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Summary 35 

• The availability of Solar-Induced chlorophyll Fluorescence (SIF) offers potential to curb 36 

large uncertainties in estimating photosynthesis across biomes, climates, and scales. 37 

However, it remains unclear how SIF should be used to mechanistically estimate 38 

photosynthesis.  39 

• This study built a quantitative framework to estimate photosynthesis, based on a 40 

mechanistic light reaction model with chlorophyll a fluorescence from PSII (SIFPSII) as an 41 

input (MLR-SIF). Utilizing 29 C3 and C4 plant species representative of major plant biomes 42 

across the globe, we verified such a framework at the leaf level.  43 

• MLR-SIF is capable of accurately reproducing photosynthesis for all C3 and C4 species 44 

under diverse light, temperature, and CO2 conditions. We further tested the robustness of 45 

MLR-SIF using Monte Carlo simulations, and found that the estimated photosynthesis is 46 

much less sensitive to parameter uncertainties relative to the conventional Farquhar, von 47 

Caemmerer, Berry (FvCB) model because of additional independent information contained 48 

in SIFPSII. 49 

• SIFPSII, once inferred from direct observables of SIF, provides “parameter savings” to the 50 

MLR-SIF as compared to the mechanistically equivalent FvCB and thus shortcuts the 51 

uncertainties propagated from imperfect model parameterization. Our findings set the stage 52 

for future efforts employing SIF mechanistically to improve photosynthesis estimation 53 

across scales, functional groups, and environmental conditions. 54 

 55 

 56 

Key words: photosynthesis model; Solar-induced chlorophyll Fluorescence (SIF); Non-57 

Photochemical Quenching (NPQ); parameter uncertainty; redox state of PSII reaction centers  58 

One Sentence Summary: Utilizing joint chlorophyll a fluorescence and gas exchange 59 

measurements across diverse plant biomes, we build the physiological foundation for employing 60 

SIF to mechanistically estimate photosynthesis. 61 
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Introduction 63 

Accurate quantification of terrestrial photosynthesis at different spatiotemporal scales is a long-64 

sought goal in carbon cycle science (Schimel, 1995; Beer et al., 2010; Ciais et al., 2014). The 65 

rapidly growing, cross-scale observational capability of Solar-Induced chlorophyll Fluorescence 66 

(SIF), the only optically detectable signal that probes the whole photosynthetic process (Porcar-67 

Castell et al., 2014), offers a promising opportunity to achieving the goal of quantifying 68 

photosynthesis across different spatiotemporal scales (Mohammed et al., 2019; Porcar-Castell et 69 

al., 2021). This has been evident by the dramatic growth of SIF research and efforts to transform 70 

SIF observations to terrestrial photosynthesis estimation over the last few decades (Mohammed et 71 

al., 2019). However, how exactly SIF should be used to estimate photosynthetic carbon 72 

assimilation in natural environments remains elusive.  73 

Initial findings have identified encouraging linkages between SIF and photosynthesis from 74 

both observational and modeling aspects. From the observational side, existing studies have 75 

empirically linked remotely sensed SIF with photosynthesis inferred from eddy covariance (EC) 76 

measurements of net ecosystem exchange (NEE) of CO2 (e.g., Guanter et al., 2014; Joiner et al., 77 

2014; Yang et al., 2015; Verma et al., 2017; Sun et al., 2017; Wood et al., 2017; Liu et al., 2017; 78 

Li et al., 2018; Miao et al., 2018; Yang et al., 2018). However, photosynthesis inferred from NEE 79 

at EC towers, although often assumed as the observational “truth”, is not directly measured but 80 

indirectly and imprecisely derived with approaches known to contain errors or even biases 81 

(Wohlfahrt & Gu, 2015; Wehr et al., 2016; Keenan et al., 2019). Using potentially and likely 82 

biased estimates of photosynthesis as truth to infer SIF-photosynthesis relationships essentially 83 

contradicts the original motivation of applying SIF to constrain photosynthesis (or reduce 84 

uncertainties in photosynthesis estimates). Furthermore, it is circular to apply such SIF-85 

photosynthesis relationships to back-calculate photosynthesis; this circular estimation does not 86 

fully take advantage of the mechanistic, independent information carried in SIF.  87 

Existing modelling studies (e.g., Zhang et al., 2014; Koffi et al., 2015; Verrelst et al., 2016; 88 

Parazoo et al., 2020) primarily adopt the leaf-level formulation of the SIF-photosynthesis 89 

relationship from the SCOPE (Soil Canopy Observation Photosynthesis Energy) model (van der 90 

Tol et al., 2014). Specifically, this approach utilized the Farquhar, von Caemmerer, Berry (FvCB) 91 

biochemical model to compute photosynthesis (and photochemical quantum yield, ΦP) (Farquhar 92 

et al., 1980; Sharkey, 1985). The modeled photosynthesis in turn is used to calculate fluorescence 93 
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yield (ΦF) and therefore SIF by empirically modeling non-photochemical quenching (NPQ) as an 94 

exclusive function of ΦP. Terrestrial biosphere models (TBMs) that explicitly incorporate SIF and 95 

data assimilation systems that have adopted such formulations to ingest satellite SIF to improve 96 

photosynthesis (and net carbon budgets) estimates (e.g., Thum et al., 2017; Bacour et al., 2019; 97 

Norton et al., 2019). While useful for simulating SIF-photosynthesis relationships and their 98 

sensitivity to different environmental conditions, the SCOPE-based strategy cannot escape from 99 

the usual, well-known problems of parameter and scaling uncertainty in applying FvCB to estimate 100 

photosynthesis at scales beyond a leaf (e.g., Rogers et al., 2017; Schaefer et al., 2012; Anav et al., 101 

2015). Indeed, Parazoo et al. (2020) reported wide discrepancies in modeled SIF and 102 

photosynthesis across TBMs and large disagreement with ground observations. 103 

 Moving forward, with emerging interest in taking advantage of the information contained 104 

in remotely sensed SIF observations to improve photosynthesis estimates, it is critical to develop 105 

a mechanistic approach that enables direct and independent estimation of photosynthesis from SIF. 106 

Photosynthesis consists of light and carbon (also known as dark, light-independent, or Calvin-107 

Benson cycle) reactions in sequence, which collaborate via multiple feedforward and feedback 108 

mechanisms to ensure the safety and smooth operations of the photosynthetic machinery in 109 

dynamic environments (Rochaix, 2011; Roach & Krieger-Liszkay, 2014). SIF is emitted during 110 

the light reactions. The mechanistic light reaction (MLR) equations derived by Gu et al. (2019) 111 

established the theoretical relationship between SIFPSII (i.e., the true total chlorophyll a 112 

fluorescence - ChlF emitted from PSII, prior to signal attenuation due to leaf self-absorption) and 113 

the actual electron transport rate (Ja) from photosystem II (PSII) to photosystem I (PSI). Thus, if 114 

SIF is observed, Ja can be calculated, provided that the followings are known: 1) the escape 115 

probability, i.e., the ratio of the physiologically determined SIFPSII to the sensor-observed SIF, 116 

which can be determined via leaf/canopy/atmosphere radiative transfer modeling (e.g., Yang & 117 

van der Tol, 2018; Liu et al., 2019; Zeng et al., 2019), and 2) either the fraction of open PSII 118 

reaction centers (qL) or NPQ (only one is needed as the other can be resolved with SIFPSII; Gu et 119 

al., 2019). Photosynthesis can then be determined from the rates of carboxylation and 120 

photorespiration that the SIF-informed Ja supports (Farquhar et al., 1980; Sharkey, 1985; 121 

Blankenship, 2002; von Caemmerer, 2000). Photosynthesis estimated from observed SIF is based 122 

upon theory and has a clear separation between input and output, which avoids the undesirable 123 

circularity discussed above. 124 
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At present, it remains unexplored the degree to which MLR-SIF is scalable across biomes 125 

and environmental conditions, and whether it has any practical advantages for photosynthesis 126 

estimation relative to existing approaches, e.g., the conventional FvCB or a simple linear scaling 127 

from SIF reported by previous studies (Sun et al., 2017; Li et al., 2018). Mechanistically, the MLR-128 

SIF model and the FvCB model are equivalent, given that the light and carbon reactions are 129 

balanced (Blankenship, 2002). However, these two models differ in the number and complexity of 130 

parameters required (See Notes S1 in Gu et al., 2019). The FvCB model minimally represents the 131 

light reactions via an empirical electron transport equation to focus on the mechanistic 132 

representation of the carbon reactions. No light reaction mechanisms (e.g., light harvesting, 133 

photochemical and non-photochemical quenching) are represented. The carbon reactions belong 134 

to the downstream processes in photosynthesis and are highly complex. As a result, a large number 135 

of biochemical and kinetic parameters are needed to run the FvCB model and these parameters can 136 

be highly variable across biomes and environments. Consequently, different TBMs that employ 137 

the same FvCB model show considerable disagreements in simulated photosynthesis and its 138 

response to environmental drivers; and much of the disagreements can be attributed to model 139 

parameter uncertainties (e.g., Schaefer et al., 2012; Anav et al., 2015; Rogers et al., 2017; Walker 140 

et al., 2021). The MLR-SIF model requires fewer input parameters than FvCB, because SIFPSII as 141 

an input together with qL implicitly contains environmental and physiological information 142 

represented by the FvCB model for estimating photosynthesis (Gu et al., 2019). We thus predict 143 

that the parsimony of the MLR-SIF model can reduce the impact of parameter uncertainties for 144 

photosynthesis estimation when the extra independent information (both environmental and 145 

physiological) contained in SIF is available.  146 

This study has two objectives. The first objective is to demonstrate and validate the 147 

effectiveness of the mechanistic MLR-SIF model that uses SIFPSII as an input to compute 148 

photosynthesis. The second objective is to demonstrate the practical advantages of the parameter 149 

parsimoniousness of the MLR-SIF approach when facing parameter uncertainties, i.e., to test the 150 

above hypothesis across a broad range of Plant Functional Types (PFTs) and dynamic 151 

environments. To our knowledge, this is the first study to demonstrate the possibility and 152 

advantage of mechanistically estimating photosynthesis from the perspective of light reactions 153 

using SIFPSII as an input across a wide range of PFTs and climates. We focus on the leaf level so 154 

that fundamental processes can be more fully investigated. To achieve our objectives, we collected 155 
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concurrent measurements of leaf gas exchange and pulse amplitude modulated (PAM) ChlF for 156 

29 species of 11 representative PFTs native to Temperate, Boreal, and Tropical climates (Table 157 

S1). Using this dataset, we unraveled the regulation of environmental and physiological variations 158 

on the dynamic relationship between SIFPSII and photosynthesis across PFTs, and assessed the 159 

advantages of MLR-SIF for estimating photosynthesis in terms of the capability, scalability, and 160 

uncertainty across PFTs and environments. We demonstrate that the key value of SIF lies in the 161 

process information it contains, which reduces the number of hard-to-measure parameters and the 162 

associated uncertainties for estimating photosynthesis. Our findings should pave the way for future 163 

investigations to apply SIF as an observational input to mechanistically estimate photosynthesis at 164 

the canopy scale and beyond.  165 

  166 
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Materials and Methods 167 

Derivation of the MLR-SIF model 168 

SIFPSII is emitted during the photosynthetic light reactions, and can be used to directly quantify the 169 

actual electron transport rate (Ja) balanced by carboxylation and photorespiration in the carbon 170 

reactions (Blankenship, 2002), following the principle of energy conservation (Gu et al., 2019). 171 

Once Ja is determined, net photosynthesis (An) can be calculated based on the electron 172 

requirements of carboxylation and oxygenation (Farquhar et al., 1980; Sharkey, 1985; von 173 

Caemmerer, 2000):  174 

𝐴! = 𝐴" − 𝑅# =

⎩
⎨

⎧
𝐶$ − 𝛤∗

4𝐶$ + 8𝛤∗
𝐽& − 𝑅# , for	C'	species																																																											Eq. 1a

1 − 𝑥
3 𝐽& − 𝑅# , for	C(	species																																																																			Eq. 1b

 175 

𝐽& =
	𝛷)*++,&- × (1 + 𝑘./)

1 − 𝛷)*++,&-
× 𝑞0 × 𝑆𝐼𝐹)*++ 																																																																																						Eq. 1c 176 

Here Ag refers to gross photosynthesis; SIFPSII represents the true total ChlF emitted from PSII, 177 

which in principle should be utilized to establish the mechanistic relationship with photosynthesis; 178 

Ci the intercellular CO2 concentration; Γ* the CO2 compensation point in the absence of 179 

mitochondrial respiration in the light for C3 plants; x the fraction of total electron transport of 180 

mesophyll and bundle sheath allocated to the CO2-concentrating mechanism for C4 plants; Rd the 181 

day respiration; ΦPSIImax the maximum photochemical quantum efficiency of PSII in dark-adapted 182 

leaves; kDF = kD/kF, with kD and kF representing the rate constants of constitutive thermal dissipation 183 

and fluorescence, respectively; qL is derived under the assumption of lake model for photosynthetic 184 

unit connectivity. Note that MLR-SIF applies to all carboxylation limitation states, regardless of 185 

whether the carboxylation is limited by Ribulose 1,5‐bisphosphate (RuBP) regeneration, RuBP 186 

carboxylase/oxygenase (Rubisco), or triose phosphate use (TPU), because it directly models the 187 

“actual” electron transport rate Ja from SIFPSII (as opposed to the “potential” electron transport rate 188 

employed in FvCB) (Gu et al., 2019). As in most applications of the FvCB model, Eq. 1a assumes 189 

that the supply of NADPH, rather than ATP, from the light reactions limits carboxylation. 190 
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Ja can also be derived alternatively from SIFPSII via NPQ (Gu et al., 2019):   191 

𝐽& = 𝑃𝐴𝑅 × 𝛼 × 𝛽 − (1 + 𝑁𝑃𝑄) × (1 + 𝑘./) × 𝑆𝐼𝐹)*++ 																																																																Eq. 2 192 

where α is leaf absorptance; β the fraction of absorbed light allocated to PSII.  193 

Eq. 2 and Eq. 1c are theoretically equivalent (Gu et al., 2019), but practically have different 194 

complexity and thus applicability. Eq. 2 shows more clearly the principle of energy conservation 195 

among different dissipation pathways of absorbed photons. For actual applications, it requires PAR, 196 

NPQ, and SIFPSII as inputs. Eq. 1c requires only SIFPSII and qL. qL reflects the redox state of PSII 197 

and provides a good steady-state approximation of the state of Cytochrome b6f (Cyt b6f) which 198 

plays a central role in the control of steady-state photosynthesis (Johnson & Berry, 2021). NPQ 199 

involves both energetic and enzymatic reactions. Although the heat dissipation from NPQ is 200 

predominantly localized in the light-harvesting complexes of PSII, the activation and regulations 201 

of this release occur in the lumen, thylakoid membrane, and stroma. NPQ has a delayed response 202 

to light variations (Kromdijk et al., 2016), a property that is exploited in PAM fluorometry to 203 

transiently decouple the photochemical and non-photochemical quenching to calculate various 204 

fluorescence variables (e.g., ΦP, NPQ, and qL). Furthermore, NPQ has multiple components (e.g., 205 

the energy-dependent qE, the irreversible components qI and qZ, and state transitions qT) and each 206 

operates at different time scales (Ruban, 2016, Nilkens et al., 2010, Demmig-Adams et al., 2014). 207 

The complex activation and regulations, delayed time response, and involvement of multiple time 208 

scales in the dynamics of NPQ components greatly increase the complexity in modeling NPQ as 209 

compared to qL. Thus, we choose the qL-based approach for calculating Ja from SIFPSII which 210 

simplifies the mechanistic modeling of photosynthesis as advocated in Gu et al. (2019). As PAM 211 

only measures ChlF parameters but not SIFPSII itself, we had to derive SIFPSII from the following 212 

theoretical equations (Gu et al., 2019): 213 

𝑆𝐼𝐹)*++ = 𝛷/ × 𝑃𝐴𝑅 × 𝛼 × 𝛽                                                                                          Eq. 3 214 

𝛷/=
123!"##$%&

(156'()×[(15:);)×(123!"##$%&)5<)×3!"##$%&]
																																																																								Eq. 4 215 

Here, we used ΦPSIImax, NPQ and qL inferred from PAM measurements to derive SIFPSII (full list 216 

of symbols/variables defined in Table S2). Note that if SIFPSII is available as an observational input 217 
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(i.e., inferred from direct observables), we do not need to model SIFPSII, but simply use Eq. 1c (in 218 

this case, NPQ is not needed) to compute Ja and therefore photosynthesis. Even though it is indeed 219 

now possible to measure leaf-level ChlF emission spectra (in absolute radiometric units, e.g., 220 

Magney et al., 2019b; Meeker et al., 2021), such measurements always contain contributions from 221 

PSII and PSI, while in theory SIFPSII is required to estimate photosynthesis (Eq. 1). Also, such 222 

measurements cannot resolve the issue of leaf re-absorption of fluorescence. Together these factors 223 

mean that direct fluorescence emission measurements in the absolute radiometric units 224 

unavoidably contain uncertainties. Furthermore, spectral fluorescence measurements have yet to 225 

be widely collected for diverse biomes under dynamic natural environments, as utilized in this 226 

study. Balancing consideration of these factors, we first used direct leaf-level ChlF emission 227 

spectra measurements as a qualitative check for the realism of the theoretically-derived SIFPSII (see 228 

supporting information in Notes S1 and Fig. S1 for the validation of SIFPSII). Subsequently, the 229 

theoretically-derived SIFPSII (Eq. 3) was used to estimate photosynthesis (Eq. 1) across all plant 230 

species in our main analyses.  231 

Note that SIFPSII (Eq. 3) is the physiologically determined, spectrally and hemispherically 232 

integrated fluorescence emission in quantum unit, whereas in the remote sensing community, SIF 233 

is often given as radiance at a specific wavelength given in power unit per solid angle. From the 234 

point of view of probing photosynthesis, only the physiologically determined, spectrally and 235 

hemispherically integrated fluorescence emission in quantum unit is meaningful. 236 

In this study, the parameters α and β are assumed constant at 0.84 (Björkman & Demmig, 237 

1987, Schreiber, 2004) and 0.5 (von Caemmerer, 2000), respectively. Gu et al. (2019) set kDF to 238 

19 using the normalized values of kD and kF used in van der Tol et al. (2014). This study utilized a 239 

kDF value of 10, as inferred from Pfündel (1998). This value was further corroborated by Tesa et 240 

al. (2018) with actual measurements (see their Fig. 6).  241 

Plant species and their growth environment 242 

We collected concurrent measurements of leaf gas exchange and ChlF parameters using PAM 243 

fluorometry for 29 species (25 C3 and 4 C4) that are representative of major PFTs (commonly 244 

adopted by TBMs) across the globe (Table S1). Measurements were taken at four locations: 245 
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Cornell Botanic Gardens (CBG), Cornell Musgrave Research Farm (CMRF), Oak Ridge National 246 

Lab (ORNL), and Xishuangbanna Tropical Botanical Garden (XTBG) (Table S1). The 247 

meteorological data and other growth environmental information at these four locations were 248 

described in Notes S2. This dataset was utilized to demonstrate the possibility and advantage in 249 

mechanistically estimating photosynthesis from the perspective of light reactions using SIFPSII as 250 

an input (Eq. 1) across a wide range of PFTs and climates at the leaf scale. 251 

Measurements of concurrent leaf gas exchanges and ChlF parameters with PAM 252 

Nineteen among all the 29 species were measured with both light and CO2 response curves, while 253 

only light response curves were collected for the remaining species (Table S1). For each light or 254 

CO2 response curve, we selected 3-4 healthy and fully expanded sunlit leaves as replicates of each 255 

species. The specific procedures for measuring light and CO2 response curves are described in 256 

Notes S3. Gas-exchange variables (An and Ci), steady-state and maximum ChlF under light (Fs and 257 

Fm’) were obtained from light and CO2 response curves. After sequentially collecting light and 258 

CO2 response curves for the same leaves, we subsequently measured the maximum and minimum 259 

ChlF under fully dark-adapted conditions (Fm and Fo) for each leaf replicate (see procedure in 260 

Notes S3). These measured ChlF parameters were in turn used to calculate ΦPSIImax 261 

(𝛷)*++,&-=
/$2/*
/$

), the minimum ChlF under light (Fo’= /*
3!"##$%&5

(*
($+
, Oxborough & Baker, 1997), 262 

qL (𝑞0 =
/$+ 2/,
/$+ 2/*+

× /*+

/,
), NPQ (NPQ=/$2/$

+

/$+
), ΦF (Eq. 4), and SIFPSII (Eq. 3).  263 

Data processing and analysis 264 

Parameter fitting and aggregation: The MLR-SIF model (Eq. 1) requires the following 265 

parameters and driving variables as input: four parameters (ΦPSIImax, kDF, Γ*, Rd) and three 266 

variables (Ci, qL, and SIFPSII) for C3, four parameters (ΦPSIImax, kDF, x, Rd) and two variables (qL 267 

and SIFPSII) for C4. At the leaf level, these variables and ΦPSIImax can either be directly measured 268 

(e.g., Ci) or inferred from measurements (e.g., SIFPSII, ΦPSIImax and qL), and thus can be readily 269 

incorporated into Eq. 1. Specifically, the set of parameters (Γ*, Rd, x) were derived by fitting the 270 

MLR-SIF model with data that met the quality control criteria (see Notes S4) using 271 
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scipy.optimize.curve_fit script in Spyder 3.8. This fitting procedure was performed separately for 272 

each leaf replicate of all species.  273 

We designed a parsimonious function to explicitly model qL as a function of PAR instead 274 

of treating it as an input variable. The rationale here is that, although SIF observations can be 275 

readily available from remotely sensed measurements, qL is usually not available at regional/global 276 

scale. We used an exponential equation with two parameters (𝑎<) and 𝑏<) ) to represent the 277 

relationship between qL and PAR, a parsimonious formulation that can take advantage of available 278 

PAR: 279 

𝑞0 = 𝑎<)𝑒
2>-))?@                                                                                                                    Eq. 5 280 

Here 𝑎<)and 𝑏<)were derived by fitting this exponential equation with qL inferred from ChlF and 281 

PAR measured by Li-6800 and/or GFS3000 for each leaf of all species. The means of the fitted 282 

𝑎<)and 𝑏<)were then calculated across all leaves for each PFT, which were used to calculate qL 283 

for each leaf in the corresponding PFT. The fitted and observed qL agree well with each other for 284 

different PFTs (Fig. S2). Although this parsimonious model does not account for the impact of 285 

variation in Ci on qL, it is adequate to capture the first-order variations in qL in natural conditions. 286 

This is because that Ci covaries with PAR in order to keep the balance between light and carbon 287 

reactions of photosynthesis, thus the parsimonious qL model as function of PAR is not independent 288 

of the changes in Ci. Moreover, if we deliberately force the model to “fail” in experiments by 289 

holding PAR at a high constant value and changing Ci, there would be two scenarios: 1) qL would 290 

vary with Ci but only within a narrow range, unless Ci is made close to zero; 2) when Ci is close 291 

to zero, qL will have to be close to zero too because the Calvin-Benson cycle cannot support any 292 

electron transport. Neither of these scenarios occurs in nature. 293 

For MLR-SIF, once its parameters were fitted (Γ*, Rd, x, 𝑎<)and 𝑏<)) or derived (ΦPSIImax) 294 

for each leaf replicate under 25 oC, we obtained “PFT-specific” parameter values by averaging 295 

fitted parameters across all species within the same PFT, and “PFT-universal” parameter values 296 

by averaging fitted parameters across all species of all PFTs respectively (Table S3). Details of 297 

parameter fitting and aggregation to PFT levels can be found in Fig. S3. Note that the motivation 298 

of PFT-level parameter aggregation is to avoid the needs for acquiring plant traits for individual 299 



 
 

13 
 

species which are challenging to obtain for global applications, the eventual goal of the MLR-SIF 300 

application. On the other hand, considering only 29 plant species were employed in this study and 301 

in some cases a PFT is characterized by only one or two species, we reported our statistical 302 

assessment (in Results) using datasets from all plant species instead of that aggregated to PFT. 303 

To enable comparison with the conventional FvCB model, we further derived key relevant 304 

parameters required by FvCB (including the maximum carboxylation rate-Vcmax, maximum 305 

electron transport rate-Jmax, Γ*, and Rd) through parameter fitting utilizing measured CO2 response 306 

curves in conjunction with the corresponding light response curves (see Notes S5 for detailed 307 

procedures) for the same leaf replicate across all species of a subset of six C3 PFTs. These six PFTs 308 

used here are BDT-Temperate, BDS-Temperate, BDT-Boreal, NET-Boreal, C3 Crop and C3 grass. 309 

For a fair comparison of the performance between MLR-SIF and FvCB models in estimating 310 

photosynthesis, only the six C3 PFTs with both CO2 and light response curves available were used 311 

to obtain “PFT-specific” and “PFT-universal” parameters for both models. The parameters 312 

required by FvCB are ΦPSIImax, Γ*, Rd, Vcmax, Jmax, the fraction of absorbed light allocated to PSII 313 

β, the curvature parameter 𝜃, and the Michaelis-Menten coefficients of Rubisco – Kco, where 314 

Kco=Kc(1+O/Ko). ΦPSIImax was inferred from PAM. Kc, Ko, 𝜃, and β were assumed as constants. 315 

Specifically, we adopted in vivo values for Kc (i.e., 404.9 μmol mol-1) and Ko (i.e., 278.4 μmol mol-316 

1) provided by Bernacchi et al., (2001); 𝜃 was assumed to be 0.9 (Medlyn et al., 2002) and β 317 

assumed to be 0.5 (von Caemmerer, 2000). The remaining parameters, i.e., Vcmax, Jmax, Γ*, and Rd, 318 

were fitted by using the python optimization Scipy in Spyder 3.8. Note that we decided to fit only 319 

the four parameters here but pre-set others (to standard literature values), due to the consideration 320 

of balancing the degree of freedom (that represents the most variability in 𝐴!) and the goodness 321 

of model-data fitting.   322 

Validation of the MLR-SIF model: We first assessed the fitted parameters using the leave-323 

one-out cross-validation for each species. Specifically, MLR-SIF is trained on all samples except 324 

for one replicate and a validation is made for that replicate, and we repeat this process N times for 325 

each species (N = the replicate number of each species). The parameters under assessment included 326 

𝑎<) , 𝑏<) , ΦPSIImax, Γ* (for C3), x (for C4), and Rd. Fig. S4 shows that the RMSE between the 327 

modeled An computed with parameters obtained from the training group and the actual observed 328 
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An is 2.42 μmol m-2 s-1 for the validation group, suggesting that the parameters fitted from the 329 

training group well captures that of the validation group. 330 

Next, we refitted the parameters for each leaf replicate for demonstrating the performance 331 

of the MLR-SIF model across PFTs, light levels, and temperatures. Here the PFT-specific 332 

parameters (𝑎<), 𝑏<), Rd, Γ*, x, and ΦPSIImax) were used to estimate photosynthesis by combining 333 

measured Ci and SIFPSII of each leaf replicate in the corresponding PFT (Fig. S3). We further 334 

validated the robustness of the MLR-SIF under different temperatures (20, 25, 30, 35, 40 oC) using 335 

a subset of species (for which measurements under different temperatures were made) for 336 

illustrative purpose, including C3 (Cornus racemosa ‘Cuyzam’) and C4 (Andropogon gerardii). 337 

This test is similar to the above demonstration of MLR-SIF performance across PFTs, except that 338 

the averages of the parameters of all the replicates within the same species at the reference 339 

temperature (25 oC), rather than PFT-specific parameters were used to estimate photosynthesis of 340 

each leaf replicate under different temperatures.    341 

Assessment of parameter sensitivity and the propagated estimation uncertainty (PEU) in 342 

estimated An: We performed two independent analyses to assess the parameter sensitivity of MLR-343 

SIF and PEU in An resulted from model parameter uncertainties. In the first analysis, we utilized 344 

the PFT-universal parameters to estimate photosynthesis of each leaf replicate. To examine which 345 

input parameter the MLR-SIF model is most sensitive to, we altered each parameter one at a time 346 

to be the corresponding PFT-universal value while keeping the remaining parameter values to be 347 

PFT-specific. Parameters examined here are: Γ* (C3 only), x (C4 only), as well as those shared by 348 

C3 and C4, including ΦPSIImax, Rd, 𝑎<) and 𝑏<).  349 

 In the second analysis, we assessed the uncertainty on the estimated An propagated from 350 

model parameter uncertainties utilizing Monte Carlo simulations for both MLR-SIF and FvCB 351 

models under different light levels (100, 300, 500, 800, 1000, and 1200 μmol photon m-2 s-1) at 352 

CO2 concentration of 400 μmol CO2 mol-1 and 25 oC. The uncertainty assessment here was 353 

exemplified by a single PFT, i.e., BDT Temperate, for illustrative purposes. Specifically, for each 354 

model, we perturbed its parameters by randomly drawing values from their corresponding 355 

parameter distribution. For each parameter, we assumed that their values follow a Gaussian 356 

distribution, with the fitted values and the standard errors directly returned by the Scipy 357 
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optimization package for each individual leaf replicate. Here, we focus on perturbing parameters 358 

that were fitted (most influential), i.e.,  𝑎<), 𝑏<), Г*, and Rd for MLR-SIF, Vcmax, Jmax, Г*, and Rd 359 

for FvCB. For each model, we randomly drew 50,000 combinations of these parameters, calculated 360 

the corresponding An, and derived the standard deviation (SD) of the resulting An, which is denoted 361 

as the PEU. Note that, the randomly drawn 50,000 Vcmax and Jmax were highly linearly correlated 362 

(Wullschleger, 1993; Walker et al., 2014). Also, we constrained the randomly generated 363 

parameters to their physically meaningful ranges, i.e. 0 <𝑎<)<1, 𝑏<)<0, and Vcmax, Jmax, Г*, and Rd 364 

were all positive.  365 

  366 
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Results   367 

The dynamic relationship between photosynthesis and SIFPSII 368 

We first employed direct leaf-level ChlF emission spectra measurements (SIFabaxial) to verify the 369 

realism of the modeled theoretical SIFPSII (Notes S1). Our results (Fig. S1) show that SIFPSII is 370 

highly correlated with SIFabaxial with R2 ranging from 0.75 to 0.95 for three crop species (almond, 371 

grape, and walnut) under well-watered, mild, and moderate drought conditions (Table S4). With 372 

confidence gained in cross-checking the theoretically modeled SIFPSII with measured SIFabaxial, we 373 

subsequently evaluated the relationships between measured An and theoretical SIFPSII for all plant 374 

species (Table S1) that cover a much broader PFTs and environments. We found a nonlinear 375 

relationship between An and SIFPSII across all C3 and C4 plant species (Fig. 1a; Fig. S5) and 376 

temperatures (Fig. 1b-c). This relationship is characterized by an initial increase of An and then 377 

leveling-off when SIFPSII is high, because the former saturates while the latter can keep increasing 378 

under high light as predicted by Gu et al. (2019). However, the saturation level of An and the rate 379 

approaching saturation differ considerably among species (especially between C3 and C4 plants) 380 

and temperatures. For instance, C4 plants overall exhibit a higher light saturation level and slower 381 

rate towards saturation than C3 plants, resulting in a lower degree of nonlinearity for the former, 382 

consistent with patterns observed at the canopy scale (e.g., Liu et al., 2017; He et al., 2020). 383 

Notably, different species within the same PFT also show disparate An-SIFPSII relationships (Fig. 384 

S5). Temperatures further impact the degree of An-SIFPSII nonlinearity even for the same species 385 

and have distinct influences for C3 and C4 plants (Fig. 1b,c).   386 

 387 

Fig. 1. The dynamic relationships between net photosynthesis (An) and chlorophyll a 388 

fluorescence from PSII (SIFPSII) across Plant Functional Types (PFTs) and environments.  389 

(a) the An-SIFPSII relationships across all C3 and C4 species; the thin and bold curves represent 390 
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individual leaf replicates and the mean of all species under the same photosynthetic pathways, 391 

respectively; (b and c) the impact of temperatures on the An-SIFPSII relationship for a subset of 392 

species for C3 (Cornus racemosa ‘Cuyzam’) and C4 (Andropogon gerardii) respectively; curves 393 

represent the mean of leaf replicates under the same temperatures. 394 

We found relatively higher inter-species variability in NPQ than in qL (Fig. S6), resulting 395 

in more complex relationships among NPQ, SIFPSII and An (Fig. 2a, b). Temperature had greater 396 

impact on NPQ than on qL (Fig. 2c, d). Across light levels, NPQ achieves a local minimum at the 397 

optimal temperature for photosynthesis (Fig. 2d). In contrast, PAR dominates the variation of qL, 398 

with temperature playing a minor role, supporting the use of PAR as a primary predictor to capture 399 

the first order variation in qL (Fig. 2c).  400 

 401 

 402 



 
 

18 
 

   403 

Fig. 2. The dynamic net photosynthesis (An) - chlorophyll a fluorescence from PSII (SIFPSII) 404 

relationships modulated by the fraction of open PSII reaction centers (qL) and non-405 

photochemical quenching (NPQ) across Plant Functional Types (PFTs) and environments. 406 

(a and b) the relationships among qL, NPQ, An, and SIFPSII in 3D space across all species, the 407 

corresponding 2D figures are shown in Fig. S7; statistics (R2 and RMSE) were obtained by fitting 408 

the 3D data with polynomial regression. (c and d) the impact of PAR and temperatures on qL and 409 

NPQ, using a single C3 species (Cornus racemosa ‘Cuyzam’) for illustrative purposes.  410 

The capability, scalability, and uncertainty of MLR-SIF in estimating photosynthesis 411 

The MLR-SIF model requires knowledge of qL and Ci, which are dynamic. Using a minimalistic 412 

approach, we modeled qL as a decreasing function of PAR with only two parameters 𝑎<)  and 413 
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𝑏<)(Eq. 5), since PAR captures the first-order effect in qL variations (Fig. 2c, Fig. S6a). This 414 

parsimonious qL model works reasonably well for a wide range of species (Fig. S2), which enables 415 

examining the potential of applying MLR-SIF across climates and biomes, a necessary step 416 

towards global applications.  417 

With the use of PFT-specific parameter values, a common practice in TBMs, MLR-SIF 418 

successfully reproduces the variation of measured An with changing light (R2 = 0.83, regression 419 

slope = 0.92) across all major PFTs (Fig. 3a). Moreover, MLR-SIF is capable of simulating An 420 

dynamics under different temperatures for both C3 and C4 (Fig. 3c-d), even though parameters 421 

were obtained solely at the reference temperature.  422 

 423 

Fig. 3.  Assessment of the estimated net photosynthesis (An) based on MLR-SIF (i.e., 424 

mechanistic light reaction model with chlorophyll a fluorescence from PSII as an input, Eq. 425 

1) against measurements across (a and b) Plant Functional Types (PFTs) and (c and d) 426 

temperatures. (a and b) estimated An using PFT-specific and PFT-universal parameters (Table 427 

S3) respectively under variable light conditions at 25 oC for all species (Table S1); parameters 428 

required are: Γ* (C3 only), x (C4 only), and ΦPSIImax, Rd, as well as 𝑎<) and 𝑏<) for calculating qL 429 
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(shared by C3 and C4); (c and d) estimated An under five temperatures for C3 (Cornus racemosa 430 

‘Cuyzam’) and C4 (Andropogon gerardii) respectively. Γ* and Rd are adjusted with a temperature 431 

response function (Bernacchi et al., 2002); remaining parameters were set to values at 25 °C. 432 

Colored scatters represent individual leaf replicates (a and b, color-coded by different PFTs; c 433 

and d, color-coded by different temperatures). The regression coefficients (R2, RMSE, regression 434 

slope and intercept) were obtained by combining all species across PFTs (a-b) and temperatures 435 

(c-d). Solid lines represent the ordinary least square regression of all colored points; the dashed 436 

line represents 1:1.  437 

To further demonstrate the advantages of MLR-SIF, we performed two independent 438 

analyses. First, we removed the PFT-specific parameters in MLR-SIF and evaluated how much 439 

the estimated An degrades if a constant value is used across all PFTs for each parameter. We found 440 

that, if using PFT-universal parameters (refer to Fig. S3 for details), the estimated An could still 441 

explain 73% of the variation in the measured An under changing light, and the estimation bias was 442 

minimal with a regression slope of 0.90 (Fig. 3b). The loss of explanation power (relative to PFT-443 

specific values) comes from the combination of parameters uncertainty (Fig. S8a), i.e., 𝑎<), 𝑏<), 444 

Γ* (C3) or x (C4), Rd and ΦPSIImax. In addition, we used the same PFT dataset to compare the 445 

performance of MLR-SIF and FvCB models. FvCB had an overall weaker capability in estimating 446 

photosynthesis than MLR-SIF for both PFT-specific and PFT-universal parameters (Fig. 4a-d). 447 

Specifically, relative to MLR-SIF, FvCB showed a larger bias (underestimation) with a regression 448 

slope of 0.80 as compared to 0.86 for MLR-SIF for PFT-specific (Fig. 4a-b), 0.71 vs 0.81 for PFT-449 

universal (Fig. 4c-d), albeit both models exhibited similar R2 and RMSE. This performance 450 

difference is not due to difference in models’ theoretical rigor (both MLR-SIF and FvCB are 451 

mechanistically equivalent) but due to differences in the level of parameter requirements and the 452 

associated impacts of the parameter uncertainties in model applications. All the differences 453 

between MLR-SIF and FvCB shown below should be interpreted this way. 454 

In the second analysis, we used Monte Carlo simulations to explicitly quantify the 455 

uncertainty in An propagated from model parameter errors. We compared PEU between MLR-SIF 456 

and FvCB using Temperate Broadleaf Deciduous Tree (BDT Temperate) as an example (Fig. 4e, 457 

f). Our results showed that MLR-SIF consistently exhibits lower PEU than FvCB under all light 458 
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conditions (Fig. 4e). Correspondingly, An estimated with MLR-SIF tends to have a narrower 459 

statistical distribution relative to FvCB (Fig. 4f).  460 
  461 

 462 

Fig. 4. Comparison of MLR-SIF (i.e., mechanistic light reaction model with chlorophyll a 463 

fluorescence from PSII as an input) and FvCB (i.e., Farquhar, von Caemmerer, Berry 464 

model) in estimating net photosynthesis (An) (a to d) and the propagated estimation 465 

uncertainty (PEU) in An from parameter perturbation using Monte Carlo simulations (e and 466 

f). (a and c) are similar to Fig. 3 a and b, except that only six C3 Plant Functional Types (PFTs) 467 



 
 

22 
 

(for which both CO2 and light response curves are available) were used, to ensure fair comparison 468 

of MLR-SIF and FvCB. (b and d) parameters required for FvCB are: the maximum photochemical 469 

quantum efficiency of PSII in dark-adapted leaves (ΦPSIImax), the CO2 compensation point in the 470 

absence of mitochondrial respiration in the light (Γ*), day respiration (Rd), the maximum 471 

carboxylation rate (Vcmax), and maximum electron transport rate (Jmax). (a to d) the regression 472 

coefficients (R2, RMSE, regression slope and intercept) were obtained by combining all species of 473 

six C3 PFTs. (e) PEU, quantified as the standard deviation in An estimated with randomly perturbed 474 

parameters under different light levels. For illustration purposes, only Temperate Broadleaf 475 

Deciduous Tree (BDT Temperate) was used in this analysis. (f) histograms of estimated An for 476 

MLR-SIF and FvCB at PAR = 1200 μmol photon m-2 s-1. 477 

  478 
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Discussion 479 

The physiological and environmental controls on the photosynthesis-SIFPSII relationship  480 

The relationship between photosynthesis and SIFPSII across all plant species and temperatures is 481 

close to a linear correlation at low light, especially for C4 plant species. But the overall shape is 482 

non-linear (Figs. 1-2), which reveals that the variations in qL and Ci prevent an exclusive 483 

dependence of photosynthesis on SIFPSII (Eq. 1). Indeed, qL decreases with light (Fig. S6), which 484 

in turn increases the nonlinearity between photosynthesis and SIFPSII under high PAR (Fig. 2a). In 485 

addition, the responses of photosynthesis and SIFPSII to Ci were not synchronized due to dynamic 486 

NPQ. For example, An increased initially and then reached a stable value when Ci is high (Fig. S9), 487 

whereas SIFPSII can have a slight decrease at the very low Ci (for some species) and then increased 488 

to a peak followed by a subsequent decrease or remaining constant at high Ci (Fig. S10). The 489 

patterns of SIFPSII vs Ci shown in Fig. S10 reflect the dynamics in the impact of competitive 490 

interactions between photochemical and non-photochemical quenching on ChlF emission. At low 491 

Ci, NPQ dominates whereas the impact of photochemical quenching is limited. As Ci increases, 492 

photochemical quenching increases while NPQ weakens. This asynchrony of the responses of An 493 

and SIFPSII to Ci, especially under the low Ci induced by constraints of stomatal conductance, 494 

explains the apparent “decoupling” of SIF and photosynthesis (i.e., high SIF and low 495 

photosynthesis) following artificially induced stomatal closure observed in single-factor analyses 496 

(Marrs et al., 2020). Under these conditions, low Ci inhibits photosynthetic carbon assimilation, 497 

and also induces low qL and increases NPQ to dissipate excess energy to offset the elevated photo-498 

oxidative stress. As a result, low Ci contributes substantially to the dynamics and complexity of 499 

the photosynthesis-SIFPSII relationship.  500 

In previous studies, the complex environmental and physiological regulations on the 501 

photosynthesis-SIF relationship are typically hidden in the simplified term of light use efficiencies, 502 

which prevents a consistent interpretation of photosynthesis-SIF relationship across time scales, 503 

phenological stages, biomes, and environmental variations. For example, previous studies reported 504 

linear and even approximately biome-independent scaling between SIF and photosynthesis at the 505 

canopy level (e.g., Sun et al., 2017; Li et al., 2018), because they were conducted at the seasonal 506 

scale and beyond, under which scales the co-variation of SIF and photosynthesis is dominated by 507 

the temporal variability in leaf area index (LAI, and therefore fPAR) (e.g., Yang et al., 2015; 508 

Magney et al., 2020). However, the linearity tends to break down at shorter time scales (e.g., sub-509 
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daily, Zhang et al., 2016; Damm et al., 2015) as analogous to the typical light response curves in 510 

this study and/or under stress (Marrs et al., 2020). In the former case, LAI remains relatively stable 511 

diurnally or within a few days, the relationship between SIF and photosynthesis can deviate from 512 

being linear due to the strong physiological regulation of variables such as qL, and/or Ci. Further, 513 

these physiological regulations can vary among phenological stages, resulting in disparate 514 

phenology-dependent photosynthesis-SIF relationships (Yang et al., 2018; Miao et al., 2018, 515 

2020). On the other hand, at sub-daily timescales, decoupling of photosynthesis and SIF could 516 

occur also due to variations in APAR and escape probability arising from canopy structure and 517 

illumination-viewing geometry (Chang et al., 2021). In the latter case, e.g., under cases of extreme 518 

photo-oxidative stress, it is crucial to incorporate qL and/or Ci in order to accurately interpret the 519 

coupling/decoupling of photosynthesis-SIF relationships (as explained above).  520 

SIF as an optical ‘shortcut’ reduces uncertainty from parameters in MLR-SIF  521 

Currently, TBMs and some remote sensing products (e.g., BESS, Ryu et al., 2011; PR model, 522 

Keenan et al., 2016) have almost exclusively adopted the FvCB biochemical model to calculate 523 

leaf photosynthesis (Farquhar et al., 1980; Sharkey, 1985; von Caemmerer, 2020), with 524 

considerably variable implementation across TBMs, resulting in largely different responses of 525 

simulated photosynthesis to environmental drivers (i.e., light, temperature, CO2, VPD, and soil 526 

moisture, Rogers et al., 2017). Notably, the fundamental biochemical and kinetic parameters 527 

required by FvCB constitute major sources of uncertainty in simulated photosynthesis (Bonan et 528 

al., 2011, 2012). For example, Vcmax and Jmax vary widely across PFTs, and are sensitive to leaf 529 

nitrogen contents, leaf ontology, and environmental changes (Field & Mooney, 1986; Kattge et al., 530 

2009, 2020; Detto & Xu, 2020), which in turn lead to significant model output uncertainty (Walker 531 

et al., 2017; Rogers et al., 2017; Bonan et al., 2011).  532 

We demonstrated the capability, scalability, and effectiveness of MLR-SIF across PFTs 533 

and environments, which stems from the fact that SIFPSII, once inferred from direct observations 534 

(after appropriately accounting for factors such as spectral integration and escape probability), 535 

carries information on instantaneous plant functional responses to atmospheric forcings and 536 

integrates over the dynamic physiological complexities of photosynthesis. This means that MLR-537 

SIF can circumvent estimation uncertainty propagated from model parameter errors/deficiency. 538 

For example, unlike FvCB, MLR-SIF does not rely on highly sensitive biochemical and kinetic 539 



 
 

25 
 

parameters such as Vcmax, Jmax, and Kco, or selection of limitation stage of carboxylation (Walker 540 

et al., 2021). Note that FvCB has larger PEU than MLR-SIF does, not because the former has a 541 

structural weakness but because the latter takes advantage of an observable photosynthetic 542 

functional ‘shortcut’ (SIF) (Gu et al., 2019), i.e., at least in theory, SIF makes estimating 543 

photosynthesis simpler although there are still difficult aspects that need to be resolved through 544 

continuing research. MLR-SIF effectively utilizes the mechanistic information in observed SIF to 545 

estimate photosynthesis in a forward way, independent from other existing photosynthesis 546 

estimation approaches that are known to have different levels of uncertainties (Kira et al., 2021; 547 

Wehr et al., 2016; Keenan et al., 2019). Independent estimates are essential for confidence building 548 

as photosynthesis cannot be measured directly beyond a single leaf. 549 

A recent new photosynthesis model based on Cytochrome b6f (Johnson & Berry, 2021) 550 

also established from light reaction perspective, but there are numerous differences with MLR-551 

SIF. First of all, the model from Johnson & Berry (2021) does not use SIFPSII (or SIF) as an input 552 

and focuses on PSI, rather than PSII. In contrast, MLR-SIF use SIFPSII as input, and its goal is to 553 

build a physiological foundation that can mechanistically and accurately utilize SIFPSII to directly 554 

and independently estimate photosynthesis. In addition, MLR-SIF applies to all carboxylation 555 

limited states, regardless of whether the carboxylation is limited by RuBP regeneration, Rubisco, 556 

or TPU, while the model developed by Johnson & Berry (2021) aims to establish a mechanistic 557 

light reaction model that can replace the empirical light-reactions sub-model of FvCB when 558 

photosynthetic assimilation is RuBP-regeneration limited. 559 

Prospects of future work for facilitating MLR-SIF applications to large scales 560 

As the first effort for building the physiological foundation towards utilizing SIFPSII to 561 

mechanistically and independently estimate photosynthesis, this study starts from and focuses on 562 

the leaf level, the same as the introduction of the original FvCB model. Building the physiological 563 

foundation and gaining confidence on MLR-SIF at the leaf level is a necessary step, as existing 564 

leaf-level simulations of ΦF, NPQ, ΦPSII as well as their functional relationships exhibit strong 565 

discrepancy with observations and across different TBMs (Yang et al., 2021; Parazoo et al., 2020). 566 

Moving forward, to fully unleash the power of MLR-SIF to infer photosynthesis at large scales 567 

that are independent from currently existing photosynthesis estimates (with well-documented 568 

uncertainties), future work in the following aspects are needed. 569 
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a) Parameterization of qL or NPQ: In principle, modeling Ja requires either qL or NPQ (but 570 

not both) if SIFPSII could be inferred from direct observational input (Gu et al., 2019). To 571 

facilitate large-scale applications (without the needs of PAM measured qL or NPQ), qL or 572 

NPQ must be modeled independently. To achieve this, the present application of MLR-573 

SIF empirically models qL as a function of PAR. Our results confirm that this 574 

parsimonious approach can capture the first-order effect of the SIFPSII-photosynthesis 575 

relationship, as qL reflects the redox poise of PSII reaction centers and is far more sensitive 576 

to variations in light than to other environmental variations such as temperature or CO2. 577 

Nevertheless, other environmental factors can also influence qL. For example, temperature 578 

can play an increasing role in regulating qL under high PAR (Fig. 2c). This will require 579 

more controlled experiments and/or synthesis of existing measurements across biomes 580 

and environmental conditions to refine our current parsimonious parameterization of qL. 581 

Conceivably, it may be possible to mechanistically model the dynamic responses of qL to 582 

environmental variations based on the redox relationships between reaction centers and 583 

electron carriers along the electron transport chain. Using a mechanistic qL model will 584 

considerably improve the applicability of the MLR-SIF model. Although this study does 585 

not pursue a NPQ route for the application of the MLR-SIF model, this alternative route 586 

also has values. For example, it will promote field research in the dynamics of NPQ, which 587 

has important implications for land surface energy balance (Raczka et al., 2019), at 588 

different time scales. It will also lead to estimates of photosynthesis that are independent 589 

from those of the qL-based MLR-SIF model when SIF is available as a direct observable 590 

input. Empirical models of NPQ that consider the memory effect of past illumination 591 

history such as that used in Zhu et al. (2004) will have some capacity to deal with the 592 

multiplicity of NPQ at different time scales and can be used as a starting point for an NPQ-593 

based MLR-SIF. Mechanistically modeling NPQ (Zaks et al., 2012) for broad 594 

applicability will be a huge challenge but will be necessary to enabling the general use of 595 

the NPQ-based MLR-SIF model at different scales. 596 

b) Dynamic calculation of Ci: This study utilized measured Ci as input to MLR-SIF, with the 597 

intention to eliminate uncertainties not specifically related to SIFPSII, which is our major 598 

focus here. Similarly, FvCB in this study also utilized measured Ci as an input. This way 599 

ensures a fair comparison between them in the context of leaf-level application. Moving 600 
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toward an eventual application of MLR-SIF to large scales would necessitate coupling the 601 

MLR-SIF model with stomatal conductance and energy balance models. In order to 602 

dynamically determine Ci by closing the system of equations of MLR-SIF, stomatal 603 

conductance, Fick’s law of CO2 diffusion from atmosphere to leaf interior, and energy 604 

balance are required, much like how FvCB is applied in TBMs.  605 

c) Parameter ΦPSIImax: We employed the measured ΦPSIImax values to MLR-SIF, which range 606 

from 0.74 to 0.81 (Table S3). The slight variability in ΦPSIImax across PFTs is likely a 607 

consequence of the different leaf ages resulted from the longtime span of our 608 

measurements and perhaps also environmental stress. Fortunately, utilizing a fixed 609 

FPSIImax value across plant species has only very minor impacts on our results (comparing 610 

Fig. 3a with Fig. S8d), giving us confidence that it is reasonable to apply a constant 611 

FPSIImax for large-scale applications. 612 

d) Parameter kDF: In MLR-SIF, estimation of Ja requires kDF as a parameter input. Yet, the 613 

precise value of kDF and the degree to which it varies across plant species are presently 614 

unknown, as it is impossible to isolate kDF with the current PAM fluorometry (Gu et al., 615 

2019). We note that the uncertainty in the precise value of kDF does not affect our 616 

conclusion, as it is the product term (1+kDF)×SIFPSII, instead of kDF itself, matters for Ja 617 

estimation at the leaf level. Specifically, SIFPSII and kDF always appear together as a 618 

product term (1+ kDF)×SIFPSII in the Ja calculations (Eq. 1c and Eq. 2). If kDF increases, 619 

the modeled SIFPSII must decrease in order to keep the modeled Ja meaningful (i.e., in 620 

agreement with PAM Ja measurements). On the other hand, the precise determination of 621 

kDF is a critical step to scale up MLR-SIF to larger-scale applications, at which, SIF can 622 

be directly observed but not its product with kDF. It is possible that the value of kDF can be 623 

constant across species, as both kF and kD are physical properties of chlorophyll molecules 624 

whose structures (e.g., electron orbitals) are highly conserved for higher plants. This 625 

argument can be implicitly supported by the highly conservative FPSIImax value across 626 

plant species when they are not under stress, even though there are more processes 627 

involved in determining it than kF or kD. In terms of potential dependence of kDF on 628 

temperature, earlier work (van der Tol et al., 2014) hypothesized that kD varies with 629 

temperature. This hypothesis will need to be verified and its physical mechanisms will 630 
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need to be identified. In the future, the value of kDF can be precisely determined by 631 

measuring both adaxial and abaxial fluorescence emissions, as well as leaf absorptions. 632 

This way can lead to direct measurements of the true total SIF emission from the 633 

photosystems, which together with measured qL and NPQ can be used to determine kDF 634 

(Gu et al., 2019). This additionally will require the development of a leaf-level full 635 

spectral fluorescence system that is capable of separating PSII and PSI contributions. 636 

e) PSI and alternative electron flow: The functional stability of PSII and PSI differs under 637 

stress (Ivanov et al., 2001), which might change their relative contributions to 638 

fluorescence emission. Thus, fluorescence emission from both PSII and PSI should be 639 

considered when SIFPSII is inferred from at-sensor SIF for the broad application of MLR-640 

SIF. Meanwhile, when plants are under stress, alternative electron sinks other than 641 

carboxylation oxygenation may be large. These issues may affect SIF – photosynthesis 642 

relationships and should be explored in the future. An integration of the PSII-focused (i.e., 643 

Gu et al. 2019) and PSI-focused (i.e., Johnson & Berry, 2021) light reaction modeling 644 

approaches may lead to new insights in this direction.  645 

f) Coupling MLR-SIF with leaf and canopy radiative transfer: This study starts from and 646 

focuses on the leaf level, assuming that SIFPSII can be inferred from at-sensor SIF 647 

observations. Currently, SIFPSII is built upon PAM fluorometry (as used in this study), not 648 

a directly observable. However, in theory, SIFPSII can be derived from the directly 649 

observable at-sensor SIF, and once this is achieved, we do not need PAM anymore. In 650 

reality, from SIFPSII to at-sensor SIF, multiple radiative transfer processes within the leaf 651 

and across the canopy, i.e., re-absorption and scattering (their relative strength depends 652 

on wavelength), can largely attenuate the observed signal. Therefore, large-scale 653 

applications of MLR-SIF would require a coupling with leaf/canopy radiative transfer 654 

scheme (as commonly done in TMBs) or invoking an escape probability factor determined 655 

from other means to infer SIFPSII from at-sensor SIF, a currently key research topic in SIF 656 

remote sensing (e.g., Yang et al., 2018; Liu et al., 2019; Zeng et al., 2019).  657 

Conclusions 658 

Here we demonstrate the possibility and advantage in mechanistically estimating photosynthesis 659 

using SIFPSII as an input across a wide range of PFTs and climates. The fidelity, scalability, and 660 

lower uncertainty compared with the traditional FvCB model suggests that MLR-SIF has great 661 
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potential in applying the rapidly increasing volumes of satellite SIF monitoring to estimate global 662 

photosynthesis. This model framework has similar mechanistic rigor as the conventional FvCB 663 

model but requires fewer parameters. It enables a truly independent estimate of photosynthesis 664 

based on SIF observations. The importance of SIF lies in the fact that it is a functional signal of 665 

photosynthesis and reflects collective responses of plants to environmental variations. Therefore, 666 

the availability of SIF observations can greatly ease the efforts for modeling photosynthesis by 667 

avoiding the need to explicitly and accurately represent individual environmental/physiological 668 

controls on photosynthesis (i.e., which carboxylation limitation occurs under what conditions) and 669 

by reducing parameterization burdens and associated uncertainties. 670 

 671 
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