to the protected group (e.g., the female gender). It is assumed that
G1 constitutes a minority of the applicant pool, as quantiied by the parameter α ∈ (0, 1], with |G1 | = α · |G2 |.
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candidate A (sex) Y Ỹ

b male 9 9

c male 9 6

d female 8 4

e male 7 5

f female 6 3

g male 5 5

τ

b

c

d

e

f

g

τ̃

b

c

e

d

g

f

τ
R

b

d Y

G R

X

Fig. 16. Consider a set of applicants for college admissions. Observed scores Ỹ of the

applicants are afected by implicit bias: for the male candidates, Ỹ = Y , while for the

female candidates, Ỹ = Y/β , with β = 2. Female candidates constitute a minority, with
α = 1/2 Ð there are 2 male candidates for each female one. Ranking τ sorts candidates

on their true (unobserved) scores Y ; ranking τ̃ sorts them on scores Ỹ that are subject

to implicit bias; ranking τR applies to Rooney Rule to include the top-scoring female
candidate among the top-2.

Fig. 17. A causal model
that include sensitive at-
tributes G (gender), R

(race), utility scoreY , and
other covariates X.

Further, it is assumed that the true qualiication scores (called łpotentialsž in Kleinberg and Raghavan [41]) are
drawn from the same score distribution for the candidates in both groups, and that this distribution follows the

power law, parameterized by δ > 0, such that Pr [Y ≥ t] = t−(1+δ ) .
Candidates are not hired according to their true qualiication scores Y , but rather according to their perceived

scores Ỹ , which are, in turn, subject to implicit bias: hiring committee members łdowngradež the true scores of
the candidates from G1 by dividing them by a factor β > 1.

The question being asked in this papers is: Under what conditions does including a single candidate from the
protected group G1 among the k inalists improve the utility of the selected set according to the true score Y?
(Utility is quantiied as the sum of true scores of the selected candidates.) This intervention is known as the
Rooney Rule [20], and while its goal is to improve diversity in hiring, Kleinberg and Raghavan [41] study it
explicitly from the point of view of utility rather than diversity or fairness. The requirement of including a single
protected group candidate among the inalists is a basic coverage-based diversity requirement [26].

The authors study the problem under diferent settings of α (relative proportion of the minority group), β (bias
factor), and δ (the parameter of the power law distribution of true scores). They ind that, for every α , there exists
a suiciently small δ > 0 for which the Rooney Rule will produce a set of k inalists with higher expected utility,

compared to when candidates are selected according to their perceived Ð and biased Ð scores Ỹ . Put another way,
with a power law exponent 1 + δ that is suicient close to 1, it is a better strategy, in terms of utility, to commit
one of the k ofers to the candidates from group G1, even when k is as low as 2 and G1 forms an extremely small
fraction of the population.

Figure 16 shows an example of the selection process, where the goal is to select k = 2 inalists from a pool of 6,
with 2 male candidates for each female candidate (α = 1/2), and with females candidates being perceived as half
as qualiied as what their true score would suggest (β = 2). The Rooney Rule would select a top-scoring candidate
from each gender group, leading to higher expected utility than if the top-two candidates were selected, both of
them male.

The results of are extended by Celis et al. [15], who consider arbitrary utility distributions (beyond the power
law) and support a richer group structure, including multiple sensitive attributes handled independently, with
multinary domains. They show that, for any (assumed) distribution of utilities and any level of implicit bias,
representation constraints can lead to optimal latent utility.
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Experiments and insights Kleinberg and Raghavan [41] give a tight characterization of the conditions on α , β ,
and δ , under which applying the Rooney Rule, with its most basic representation constraint, produces a positive
change in expected utility. Proposed techniques can be used to estimate parameters of a biased decision-making
process. The paper focuses on theoretical analysis and does not provide any experimental results.
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Fig. 18. Summary of the normative values encoded by Selection with implicit bias (Kleinberg and Raghavan [41]).

Celis et al. [15] extend these results, and also include an experimental evaluation on the IIT-JEE dataset [71]
(see Section 4 for details). These results give the lavor of the utility of the proposed intervention, although
experimental evaluation is substantially more limited than the problem set-up warrants, focusing on a single
binary protected attribute and leaving empirically unsubstantiated the claim that proposed approach generalizes
to multiple sensitive attributes and handles intersectional discrimination.
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Fig. 19. Summary of the normative values encoded by Ranking with implicit bias (Celis et al. [15]).

Insights Both papers consider utility rather than diversity or fairness, and so cannot be classiied according to
one of our EO frameworks. That said, the assumption made in the papers Ð that candidates’ true (unobserved)
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qualiications are drawn from the same score distribution Ð is consistent with the WAE worldview. Figure 18
and 19 summarize our analysis for the above two methods [41] and [15], respectively. The summary can be also
found in Table 3.

5.3.2 Yang et al. [79]. Fairness deinition and problem formalization The authors deine intersectional
fairness for ranking by modelling the causal efects of sensitive attributes on other variables, and then making
rankers fairer by removing these efects. Their method, CIF-Rank, computes model-based counterfactuals to
answer the question: łWhat would this person’s data look like if they had (or had not) been a Black woman (for
example)?ž Counterfactual scores are computed by treating every candidate as though they had belonged to one
speciic intersectional subgroup. Candidates are then ranked on counterfactual scores (for score-based rankers),
or these scores are used to train a fair model (for rankers based on supervised learning).

Consider the hiring process of a moving company that has a dataset of applicants including their genderG , race
R, weight-lifting test score X , and an overall qualiication score Y by which job candidates are ranked. Figure 17
presents the structural causal model (SCM) that describes the data generation process. An SCM is a directed
acyclic graph, where vertices represent (observed or latent) variables and edges indicate causal relationships from
source to target vertices. The arrows pointing from G (gender) and R (race) directly to Y encode the efect of
łdirectž discrimination. Additionally, the SCM can encode indirect discrimination: note thatG and R both impact
Y through weight-lifting ability X , called a łmediator variable.ž A mediator may be designates as resolving with
respect to a sensitive variable, which means that we allow that mediator to carry the efect from the sensitive
variable to the outcome. For example, we may consider X as a resolving on the path from genderG to score Y .
Alternatively, a mediator may be designates as non-resolving, which means that we consider the inluence to be
due to discrimination. For example, we may consider X as non-resolving on the path from race R to score Y .

The SCM, together with the information about which mediators are considered resolving, is given as input; it
encodes the fairness objectives of the ranker. CIF-Rank will use the SCM to produce a ranking that is fair with
respect to race, gender, and the intersectional subgroups of these categories.
Let A denote the vector of sensitive attributes and let a denote a possible value. The counterfactual YA←a′ is

computed by replacing the observed value of A with a′ and then propagating this change through the DAG: any
directed descendant of A has its value changed by computing the expectation for the new value of a′, and this
operation is iterated until it reaches all the terminal nodes that are descendants of any of the sensitive attributes
A. If a mediator variable is non-resolving, then its value will be set to its counterfactual value in the process. If,
however, it is designated as resolving, then we keep its observed value.

CIF-Rank considers a ranking τ̂ is counterfactually fair if, for all possible x and pairs of vectors of actual and
counterfactual sensitive attributes a , a′, respectively,

P(τ̂ (YA←a (U )) = k | X = x,A = a)

= P(τ̂ (YA←a′ (U )) = k | X = x,A = a)

for any rank k , and with suitably randomized tie-breaking.
The causal model can be used to compute counterfactual scores Y Ð the scores that would have been assigned

to the individuals if they belonged to one particular subgroup deined by ixed values of R and G, while holding
the weight lifting score X ixed in the resolving case Ð and then rank the candidates based on these scores. The
moving company can then interview or hire the highly ranked candidates, and this process would satisfy a causal
and intersectional deinition of fairness that corresponds to the hiring manager’s explicitly stated goals.

Experiments and observations The authors evaluated the performance of CIF-Rank on several real and
synthetic datasets, including CSRankings, COMPAS and MEPS (see details in Section 4). Results on synthetic
datasets are provided to simulate diferent structural assumptions of the underlying causal model. The evaluation
is done on two types of ranking tasks: score-based and supervised learning. The evaluation of score-based ranking
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tasks on real and synthetic datasets shows that CIF-Rank can be lexibly applied to diferent scenarios, including
ones with mediating variables and numerical sensitive attributes. Counterfactually fair rankings that are produced
by CIF-Rank compare reasonably to intuitive expectations we may have about intersectional fairness for those
examples, while paying a small cost in terms of the utility loss. The evaluation of rankers based on supervised
learning on synthetic datasets shows that CIF-Rank can be used as a preprocessing fairness intervention to
produce counterfactually fair training and test data.

Insights CIF-Rank admits multiple sensitive attributes, and is speciically designed for intersectional concerns,
and so is appropriate when it is important to account for potential discrimination along two or more features. The
method supports multinary sensitive attributes, such as non-binary gender and ethnic group membership. The
method is concerned with pre-existing bias that in turn leads to disparities in outcomes. The method focuses on
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Fig. 20. Summary of the normative values encoded by Causal intersectionally fair ranking (Yang et al. [79]).

equality of outcome and takes the WAE worldview. Under the assumption that the goal is to equalize opportunity
over a lifetime, the method is consistent with substantive EO. It gives the decision maker the lexibility to specify
which impacts of which sensitive attribute to mitigate, and which to allow to persist. This is done through the
mediator mechanism. A mediator X may be considered resolving or not; this decision can be made separately
for diferent sensitive attributes, and the relative strengths of causal inluences of sensitive attributes on both
X and Y can vary, creating potential for explanatory nuance. This method supports fairness interventions that
attempt to model what an individuals’ qualiications would have looked like, in a world where equally talented
people have equal prospects of success. For this reason, we classify it as Rawls’s Fair EO. Figure 20 and Table 3
summarize our analysis.

5.4 Intervening on the Ranking Function

To motivate the methods discussed in this section, let us return to our running example described in Section 1.1,
and shown in Figure 1, and consider a college admissions oicer who is designing a ranking scheme to evaluate a
pool of applicants, each with several potentially relevant attributes. For simplicity, let us focus on two of these
attributes, high school GPA X1, and verbal SAT X2, and assume that they are appropriately normalized and
standardized. Suppose that our fairness criterion is that the admitted class comprise at least 40% women. The
admissions oicer may believe a priori thatX1 andX2 should carry an approximately equal weight, computing the
score of an applicant a ∈ C as f (a) = 0.5X1 + 0.5X2, ranking the applicants, and returning the top 500 individuals.
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Upon inspection, it may be determined that an insuicient number of women is returned among the top-k : at
least 200 were expected and only 150 were returned, violating the fairness constraint.

A possible mitigation is to identify an alternative scoring function f̃ that, when applied to C, meets the
fairness constraint and is close to the original function f in terms of attribute weights, thereby relecting the
admission oicer’s notion of quality. To arrive at such a function, the admissions oicer would try a new scoring
function, check whether the result meets the fairness criterion, and, if necessary, repeat. After a few cycles of such
interaction, the admissions oicer may choose f (a) = 0.45X1 + 0.55X2 as the inal scoring function. The work
of Asudeh et al. [4] automates this process; the authors use a combinatorial geometry approach to eiciently

explore the search space and identify a fair scoring function f̃ in the neighborhood of f , if one exists.

Fairness deinition and problem formalization Let us assume that a dataset of candidates C is given, along

with a linear ranking function f , speciied by a weight vector w⃗ . The goal is to ind a ranking function f̃ that is

both close to f in terms of the angular distance between the weight vectors of f and f̃ , and fair according to a
fairness oracle O.
The main technical contribution of the work is in establishing a correspondence between the space of linear

ranking functions and the rankings of items from a given dataset C induced by these functions. This characteri-
zation is based on the notion of an ordering exchange that partitions the space of linear functions into disjoint
regions. Intuitively, while there is an ininite number of linear ranking functions to explore, only those of them
that change the relative order among some pair of items a,b ∈ C need to be considered, because if a ranking is
unchanged, then the fairness oracle O will not change its answer from false to true. Based on this observation,
the authors develop exact algorithms to determine boundaries that partition the space into regions where the
desired fairness constraint is satisied, called satisfactory regions, and regions where the constraint is not satisied.
They also develop approximation algorithms to eiciently identify and index satisfactory regions, and introduce
sampling heuristics for on-the-ly processing in cases where the size of C or the number of scoring attributes are
large.

Experiments and observations While the fairness model is general, the authors focus their experimental
evaluation on proportional representation constraints that bound the number of items belonging to a particular
group at the top-k , for some given value of k . Proposed methods are evaluated on the COMPAS [55] and DOT [52]
datasets (see Section 4 for details), and with two sets of fairness measures: (1) proportional representation on
a single multinary protected attribute and (2) proportional representation on multiple, possibly overlapping,
protected attributes. They study both how intuitive the results are Ð how close a fair ranking function is to the
original Ð and how eiciently results can be computed in this computationally challenging setting.

Insights The fairness oracle O is treated as a black box: given a dataset C and a ranking function f , it returns
true if the ranking of C by f meets fairness criteria and so is satisfactory, and returns false otherwise. The oracle
is deterministic, and no further assumptions are made about the type of fairness criteria it encodes. Because of
this black-box treatment of the fairness objective, the method makes no commitment to worldview (WYSWYG or
WAE) or EO framework, and it is not restricted in terms of group structure: the number of sensitive attributes,
their cardinality, and the method by which multiple sensitive attributes are handled. Despite this lexibility, the
authors target their approach speciically at pre-existing bias. Figure 21 and Table 3 summarize our analysis.

6 SUMMARY OF PART I

This concludes Part I of the survey on fairness in ranking. In this part of the survey, we motivated fairness
in ranking, presented notation, discusses several frameworks with respect to which we classify fair rankers,
presented evaluation datasets, and, inally, dove deeply into fairness in score-based ranking.

In Part II of the survey we will build on Part I and present technical work on fairness in supervised learning to
rank. We will also highlight some recent work on fairness in recommender systems and matching. Further, we will
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Fig. 21. Summary of the normative values encoded by Designing fair ranking functions (Asudeh et al. [4]).

discuss evaluation frameworks, present important directions of future work, and draw a set of recommendations
on the evaluation of fair ranking methods.
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