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Summary

The availability of Solar-Induced chlorophyll Fluorescence (SIF) offers potential to curb
large uncertainties in estimating photosynthesis across biomes, climates, and scales.
However, it remains unclear how SIF should be used to mechanistically estimate
photosynthesis.

This study built a quantitative framework to estimate photosynthesis, based on a
mechanistic light reaction model with chlorophyll a fluorescence from PSII (S/Fpsn) as an
input (MLR-SIF). Utilizing 29 Cs and C; plant species representative of major plant biomes
across the globe, we verified such a framework at the leaf level.

MLR-SIF is capable of accurately reproducing photosynthesis for all C3 and Cs4 species
under diverse light, temperature, and CO: conditions. We further tested the robustness of
MLR-SIF using Monte Carlo simulations, and found that the estimated photosynthesis is
much less sensitive to parameter uncertainties relative to the conventional Farquhar, von
Caemmerer, Berry (FvCB) model because of additional independent information contained
in SIFpsi1.

SIFpsi, once inferred from direct observables of SIF, provides “parameter savings” to the
MLR-SIF as compared to the mechanistically equivalent FvCB and thus shortcuts the
uncertainties propagated from imperfect model parameterization. Our findings set the stage
for future efforts employing SIF mechanistically to improve photosynthesis estimation

across scales, functional groups, and environmental conditions.

Key words: photosynthesis model; Solar-induced chlorophyll Fluorescence (SIF); Non-

Photochemical Quenching (NPQ); parameter uncertainty; redox state of PSII reaction centers

One Sentence Summary: Utilizing joint chlorophyll a fluorescence and gas exchange

measurements across diverse plant biomes, we build the physiological foundation for employing

SIF to mechanistically estimate photosynthesis.
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Introduction

Accurate quantification of terrestrial photosynthesis at different spatiotemporal scales is a long-
sought goal in carbon cycle science (Schimel, 1995; Beer et al., 2010; Ciais et al., 2014). The
rapidly growing, cross-scale observational capability of Solar-Induced chlorophyll Fluorescence
(SIF), the only optically detectable signal that probes the whole photosynthetic process (Porcar-
Castell et al., 2014), offers a promising opportunity to achieving the goal of quantifying
photosynthesis across different spatiotemporal scales (Mohammed et al., 2019; Porcar-Castell et
al., 2021). This has been evident by the dramatic growth of SIF research and efforts to transform
SIF observations to terrestrial photosynthesis estimation over the last few decades (Mohammed et
al., 2019). However, how exactly SIF should be used to estimate photosynthetic carbon

assimilation in natural environments remains elusive.

Initial findings have identified encouraging linkages between SIF and photosynthesis from
both observational and modeling aspects. From the observational side, existing studies have
empirically linked remotely sensed SIF with photosynthesis inferred from eddy covariance (EC)
measurements of net ecosystem exchange (NEE) of CO: (e.g., Guanter et al., 2014; Joiner et al.,
2014; Yang et al., 2015; Verma et al., 2017; Sun et al., 2017; Wood et al., 2017; Liu et al., 2017,
Lietal., 2018; Miao et al., 2018; Yang et al., 2018). However, photosynthesis inferred from NEE
at EC towers, although often assumed as the observational “truth”, is not directly measured but
indirectly and imprecisely derived with approaches known to contain errors or even biases
(Wohlfahrt & Gu, 2015; Wehr et al., 2016; Keenan et al., 2019). Using potentially and likely
biased estimates of photosynthesis as truth to infer SIF-photosynthesis relationships essentially
contradicts the original motivation of applying SIF to constrain photosynthesis (or reduce
uncertainties in photosynthesis estimates). Furthermore, it is circular to apply such SIF-
photosynthesis relationships to back-calculate photosynthesis; this circular estimation does not

fully take advantage of the mechanistic, independent information carried in SIF.

Existing modelling studies (e.g., Zhang et al., 2014; Koffi et al., 2015; Verrelst et al., 2016;
Parazoo et al., 2020) primarily adopt the leaf-level formulation of the SIF-photosynthesis
relationship from the SCOPE (Soil Canopy Observation Photosynthesis Energy) model (van der
Tol et al., 2014). Specifically, this approach utilized the Farquhar, von Caemmerer, Berry (FvCB)
biochemical model to compute photosynthesis (and photochemical quantum yield, @p) (Farquhar

et al., 1980; Sharkey, 1985). The modeled photosynthesis in turn is used to calculate fluorescence

4
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yield (@r) and therefore SIF by empirically modeling non-photochemical quenching (NPQ) as an
exclusive function of @p. Terrestrial biosphere models (TBMs) that explicitly incorporate SIF and
data assimilation systems that have adopted such formulations to ingest satellite SIF to improve
photosynthesis (and net carbon budgets) estimates (e.g., Thum et al., 2017; Bacour et al., 2019;
Norton et al., 2019). While useful for simulating SIF-photosynthesis relationships and their
sensitivity to different environmental conditions, the SCOPE-based strategy cannot escape from
the usual, well-known problems of parameter and scaling uncertainty in applying FvCB to estimate
photosynthesis at scales beyond a leaf (e.g., Rogers et al., 2017; Schaefer et al., 2012; Anav et al.,
2015). Indeed, Parazoo et al. (2020) reported wide discrepancies in modeled SIF and

photosynthesis across TBMs and large disagreement with ground observations.

Moving forward, with emerging interest in taking advantage of the information contained
in remotely sensed SIF observations to improve photosynthesis estimates, it is critical to develop
a mechanistic approach that enables direct and independent estimation of photosynthesis from SIF.
Photosynthesis consists of light and carbon (also known as dark, light-independent, or Calvin-
Benson cycle) reactions in sequence, which collaborate via multiple feedforward and feedback
mechanisms to ensure the safety and smooth operations of the photosynthetic machinery in
dynamic environments (Rochaix, 2011; Roach & Krieger-Liszkay, 2014). SIF is emitted during
the light reactions. The mechanistic light reaction (MLR) equations derived by Gu et al. (2019)
established the theoretical relationship between SIFpsu (i.e., the true total chlorophyll a
fluorescence - ChlF emitted from PSII, prior to signal attenuation due to leaf self-absorption) and
the actual electron transport rate (Ja) from photosystem II (PSII) to photosystem I (PSI). Thus, if
SIF is observed, J, can be calculated, provided that the followings are known: 1) the escape
probability, i.e., the ratio of the physiologically determined S/Fpsn to the sensor-observed SIF,
which can be determined via leaf/canopy/atmosphere radiative transfer modeling (e.g., Yang &
van der Tol, 2018; Liu et al., 2019; Zeng et al., 2019), and 2) either the fraction of open PSII
reaction centers (qr) or NPQ (only one is needed as the other can be resolved with STFpsi; Gu et
al., 2019). Photosynthesis can then be determined from the rates of carboxylation and
photorespiration that the SIF-informed J. supports (Farquhar er al., 1980; Sharkey, 1985;
Blankenship, 2002; von Caemmerer, 2000). Photosynthesis estimated from observed SIF is based
upon theory and has a clear separation between input and output, which avoids the undesirable

circularity discussed above.
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At present, it remains unexplored the degree to which MLR-SIF is scalable across biomes
and environmental conditions, and whether it has any practical advantages for photosynthesis
estimation relative to existing approaches, e.g., the conventional FvCB or a simple linear scaling
from SIF reported by previous studies (Sun et al., 2017; Li et al., 2018). Mechanistically, the MLR-
SIF model and the FvCB model are equivalent, given that the light and carbon reactions are
balanced (Blankenship, 2002). However, these two models differ in the number and complexity of
parameters required (See Notes S1 in Gu et al., 2019). The FvCB model minimally represents the
light reactions via an empirical electron transport equation to focus on the mechanistic
representation of the carbon reactions. No light reaction mechanisms (e.g., light harvesting,
photochemical and non-photochemical quenching) are represented. The carbon reactions belong
to the downstream processes in photosynthesis and are highly complex. As a result, a large number
of biochemical and kinetic parameters are needed to run the FvCB model and these parameters can
be highly variable across biomes and environments. Consequently, different TBMs that employ
the same FvCB model show considerable disagreements in simulated photosynthesis and its
response to environmental drivers; and much of the disagreements can be attributed to model
parameter uncertainties (e.g., Schaefer et al., 2012; Anav et al., 2015; Rogers et al., 2017; Walker
et al.,2021). The MLR-SIF model requires fewer input parameters than FvCB, because SIFpsn as
an input together with gr implicitly contains environmental and physiological information
represented by the FvCB model for estimating photosynthesis (Gu et al., 2019). We thus predict
that the parsimony of the MLR-SIF model can reduce the impact of parameter uncertainties for
photosynthesis estimation when the extra independent information (both environmental and

physiological) contained in SIF is available.

This study has two objectives. The first objective is to demonstrate and validate the
effectiveness of the mechanistic MLR-SIF model that uses SI/Fpsu as an input to compute
photosynthesis. The second objective is to demonstrate the practical advantages of the parameter
parsimoniousness of the MLR-SIF approach when facing parameter uncertainties, i.e., to test the
above hypothesis across a broad range of Plant Functional Types (PFTs) and dynamic
environments. To our knowledge, this is the first study to demonstrate the possibility and
advantage of mechanistically estimating photosynthesis from the perspective of light reactions
using SIFpsn as an input across a wide range of PFTs and climates. We focus on the leaf level so

that fundamental processes can be more fully investigated. To achieve our objectives, we collected
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concurrent measurements of leaf gas exchange and pulse amplitude modulated (PAM) ChlF for
29 species of 11 representative PFTs native to Temperate, Boreal, and Tropical climates (Table
S1). Using this dataset, we unraveled the regulation of environmental and physiological variations
on the dynamic relationship between S/Fpsu and photosynthesis across PFTs, and assessed the
advantages of MLR-SIF for estimating photosynthesis in terms of the capability, scalability, and
uncertainty across PFTs and environments. We demonstrate that the key value of SIF lies in the
process information it contains, which reduces the number of hard-to-measure parameters and the
associated uncertainties for estimating photosynthesis. Our findings should pave the way for future
investigations to apply SIF as an observational input to mechanistically estimate photosynthesis at

the canopy scale and beyond.
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Materials and Methods

Derivation of the MLR-SIF model

SIFpsn is emitted during the photosynthetic light reactions, and can be used to directly quantify the
actual electron transport rate (Ja) balanced by carboxylation and photorespiration in the carbon
reactions (Blankenship, 2002), following the principle of energy conservation (Gu et al., 2019).
Once J, is determined, net photosynthesis (4,) can be calculated based on the electron
requirements of carboxylation and oxygenation (Farquhar et al., 1980; Sharkey, 1985; von

Caemmerer, 2000):

c,—r* _
P m]a — R, for C; species Eq.1a
nT Al e T
3 Ja — Ra, for C, species Eq.1b

® Xx(1+k
]a — PSIImax ( DF) x q. % SIFPSU Eq. 1c

1- d)PSIImax

Here A, refers to gross photosynthesis; SIFpsi represents the true total ChlF emitted from PSII,
which in principle should be utilized to establish the mechanistic relationship with photosynthesis;
C; the intercellular CO> concentration; 7™ the CO, compensation point in the absence of
mitochondrial respiration in the light for C3 plants; x the fraction of total electron transport of
mesophyll and bundle sheath allocated to the COz-concentrating mechanism for C4 plants; Rq the
day respiration; @psimax the maximum photochemical quantum efficiency of PSII in dark-adapted
leaves; kpr = kp/kr, with kp and kr representing the rate constants of constitutive thermal dissipation
and fluorescence, respectively; gi is derived under the assumption of lake model for photosynthetic
unit connectivity. Note that MLR-SIF applies to all carboxylation limitation states, regardless of
whether the carboxylation is limited by Ribulose 1,5-bisphosphate (RuBP) regeneration, RuBP
carboxylase/oxygenase (Rubisco), or triose phosphate use (TPU), because it directly models the
“actual” electron transport rate J. from SIFpsi (as opposed to the “potential” electron transport rate
employed in FvCB) (Gu et al., 2019). As in most applications of the FvCB model, Eq. 1a assumes
that the supply of NADPH, rather than ATP, from the light reactions limits carboxylation.
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Ja can also be derived alternatively from SIFpsu via NPQ (Gu et al., 2019):

where o is leaf absorptance; S the fraction of absorbed light allocated to PSII.

Eq. 2 and Eq. 1c are theoretically equivalent (Gu et al., 2019), but practically have different
complexity and thus applicability. Eq. 2 shows more clearly the principle of energy conservation
among different dissipation pathways of absorbed photons. For actual applications, it requires PAR,
NPQ, and SIFpsn as inputs. Eq. 1c¢ requires only SIFpsi and g1. g1 reflects the redox state of PSII
and provides a good steady-state approximation of the state of Cytochrome b6f (Cyt b6f) which
plays a central role in the control of steady-state photosynthesis (Johnson & Berry, 2021). NPQ
involves both energetic and enzymatic reactions. Although the heat dissipation from NPQ is
predominantly localized in the light-harvesting complexes of PSII, the activation and regulations
of this release occur in the lumen, thylakoid membrane, and stroma. NPQ has a delayed response
to light variations (Kromdijk et al., 2016), a property that is exploited in PAM fluorometry to
transiently decouple the photochemical and non-photochemical quenching to calculate various
fluorescence variables (e.g., @», NPQ, and ¢1). Furthermore, NPQ has multiple components (e.g.,
the energy-dependent qE, the irreversible components ql and qZ, and state transitions qT) and each
operates at different time scales (Ruban, 2016, Nilkens et al., 2010, Demmig-Adams et al., 2014).
The complex activation and regulations, delayed time response, and involvement of multiple time
scales in the dynamics of NPQ components greatly increase the complexity in modeling NPQ as
compared to gr. Thus, we choose the gr-based approach for calculating J, from SIFpsn which
simplifies the mechanistic modeling of photosynthesis as advocated in Gu et al. (2019). As PAM
only measures ChlF parameters but not SIFps itself, we had to derive SIFpsi from the following

theoretical equations (Gu et al., 2019):

SIFPSIIZQFXPARXCIXB Eq.3

1-¢
¢F_ PSIlImax Eq 4
(1+kpp)X[(1+NPQ)X(1=Ppsirmax) TALXPpPSIImax]

Here, we used @psiimax, NPQ and g1 inferred from PAM measurements to derive S7Fpsn (full list

of symbols/variables defined in Table S2). Note that if SIFpsn is available as an observational input
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(i.e., inferred from direct observables), we do not need to model SIFpsn, but simply use Eq. 1c (in
this case, NPQ is not needed) to compute J, and therefore photosynthesis. Even though it is indeed
now possible to measure leaf-level ChlF emission spectra (in absolute radiometric units, e.g.,
Magney et al., 2019b; Meeker et al., 2021), such measurements always contain contributions from
PSII and PSI, while in theory SI/Fpsn is required to estimate photosynthesis (Eq. 1). Also, such
measurements cannot resolve the issue of leaf re-absorption of fluorescence. Together these factors
mean that direct fluorescence emission measurements in the absolute radiometric units
unavoidably contain uncertainties. Furthermore, spectral fluorescence measurements have yet to
be widely collected for diverse biomes under dynamic natural environments, as utilized in this
study. Balancing consideration of these factors, we first used direct leaf-level ChlF emission
spectra measurements as a qualitative check for the realism of the theoretically-derived SIFpsn (see
supporting information in Notes S1 and Fig. S1 for the validation of S/Fpsi). Subsequently, the
theoretically-derived STFrsu (Eq. 3) was used to estimate photosynthesis (Eq. 1) across all plant

species in our main analyses.

Note that SIFpsn (Eq. 3) is the physiologically determined, spectrally and hemispherically
integrated fluorescence emission in quantum unit, whereas in the remote sensing community, SIF
is often given as radiance at a specific wavelength given in power unit per solid angle. From the
point of view of probing photosynthesis, only the physiologically determined, spectrally and

hemispherically integrated fluorescence emission in quantum unit is meaningful.

In this study, the parameters a and f are assumed constant at 0.84 (Bjorkman & Demmig,
1987, Schreiber, 2004) and 0.5 (von Caemmerer, 2000), respectively. Gu et al. (2019) set kpr to
19 using the normalized values of kp and kr used in van der Tol et al. (2014). This study utilized a
kor value of 10, as inferred from Pfiindel (1998). This value was further corroborated by Tesa et

al. (2018) with actual measurements (see their Fig. 6).

Plant species and their growth environment

We collected concurrent measurements of leaf gas exchange and ChlIF parameters using PAM
fluorometry for 29 species (25 C3 and 4 C) that are representative of major PFTs (commonly

adopted by TBMs) across the globe (Table S1). Measurements were taken at four locations:
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Cornell Botanic Gardens (CBG), Cornell Musgrave Research Farm (CMRF), Oak Ridge National
Lab (ORNL), and Xishuangbanna Tropical Botanical Garden (XTBG) (Table S1). The
meteorological data and other growth environmental information at these four locations were
described in Notes S2. This dataset was utilized to demonstrate the possibility and advantage in
mechanistically estimating photosynthesis from the perspective of light reactions using SIFpsn as

an input (Eq. 1) across a wide range of PFTs and climates at the leaf scale.

Measurements of concurrent leaf gas exchanges and ChlF parameters with PAM

Nineteen among all the 29 species were measured with both light and CO: response curves, while
only light response curves were collected for the remaining species (Table S1). For each light or
CO; response curve, we selected 3-4 healthy and fully expanded sunlit leaves as replicates of each
species. The specific procedures for measuring light and CO> response curves are described in
Notes S3. Gas-exchange variables (4, and C;), steady-state and maximum ChlF under light (Fs and
Fn’) were obtained from light and CO» response curves. After sequentially collecting light and
CO; response curves for the same leaves, we subsequently measured the maximum and minimum
ChIF under fully dark-adapted conditions (Fm and F,) for each leaf replicate (see procedure in

Notes S3). These measured ChlIF parameters were in turn used to calculate @psiimax

_Fm—F, F,

(Pp SIImax_F—)a the minimum ChlF under light (¥ 0’=ﬁ, Oxborough & Baker, 1997),
m PSIImax m
Fm=Fs , Fo Fin=Fn
qu(qr = 57— X ), NPQ (NPQ="-=), @r (Eq. 4), and SIFpsu (Eq. 3).

Data processing and analysis

Parameter fitting and aggregation: The MLR-SIF model (Eq. 1) requires the following
parameters and driving variables as input: four parameters (@psimax, kpr, ¥, Rq) and three
variables (C;, g1, and SIFpsn) for C3, four parameters (@psimax, kpF, X, Rq) and two variables (gL
and SIFrsn) for Cs. At the leaf level, these variables and @psimax can either be directly measured
(e.g., i) or inferred from measurements (e.g., SIFpsu, @psimax and gr), and thus can be readily
incorporated into Eq. 1. Specifically, the set of parameters (™, R4, x) were derived by fitting the
MLR-SIF model with data that met the quality control criteria (see Notes S4) using

11
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scipy.optimize.curve_fit script in Spyder 3.8. This fitting procedure was performed separately for

each leaf replicate of all species.

We designed a parsimonious function to explicitly model gr as a function of PAR instead
of treating it as an input variable. The rationale here is that, although SIF observations can be
readily available from remotely sensed measurements, gv is usually not available at regional/global
scale. We used an exponential equation with two parameters (ag4, and by, ) to represent the

relationship between g1 and PAR, a parsimonious formulation that can take advantage of available

PAR:
qL = aqLe_quPAR Eq. 5

Here a,, and bg, were derived by fitting this exponential equation with gi inferred from ChIF and

PAR measured by Li-6800 and/or GFS3000 for each leaf of all species. The means of the fitted
aq,and b, were then calculated across all leaves for each PFT, which were used to calculate gr
for each leaf in the corresponding PFT. The fitted and observed g1 agree well with each other for
different PFTs (Fig. S2). Although this parsimonious model does not account for the impact of
variation in Cj on qL, it is adequate to capture the first-order variations in gr in natural conditions.
This is because that C; covaries with PAR in order to keep the balance between light and carbon
reactions of photosynthesis, thus the parsimonious g. model as function of PAR is not independent
of the changes in Ci. Moreover, if we deliberately force the model to “fail” in experiments by
holding PAR at a high constant value and changing C;, there would be two scenarios: 1) gL would
vary with C; but only within a narrow range, unless Ci is made close to zero; 2) when Ci; is close
to zero, gL will have to be close to zero too because the Calvin-Benson cycle cannot support any

electron transport. Neither of these scenarios occurs in nature.

For MLR-SIF, once its parameters were fitted (I, Ra, x, a4, and by, ) or derived (Ppsiimax)
for each leaf replicate under 25 °C, we obtained “PFT-specific” parameter values by averaging
fitted parameters across all species within the same PFT, and “PFT-universal” parameter values
by averaging fitted parameters across all species of all PFTs respectively (Table S3). Details of
parameter fitting and aggregation to PFT levels can be found in Fig. S3. Note that the motivation

of PFT-level parameter aggregation is to avoid the needs for acquiring plant traits for individual

12
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species which are challenging to obtain for global applications, the eventual goal of the MLR-SIF
application. On the other hand, considering only 29 plant species were employed in this study and
in some cases a PFT is characterized by only one or two species, we reported our statistical

assessment (in Results) using datasets from all plant species instead of that aggregated to PFT.

To enable comparison with the conventional FvCB model, we further derived key relevant
parameters required by FvCB (including the maximum carboxylation rate-Vcmax, maximum
electron transport rate-Jmax, ¥, and Rq) through parameter fitting utilizing measured CO; response
curves in conjunction with the corresponding light response curves (see Notes S5 for detailed
procedures) for the same leaf replicate across all species of a subset of six C3 PFTs. These six PFTs
used here are BDT-Temperate, BDS-Temperate, BDT-Boreal, NET-Boreal, C3 Crop and Cs grass.
For a fair comparison of the performance between MLR-SIF and FvCB models in estimating
photosynthesis, only the six C3 PFTs with both CO> and light response curves available were used
to obtain “PFT-specific” and “PFT-universal” parameters for both models. The parameters
required by FVCB are @psiimax, I ¥, Rd, Vemax, Jmax, the fraction of absorbed light allocated to PSII
p, the curvature parameter 8, and the Michaelis-Menten coefficients of Rubisco — Kco, where
Keo=K(1+O/K,). Ppsimax Was inferred from PAM. K., K,, 8, and f were assumed as constants.
Specifically, we adopted in vivo values for K. (i.e., 404.9 umol mol ™) and K (i.e., 278.4 pumol mol
" provided by Bernacchi et al., (2001); 8 was assumed to be 0.9 (Medlyn et al., 2002) and S
assumed to be 0.5 (von Caemmerer, 2000). The remaining parameters, i.e., Vemax, Jmax, I ¥, and Rq,
were fitted by using the python optimization Scipy in Spyder 3.8. Note that we decided to fit only
the four parameters here but pre-set others (to standard literature values), due to the consideration
of balancing the degree of freedom (that represents the most variability in 4,) and the goodness

of model-data fitting.

Validation of the MLR-SIF model: We first assessed the fitted parameters using the leave-
one-out cross-validation for each species. Specifically, MLR-SIF is trained on all samples except
for one replicate and a validation is made for that replicate, and we repeat this process N times for
each species (N = the replicate number of each species). The parameters under assessment included

g, by, , Ppsiimax, 17* (for C3), x (for Cs), and Rq. Fig. S4 shows that the RMSE between the

qL°> ~4L°

modeled 4, computed with parameters obtained from the training group and the actual observed
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An is 2.42 pmol m2 s! for the validation group, suggesting that the parameters fitted from the

training group well captures that of the validation group.

Next, we refitted the parameters for each leaf replicate for demonstrating the performance
of the MLR-SIF model across PFTs, light levels, and temperatures. Here the PFT-specific
parameters (ag, , by, , Ra, I'™*, x, and Prsiimax) Were used to estimate photosynthesis by combining
measured Ci and SIFpsi of each leaf replicate in the corresponding PFT (Fig. S3). We further
validated the robustness of the MLR-SIF under different temperatures (20, 25, 30, 35, 40 °C) using
a subset of species (for which measurements under different temperatures were made) for
illustrative purpose, including C3 (Cornus racemosa ‘Cuyzam’) and Cs (Andropogon gerardii).
This test is similar to the above demonstration of MLR-SIF performance across PFTs, except that
the averages of the parameters of all the replicates within the same species at the reference
temperature (25 °C), rather than PFT-specific parameters were used to estimate photosynthesis of

each leaf replicate under different temperatures.

Assessment of parameter sensitivity and the propagated estimation uncertainty (PEU) in
estimated An: We performed two independent analyses to assess the parameter sensitivity of MLR-
SIF and PEU in 4, resulted from model parameter uncertainties. In the first analysis, we utilized
the PFT-universal parameters to estimate photosynthesis of each leaf replicate. To examine which
input parameter the MLR-SIF model is most sensitive to, we altered each parameter one at a time
to be the corresponding PFT-universal value while keeping the remaining parameter values to be
PFT-specific. Parameters examined here are: 7™ (C3 only), x (Cs only), as well as those shared by

(s and Cy, including ®Ppsiimax, Ra, g, and by, .

In the second analysis, we assessed the uncertainty on the estimated 4, propagated from
model parameter uncertainties utilizing Monte Carlo simulations for both MLR-SIF and FvCB
models under different light levels (100, 300, 500, 800, 1000, and 1200 umol photon m2 s!) at
CO; concentration of 400 pmol CO> mol! and 25 °C. The uncertainty assessment here was
exemplified by a single PFT, i.e., BDT Temperate, for illustrative purposes. Specifically, for each
model, we perturbed its parameters by randomly drawing values from their corresponding
parameter distribution. For each parameter, we assumed that their values follow a Gaussian

distribution, with the fitted values and the standard errors directly returned by the Scipy
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optimization package for each individual leaf replicate. Here, we focus on perturbing parameters
that were fitted (most influential), i.e., agq,, bg,, I'™*, and Rq for MLR-SIF, Vemax, Jmax, I, and Rq
for FvCB. For each model, we randomly drew 50,000 combinations of these parameters, calculated
the corresponding 4n, and derived the standard deviation (SD) of the resulting 4, which is denoted
as the PEU. Note that, the randomly drawn 50,000 Vemax and Jmax were highly linearly correlated
(Wullschleger, 1993; Walker et al., 2014). Also, we constrained the randomly generated
parameters to their physically meaningful ranges, i.e. 0 <a,, <1, bg, <0, and Vemax, Jmax, I™, and Rq

were all positive.
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Results

The dynamic relationship between photosynthesis and SI7Fpsu

We first employed direct leaf-level ChlF emission spectra measurements (SIFapaxial) to verify the
realism of the modeled theoretical SIFpsi (Notes S1). Our results (Fig. S1) show that SIFpsn is
highly correlated with SIFapaxial With R? ranging from 0.75 to 0.95 for three crop species (almond,
grape, and walnut) under well-watered, mild, and moderate drought conditions (Table S4). With
confidence gained in cross-checking the theoretically modeled S7Fpsn with measured SIFabaxial, We
subsequently evaluated the relationships between measured 4, and theoretical S/Fpsn for all plant
species (Table S1) that cover a much broader PFTs and environments. We found a nonlinear
relationship between A, and SIFpsn across all Cs3 and Ci plant species (Fig. 1a; Fig. S5) and
temperatures (Fig. 1b-c). This relationship is characterized by an initial increase of 4, and then
leveling-off when SIFpsn is high, because the former saturates while the latter can keep increasing
under high light as predicted by Gu et al. (2019). However, the saturation level of 4, and the rate
approaching saturation differ considerably among species (especially between C3 and C plants)
and temperatures. For instance, C4 plants overall exhibit a higher light saturation level and slower
rate towards saturation than Cs plants, resulting in a lower degree of nonlinearity for the former,
consistent with patterns observed at the canopy scale (e.g., Liu et al., 2017; He et al., 2020).
Notably, different species within the same PFT also show disparate 4,-SIFpsn relationships (Fig.
S5). Temperatures further impact the degree of 4n,-SIFpsu nonlinearity even for the same species

and have distinct influences for C; and C; plants (Fig. 1b,c).

40 10 30
. a b Cs c Cs
A 321 — C, 81 241
< rT C3
B E 24 61 18-
=1 o~
2 8 161 4 121
2 3 20 © Commm35 © C
E 8] 4 2; —5 0 Commm0 © C| 61
~ / w30 ° C
0 . . ; . 0 ; . . 0- . . . .
0 3 6 9 12 15 0 3 6 9 12 0 3 6 9 12 15

SIFpsy (umol photon m=2 s71)

Fig. 1. The dynamic relationships between net photosynthesis (4,) and chlorophyll a
fluorescence from PSII (S/Fpsn) across Plant Functional Types (PFTs) and environments.

(a) the A4,-SIFpsn relationships across all C3 and Cs species; the thin and bold curves represent
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individual leaf replicates and the mean of all species under the same photosynthetic pathways,
respectively; (b and c¢) the impact of temperatures on the A,-SIFpsn relationship for a subset of
species for C3 (Cornus racemosa ‘Cuyzam’) and Cs (Andropogon gerardii) respectively; curves

represent the mean of leaf replicates under the same temperatures.

We found relatively higher inter-species variability in NPQ than in gr (Fig. S6), resulting
in more complex relationships among NPQ, S/Fpsu and 4, (Fig. 2a, b). Temperature had greater
impact on NPQ than on gr (Fig. 2c, d). Across light levels, NPQ achieves a local minimum at the
optimal temperature for photosynthesis (Fig. 2d). In contrast, PAR dominates the variation of g,
with temperature playing a minor role, supporting the use of PAR as a primary predictor to capture

the first order variation in gt (Fig. 2c¢).
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Fig. 2. The dynamic net photosynthesis (4n) - chlorophyll a fluorescence from PSII (S7Fpsn)
relationships modulated by the fraction of open PSII reaction centers (qL) and non-
photochemical quenching (NPQ) across Plant Functional Types (PFTs) and environments.
(a and b) the relationships among g1, NPQ, 4., and SIFpsn in 3D space across all species, the
corresponding 2D figures are shown in Fig. S7; statistics (R? and RMSE) were obtained by fitting
the 3D data with polynomial regression. (¢ and d) the impact of PAR and temperatures on gr and

NPQ, using a single Cs species (Cornus racemosa ‘Cuyzam’) for illustrative purposes.
The capability, scalability, and uncertainty of MLR-SIF in estimating photosynthesis

The MLR-SIF model requires knowledge of gL and Ci, which are dynamic. Using a minimalistic

approach, we modeled g as a decreasing function of PAR with only two parameters a,, and

18



414

415
416

417

418
419
420
421
422

423

424
425
426
427
428

429

bq, (Eq. 5), since PAR captures the first-order effect in g. variations (Fig. 2¢, Fig. S6a). This
parsimonious gr. model works reasonably well for a wide range of species (Fig. S2), which enables
examining the potential of applying MLR-SIF across climates and biomes, a necessary step

towards global applications.

With the use of PFT-specific parameter values, a common practice in TBMs, MLR-SIF
successfully reproduces the variation of measured A, with changing light (R? = 0.83, regression
slope = 0.92) across all major PFTs (Fig. 3a). Moreover, MLR-SIF is capable of simulating A4
dynamics under different temperatures for both C3 and Cs (Fig. 3c-d), even though parameters

were obtained solely at the reference temperature.
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Fig. 3. Assessment of the estimated net photosynthesis (4,) based on MLR-SIF (i.e.,
mechanistic light reaction model with chlorophyll a fluorescence from PSII as an input, Eq.
1) against measurements across (a and b) Plant Functional Types (PFTs) and (c and d)
temperatures. (a and b) estimated 4, using PFT-specific and PFT-universal parameters (Table
S3) respectively under variable light conditions at 25 °C for all species (Table S1); parameters

required are: 7™ (Cs only), x (Cs only), and @Ppsimax, Rd, as well as ag, and by, for calculating g1
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(shared by C; and C4); (¢ and d) estimated 4, under five temperatures for Csz (Cornus racemosa
‘Cuyzam’) and Cs (Andropogon gerardii) respectively. I'* and Ry are adjusted with a temperature
response function (Bernacchi et al., 2002); remaining parameters were set to values at 25 °C.
Colored scatters represent individual leaf replicates (a and b, color-coded by different PFTs; ¢
and d, color-coded by different temperatures). The regression coefficients (R?, RMSE, regression
slope and intercept) were obtained by combining all species across PFTs (a-b) and temperatures
(c-d). Solid lines represent the ordinary least square regression of all colored points; the dashed

line represents 1:1.

To further demonstrate the advantages of MLR-SIF, we performed two independent
analyses. First, we removed the PFT-specific parameters in MLR-SIF and evaluated how much
the estimated 4, degrades if a constant value is used across all PFTs for each parameter. We found
that, if using PFT-universal parameters (refer to Fig. S3 for details), the estimated A, could still
explain 73% of the variation in the measured 4, under changing light, and the estimation bias was
minimal with a regression slope of 0.90 (Fig. 3b). The loss of explanation power (relative to PFT-
specific values) comes from the combination of parameters uncertainty (Fig. S8a), i.e., aq,, bq,,
I* (C3) or x (Cs), Rq and @psimax. In addition, we used the same PFT dataset to compare the
performance of MLR-SIF and FvCB models. FvCB had an overall weaker capability in estimating
photosynthesis than MLR-SIF for both PFT-specific and PFT-universal parameters (Fig. 4a-d).
Specifically, relative to MLR-SIF, FvCB showed a larger bias (underestimation) with a regression
slope of 0.80 as compared to 0.86 for MLR-SIF for PFT-specific (Fig. 4a-b), 0.71 vs 0.81 for PFT-
universal (Fig. 4c-d), albeit both models exhibited similar R*> and RMSE. This performance
difference is not due to difference in models’ theoretical rigor (both MLR-SIF and FvCB are
mechanistically equivalent) but due to differences in the level of parameter requirements and the

associated impacts of the parameter uncertainties in model applications. All the differences

between MLR-SIF and FvCB shown below should be interpreted this way.

In the second analysis, we used Monte Carlo simulations to explicitly quantify the
uncertainty in A, propagated from model parameter errors. We compared PEU between MLR-SIF
and FvCB using Temperate Broadleaf Deciduous Tree (BDT Temperate) as an example (Fig. 4e,
f). Our results showed that MLR-SIF consistently exhibits lower PEU than FvCB under all light
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conditions (Fig. 4e). Correspondingly, 4. estimated with MLR-SIF tends to have a narrower
statistical distribution relative to FvCB (Fig. 4f).
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Fig. 4. Comparison of MLR-SIF (i.e., mechanistic light reaction model with chlorophyll a
fluorescence from PSII as an input) and FvCB (i.e., Farquhar, von Caemmerer, Berry
model) in estimating net photosynthesis (4n) (a to d) and the propagated estimation
uncertainty (PEU) in A, from parameter perturbation using Monte Carlo simulations (e and

f). (a and c) are similar to Fig. 3 a and b, except that only six C; Plant Functional Types (PFTs)
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(for which both CO» and light response curves are available) were used, to ensure fair comparison
of MLR-SIF and FvCB. (b and d) parameters required for FvCB are: the maximum photochemical
quantum efficiency of PSII in dark-adapted leaves (@psmmax), the CO2 compensation point in the
absence of mitochondrial respiration in the light (/*), day respiration (R4), the maximum
carboxylation rate (Vemax), and maximum electron transport rate (Jmax). (a to d) the regression
coefficients (R?, RMSE, regression slope and intercept) were obtained by combining all species of
six C3 PFTs. (e) PEU, quantified as the standard deviation in 4, estimated with randomly perturbed
parameters under different light levels. For illustration purposes, only Temperate Broadleaf
Deciduous Tree (BDT Temperate) was used in this analysis. (f) histograms of estimated 4, for

MLR-SIF and FvCB at PAR = 1200 umol photon m? s
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Discussion

The physiological and environmental controls on the photosynthesis-S7Fpsn relationship

The relationship between photosynthesis and S/Fpsi across all plant species and temperatures is
close to a linear correlation at low light, especially for Cs plant species. But the overall shape is
non-linear (Figs. 1-2), which reveals that the variations in g and C; prevent an exclusive
dependence of photosynthesis on SIFpsu (Eq. 1). Indeed, g decreases with light (Fig. S6), which
in turn increases the nonlinearity between photosynthesis and S/Fpsi under high PAR (Fig. 2a). In
addition, the responses of photosynthesis and SIFpsi to C; were not synchronized due to dynamic
NPQ. For example, 4, increased initially and then reached a stable value when Ci; is high (Fig. S9),
whereas S/Fpsn can have a slight decrease at the very low C; (for some species) and then increased
to a peak followed by a subsequent decrease or remaining constant at high C; (Fig. S10). The
patterns of SIFpsn vs Ci shown in Fig. S10 reflect the dynamics in the impact of competitive
interactions between photochemical and non-photochemical quenching on ChlF emission. At low
Ci, NPQ dominates whereas the impact of photochemical quenching is limited. As C; increases,
photochemical quenching increases while NPQ weakens. This asynchrony of the responses of 4n
and SIFpsn to Ci, especially under the low C; induced by constraints of stomatal conductance,
explains the apparent “decoupling” of SIF and photosynthesis (i.e., high SIF and low
photosynthesis) following artificially induced stomatal closure observed in single-factor analyses
(Marrs et al., 2020). Under these conditions, low C; inhibits photosynthetic carbon assimilation,
and also induces low g1 and increases NPQ to dissipate excess energy to offset the elevated photo-
oxidative stress. As a result, low C; contributes substantially to the dynamics and complexity of

the photosynthesis-SIFpsi relationship.

In previous studies, the complex environmental and physiological regulations on the
photosynthesis-SIF relationship are typically hidden in the simplified term of light use efficiencies,
which prevents a consistent interpretation of photosynthesis-SIF relationship across time scales,
phenological stages, biomes, and environmental variations. For example, previous studies reported
linear and even approximately biome-independent scaling between SIF and photosynthesis at the
canopy level (e.g., Sun et al., 2017; Li et al., 2018), because they were conducted at the seasonal
scale and beyond, under which scales the co-variation of SIF and photosynthesis is dominated by
the temporal variability in leaf area index (LAI, and therefore fPAR) (e.g., Yang et al., 2015;

Magney et al., 2020). However, the linearity tends to break down at shorter time scales (e.g., sub-
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daily, Zhang et al., 2016; Damm et al., 2015) as analogous to the typical light response curves in
this study and/or under stress (Marrs et al., 2020). In the former case, LAI remains relatively stable
diurnally or within a few days, the relationship between SIF and photosynthesis can deviate from
being linear due to the strong physiological regulation of variables such as g, and/or Ci. Further,
these physiological regulations can vary among phenological stages, resulting in disparate
phenology-dependent photosynthesis-SIF relationships (Yang et al., 2018; Miao et al., 2018,
2020). On the other hand, at sub-daily timescales, decoupling of photosynthesis and SIF could
occur also due to variations in APAR and escape probability arising from canopy structure and
illumination-viewing geometry (Chang et al., 2021). In the latter case, e.g., under cases of extreme
photo-oxidative stress, it is crucial to incorporate gL and/or C; in order to accurately interpret the

coupling/decoupling of photosynthesis-SIF relationships (as explained above).
SIF as an optical ‘shortcut’ reduces uncertainty from parameters in MLR-SIF

Currently, TBMs and some remote sensing products (e.g., BESS, Ryu et al., 2011; PR model,
Keenan et al., 2016) have almost exclusively adopted the FvCB biochemical model to calculate
leaf photosynthesis (Farquhar et al., 1980; Sharkey, 1985; von Caemmerer, 2020), with
considerably variable implementation across TBMs, resulting in largely different responses of
simulated photosynthesis to environmental drivers (i.e., light, temperature, CO,, VPD, and soil
moisture, Rogers et al., 2017). Notably, the fundamental biochemical and kinetic parameters
required by FvCB constitute major sources of uncertainty in simulated photosynthesis (Bonan et
al., 2011, 2012). For example, Vemax and Jmax vary widely across PFTs, and are sensitive to leaf
nitrogen contents, leaf ontology, and environmental changes (Field & Mooney, 1986; Kattge et al.,
2009, 2020; Detto & Xu, 2020), which in turn lead to significant model output uncertainty (Walker
et al.,2017; Rogers et al., 2017; Bonan et al., 2011).

We demonstrated the capability, scalability, and effectiveness of MLR-SIF across PFTs
and environments, which stems from the fact that S/Fpsy, once inferred from direct observations
(after appropriately accounting for factors such as spectral integration and escape probability),
carries information on instantaneous plant functional responses to atmospheric forcings and
integrates over the dynamic physiological complexities of photosynthesis. This means that MLR-
SIF can circumvent estimation uncertainty propagated from model parameter errors/deficiency.

For example, unlike FvCB, MLR-SIF does not rely on highly sensitive biochemical and kinetic
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parameters such as Vemax, Jmax, and Kco, or selection of limitation stage of carboxylation (Walker
et al., 2021). Note that FvCB has larger PEU than MLR-SIF does, not because the former has a
structural weakness but because the latter takes advantage of an observable photosynthetic
functional ‘shortcut’ (SIF) (Gu et al., 2019), i.e., at least in theory, SIF makes estimating
photosynthesis simpler although there are still difficult aspects that need to be resolved through
continuing research. MLR-SIF effectively utilizes the mechanistic information in observed SIF to
estimate photosynthesis in a forward way, independent from other existing photosynthesis
estimation approaches that are known to have different levels of uncertainties (Kira et al., 2021;
Wehr et al., 2016; Keenan et al., 2019). Independent estimates are essential for confidence building

as photosynthesis cannot be measured directly beyond a single leaf.

A recent new photosynthesis model based on Cytochrome b6f (Johnson & Berry, 2021)
also established from light reaction perspective, but there are numerous differences with MLR-
SIF. First of all, the model from Johnson & Berry (2021) does not use S/Fpsi (or SIF) as an input
and focuses on PSI, rather than PSII. In contrast, MLR-SIF use SIFpsn as input, and its goal is to
build a physiological foundation that can mechanistically and accurately utilize SIFpsn to directly
and independently estimate photosynthesis. In addition, MLR-SIF applies to all carboxylation
limited states, regardless of whether the carboxylation is limited by RuBP regeneration, Rubisco,
or TPU, while the model developed by Johnson & Berry (2021) aims to establish a mechanistic
light reaction model that can replace the empirical light-reactions sub-model of FvCB when

photosynthetic assimilation is RuBP-regeneration limited.
Prospects of future work for facilitating MLR-SIF applications to large scales

As the first effort for building the physiological foundation towards utilizing SIFpsi to
mechanistically and independently estimate photosynthesis, this study starts from and focuses on
the leaf level, the same as the introduction of the original FvCB model. Building the physiological
foundation and gaining confidence on MLR-SIF at the leaf level is a necessary step, as existing
leaf-level simulations of @r, NPQ, @psi as well as their functional relationships exhibit strong
discrepancy with observations and across different TBMs (Yang et al., 2021; Parazoo et al., 2020).
Moving forward, to fully unleash the power of MLR-SIF to infer photosynthesis at large scales
that are independent from currently existing photosynthesis estimates (with well-documented

uncertainties), future work in the following aspects are needed.
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a)
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Parameterization of g or NPQ: In principle, modeling J. requires either g or NPQ (but
not both) if SIFpsi could be inferred from direct observational input (Gu et al., 2019). To
facilitate large-scale applications (without the needs of PAM measured g1 or NPQ), g1 or
NPQ must be modeled independently. To achieve this, the present application of MLR-
SIF empirically models g. as a function of PAR. Our results confirm that this
parsimonious approach can capture the first-order effect of the SIFpsn-photosynthesis
relationship, as gv reflects the redox poise of PSII reaction centers and is far more sensitive
to variations in light than to other environmental variations such as temperature or COx.
Nevertheless, other environmental factors can also influence g1. For example, temperature
can play an increasing role in regulating ¢gr under high PAR (Fig. 2¢). This will require
more controlled experiments and/or synthesis of existing measurements across biomes
and environmental conditions to refine our current parsimonious parameterization of gr.
Conceivably, it may be possible to mechanistically model the dynamic responses of g1 to
environmental variations based on the redox relationships between reaction centers and
electron carriers along the electron transport chain. Using a mechanistic g model will
considerably improve the applicability of the MLR-SIF model. Although this study does
not pursue a NPQ route for the application of the MLR-SIF model, this alternative route
also has values. For example, it will promote field research in the dynamics of NPQ, which
has important implications for land surface energy balance (Raczka et al., 2019), at
different time scales. It will also lead to estimates of photosynthesis that are independent
from those of the gr-based MLR-SIF model when SIF is available as a direct observable
input. Empirical models of NPQ that consider the memory effect of past illumination
history such as that used in Zhu et al. (2004) will have some capacity to deal with the
multiplicity of NPQ at different time scales and can be used as a starting point for an NPQ-
based MLR-SIF. Mechanistically modeling NPQ (Zaks et al., 2012) for broad
applicability will be a huge challenge but will be necessary to enabling the general use of

the NPQ-based MLR-SIF model at different scales.

Dynamic calculation of Ci: This study utilized measured C; as input to MLR-SIF, with the
intention to eliminate uncertainties not specifically related to S/Fpsi, which is our major
focus here. Similarly, FvCB in this study also utilized measured C; as an input. This way

ensures a fair comparison between them in the context of leaf-level application. Moving
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toward an eventual application of MLR-SIF to large scales would necessitate coupling the
MLR-SIF model with stomatal conductance and energy balance models. In order to
dynamically determine C; by closing the system of equations of MLR-SIF, stomatal
conductance, Fick’s law of CO; diffusion from atmosphere to leaf interior, and energy

balance are required, much like how FvCB is applied in TBMs.

Parameter @rsiimax: We employed the measured @psimax values to MLR-SIF, which range
from 0.74 to 0.81 (Table S3). The slight variability in @psimax across PFTs is likely a
consequence of the different leaf ages resulted from the longtime span of our
measurements and perhaps also environmental stress. Fortunately, utilizing a fixed
Drsiimax value across plant species has only very minor impacts on our results (comparing
Fig. 3a with Fig. S8d), giving us confidence that it is reasonable to apply a constant

Drsiimax for large-scale applications.

Parameter kpr: In MLR-SIF, estimation of J, requires kpr as a parameter input. Yet, the
precise value of kpr and the degree to which it varies across plant species are presently
unknown, as it is impossible to isolate kpr with the current PAM fluorometry (Gu ef al.,
2019). We note that the uncertainty in the precise value of kpr does not affect our
conclusion, as it is the product term (1+kpr)xSIFpst, instead of kpr itself, matters for J,
estimation at the leaf level. Specifically, SIFpsn and kpr always appear together as a
product term (1+ kpr)xSIFpsu in the J, calculations (Eq. 1c and Eq. 2). If kpr increases,
the modeled SIFpsi must decrease in order to keep the modeled J. meaningful (i.e., in
agreement with PAM J, measurements). On the other hand, the precise determination of
kor is a critical step to scale up MLR-SIF to larger-scale applications, at which, SIF can
be directly observed but not its product with kpr. It is possible that the value of kpr can be
constant across species, as both kr and kp are physical properties of chlorophyll molecules
whose structures (e.g., electron orbitals) are highly conserved for higher plants. This
argument can be implicitly supported by the highly conservative @psimax value across
plant species when they are not under stress, even though there are more processes
involved in determining it than kr or kp. In terms of potential dependence of kpr on
temperature, earlier work (van der Tol et al., 2014) hypothesized that kp varies with

temperature. This hypothesis will need to be verified and its physical mechanisms will
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need to be identified. In the future, the value of kpr can be precisely determined by
measuring both adaxial and abaxial fluorescence emissions, as well as leaf absorptions.
This way can lead to direct measurements of the true total SIF emission from the
photosystems, which together with measured g. and NPQ can be used to determine kpr
(Gu et al., 2019). This additionally will require the development of a leaf-level full
spectral fluorescence system that is capable of separating PSII and PSI contributions.

e) PSI and alternative electron flow: The functional stability of PSII and PSI differs under
stress (Ivanov et al., 2001), which might change their relative contributions to
fluorescence emission. Thus, fluorescence emission from both PSII and PSI should be
considered when S7Fpsn is inferred from at-sensor SIF for the broad application of MLR-
SIF. Meanwhile, when plants are under stress, alternative electron sinks other than
carboxylation oxygenation may be large. These issues may affect SIF — photosynthesis
relationships and should be explored in the future. An integration of the PSII-focused (i.e.,
Gu et al. 2019) and PSI-focused (i.e., Johnson & Berry, 2021) light reaction modeling

approaches may lead to new insights in this direction.

f) Coupling MLR-SIF with leaf and canopy radiative transfer: This study starts from and
focuses on the leaf level, assuming that S/Fpsn can be inferred from at-sensor SIF
observations. Currently, STFpsy is built upon PAM fluorometry (as used in this study), not
a directly observable. However, in theory, SIFpsy can be derived from the directly
observable at-sensor SIF, and once this is achieved, we do not need PAM anymore. In
reality, from SIFpsn to at-sensor SIF, multiple radiative transfer processes within the leaf
and across the canopy, i.e., re-absorption and scattering (their relative strength depends
on wavelength), can largely attenuate the observed signal. Therefore, large-scale
applications of MLR-SIF would require a coupling with leaf/canopy radiative transfer
scheme (as commonly done in TMBs) or invoking an escape probability factor determined
from other means to infer S/Fpsi from at-sensor SIF, a currently key research topic in SIF

remote sensing (e.g., Yang et al., 2018; Liu et al., 2019; Zeng et al., 2019).

Conclusions
Here we demonstrate the possibility and advantage in mechanistically estimating photosynthesis
using S/Fpsi as an input across a wide range of PFTs and climates. The fidelity, scalability, and

lower uncertainty compared with the traditional FvCB model suggests that MLR-SIF has great
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potential in applying the rapidly increasing volumes of satellite SIF monitoring to estimate global
photosynthesis. This model framework has similar mechanistic rigor as the conventional FvCB
model but requires fewer parameters. It enables a truly independent estimate of photosynthesis
based on SIF observations. The importance of SIF lies in the fact that it is a functional signal of
photosynthesis and reflects collective responses of plants to environmental variations. Therefore,
the availability of SIF observations can greatly ease the efforts for modeling photosynthesis by
avoiding the need to explicitly and accurately represent individual environmental/physiological
controls on photosynthesis (i.e., which carboxylation limitation occurs under what conditions) and

by reducing parameterization burdens and associated uncertainties.
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