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IDENTIFIABILITY OF INFECTION MODEL PARAMETERS EARLY
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Abstract. It is known that the parameters in the deterministic and stochastic SEIR epidemic
models are structurally identifiable. For example, from knowledge of the infected population time
series I(t) during the entire epidemic, the parameters can be successfully estimated. In this article
we observe that estimation will fail in practice if only infected case data during the early part of
the epidemic (prepeak) is available. This fact can be explained using a well-known phenomenon
called dynamical compensation. We use this concept to derive an unidentifiability manifold in the
parameter space of SEIR that consists of parameters indistinguishable from I(t) early in the epidemic.
Thus, identifiability depends on the extent of the system trajectory that is available for observation.
Although the existence of the unidentifiability manifold obstructs the ability to exactly determine the
parameters, we suggest that it may be useful for uncertainty quantification purposes. A variant of
SEIR recently proposed for COVID-19 modeling is also analyzed, and an analogous unidentifiability
surface is derived.
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1. Introduction. In nonlinear systems, identifiability of parameters depends
critically on location in phase space. In this article, we point out a particularly vivid
illustration of this fact that occurs in SEIR (susceptible, exposed, infected, removed)
modeling of epidemics. While the SEIR parameters are identifiable from the infected
population I(t) if the entire epidemic is observed, the ability to infer parameters from
the prepeak portion of the epidemic is strictly limited, due to the approximately linear
dynamics that occur early in the epidemic.

We explain this failure of identifiability in section 3, where we show that for a
given instance of the infected time series I(t) early in the epidemic, there are multiple
solutions with various parameter values that are approximately consistent with the
same I(t). Moreover, we show that these multiple solutions form a two-dimensional
unidentifiability manifold that indexes the alternative parameter sets that are consis-
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tent with I(t). The alternate parameter sets on this surface share the growth rate
of the epidemic (the leading eigenvalue of the linearized system) even though their
respective parameter values vary widely. Thus estimating all parameters solely from
knowledge of the infected cases during the prepeak portion of the trajectory is not
possible in practice with any parameter estimation algorithm.

Since the unidentifiability set is two-dimensional, it follows that two of the three
unknown parameters (in the basic SEIR) must be known a priori in order to determine
the third. In particular, the reproductive number R0, which is often derived from two
of the SEIR parameters, is in practice not identifiable from I(t) alone.

Unidentifiability is an underappreciated issue in infectious disease modeling. The
authors of the comprehensive review [16] state that mathematical modeling of epi-
demics “usually overparameterizes the model and ignores parameter identifiability,
which makes it difficult to directly fit such models to data.” We corroborate this
opinion by showing that it is impossible in practice to determine more than one un-
known SEIR parameter from observations of I(t) preceding the peak stage of the
epidemic, and we exhibit the underlying mathematical reasons for this. While over-
parameterization is rampant in the literature, our focus here is deliberately on a
reasonably parameterized epidemic model, which suffers from unidentifiability only in
a crucial region of phase space.

We will refer to this deficiency as trajectory-dependent unidentifiability. The dif-
ficulty stems from a phenomenon called dynamical compensation [24], as identified in
linear compartmental models by Bellman and Aström [2] in 1970. In the terminology
of [24], it is a structural unidentifiability [21, 25] in the linear model that approximates
SEIR in the early stages of an epidemic and that gradually disappears as the nonlin-
earities become significant as the epidemic progresses (see Figure 4). Determination
of the full parameter set is possible if I(t) can be observed through the peak of the
infection. In fact, it is well known (see, e.g., [25]) that the parameters of SEIR are
formally identifiable from the entire I(t) trajectory.

To illustrate identifiability issues that arise in applications, we employ two
independent approaches to parameter estimation. One is a parameter estimation
algorithm based on data assimilation from partial observations, and the other is an
implementation of MCMC (Markov chain Monte Carlo) techniques [11]. Both are
introduced in section 2.2. These are two choices from several alternatives that are
in common usage, some of which are based directly on Bayesian inference [1], while
others use data assimilation in more sophisticated ways [8, 12, 18]. The principal
unidentifiability results of this article are independent of the method of parameter
estimation.

Our analysis was preceded by work on dynamical compensation for linear systems
(see, e.g., [27]) that shows how to find alternative parameter sets whose solutions
do not change the observable I(t). These solutions are designed to match the true
underlying solution even during the initial and often unobservable transient at the
outset of the epidemic. However, by ignoring rapidly decaying dynamics at early
stages, our analysis uncovers a larger set of alternative parameter combinations that
match observations. Somewhat counterintuitively, it is exactly this expanded set of
parameters, not the more restrictive parameter set [20], that appears to be explored
by parameter estimation methods. This indicates that our simplifying assumptions
allow us to correctly anticipate the performance of these methods (see Figure 5).

Despite the fact that the unidentifiability surface shows why exact determination
of parameters is impossible during the prepeak interval, it has a useful purpose in
uncertainty quantification, because it constrains the set of alternative parameters that
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also generate I(t). Assume a parameter estimation algorithm is used to calculate a
parameter set p from an observed I(t) early in an epidemic. Since the system is
unidentifiable, another algorithm may provide another parameter set p′. However, we
can expect it to lie on the unidentifiability surface of p, which is a constraint. We
show in section 4.3 that the systems corresponding to parameter sets chosen from the
surface have dynamics much closer to the system generated by p than those chosen
off the surface. By studying these nearby systems, we may be able to gain knowledge
about the uncertainty of the system with estimated parameter set p′.

As the complexity of parameterized dynamical systems models has steadily in-
creased over the past two decades, the question of identifiability of parameters has
become critical. In particular, the nonlinearities inherent in modern dynamical mod-
els significantly complicate the problem, leading to the considerable recent attention
on the limits and analysis of identifiability [4, 26, 5, 20, 19, 9, 15]. In this work,
we address a gap in the literature that is easily overlooked by global analysis, which
is whether certain parts of trajectories, such as the outset of an epidemic, can lack
identifiability from limited information, even when the entire trajectory considered in
full possesses identifiability. Our goal is to point out this vulnerability in a particular
common case and to encourage modelers to conduct much broader searches for similar
effects.

In section 2 we review the deterministic and stochastic SEIR models and introduce
two parameter estimation approaches. In section 3 the notion of dynamical compen-
sation is explored, and its existence in a linearized version of SEIR is observed. Its
relevance to the problem of identifiability of parameters in the full nonlinear SEIR
is noted in section 4. In section 5, the COVID-19 model of [18] is studied. An ob-
struction to identifiability caused by dynamical compensation is also observed in this
model.

2. Identifying parameters in SEIR.

2.1. The deterministic and stochastic SEIR models. The deterministic
version of the SEIR model [10, 14] that we will consider is

Ṡ = −βI
S

N
,

Ė = βI
S

N
− αE,

İ = αE − γI,

Ṙ = γI,(2.1)

where the variables S,E, I, and R represent the populations of susceptible, exposed,
infected, and removed patients, respectively, and N = S+E+I+R denotes the total
population. Time is measured in days. We use the simplest, or SEIR-without-vital-
statistics, model, which assumes that N is constant with no births and deaths. There
are more complex versions with additional parameters, but the identifiability issues
we want to describe occur even for this simplest model. The sole nonlinearity is the
βIS/N term, which moves patients from the susceptible compartment to the exposed
compartment according to transmission rate coefficient β.

We will interpret the model in the following way. The parameter α is the time
constant of movement from exposed to infected; thus we assume that on average, the
patient spends 1/α days as exposed before transitioning to infected, where we assume
viral shedding begins. We will also make the assumption that symptoms are present
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in patients in the I compartment, so that the case can be observable for the first time.
After 1/γ days in the I compartment, on average, the patient is removed from the
population and does not return to the susceptible class.

Our principal interest is in determining what information can be inferred from
measured reports of infected cases I(t). We address two obvious limitations of these
assumptions. First, perhaps not all infected cases are reported. Thus, the true infected
number may be c1I instead of I. Second, a portion of the infected cases may be
asymptomatic and are not reported for this reason. Thus, the true infected number
may be c2c1I. In either case, the true number of infected may not be knowable. If the
true number of infected is proportional to the reported I, the meaning of the contact
transmission parameter β will be changed. However, many of the purposes of using
the model, such as to forecast future I(t), may still proceed unaffected.

In addition to the deterministic version, we will also consider the SEIR model as
a set of stochastic differential equations with Poisson noise. In this version, we will
calculate trajectories as follows. For each time step, the right-hand side of the equa-
tions will be evaluated by selecting from a Poisson distribution and then integrated
using an Euler method step. In other words, the values

u1 = Poisson (βIS/N ∆t),

u2 = Poisson (αE ∆t),

u3 = Poisson (γI ∆t)

are chosen to represent the contribution of the right-hand side at each step, i.e.,

∆S = −u1,

∆E = u1 − u2,

∆I = u2 − u3,

∆R = u3.(2.2)

This version treats the SEIR model as a stochastic system for greater fidelity. How-
ever, our main conclusions about identifiability will be relevant for both the deter-
ministic and stochastic versions.

2.2. Parameter estimation. Parameter estimation is customarily achieved by
locating, implicitly or explicitly, the optimum of some auxiliary function that measures
the fitness of the parameters. In some methods, the likelihood or marginal probability
is maximized, while in others, an error or loss function is minimized.

In one method for estimating parameters β, α, and γ from daily reports of the
single observable I(t), we will choose a particular loss function based on data assim-
ilation and explicitly minimize it. This approach will be useful for illustrating the
geometry of the minima of the loss function in two different parts of the SEIR tra-
jectory. Our choice for the loss function will be the data assimilation error in I(t)
incurred while using the proposed set of parameters to optimally reconstruct the tra-
jectory (S(t), E(t), I(t), R(t)) from the observed I(t). The use of data assimilation to
reconstruct unobserved variables is the basis of modern numerical weather prediction,
and it has started to appear in epidemic modeling [6, 8, 12]. For the deterministic
SEIR, we employ a standard EnKF (ensemble Kalman filter) [23, 22] to reconstruct
the dynamics. For the stochastic SEIR, we use an EnKF tailored to Poisson noise
instead of the standard Gaussian assumption. The EnKF used for this purpose is
based on the PKF (Poisson Kalman filter) from [7].
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Fig. 1. (a) Solution of the SEIR equations (2.1) with initial conditions S = 106, E = 102, I =
0, R = 0. The parameter settings are β = 1.1, α = 0.2, γ = 0.5. (b) Result of data assimilation using
exact parameters of the model with initial conditions S = 106, E = 0, I = 0, R = 0, and the reports
∆I as inputs.

Data assimilation gives a way of reconstructing all variables of a differential equa-
tions model from partial observations, for example, by measurements of one key vari-
able. For SEIR model (2.1), if the parameters β, α, and γ are known, the observable
I(t) or, alternatively, the daily changes ∆I(t) = I(t) − I(t − 1), are in general suffi-
cient for reconstructing the other three variables S,E, and R. Figure 1(a) shows a
trajectory of a stochastic SEIR model (2.1) with parameters β = 1.1, α = 0.2, and
γ = 0.5, and with initial conditions S = 106, E = 102, I = 0, R = 0. The inputs to
the data assimilation algorithm are the model, the exact parameters, and the daily
reports of new infections ∆I(t) = I(t) − I(t − 1). The assimilation algorithm uses
the initial condition S = 106, E = 0, I = 0, R = 0. That is, it is allowed to know
the (constant) total population but no information about the initial caseload. The
EnKF is used to estimate the most likely values of S(t), E(t), I(t), and R(t) given the
reports ∆I(t). Figure 1(b) shows the resulting reconstructed trajectory, a reasonably
accurate version of the original.

If the parameters are not known and incorrect parameters are used in the model,
the reconstruction in general will be farther from the original. This leads to a conve-
nient loss function to consider for the purposes of parameter estimation. Let L(β, α, γ)
denote the mean squared difference between the observed ∆I(t) and the reconstructed
∆I(t) from the EnKF, over a time interval [T1, T2]. Then minimization of L as a func-
tion of the parameters should lead to the correct, or generating, parameters.

To begin, we carried out this idea on the deterministic SEIR model (2.2) with
a standard simplex minimization algorithm [17]. We started the simplex algorithm
with 1000 starting guesses for the parameters β, α, γ that varied from the exact val-
ues by about 50%. Figure 2(a) shows the cumulative results of the minimization
procedure for a trajectory of length 100 days, using two different intervals of ob-
servations, [T1, T2] = [0, 50] or [50, 100], with 1000 realizations of starting parameter
guesses. There is a dramatic difference, depending on whether the time interval [0, 50]
or [50, 100] is used for the input I(t). The red dotted curve is a histogram of approx-
imate parameters using ∆I(t) from the interval [0, 50]. The black histogram uses
the interval [50, 100]. While the histogram shows no identifiability on [0, 50], on the
interval [50, 100] the method finds the correct parameters with less than 0.1% error
on over 95% of the 1000 attempts.
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(a)

(b)

Fig. 2. Histograms of estimated parameters from I(t), collected from the time intervals [0, 50]
and [50, 100]. The SEIR model has β = 1.5, α = 0.2, γ = 0.5, and I(t) was used as input to
two different algorithms. The blue dot denotes exact values. (a) Parameters from I(t) generated by
deterministic SEIR. The red (dotted) and black traces use I(t) from [0, 50] and [50, 100], respectively,
by minimizing L(β, α, γ) from 1000 different trajectories of the deterministic SEIR model. The green
(dotted) and blue traces are marginals of the posterior density computed from MCMC using I(t) from
[0, 50] and [50, 100], respectively. (b) Parameters from I(t) generated by stochastic SEIR. The red
and black traces use I(t) from [0, 50] and [50, 100], respectively as in (a), by minimizing L(β, α, γ).
The MCMC method is not represented in (b), since it would likely be computationally intractable.
(Color available online.)

The success of this simple approach to parameter estimation on [50, 100] (or the
complete interval [0, 100], not shown) is due to the fact that the SEIR model (2.1) is
structurally identifiable from I(t), as long as the peak of the epidemic can be observed.
However, one can see that this approach fails on the outbreak part of the epidemic,
as shown by the histogram in red. On the time interval [0, 50], the input I(t) is not
sufficient for constraining the three parameters.

Figure 2(a) also shows a test of a completely different approach to parameter es-
timation. We applied MCMC to sample the posterior density of the parameters given
the observations, namely P (β, α, γ |∆Iobs(t)) for t in the same intervals as above. In
the deterministic SEIR (used for the MCMC computation of the posterior) the likeli-
hood P (∆Iobs(t) |β, α, γ) is a product of Poisson densities, which allows easy sampling
of the true posterior P (β, α, γ |∆Iobs(t)). In Figure 2(a) we show the three marginals
of the posterior. We notice similar qualitative behavior for this estimator, namely
that the parameters are identifiable from the second half [50, 100] of the epidemic
(blue curve) but are almost completely unidentifiable from I(t) during the first half
[0, 50] (green curve).

Figure 2(b) returns to minimization of the data assimilation error L(β, α, γ) as
above but applied to the stochastic SEIR model and using a Poisson-based EnKF. The
histogram shows the variation over 1000 different realizations of Poisson noise. For
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the interval [50, 100], the variation is increased for stochastic SEIR in comparison to
the deterministic SEIR, but the estimates are unbiased around the correct parameter
settings. For [0, 50], no meaningful estimation occurs.

In summary, for both deterministic and stochastic versions of the SEIR model,
both data assimilation-based and MCMC-based algorithms are able to identify the
three parameters given I(t) from the time interval [50, 100], and fail on the interval
[0, 50]. The intervals [0, 50] and [50, 100] are chosen to be representative of intervals
for which identifiability fails and succeeds, respectively. Similarly chosen intervals
show the same results; that is, early in an epidemic before the peak is reached, there
is a structural reason why the parameters will not be identifiable. We address that
reason in the next two sections.

3. Dynamical compensation in linear models. Later we will address the
fact that during the prepeak part of the epidemic, the SEIR model is approximately
linear, and E and I are approximately proportional to each other. The goal of this
article is to examine how this fact imposes a constraint on our ability to infer pa-
rameters from data, in particular from observations of I(t). The mechanism that
causes this is called dynamical compensation. For linear compartmental systems, this
phenomenon was reported as early as [2, 3].

3.1. Asymptotic behavior of linear models. Consider a linear initial value
problem consisting of a vector differential equation ẋ = Ax, satisfying initial con-
ditions x(0) = x0, where x = [x1, . . . , xn]. Assume A has distinct real eigenvalues.
Then solutions are of the form

x1(t) = c11e
λ1t + c12e

λ2t + · · ·+ c1ne
λnt

...

xn(t) = cn1e
λ1t + cn2e

λ2t + · · ·+ cnne
λnt,

where λ1 > λ2 > · · · > λn are the eigenvalues of A. Because of the exponential form
of the solutions, as t moves away from zero, the solutions begin to closely approximate

x1(t) = c11e
λ1t

...

xn(t) = cn1e
λ1t.

Assuming c11 ̸= 0, this means that for each i, xi(t) ≈ cix1(t) for some constant ci.

Example. Consider the linear initial value problem

Ė = −αE + βI,

İ = αE − γI,(3.1)

which we write as ẋ = Ax, x(0) = [E0 I0]
T , where

(3.2) x =

[
E
I

]
, A =

[
−α β
α −γ

]
.

Let A = PDP−1 be the diagonalization, where the columns of P are eigenvectors
of A. The diagonalization exists because α, β, γ > 0 implies that A has distinct real
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eigenvalues λ1 > λ2. The solution is

(3.3) x(t) = P

[
eλ1t 0
0 eλ2t

] [
B1

B2

]
where P

[
B1

B2

]
=

[
E0

I0

]
.

We can consider separate cases, depending on the constants B1 and B2. Although
the Bi have no particular physical significance, they are formally significant because
they represent linear combinations of E0 and I0 that grow exponentially with exponent
λi, respectively. Thus if one of the Bi is zero, the solutions E(t) and I(t) will evolve
exactly proportionally. If both are nonzero, they will still behave asymptotically
proportional to each other, with exponent λ1, the larger eigenvalue.

To be more precise, in what we will call the exactly proportional case, one or both
of the Bi are zero. If B1 = B2 = 0, the solution is identically zero. If one of the
Bi = 0 or, equivalently, the eλit term of the solution, is absent, then I(t) = cE(t) for
some constant c and for all t.

In what we call the approximately proportional case, both Bi ̸= 0 and the solution
will be

x(t) =

[
E1

I1

]
eλ1t +

[
E2

I2

]
eλ2t,

meaning that I(t) ≈ cE(t) asymptotically, where c = I1/E1. Note that in all cases,
I(t) ≈ cE(t), with the approximation improving exponentially in time.

3.2. Identifiability in linear systems. A general approach to assessing iden-
tifiability in linear systems is suggested in [27]. To search for alternative solutions to
(3.1) with the same output I(t) but different E(t) and different parameters (α′, β′, γ′),
define the coordinate change z = Sx for a nonsingular matrix

S =

[
s11 s12
s21 s22

]
.

Specifically, we seek an S that satisfies

z = Sx = S

[
E
I

]
=

[
F
I

]
for some F . The new variable z will reproduce I(t) as its second entry, using a
“dynamically compensating” F (t) as its first entry, with a different set of parameters,
determined below.

This equation is expressible as [0 1]Sx = [0 1]x. From (3.3), this constraint is

[0 1]SP

[
B1e

λ1t

B2e
λ2t

]
= [0 1]P

[
B1e

λ1t

B2e
λ2t

]
,

[0 1] (S − I)P

[
B1e

λ1t

B2e
λ2t

]
= 0,

[s21 s22 − 1]P

[
B1e

λ1t

B2e
λ2t

]
= 0.

Transposing yields

[B1e
λ1t B2e

λ2t]PT

[
s21

s22 − 1

]
= 0
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for all t. Now we split the argument into two cases, depending on the initial conditions
(see (3.3)).

Case 1 (approximately proportional). In this case, B1 ̸= 0 and B2 ̸= 0. Then for
two different times t1, t2, the rows of the leftmost matrix in[

eλ1t1 eλ2t1

eλ1t2 eλ2t2

] [
B1 0
0 B2

]
PT

[
s21

s22 − 1

]
=

[
0
0

]
are linearly independent. Since all matrices on the left side are nonsingular, s21 = 0
and s22 = 1, and therefore,

S =

[
s11 s12
0 1

]
.

With this change of coordinates, we can consider the alternative system to (3.1) as
ż = Sẋ = SAx = SAS−1z, where

SAS−1 =

[
α(s12/s11 − 1) αs12(1− s12/s11) + βs11 − γs12

α/s11 −αs12/s11 − γ

]
=

[
−α/s11 α(s11 − 1)/s11 + βs11 − γ(s11 − 1)
α/s11 −α(s11 − 1)/s11 − γ

]
≡

[
−α′ β′

α′ −γ′

]
(3.4)

and where we have set s12 = s11 − 1 to match the desired form (3.1). This gives
a family of alternative solutions of (3.1) sharing I(t), but with different parameters
and different E(t), that are indexed by the single parameter s11. The revised E(t) is
F (t) = s11E(t) + (s11 − 1)I(t). These solutions exactly match I(t) for all t ≥ 0 and
satisfy

(3.5)

[
Ḟ

İ

]
=

[
−α′ β′

α′ −γ′

] [
F
I

]
.

The approximately proportional case provides a one-dimensional family of alter-
native solutions. As promised in [27], these alternative solutions show that in the
approximately proportional case, the parameters of (3.1) are unidentifiable from I(t).
That is, on the basis of I(t) alone, one cannot distinguish among the infinite set of
solutions of (3.5). If our information about the system (3.1) or its parameters is to be
inferred from I(t), the existence of multiple solutions consistent with the observations
of I(t) will make recovering the parameters effectively impossible.

Case 2 (exactly proportional). Now assume that either B1 or B2 is zero. Then
I(t) = cE(t) for all t.

The proportionality constant c can be calculated from the equations and depends
only on the parameters α, β, γ. Keeping the approximation S ≈ N and substituting
I = cE, we get

Ė ≈ cβE − αE,

cĖ ≈ αE − cγE,

which implies

(3.6) c(cβ − α) = α− cγ.

The largest solution c of this quadratic equation is real and positive, assuming that
α, β, γ > 0.
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Lemma 1. Let α, β, γ > 0, and let c > 0 be the unique positive solution of the
quadratic equation

(3.7) c(cβ − α) = α− cγ.

Define E(t) = E0e
(cβ−α)t and I(t) = cE(t). Let α′, β′, γ′ > 0 lie on the surface in R3

defined by

(3.8) (α′ − α)(γ′ − γ − (β′ − β)) + (α/c− β)(α′ − α) + βc(γ′ − γ)− α(β′ − β) = 0,

and define Fα′,β′,γ′(t) = (γ′−γ)c+α
α′ E(t). Then for all α′, β′, γ′ satisfying (3.8), the set

(F = Fα′,β′,γ′ , I, α′, β′, γ′) satisfies

Ḟ = −α′F + β′I,

İ = α′F − γ′I.(3.9)

Proof. Set A = (γ′ − γ)c+ α, so that F = A
α′E.

(i) Note that the right-hand side of the first equation is

β′I − α′F = cβ′E(t)− α′F = α′(cβ′/A− 1)F.

We can calculate

α′(cβ′ −A) = (α+∆α)[c(β +∆β)− c∆γ − α]

= cαβ − cα∆γ − α2 + c
[
∆α∆β + β∆α+ α∆β −∆α∆γ − α

c
∆α

]
= cαβ − cα∆γ − α2 + c2β∆γ = (cβ − α)(c∆γ + α) = (cβ − α)A,

where we have used the notation ∆α = α′ − α,∆β = β′ − β,∆γ = γ′ − γ and used
(3.8) to arrive at the last line. Dividing by A recovers cβ − α. The time derivative of
F (t) is (cβ − α)F , which verifies the first differential equation of (3.9).

(ii) The right-hand side of the second equation is

α′F − γ′I = AE − γ′cE = [(γ′ − γ)c+ α− γ′c]E = (α− γc)E = c(cβ − α)E

by the quadratic equation (3.6). This agrees with İ, verifying the second differential
equation.

The significance of the lemma is that in Case 2, (3.8) reveals a two-dimensional
family of solutions of (3.9) with asymptotically identical I(t), further complicating the
identifiability of the parameters. There are substantially more alternative solutions in
the exactly proportional Case 2, a two-dimensional set instead of a one-dimensional
set found in Case 1. However, since the asymptotic convergence is exponential, and
because infected case counts are often noisiest at the outset of an epidemic, the dif-
ference is likely to be insignificant in practical applications. Curiously, we observe
in the next section that the alternative parameter sets found by standard estimation
procedures appear to fill out the two-dimensional set found in Case 2, even though as
a solution of a system of linear equations, the initial conditions are less generic than
those in Case 1. The fact that the solutions that are mistakenly mirrored by a param-
eter estimation algorithm often correspond to nongeneric choices of solutions will be
opaque to the modeler—there is no way to tell whether the solution being reproduced
by data assimilation is generic or nongeneric. One can visualize the comparison in
Figure 5.
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4. Applications to identifiability. In this section, we apply our knowledge
of dynamical compensation in linear compartmental models from the last section to
the nonlinear SEIR model. We find that in using a linear approximation valid in the
prepeak portion of the epidemic, it is the exactly proportional case (Case 1 above)
that turns out to be the most informative on identifiability.

4.1. Unidentifiability in prepeak SEIR. The SEIR model (2.1) is a coupled
set of nonlinear differential equations, but at the beginning of the epidemic, S ≈ N .
As the first cases of exposed individuals begin to transition into the infected class,
note that the second and third equations approximate a linear system

Ė ≈ −αE + βI,

İ ≈ αE − γI.

This approximation was exploited in [13] to derive a formula R0 = 1 + (L +D)λ1 +
LDλ2

1 for the reproductive number R0 = β/γ in the case when β is unknown but the
latent and infectious periods L = 1/α and D = 1/γ and the exponential growth rate
λ1 from (3.3) can be independently estimated.

According to the previous section, we will observe the asymptotics of the approx-
imately linear dynamics,

I(t) ≈ cE(t),

for some c as t moves away from 0. In fact, this behavior is apparent in Figure 3(b),
which is a magnification of panel (a). The trace of I(t) appears to be a constant
proportion of E(t), and this is confirmed in Figure 3(c), where the ratio is plotted
versus time.

Figure 4 shows the results of a parameter estimation computation using the data
from Figure 3, which sets β = 1.1, α = 0.2, and γ = 0.5. We run data assimilation on
the time interval [0, T ] using only the daily case numbers ∆I(t) as input, for various
choices of T . To simplify the situation, we will fix the parameter γ = 0.5 to be the
exact value and attempt to estimate β and α. We accomplish this by minimizing
L(β, α, 0.5) as described in section 2.2.

The function L(β, α, 0.5), sampled at 10,000 random values, is displayed in Figure
4, projected onto the β and α axes, respectively, for ease of analysis. For “prepeak”
values of T , the parameters β and α are not well estimated. As T increases and
approaches the epidemic peak 60 < T < 80, the parameter estimates gradually become
quite accurate. This corroborates our finding in Figure 2 that parameter estimation
fails to isolate correct parameters early in the epidemic.

The lesson from Figure 4 is that as the proportion of susceptibles S(t)/N(t) de-
creases from 1, the error bounds on the parameter estimates will grow. The parameters
are identifiable for [0, T ] for T well above 50 due to the fact that S(t)/N(t) < 1, and
the parameter estimation will degrade continuously as T is decreased. This degrada-
tion is shown explicitly in Figure 4.

4.2. The unidentifiability manifold. The dynamical compensation results of
the previous section explain the phenomenon seen in Figure 4. The unidentifiability
manifold, in this case a surface, is plotted in Figure 5. The red dots identify the
parameter points (β′, α′, γ′) whose evaluated loss function computed on the time in-
terval [0, 50] is in the lowest 1% of points (among 10,000 random points sampled).
The points lie extremely close to the unidentifiability surface (3.8). The wide distri-
bution of the points shows the impossibility of estimating the generating parameter
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Fig. 3. Plot of SEIR populations with parameters β = 1.1, α = 0.2, γ = 0.5. The new cases ∆I
are denoted by the dashed curve (“Reports” in the legend). (a) Full plot on [0, 100]. (b) Magnification
of (a), restricted to the time interval [0, 50]. (c) The blue curve is a plot of the ratio I(t)/E(t). Here
I ≈ cE for the first 50 days, where c = 0.31, as calculated from (3.6). (Color available online.)

set (β = 1.1, α = 0.2, γ = 0.5) with any accuracy. The color shading on the surface
corresponds to reproductive number R0 = β′/γ′. We note that R0 is not significantly
constrained by the parameters with minimal loss function.

The MCMC approach introduced in section 2.2 shows a similar story. In this case,
we use observations of the deterministic model (2.2) and apply MCMC using a single
realization of I(t) in the time interval [0, 50] as observable. The true parameters lie
inside the envelope of the posterior, as shown in Figure 5(b). The Metropolis–Hastings
algorithm within MCMC rejects thousands of proposals that do not lie on the surface
and accepts only those that do.

Since the unidentifiability surface is a two-dimensional set, we conclude that even
if one of the parameters is known, the other two are not identifiable—the set of possible
parameters will only be reduced to a one-dimensional curve. For example, with fixed
γ, the data assimilation error on the interval [0, 50] has a poorly defined minimum
as a function of (β, α). To illustrate this, we fix γ = γ′ = 0.5 in the unidentifiability
manifold equation (3.8) to yield the curve α′ = α(β − α/c)/(β′ − α/c). This curve is
plotted in blue in Figure 6(a). The plotted red points are the 1% of (β, α) pairs with
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Fig. 4. Estimation of parameters by minimization of data assimilation error on the time
interval [0, T ] for various T . Each red dot is the value of the sum of squares assimilation error
for randomly chosen parameters (β′, α′), while the exact γ′ = γ = 0.5 is assumed known. The
blue dot represents the calculated minimum. For T significantly below 80, the loss function has no
well-defined minimum, and the generating parameters (β = 1.1, α = 0.2) are poorly estimated. For
larger T , the minimum becomes more pronounced, and the parameters can be well estimated. (Color
available online.)

smallest values of the loss function. Instead of a localized ball near the true value
(β, α) = (1.1, 0.2), there is a curve of pairs equally fitting the observed data, which are
therefore indistinguishable from the loss function. These pairs form the flat minima
of the loss function seen in Figure 4 for times T preceding the epidemic peak.

Similarly, if we fix a different parameter, we see the same phenomena when trying
to estimate the other two parameters. For example, fixing α′ = α = 0.2, the slice
through the unidentifiability manifold (3.8) is γ′ = γ +α(β′ − β)/(cβ), a line. Figure
6(b) shows the line in blue, with the near-minimal pairs of the loss function shown
as red dots. Finally, fixing β′ = β = 1.1 yields the curve γ′ = γ + (β − α/c)/(1 +
βc/(α′ − α)) from the manifold (3.8), shown in Figure 6(c).

On the other hand, fixing the first two parameters on the unidentifiability surface
implies that the third can be determined. That is, if we have knowledge of the true
α and γ, setting α′ = α and γ′ = γ in (3.8) implies that β′ = β, so there is a unique
solution with those parameter settings. Thus even on the prepeak interval [0, 50]
in the example, if α and γ are known, then β is structurally identifiable from the
observations of I(t).

Of course, there are many other figures of merit that could be minimized to deter-
mine the parameters from the observed I(t); these could be based on data assimilation
errors, maximization of likelihood, or some other probabilistic measure. However, dur-
ing the prepeak part of the epidemic, they will all be susceptible to the alternative
solutions that are equally compatible with I(t), implicit in dynamical compensation.

A perhaps more intuitive, if less geometric, view of the unidentifiability surface
is that it is the set of parameters for which the leading eigenvalue λ1 of the resulting
system is equal to the λ1 (see (3.3)) of the underlying system that generated I(t). (In
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(a) (b)

Fig. 5. The unidentifiability surface defined by (3.8). (a) The red plotted points are the pa-
rameter values that minimized (landed in the smallest 1% of values of) the loss function L(β, α, γ)
from the stochastic nonlinear SEIR model (2.1) trained on I(t) from the time interval [0, 50]. They
are in remarkable agreement with the quadric surface (3.8) generated by the “exactly proportional”
solutions. The black curve represents the parameter sets that generate the “approximately propor-
tional” solutions from (3.4). The color on the surface corresponds to the computed R0 = β′/γ′. (b)
MCMC using I(t) on [0, 50] from the deterministic version of the nonlinear SEIR (2.1) to sample
the posterior (red dots). The parameter sets all lie on the surface (3.8). The true parameters are
represented by the black dot. (Color available online.)
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Fig. 6. Continua of best parameter sets from the same I(t). (a) The dots denote the 1% of
(β′, α′) pairs (chosen from 10,000 random pairs) with the smallest sum of squares error from data
assimilation over the interval [0, 50]. The blue curve is given by (3.8), with β′, α′, c as in Figure 3,
and setting γ = γ′ = 0.5. (b) The dots are the (β′, γ′) pairs with smallest assimilation error for fixed
α = α′ = 0.35. Equation (3.8), plotted as the blue dashed curve, is the line γ′ = γ+α(β′ − β)/(cβ).
(c) The dots are the (α′, γ′) pairs with smallest assimilation error for fixed β = β′ = 0.7. The red
dashed curve is γ′ = γ+(α′βc)/(α′+βc−α)−α/c from (3.8) setting β = β′ = 0.7. (Color available
online.)

fact, this leads to an alternate derivation of (3.8).) Thus, if we trust the parameter
estimation algorithm to return a parameter set that is at least on the unidentifiability
surface, then it will have the correct λ1. Even if the parameters are wrong, this fact
can be exploited for uncertainty quantification purposes, as we discuss in the next
section.

4.3. Uncertainty quantification. The unidentifiability surface (3.8) is useful
for theoretical reasons to show the impossibility of isolating the original parameter
set p from the infinity of other systems that approximately share I(t) during the
beginning portion of an epidemic. Next, we suggest that it may be useful in practice
for uncertainty quantification.
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Fig. 7. Trajectories of 30 systems with alternative parameter values. (a) Parameter val-
ues p′′ = (β′′, α′′, γ′′) are chosen by perturbing randomly with 10% Gaussian noise from a fixed
p′ = (β′, α′, γ′) = (0.852, 0.25, 0.4). The original trajectory with parameter values p = (β, α, γ) =
(1.1, 0.2, 0.5) is traced in yellow. (b) The same as (a), but the p′′ are chosen from the surface (3.8).
Specifically, the p′′ are formed by perturbing (α′′, γ′′) by 10% and calculating the corresponding β′′

lying on the surface. (Color available online.)

It turns out to be a helpful fact that the unidentifiability surface generated by an
arbitrary parameter set p indexes the set of parameter sets that share the observed
I(t). Assume that we use a parameter estimation algorithm with input I(t), and
estimate the parameter set as p′ and that lies on the surface. The roles of p and p′ are
symmetric, so we can also consider that p lies on the unidentifiability surface generated
by p′. That means we can reverse the roles: switch the primed and unprimed variables
in (3.8), noting that c must be replaced by c′ computed from (3.7) with unprimed
variables replaced with primed variables.

For instance, assume the correct parameters are p = (β, α, γ) = (1.1, 0.2, 0.5)
but that a parameter estimation algorithm instead returns, for example, an estimate
p′ = (β′, α′, γ′) = (0.852, 0.25, 0.4) that lies on the unidentifiability surface. The set
p′ given here is just for illustration; in this case it was chosen by making an arbitrary
choice of α′ and γ′ and then computing the corresponding β′ lying on the surface
(3.8). Next, we ignore the origin of p′ and consider what we can infer from it. In
Figure 7(a), we produce 30 trajectories of the stochastic SEIR by perturbing p′ by
10% to new values p′′ = (β′′, α′′, γ′′). We have overlaid as a yellow curve the original
trajectory that produced I(t), generated by the parameters p. There is a large amount
of variability in the 30 trajectories.

Figure 7(b) shows trajectories of 30 stochastic SEIR systems, where we have
randomly changed α′ and γ′ by 10% to α′′ and γ′′, but this time we computed the
corresponding β′′ that lies on the surface. We reiterate that the surface, being the
unidentifiability surface of p′, can be computed from p′ and is therefore known to us,
even if the original p is unknown. The ensuing trajectories are much more faithful to
the original system, given that they share the leading dynamical eigenvalue λ1. Thus,
even starting with a mildly incorrect parameter set p′, by querying nearby points p′′ on
its unidentifiability surface, we see reasonable facsimiles of the underlying dynamics
generated by the original parameters p.

Note that there are limitations on how far the incorrect parameters p′ can be
from the original parameters p in order for the trajectories produced in this way to
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be representative of the original systems. In particular, the constant c in the propor-
tionality I(t) ≈ cE(t) is in general different for the new system, and so its trajectories
will be different. Our informal observation is that if the alternative parameters are
within about 20% of the originals, the approximating trajectories may still be useful
for uncertainty quantification.

This observation opens up the possibility of using the unidentifiability surface for
uncertainty quantification purposes by studying the spread of nearby solutions as a
function of uncertainty in the parameters. If an uncertainty in the estimate can be
determined from the algorithm generating the estimate, bootstrapping techniques can
be used to move along the surface (3.8) and quantify the variance of key aspects of the
family of nearby trajectories. We leave a more complete analysis of this phenomenon,
and its possible utility to forecasting, to future investigation.

5. Identifiability in other SEIR-like models. The same identifiability prob-
lems are likely to occur in models similar to SEIR. We describe the details for one
such example that was proposed recently in [18].

5.1. The SEUIR model. The epidemic model in [18] was used to represent
populations in a specific city and included extra external inputs from other cities.
The underlying SEIR-style model is

Ṡ = −β(U + I)
S

N
,

Ė = β(U + I)
S

N
− E

Z
,

U̇ = (1− α)
E

Z
− U

D
,

İ = α
E

Z
− I

D
,

Ṙ =
U

D
+

I

D
,(5.1)

with constant total population N = S + E + U + I + R, where 0 < α < 1. The
new variable U represents unreported infected cases, while I is reserved for reported
infected cases. For SEIR, we will consider I(t) as the observable variable.

For simplicity, we rewrite the parameters as z = 1/Z, d = 1/D,w = α/Z to arrive
at the equivalent but more user-friendly system

Ṡ = −β(U + I)
S

N
,

Ė = β(U + I)
S

N
− zE,

U̇ = (z − w)E − dU,

İ = wE − dI,

Ṙ = d(U + I),(5.2)

where N = S +E + U + I +R, with parameters β, z, w, and d, 0 < w < z, which we
call the SEUIR model. Figure 8 displays a sample trajectory of the SEUIR model.
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Fig. 8. (a) Solution of the stochastic SEUIR equations (5.2) with initial conditions S = 106, E =
102, U = 0, I = 0, R = 0. The parameter settings are β = 0.9, z = 0.3, w = 0.2, d = 0.5. (b) Ratios
U(t)/E(t) and I(t)/E(t) (blue traces) compared with b = 0.16 and c = 0.32 calculated from (5.4),
shown in red. (Color available online.)

5.2. Unidentifiability in SEUIR. Again consider the prepeak portion of the
epidemic, where S ≈ N . Then there is an approximating linear system

Ė = β(U + I)− zE,

U̇ = (z − w)E − dU,

İ = wE − dI,(5.3)

which will exhibit dynamical compensation. Given our experience with SEIR, we
consider solutions of (5.3) where E,U , and I are proportional, say U(t) = bE(t) and
I(t) = cE(t). One checks that if E(t), U(t), I(t) are such solutions, then E(t) =
E0e

[β(b+c)−z]t, where

b =
2(z − w)√

(d− z)2 + 4βz + d− z
,

c =
2w√

(d− z)2 + 4βz + d− z
.(5.4)

It will be convenient in proving the lemma below to note the identities

(5.5) b[d− z + β(b+ c)] = z − w, c[d− z + β(b+ c)] = w, w(b+ c) = zc.

Lemma 2. Let β, z, w, d > 0, and let E(t), U(t), I(t) be solutions of (5.3). Further,
let β′, z′, w′, d′ > 0, and consider the functions

F (t) =
c(d′ − d) + w

w′ E(t),

V (t) =
c

b

[
z′

w′ − 1

]
U(t),

where b and c are defined as in (5.4). Assume that β′, z′, and d′ lie on the surface
defined by

(5.6) ∆z(∆β −∆d) + z∆β + (β − w/c)∆z − β(b+ c)∆d = 0,
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where we denote ∆β = β′ − β,∆z = z′ − z,∆d = d′ − d.
Then for all β′, z′, d′ > 0 satisfying (5.6) and for any 0 < w′ < z′, the set

(F = Fβ′,z′,w′,d′ , V = Vβ′,z′,w′,d′ , I, β′, z′, w′, d′) satisfies

Ḟ = β′(V + I)− z′F,

V̇ = (z′ − w′)F − d′V,

İ = w′F − d′I.(5.7)

Proof. The left-hand side of the first equation is

Ḟ =
c∆d+ w

w′ Ė =
c∆d+ w

w′ [β(b+ c)− z]E.

The right-hand side is

β′(I + V )− z′F = β′(cE + c[z′/w′ − 1]E)− z′
c∆d+ w

w′ E

=
β′cz′ − z′[c∆d+ w]

w′ E

=
E

w′ [c[∆z∆β −∆z∆d+ z∆β + (β + w/c)∆z] + βcz − zc∆d− zw]

=
E

w′ [cβ(b+ c)∆d+ βcz − zc∆d− zw]

=
E

w′ [∆d[β(b+ c)c− zc] + βcz − zw]

=
E

w′ [c∆d[β(b+ c)− z] + βw(b+ c)− wz]

=
E

w′ (c∆d+ w)(β(b+ c)− z),

where we used the unidentifiability surface equation (5.6) and used the identity w(b+
c) = zc from (5.5) in the penultimate line. This matches the left-hand side.

The second and third equations use only the definitions of F and V . For the
second equation,

V̇ =
c(z′ − w′)

bw′ U̇ =
c(z′ − w′)

w′ [β(b+ c)− z]E,

and the right-hand side is

(z′−w′)

[
c∆d+ w

w′ E

]
− d′c(z′ − w′)

w′ E =
z′ − w′

w′ [c∆d+w−d]E = (z′−w′)(w−cd)E,

which agrees with the left side by (5.5). The left side of the third equation is

İ = c[β(b+ c)− z]E,

which matches the right side,

w′ c∆d+ w

w′ E − d′cE = (w − cd)E,

by (5.5).
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Fig. 9. The unidentifiability surface defined by (5.6). The red plotted points are the parameter
values that minimized (landed in the smallest 1% of values of) the loss function L(β′, z′, d′) from the
nonlinear SEUIR model (5.2), where w′ = w = 0.2 was assumed known. The parameters generating
the input I(t) were (β, z, w, d) = (0.9, 0.3, 0.2, 0.5). The input I(t) was used from the prepeak time
interval [0, 50]. The surface is colored corresponding to R0. (Color available online.)
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Fig. 10. Continuous families of best parameter sets that share the same I(t). The dots denote
the 1% of pairs (chosen from 10,000 random pairs) with the smallest sum of squares error L from
data assimilation over the interval [0, 50]. The solid curve is (5.6) with ∆w = 0 and (a) ∆d = 0,
(b) ∆z = 0, (c) ∆β = 0.

Figure 9 shows a plot of the unidentifiability surface in R3, along with a plot of
the 1% of random parameter sets (β, z, d) that have the lowest loss function values
from the nonlinear SEUIR model, using I(t) as input, on the prepeak interval [0, 50].
The generating parameters were β = 0.9, z = 0.3, w = 0.2, and d = 0.5. These param-
eter sets will be practically indistinguishable when attempting parameter estimation
with I(t) only over this interval. Here the w parameter value has been fixed at the
generating value w = 0.2.

Figure 10 shows the results of repeating the sampling of the loss function while
fixing w = 0.2 and a second parameter. For example, in Figure 10(a) the best 1% of
parameter sets (β, z) are plotted as dots, along with the relation (5.6), with ∆d set
to 0. The relation, plotted as a curve, is z′ = z(β′−w/c)/(β′−w/c) and matches the
data accurately. In Figure 10(b), the parameter z′ = z = 0.3, along with ∆z = 0 in
(5.6), gives the line d′ = d+ z(β′ − β)/(β(b+ c)). In Figure 10(c), with β′ = β = 0.9
the curve is d′ = d+ (β − w/c)(z′ − z)/(z′ − z + β(b+ c).

The identifiability problem with SEUIR is arguably worse than with SEIR, since
a glance at the unidentifiability relation (5.6) shows no ∆w term. Thus the multiple
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solutions of Lemma 2 exist for any value of w′ < z′. These solutions have (β′, z′, d′)
independent of w′, while also having adjusted F (t) and V (t) that do depend on w′.
This results in an added dimension of unidentifiable parameters. In other words,
Figures 9 and 10 can be reproduced identically if w′ is fixed at an inaccurate value
w′ ̸= w. This means that the actual unidentifiability set is a two-dimensional set in
R4 of points (β′, z′, w′, d′) satisfying (5.6) and all w′ such that 0 < w′ < z′.

A final comment about the SEUIR model (5.2) is that one can introduce the new
variable Y = U + I and arrive at the equivalent SEIR system

Ṡ = −βY
S

N
,

Ė = βY
S

N
− zE,

Ẏ = zE − dY,

Ṙ = dY,(5.8)

where N = S +E + Y +R. This may explain the disappearance of the parameter w′

in the unidentifiability surface equation (5.6). However, under the model (5.2), the
assumption is that I(t), not Y (t), is observed.

6. Discussion. In common epidemic models, practical identifiability from the
infected population variable I(t) depends strongly on what portion of the population
trajectory is observed. In the prepeak interval, when S(t) ≈ N , the linear approxima-
tion to the full model admits an infinity of solutions with the same I(t) by adjusting
the unobserved population variables to compensate, a property known as dynami-
cal compensation. The combinations of parameters that allow for this compensation
are given by (3.8) and (5.6) in Lemmas 1 and 2, in what we call the unidentifiabil-
ity surface, or unidentifiability manifold. The multiple solutions that coexist in this
scenario will defeat any parameter estimation method that relies on observing only
I(t) to find the complete set of parameters. Since the unidentifiability manifold is
two-dimensional, at least two more independent pieces of information are necessary
to isolate any of the parameters. This fact also applies to most combinations of the
parameters, such as the reproductive rate R0. These obstructions to identifiability
disappear if the entire time history, including the peak of the epidemic, can be ob-
served.

We have shown that these identifiability obstructions exist for the popular SEIR
model and another, more recent model. It is likely that any other closely related
versions of SEIR, including compartmental models such as SEIRS, SIRD, etc. and
models that include vital dynamics, will harbor similar obstructions, due to the same
phenomenon.

It is notable that the unidentifiability surfaces found for both models are codi-
mension one in parameter space. We conclude that if all but one of the parameters are
known a priori, then the unknown parameter can be determined from an estimation
process, such as the minimization technique used here, even during the prepeak por-
tion of the epidemic. We have also proposed that knowledge of the unidentifiability
surface may be crucial for the development of practical uncertainty quantification for
parameter estimates, although pursuit of that direction is beyond the scope of this
article.

Acknowledgments. We thank the reviewers for insightful comments that led
to improvement of the article.
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