Graphlt to CUDA Compiler in 2021 LOC:

for High-Performance DSL Implementation via
Staging with BuilDSL

Ajay Brahmakshatriya
CSAIL, MIT
Cambridge, USA
ajaybr@mit.edu

Abstract—Domain-Specific Languages (DSLs) provide the op-
timum balance between generalization and specialization that is
crucial to getting the best performance for a particular domain.
DSLs like Halide and Graphlt and their rich scheduling lan-
guages allow users to generate an implementation best suited for
the algorithm and input. DSLs also provide the right abstraction
for generating code for diverse architectures like GPUs, CPUs,
and hardware accelerators. DSL compilers are massive, typically
spanning tens of thousands of lines of code and need a frontend,
some analysis and transformation passes, and target-specific code
generation. These implementations usually require a great deal of
compiler knowledge and domain experts cannot prototype DSLs
without getting compiler experts involved.

Using multi-stage programming in a high-level language like
Scala, OCaml, or C++, is a great solution because it provides
easy-to-use frontend and automatic code generation abilities. The
DSL writers typically implement their abstraction as a library
in the multi-stage programming language and use it to generate
specialized code by providing partial inputs. This solves the
problem only partially because DSLs like Graphlt have shown
that several domain-specific analyses and transformations need to
be performed to get the best performance. Special care has to be
taken when targeting massively parallel architectures like GPUs
where factors like load balancing, warp divergence, coalesced
memory accesses play a critical role.

In this paper, we demonstrate how to build an end-to-end
DSL compiler framework and a graph DSL using multi-stage
programming in C++. We show how the staged types can be
extended to perform domain-specific data flow and control flow
analyses and transformations. We also show how our generated
CUDA code matches the performance of the code generated from
the state-of-the-art graph DSL, Graphlt. We achieve all this in a
very small fraction (8.4%) of the code size required to implement
the traditional DSL compiler.

Index Terms—domain-specific-languages
multi-stage programming data-flow analysis

code-generation

I. INTRODUCTION

The space of problems from scientific domains has seen
a huge growth in recent years. With rapid advances in fields
like Machine Learning and Data Science, domain experts are
creating new abstractions to make these domains more acces-
sible. These abstractions include libraries like TensorFlow [1]],
PyTorch [2], Keras [3]] or compiler techniques like TVM [4],
Tiramisu [5]] among others. Although library techniques are

Saman Amarasinghe
CSAIL, MIT
Cambridge, USA
saman @csail.mit.edu

Algorithm Schedule

H Graph DSL types and
operators
| |

Generalized DSL
Framework '

Lo — S
Buildlt ¥

BuilDSL

Fig. 1. A complete overview of the BuilDSL framework built on top of
BuildIt. BuilDSL takes algorithm and schedule written in an embedded DSL
and generates high-peformance CUDA code. The generalized DSL framework
(green) is independent from the graph domain types and operators and includes
implementation for GPU code generation and Kernel Fusion

usually easy to implement and adopt, using Domain-Specific
Languages (DSLs) provides the right balance of programma-
bility and performance. DSLs from domains like TACO [6] for
tensor algebra, Graphlt [7]-[10] for high-performance graph
applications, Halide [11]] for image processing also separate
the algorithm specification from the scheduling decisions. A
side benefit of using a DSL to program the applications is that
the user can now generate implementations for a variety of
hardware like CPUs, GPUs, and hardware accelerators.

DSLs are great at generating high-performance code because
of several factors. First, they apply a series of domain specific
analysis and transformations that general purpose languages
like C++ or Python cannot reason about. Second, they expose
a set of scheduling decisions to the user typically in the
form of scheduling language that further lets the programmer
tune the performance to varying input. Third, they apply
various target specific transformations when generating code
for diverse architectures. Unfortunately, because the DSL
compilers combine so many optimizations and code generation
techniques, their codebase usually spans tens to hundreds of
thousands of lines of code which makes rapid prototyping of
high-performance DSLs tricky. For example, the Graphlt and

978-1-6654-0584-3/22 © 2022 IEEE 53

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://www.acm.org/publications/policies/artifact-review-and-badging-current

TACO DSL compilers currently have more than 80,000 lines
of C++ code each. Developers have to spend multiple months,
if not years designing the programming interface, analysis, and
transformations, and target-specific code generation.

A widely used approach is to embed the DSL in another
language, preferably one that supports meta-programming or
multi-stage programming like Scala, Python, OCaml among
others. The benefit of such an approach is that the developer
gets the frontend and code generation for free and can focus on
only the implementation of the domain-specific operators just
like in a library. This approach has been explored in the past
by DSLs and DSL frameworks such as Forge [[12], Jet [13]],
StagedSAC [14]], and Delite [[15] all of which aim for high-
performance while keeping the implementation complexity
low. Most frameworks that have exploited this technique are
built in high-level functional programming languages. Although
being easy to argue about correctness, high-level languages are
not a natural fit for high-performance applications. Domain
experts who are used to writing libraries and applications in
low-level languages like C, C++, or CUDA have to now think
in two different languages and programming paradigms when
implementing the DSLs.

In this paper, we introduce BuilDSL, a DSL framework built
on top of BuildIt. Buildlt [16] brings multi-stage programming
to C++ through a lightweight library and helps us solve
the multi-paradigm and multi-language problem. Buildlt lets
the programmer write programs in multiple stages while
maintaining the same C++ syntax and programming model
across all stages. As shown in Figure [I] BuilDSL contains
a generalized DSL framework that contains routines and
utilities commonly required for implementing a DSL. Besides
getting a frontend and some code generation from Buildlt for
free, BuilDSL provides the framework support for analyzing
and transforming the programs in a domain specific way,
specializing it for certain inputs and algorithmic patterns and
generate code for very different architectures like CPUs and
GPUs. For example, BuilDSL has a CUDA extraction pass that
automatically extracts CUDA kernels from generated annotated
loop nests to be run on GPUs. BuilDSL also has features
that make it extremely easy to implement optimizations like
Kernel Fusion that combine various operations into a single
CUDA kernel to avoid the launch overhead. The generalized
framework also has support for extending the dynamic types
to create domain-specific analyses for enforcing correctness
and improving performance.

To demonstrate the usefulness of our framework, we im-
plement a real graph DSL inspired by the state-of-the-art
DSL, Graphlt. Just like Graphlt, our DSL takes algorithm and
schedule inputs from the user and generates high-performance
CUDA code to be run on GPUs. We show that our DSL
can match the performance of Graphlt while keeping the
implementation down to a very small fraction of the Graphlt
compiler (less than 8.4% lines of code).

This paper makes the following contributions:

o We demonstrate that using multi-stage programming is

an easy way to generate sophisticated code while keeping

54

the complexity to minimum. We do this by implementing
a compiler for regular expressions using Buildlt that fits
in a mere 103 lines of C++ code

o We present BuilDSL, a DSL framework that combines
routines and utilities that are essential for implementing
high-performance DSLs

« We implement a CUDA generating graph DSL on top of
our framework that matches the programming interface
of the real-world graph DSL, Graphlt

o We show that the code generated from our graph DSL
is on-par with that of the code generated from Graphlt
on 5 diverse applications and 9 datasets while keeping
our entire implementation in only 2021 lines of C++ code
which is less than 8.4% of Graphlt’s codebase

II. MOTIVATING EXAMPLE

Before we explain what it takes to implement an end-to-end
compiler with analysis, transformations, and complicated GPU
code generation, we want to show that using staging is an easy
approach for implementing compilers for small languages. In
this section, we will show how one can write a very naive
interpreter for a simple language and convert it into a compiler
with staging. For this example, we take a small subset of
Regular Expressions (RegEx) with just a-z, a-z, 0-9 and .
This subset is simple enough to understand the implementation
completely and at the same time is general enough that it has
some complex control flow generated by the - character. We
start with Algorithm [T] that shows how a naive interpreter could
match a given RegEx pattern with an input string.

Algorithm 1 A simple algorithm for a RegEx interpreter
implementation main loop. The algorithm takes as input the
RegEx pattern and the string to match both as strings

1: Input: RegEx pattern R, String to match S
2: Output: Boolean that says whether S exactly matches R.
3: rLen + len(R)

4: sLen < len(S)

5: current < [false] X rLen + 1
6: next + [false] X rLen + 1

7: progress(R, current, —1)

8: for s + 0 to sLen — 1 do

9 for 7 < 0 to rLen — 1 do
10 if current[r] then

11 m < R[r]

12: if isnormal(m) then

13: if S[s] == m then

14 progress(R, next,)
15 else if m =="'"." then

16 progress(R, next,)

17 else

18 error

19 if count(next) == 0 then

20 return false

21: current < next

22: next < [false] X rLen + 1

23: return current[rLen] == false

This algorithm takes in the RegEx pattern and the string to
match and calculates their lengths. It then allocates two boolean
arrays of the size of the RegEx pattern. The current array tracks
which characters in the RegEx can currently be matched and
the next arrays tracks which characters in the RegEx can be
matched next. Since regular expressions have non-determinism
in the matching process, more than one boolean in the current

1 | #include <iostream>

2 | #include <cstring>

3 | #include "builder/dyn_var.h"

4 | #include "builder/static_var.h"

5 | #include "blocks/c_code_generator.h"

6 | template <typename T>

7 |using dyn = builder::dyn_var<T>;

8 |template <typename T>

9 | using static = builder::static_var<T>;

10 | dyn<int (charx)> d_strlen("strlen");

11 | dyn<int> match_regex (const charx re,

12 dyn<char+> str);

13 |bool is_normal (char m) {

14 return m >= ‘a’ && m <= 'z’ || m >= 'A’

15 && m <= 'Z’ || m >= 0’ && m <= '9’;

16 |1}

17 | void progress (const char *re, static<char> *next, int p) {
18 int ns = p + 1;

19 if (strlen(re) == ns) {

20 next [ns] = true;

21 } else if (is_normal (re[ns])

22 || *.” == rel[ns]) {

23 next [ns] = true;

24 if ('*’ == re[ns+1]) {

25 // We all d to skip this

26 // so just progress again

27 progress (re, next, ns+l);

28 }

29 } else if ('’ == re[ns]) {

30 next [p] = true;

31 progress (re, next, ns);

32 }

33

34 | int main (int argc, charx argv([]) {

35 builder: :builder_context context (builder::UNSTRUCTURED) ;
36 auto ast = context.extract_function_ast (match_regex,
37 "match_re", argvi[l]);

38 std::cout << "#include <string.h>" << std::endl;

39 block::c_code_generator::generate_code (ast, std::cout);
40 return 0;

41

42 | dyn<int> match_regex (const charx re, dyn<charx> str) {
43 // allocate two state vectors

44 const int re_len = strlen(re);

45 static<char> *current = new static<char>[re_len + 1];
46 static<char> xnext = new static<char>[re_len + 1];
47 for (static<int> i = 0; i < re_len + 1; i++)

48 current[i] = next[i] = O;

49 progress (re, current, -1);

50 dyn<int> str_len = d_strlen(str);

51 dyn<int> to_match = 0;

52 while (to_match < str_len) {

53 // Don’t do anything for $.

54 static<int> early_break = -1;

55 for (static<int> state = 0; state < re_len; ++state)
56 if (current[state]) {

57 static<char> m = re[state];

58 if (is_normal (m)) {

59 if (-1 == early_break) {

60 // Normal character

61 if (str[to_match] == m) {

62 progress (re, next, state);

63 // If a match happens, it

64 // cannot match anything else
65 // Setting early break

66 // avoids unnecessary checks
67 early break = m;

68 }

69 } else if (early break == m) {

70 // The comparison has been done
71 // already, let us not repeat
72 progress (re, next, state);

73 }

74 } else if (/.’ == m) {

75 progress (re, next, state);

76 } else {

77 printf ("Invalid Character (%c)\n", (char)m);
78 return false;

79 }

80 }

81

82 // All the states have been checked

83 // Now swap the s es and clear next
84 static<int> count = 0;

85 for (static<int> i = 0; i < re_len + 1; i++) {
86 current [i] = next[i];

87 next [i] = false;

88 if (current[i])

89 count++;

90 }

91 if (count == 0)

92 return false;

93 to_match = to_match + 1;

94 }

95 // Now that the string is done,

96 // we should have $ in the state

97 static<int> is_match = (char)current[re_len];
98 for (static<int> i = 0; i1 < re_len + 1; i++) {
99 next [i] = 0;

100 current [i] = 0;

101 }

102 return is_match;

103 |}

Fig. 2. The complete implementation of the the RegEx interpreter written with BuildIt staged types to create a RegEx compiler. The 4 sections here show the i)
BuildIt type includes ii) Helper functions for state transitions iii) Main function for staging and code generation and iv) The main implementation of the
interpreter being staged. The compiler comes to a total of only 103 lines of C++ code.

array could be set to true at a time. The algorithm relies on the
progress function that given a particular match decides which
characters in the RegEx can be matched next by setting the
next array. This function essentially encapsulates all the state
transition logic. If we want to add more characters like +, 2,
or (), we would change the implementation of the progress
function. Finally, the main part of the algorithm iterates over
every character in the input string and updates the next array
with each match in the current array. Before moving on to the
next character, we swap next and current and clear next. When
all the characters are done matching, the algorithm returns a
successful match if and only if the last boolean in next (which
corresponds to the end of the RegEXx) is set.

This naive algorithm potentially matches every character in

the RegEx with every character in the string. Further for each

55

match, the progress function potentially scans through the entire
RegEx to find the next locations to match further, blowing
up the complexity. It is easy to see why such an interpreter
would be very inefficient. Now we will use the C++ multi-stage
programming framework BuildlIt to convert this naive interpreter
into a compiler using Futamura projections [17]. We choose
Buildlt over other multi-stage frameworks because unlike other
frameworks it allows writing and generating imperative code
with rich control flow. BuildIt also allows updates to first
stage variables and expressions under conditions based on
expressions that are evaluated in the second stage. We will see
why this is required next. Figure [2| shows the entire working
source code for the compiler. The first section shows all the
BuildIt headers and types being included. The second section
shows some helper functions including the progress function.

The third section shows the main function that calls BuildIt to
stage the interpreter and generate the code. Finally, the last
section shows the actual matching function to be staged.

To write the compiler with Buildlt, we have to decide the
types for all the variables because BuildIt uses the declared
types of variables and expressions to decide what stage they
will be executed in. Any expression of type statie<r> (Or any
non Buildlt type) is evaluated in the first stage and expressions
with type dayn<1> are converted into code to be executed in the
second stage. Since we want to generate code for any given
regular expression, we declare the RegEx input to be of type
const char and the string to match of type dyn<chars> as shown
Line 2] The two boolean arrays current and next are declared
to be of type static<char> because we want to completely
evaluate them away in the first stage (Line @5}46). Line S2}[55]
show the two loops that iterate over each character in the
input string and each boolean in the current array respectively.
Line [61] shows a condition on dyn<t> variables. Based on this
condition we make updates to the next array in the progress
function. BuildIt’s unique ability to support such patterns gives
rise to complex control flow in the generated code. Let us look
at a very simple RegEx input - absc. Figure |3 shows the code
generated for this input when it is passed through the compiler
above. The first thing we can notice is that all traces of the inner
loop that iterates over characters of the RegEx have disappeared.
The generated code instead has state transitions implemented
as if-and-goto. Further, all traces of the complex logic in the
progress function have disappeared too. This means that the
developer could implement the progress function in an easy to
understand but not so efficient way and it wouldn’t affect the
runtime at all. This example demonstrates that starting from a
naive interpreter logic, we are able to generate quite efficient
code which looks very different from the original code. Note
that, this code is still not the best implementation of RegEx
because we did not apply vectorization, parallelization, and
other advanced compiler code generation techniques. We will
show how this can be achieved with our graph DSL (§IV).

III. BACKGROUND AND CHALLENGES

In this section we provide some background into require-
ments for real world DSLs and the technical challenges in
implementing their compilers.

A. The Graphlt DSL

Graphlt is a DSL for graph computations that generates
high-performance C++ and CUDA to be run on CPUs and
GPUs among other hardware. Graphlt separates what is
computed (specified in the algorithm language) from how
it is computed (specified in a scheduling language). The
Graphlt algorithm language is an imperative language that
uses abstract data structures and operators. This means that
objects like vertex sets and edge sets can have different
representations like bitmaps, boolmaps or sparse queues and
CSR, COO, or blocked CSR based on what is suitable for
the optimizations applied. Similarly, the implementation of
the operators combines a variety of parallelization techniques,

1 int match_re (charx argl) {
2 char+ var0 = argl;

3 int varl = strlen(var0);
4 int var2 = 0;

5 if (var2 < varl)

6 if (varO[var2] == 97) {
7 var2 = var2 + 1;

8 labelO:

9 if (var2 < varl) {

10 if (varO[var2] == 98) {
11 var2 = var2 + 1;
12 goto labelO;

13 }

14 if (varO[var2] == 99) {
15 var2 = var2 + 1;
16 if (var2 < varl)
17 return 0;

18 else

19 return 1;

20 } else

21 return 0;

22 } else

23 return 0;

24 } else

25 return 0;

26 else

27 return 0;

28 |}

Fig. 3. Code generated from the RegEx compiler for the input abxc. Notice
that this generated code effectively only has one loop

iteration direction, deduplication strategies, etc. The scheduling
language enables programmers to easily search through this
complicated tradeoff space by composing together a large set
of edge traversal and vertex data layout optimizations. These
choices allow the developer to fine-tune the performance for
their algorithm and graph input. The Graphlt GPU backend
can also generate CUDA code to be run on the NVIDIA GPUs
and is the current state-of-the-art in terms of performance [9].
The whole of the Graphlt compiler framework is about 82,000
lines of C++ code out of which about 26,000 lines are required
for the GPU part of the compiler.

B. Staging with Buildlt

Buildlt [16] brings the idea of staging or multi-stage
programming to C++ through a light-weight library. BuildIt
uses a type-based approach, meaning the declared types (and
only the types) of the variables and expressions are used to
decide the stage in which they would be evaluated. As seen in
RegEx example in Figure 2] BuildIt also uses the same syntax
for all operations and control flow constructs across all stages.
This provides a very seamless interface to the user and makes
moving code between stages much easier. Another benefit of
Buildlt is that it uses an imperative programming model and
hence is easier for domain experts to use.

Let us look at a few parts of the Graphlt compiler, specifically
the GPU backend and the challenges one would face while im-
plementing it with staging. Although these are being explained
in the context of a graph DSL, parallelization, data-structure
choices, and fusing kernels is essential for performance in any
DSL and these would similarly apply to other domains -

C. UDF Analysis and Transformations

Graphlt’s programming model requires the programmer to
write serial code for the algorithm and the compiler automati-

56

cally parallelizes it based on the graph domain knowledge.
One of the challenges in doing this is to insert atomics
and other synchronization primitives at the right place to
ensure correctness. The Graphlt compiler could conservatively
insert atomics at every access to shared data, but that would
compromise the performance. To solve this problem, the
compiler performs a data-flow analysis to identify which
variables are shared and independent between different threads.
It only inserts atomics when a variable is potentially modified
by more than one thread at the same time. This data-flow
analysis is seeded by the choice of load balance and direction of
iteration and goes through all the operations that are performed
on edges and vertices. This analysis is implemented as a mid-
end pass on the compiler IR. When implementing the compiler
with staging, we do not have an IR or a pass infrastructure.
We will show in Section [[V|how BuilDSL extends the types to
perform the data-flow analysis to provide the same guarantees.
The same idea can be used to implement a variety of analysis
and transformation passes.

D. Scheduling Language and Specialization

The Graphlt DSL first applied the idea of separating the
algorithm from the schedule for the applications from the graph
domain. Other DSLs like Halide [[11]], TACO [6], Tiramisu [5]]
also apply similar techniques to applications from other domain.
Such a separation allows the developer to write the application
once and fine-tune the performance of the generated code to
better suit the inputs by simply tweaking the schedule. Having
a clear separation between inputs for correctness and inputs for
performance also lets the programmer apply techniques like
auto-tuning to choose the best schedule and hence generate the
best performing code. The Graphlt GPU backend, G2 identified
7 independent scheduling dimensions that are critical for the
performance of graph applications on GPUs and exposed them
to the user through the scheduling language. The Graphlt
DSL compiler implements scheduling as transformation and
code generation passes in the compiler with each schedule
transforming the IR in different ways. Once again, BuilDSL is
able to support specializing the generated code without having
explicit IR and transformation passes.

E. GPU Code Generation

The Graphlt DSL compiler can generate code for massively
parallel GPUs with thousands of threads organized in complex
thread hierarchies. Besides assigning work to threads in a
load-balanced way, the GPU backend also has to take care of
moving data between host and GPU, shared memory allocation,
warp, thread, and grid synchronization, avoid warp divergence,
and accessing global memory in a coalesced way among
other things. The Graphlt DSL. GPU backend achieves all
this with a combination of code generation passes and runtime
libraries. This significantly increases the complexity of the
code generation passes.

FE. Kernel Fusion

An optimization that the Graphlt GPU backend relies on
heavily is Kernel Fusion. When enabled, this moves outer loops

57

into the CUDA kernel to avoid the cost of launching a new
kernel for every step in every iteration. This is particularly
useful when the outer loop runs for a large number of
iterations and performs very little work per iteration. Kernel
Fusion can improve performance by up to 1000x for some
applications and inputs [9]. Implementing Kernel Fusion
requires identifying local variables that are being used inside
the loop, hoist and transfer them between the host and GPU,
insert appropriate synchronization between individual steps
to ensure semantic equivalence and using a fixed number of
threads to implement each step in the loop (which potentially
require a different number of threads). Because Kernel Fusion
is a non-local optimization, its implementation adds signifant
complexity to the code generation passes. Kernel Fusion is a
critical optimization for performance and the generalized DSL
framework in BuilDSL provides support for implementing
Kernel Fusion with ease for a variety of operators.

IV. IMPLEMENTATION

In this section, we will explain how BuilDSL handles all
the challenges explained in Section [[II] and how we use the
framework to implement a GPU graph DSL that matches the
performance of the state-of-the-art graph DSL, Graphlt.

A. Graph DSL Programming Model

Before we get into how each component of BuilDSL is im-
plemented, we will introduce BuilDSL’s programming interface
with an example application. BuilDSL is implemented as an
embedded DSL in C++ using the Buildlt multi-staging library.
The design of BuilDSL’s programming API including data-
types and operators is similar to Graphlt’s carefully designed
APIL. Just like Graphlt’s types, all data-types are abstract
meaning they could have varying implementations based on
scheduling parameters. These data types are implemented as
extensions to (or wrappers around) BuildIt’s ayn<T> types. As a
result, instead of getting completely evaluated in the first stage,
they generate code to be run in the second stage. BuilDSL
packs all the implementation inside the operators that it
€Xposes to the users like the vertexset_apply and edgeset_apply.
These operators use a combination of dyn<r> (arguments)
and statie<T> (schedule) inputs to generate specialized high-
performance code to be run on GPUs. We will explain the key
operators that make use of BuilDSL’s specialization and the
scheduling objects associated with them next.

vertexset_apply: The eg::vertexset_apply applies a user-
defined function (UDF) to a set of vertices in a vertexsubset
in parallel. The operator takes two arguments, a VertexSubset
and a function that accepts a vertex. The first parameter can
also be an edgeset (the graph data structure), in which case
the function is applied to all the vertices in the graph. This
operator is typically used to initialize values associated with
the vertices or for updating the values at a per vertex level
(without looking at the neighbors).

edgeset_apply: The cg::edgeset_apply is one the main oper-
ators in our DSL and applies a UDF to each edge in a set.
The operator can be invoked by the app1y function that takes

as arguments an edgeset (graph data structure) and a function
that takes as arguments a pair of vertices corresponding to the
source and the destination of the edge. The user can add clauses
like £rom and to that filter out edges that originate from and are
incident to a subset of vertices respectively. These clauses can
either take a vertexsubset oOr a function that takes as argument
a vertex and returns a boolean. There is another version of
this operator apply modified that also tracks vertices that have
a certain property updated and return it as a vertexsubset. This
is used to implement active frontiers in data-driven algorithms
like BFS and CC.

All the datastructures passed to these arguments are runtime
values and hence are declared as dyn<t>. There are various
ways this operator can map the execution of the UDF on each
edge to the threads, warps and thread blocks of the GPU. At
the same time, there are various choices with respect to the
actual representation of the data structures involved and how
they are updated. These choices are specified using a schedule
object that is passed to the constructor of the edgeset_apply
operator. Since these choices are supplied at the compile time
in the DSL and are used for specialization, the argument is
declared as statie<t>.

fuse_kernel: The eg: : fuse_kerne1l operator allows combining
calls to various operators into a single GPU kernel launch as
opposed to separate kernel launches for each of them. The
operator takes as argument a C++ lambda that wraps around
the calls to the operators to be fused. The operator also takes
a boolen (static<t>) to determine if the operators are to be
actually fused. The operators are fused only if this boolean
evaluates to true. This allows enabling/disabling fusion as a
scheduling option. fuse kernel can also be wrapped around
control flow structures like if-then-else and loops to fuse all
the operators in every iteration or branch.

Scheduling objects: The scheduling objects declared as
static<T> are used by BuilDSL to specialize the code generated
by the operators. The type schedule is an abstract class that has

1 VertexData<int> parent ("parent");

2 | GraphT edges ("edges");

3

4 | static void updateEdge (Vertex src, Vertex dst) ({
5 parent [dst] = src;

6 |}

7 static dyn<int> toFilter (Vertex v) {

8 return parent[v] == -1;

9 |1}

10 | static void reset (Vertex v) {

11 parent [v] = -1;

12 |}

13 | static void BFS (dyn<char*> graph_name, dyn<int> src,
14 dyn<float> t, eg::Schedule &sl, bool to_fuse) {
15 R

16 edges = eg::runtime::load_graph (graph_name) ;

17 parent.allocate (edges.num_vertices);

18 VertexSubset frontier =

19 eg::runtime: :new_vertex_subset (edges.num_vertices);
20
21 eg: :vertexset_apply (edges, reset);
22
23 parent [src] = src;

24 frontier.addVertex (src);
25 eg::fusee_kernel (to_fuse, [&] () {
26 while (frontier.size() != 0) {
27 eg::edgeset_apply (sl) .from(frontier) .to(toFilter)
28 .apply_modified (edges, frontier, parent,
29 updateEdge) ;

30 }

31 })i

32 coo

33 |}

34 | ...

35 | int main (int argc, charx argv([]) {

36 // Define a schedule for specialization

37 SimpleGPUSchedule sl.

38 sl.configLoadBalance (VERTEX_BASED) ;

39 sl.configDeduplication (DISABLED) ;
40 // Extract the specialized implementation
41 // and generate code
42 auto ast = builder::extract_function (BFS, "BFS",
43 sl, true);
44 eg::pipeline::run_eg_pipeline (ast, std::cout);
45 |

two derived types, the simpleGPuschedule and HybridGPUSchedule.

The simpleGPuschedule has members and functions to configure
choices for load balancing, vertex set representation, vertex
set deduplication, iteration direction and edge blocking. The
HybridGPUSchedule type allows combining two schedule objects
based on some runtime condition like size of the active vertex
set. We will explain the details of how these scheduling objects
affect the generated code further in this section.

Figure 4| shows an example of the BES application written
in BuilDSL making use of all the operators. The example also
shows the construction and use of a schedule oObject that is
passed to the edgeset_apply operator for specialization.

Now that the programming model is clear, we will explain
how BuilDSL addresses each of the challenges mentioned in
Section

B. GPU Code Generation

The biggest challenge when implementing high-performance
DSLs is providing an abstraction for parallelization. Especially

58

Fig. 4. Implementation of the BFS algorithm in BuilDSL. Notice the call to
the vertexset_apply and edgeset_apply operators

for backends like NVIDIA GPUs that have a clear separation
between code that runs of the host and the code that runs
on the GPU, the code generation can become complex with
__global__ kernel generation, data transfer, kernel launch
parameters, synchronization primitives, etc. Although the
CUDA programming model is great for performance, it is not
the most programmer-friendly for domain experts. OpenMP
style pragma annotations is another popular abstraction for
expressing parallelism and is used in many state-of-the-art
graph libraries like Ligra [18] and GAPBS [19]. BuilDSL
extends the Buildlt framework to be able to generate CUDA
kernels from annotated loop nests using BuildIt’s annotation
system and adding a CUDA kernel extraction pass. Figure [3]
shows a doubly nested loop written with BuildIt annotated as
cupa_kerNeL". The CUDA extraction pass in BuilDSL, identifies
such annotated loops and converts them into CUDA kernel
while mapping the outer loop to the blocks in a grid and
the inner loop to the threads in a block. The pass replaces
all accesses to the outer loop index with blockrdx.x and the
inner loop index with threadrax.x. This pass also identifies
all the local variables that are used inside the doubly nested
loop that are declared globally or in the enclosing functions.

1 | GraphT g = B 1 | static<enum current_context> = HOST;
2 | builder: :annotate ("CUDA_KERNEL") ; 2 | dyn<int> xcta_ptr, xt_ptr = nullptr;
3 | for (dyn<int> cta = 0; cta < 60; cta = cta + 1) { 3
4 for (dyn<int> t = 0; t < 512; t =t + 1) { 4 | void fuse_kernel (std::function<void (void)> body) {
5 dyn<int> tid = cta * 512 + t; 5 current_context = DEVICE;
6 dyn<int> edge_dst = g.edges[tid]; 6 builder: :annotate ("CUDA_KERNEL") ;
7 7 for (dyn<int> ct = 0; ct < MAX_CTA; ct = ct + 1) {
8 } 8 for (dyn<int> t = 0; t < MAX_T; t =t + 1) {
9 } 9 // Save refer es to indices
10 // for use inside operator
11 cta_ptr = ct.addr();
Fig. 5. Example of an annotated loop nest to be converted into a CUDA kernel 12 t_ptr = t.addr();
13 body () ;
1 void _ global__ cuda_kernel_ 0 (GraphT arg0) { }2 } }
2 int var0 = blockIdx.x * 512 + threadIdx.x; p
. 16 current_context = HOST;
3 int varl = arg0.edges[var0]; 17 }
4
18
2 ! 19 | void vertexset_apply (VertexSubset &s, udf_t f) {
7 Gr hT _ . 20 // Specialization based on current context
ap 9= o 21 if (current_context == HOST) {
8 | cuda_kernel_0<<<60, 512>>>(qg);
9 | cudabDeviceSynchronize () ; 22 current_context = DEVICE;
¥ ! 23 builder::annotate ("CUDA_KERNEL") ;
24 for (dyn<int> ct = 0; ct < MAX CTA; ct = ct + 1) {
i . . an s . 25 for (dyn<int> t = 0; t < MAX_T; t = t + 1) {
Fig. 6. Generated CUDA and host code for an annotated loop nest % dyn<int> tid — ct « MAX_T 1 t;
. 27 .
These variables are passed to the kernel as arguments and og }
are copied back after the kernel is finished executing. The 29)
30 current_context = HOST;
loop bounds are used to pass the kernel launch parameters 31 } else {
at launch. Figure [6] shows the host and GPU generated code gg Zynz:l“:i Et = ECti—Ptrf
. . . e . yn<in = *t_ptr;
for this loop nest. This basic primitive for launching CUDA 34 dyn<int> tid = ct = MAX_T + t;
kernels by annotating loop nests enables the DSL developer to 33 Se ‘ ‘
. 36 // Synchronize the grid to ure correctness
implement various load-balancing techniques by tuning the grid 37 grid_sync();
and block dimensions and is not limited to the graph domain. ;g : }
The BuilDSL runtime library also provides warp, thread, and

grid-level synchronization primitives that can be called from
within the loop nests. The implementation of the operators
like vertexset_apply and edgeset_apply in BuilDSL use such
annotated loop nests inside them to map the execution of the
UDFs on each vertex or edge to GPU threads automatically.

C. Kernel Fusion

All parallel operators in BuilDSL are implemented using
the annotated loop nests. As a result, each call to an operator
generates separate CUDA kernels that are launched from the
host code. As explained in Section this can lead to a lot
of overhead when each operator does very little work and the
kernel launch overhead starts to dominate. The user might want
to fuse a series of calls to an operator or even entire loop nests
into a single GPU kernel. We want to achieve this without
having to write a fused version for each combination like in
some library approaches. BuilDSL uses the static<T> variables
to implement Kernel Fusion in a generic way. BuilDSL defines
an enum context that can have values zost or pevice. As shown
in Figure [7] Line [I] BuilDSL also has a static<enum context>
variable current_context that is initialized to sost. BuilDSL now
exposes an operator fuse_kernel (Line [to the user to wrap
around a series of calls or entire loop nests. The implementation
of this operator starts one annotated loop nest and sets the
current_context t0 DEVICE. NOw each operator implementation
checks the current_context. If it is set to nost, it creates its own
loop nest. Otherwise, it just uses the loop indices from the loop
nest created by fuse_kernel. If the operator needs more threads
than what is spawned by the fuse_kerne1, it adds another loop

59

Fig. 7. Implementation of the fuse_kernel operator in BuilDSL and the
specialization of the vertexset_apply operator to implement Kernel Fusion

to simulate more threads with the fixed threads while inserting
appropriate block and grid synchronization primitives. Since the
current_context variable is declared as static<r> all conditions
based on it are completely evaluated during compile time and
do not introduce any runtime overheads.

Unlike the Graphlt DSL compiler, the implementation of
the Kernel Fusion optimization does not require any additional
passes that generate separate kernels, hoist variable declarations
as parameters or introduce specialized loop nests. BuilDSL
implements it as specialization based on static<r> variable
reducing the complexity and the lines of code required for
implementing the optimization to the minimum. We will
compare the exact lines of code in BuilDSL and Graphlt
required to implement Kernel Fusion in Section

D. UDF Analysis and Transformations

As explained in Section [[lI} one of the major challenges in
implementing a high-performance DSL is performing analysis
on the code written by the user and using that analysis
to transform the generated code for both correctness and
performance. Since BuilDSL lacks a pass infrastructure to
implement domain-specific passes, the analysis has to be packed
in the extended types. The types are a dual of passes when
moving from compilers to staging. To implement a generic
data-flow analysis in BuilDSL, we track the analysis bits as
static<T> With the values to be analyzed. These bits can then

1 [// Type to hold a Vertex

2 | struct Vertex {

3 // The actual dynamic vertex this value holds
4 dyn<int> vid;

5 // Dataflow analsis bits for this value

6 enum access_type {INDEPENDENT, SHARED, CONSTANT};
7 access_type current_access;

8 000

9 // Operator overloads for Vertices

10 Vertex operator + (const Vertexs& rhs) {

11 // Call the internal + operator on dyn<int>
12 Vertex out = vid + rhs.vid;

13 // Update analsis bits

14 if (current_access == INDEPENDENT

15 && rhs.current_access == CONSTANT

16 || current_access == CONSTANT

17 && rhs.current_access == INDEPENDENT)

18 out.current_access = INDEPENDENT;

19 else

20 out.current_access = SHARED;

21 .

22 return out;

23 }

24 | };

25 | // Type to hold expressions like parent [dst]

26 |template <typename T>
27 | struct VertexDataIndex {

28 // The actual variable and index being tracked
29 // viindex]

30 VertexData<T> v;

31 Vertex index;

32 // Specialization for the += operator

33 // with atomics when index is shared across threads
34 dyn<T> operator += (const dyn<T>& rhs) {

35 if (index.current_access == INDEPENDENT)

36 return v[index] += rhs;

37 else

38 return atomicSum(&v[index], rhs);

39 }

40 | };

41 // Edgeset apply seeding the analysis

42 | void vertexbased_loadbalance(..) {

43 500

44 Vertex src = ...;

45 Vertex dst = ...;

46 / rtex based load balance,

47 > vertex is assigned to on hread,
48 e ination can be visited by
49 // multiple threads

50 src.current_access = INDEPENDENT;

51 dst.current_access = SHARED;

52 udf_body (src, dst);

53

54 |1}

Fig. 8. Implementation of the data-flow analysis to track SHARED and
INDEPENDENT vertex data indices for inserting atomics in appropriate
cases

be updated or propagated with each operation by overloading
the calls to the operators. Finally, these static<t> bits can be
queried at the time of operator implementation to specialize
the behavior, which is the dual of transformations.

Figure (8| shows the implementation of the data flow analysis
to track shared and independent values for inserting atomics at
appropriate places. This analysis tracks whether indices used
to index into vertexpata can be shared across different threads
or is guaranteed to be unique across threads. If it is guaranteed
that no two threads would update the same index, we don’t
have to insert any atomics. This analysis is seeded by the load
balance implementation where a load balance technique like
VERTEX_BASED Sets the current_access analysis bit of the source
vertex to inpepenpent While the bit for the destination vertex is
set to be suarep. The verTex_sasep load balance assings each
source vertex to a different thread, while the same destination

SimpleGPUSchedule sl;

sl.configDirection(direction_type: :PULL,
frontier_rep::BITMAP);

sl.configlLoadBalance (load_balance: :VERTEX_BASED) ;

sl.configFrontierCreation (frontier_rep::BITMAP) ;

N R W —

edgeset_apply (sl) .from(frontier) .apply modified(...);

Fig. 9. Example of creating, configuring and applying a SimpleGPUSchedule

can be potentially visited by two threads when two vertices
in the graph have a common neighbor. This bit is queried to
specialize the implementation of the += reduction operator as
shown on Figure [§] Line [34]

The beauty of implementing data-flow analysis with
statie<T> variables is that the developer only has to implement
how the values are propagated at each operation as shown
in Line [T4] The developer doesn’t have to implement any
convergence analysis or worry about back edges. Buildlt treats
statie<T> variables in a special way, such that it unrolls loops
till the static<t> values reach a previously visited value. Thus,
if there is a back-edge that further updates the analysis bits,
the loop will be unrolled with differing implementation till the
analysis converges. This way of implementing analysis not only
requires very few lines of code but most importantly doesn’t
require any knowledge of compiler analysis to implement. This
technique also generalizes well to other analyses and BuilDSL
uses the exact same technique to track which vertexpata is
being tracked in the edgeset_apply.apply modified Operator to
produce the output frontier.

E. Scheduling language and specialization

In this section, we will explain how BuilDSL implements
a scheduling language and specialized code generation. The
Graphlt DSL compiler implements scheduling by progressively
transforming the IR before code generation. Because BuilDSL
lacks a domain-specific pass framework, once again we will
rely on extending the types to affect the code we generate
based on the scheduling input. The Graphlt GPU extensions,
G2 identified the 7 independent dimensions of scheduling
that are critical for the performance of graph applications on
GPUs namely - load balance, vertex subset representation,
the direction of traversal, deduplication, vertex ordering, edge
blocking, and kernel fusion. The programmer can choose one
of many options for each of these dimensions giving rise to a
total of about 576 combinations, the highest supported by any
graph GPU framework [9]. We support all these dimensions
with BuilDSL. The programmer encodes these options by the
means of a scheduling object like shown in Figure[9]configuring
one or more of the scheduling options. Line [/| shows how this
schedule can be applied to the operators when implementing
the algorithm. The implementation of the operators can then
specialize the code based on these scheduling objects by
introducing branches on these flags. Since the scheduling
objects are not of dyn<t> type, these branches are completely
evaluated avoiding any kind of runtime overhead.

One performance-critical schedule that Graphlt supports
is direction optimization, where the direction of iteration

60

applied schedule is
{
s_to<HybridGPUSchedule> (s

the Hybrid

if (s 1sa<Hybr1dGPUSchedule>(s))
HybridGPUSchedule xh

)i

// Branch based on dyn<T> expressions and recursively
// call edgeset_apply

if (in_set.size()

<=

h->threshold * graph.num_vertices)

NN REN o R S N S N

edgeset_apply (h->s1) .from(in_set) .apply(...);
10 else
11 edgeset_apply (h—->s2) .from(in_set) .apply(...);
12 return;
13 |}
14

SimpleGPUSchedule sl, s2;
sl.config...
s2.config...

18 // Create and apply a Hybrid Schedule combining two

19 | // simple schedules

20 HybrldGPUSchedule hl(sl, s2, 0.05);

Fig. 10. Implementation of edgeset_apply operator with a

HybridGPUSchedule and an example of how the user can create a
hybrid schedule combining two simple schedules

is changed at runtime based on the size of the frontier.

This optimization is used by applications like BFS and BC
especially when dealing with power-law degree distribution
graphs where the frontier size varies a lot. Just like RegEx
example, we leverage BuildIt’s unique ability to have static<r>
code inside conditions based on dyn<T> expressions. To apply
direction optimization, the programmer starts by creating a
HybridGPUSchedule Object that combines two separate schedule
objects (top-level abstract class of all scheduling classes) with
a threshold. The first schedule is applied if the fraction of the
active vertices in the input frontier is less than the threshold
and the second schedule otherwise. While implementing
the edgeset_apply oOperator, the implementation checks if the
schedule being applied is a hybrid schedule. If yes, it branches
on the size of the input frontier and recursively calls the
edgeset_apply Operator in the then and else branch with the two
schedules respectively. Because BuildIt uses the same syntax
for all stages, this implementation is very similar to how one
would branch in a graph library keeping the code generation
complexity to the minimum. On the other hand the Graphlt
DSL compiler has to rely on duplicating, creating if-then-else
IR nodes and doing specialized code generation when it detects

a hybrid schedule further increasing the compiler complexity.

Section [V| shows the number of lines of code required to
implement code generation in Graphlt, while Figure [T0] shows

the complete implementation of hybrid scheduling in BuilDSL.

HybridGPUSchedule can also be arbitrarily nested to create very
complex runtime conditions. The dynamic condition can also
be generalized to be based on other runtime parameters instead
of just the input frontier size.

F. Runtime Library

Although most of the code generated from BuilDSL is
specialized for best performance, some of the code doesn’t
change a lot across different applications and inputs like vertex

set allocation and management, priority queue implementation,

I/O, graph transformations among others. To keep the staging
complexity to a minimum, we implement this in a runtime

61

TABLE I. LINES OF CODE REQUIRED TO IMPLEMENT VARIOUS PARTS OF
BUILDSL AND THE GRAPHIT DSL COMPILER. FOR FAIRNESS WE HAVE
ONLY COUNTED THE GPU BACKEND AND THE GPU RUNTIME LIBRARY
FROM GRAPHIT ALTHOUGH IT ALSO HAS A CPU BACKEND. THE LINES OF
CODE FOR BUILDIT HAS BEEN SHOWN SEPARATELY.

[Component | BuilDSL | Graphlt |
[BuildIt [6,808 [- [
Frontend - 9,593
Scheduling Language 151 2,401
Midend Analysis and Transformations - 9,601
Types and Operator Implementation 1,320 -
Code Generation 550 2,188
Runtime Library 1,570 2,470
Total 3,591 26,253
Total (compiler only) 2,021 23,783

library that is linked with the generated code. BuilDSL can
insert calls to the routines in the runtime library because BuildIt
supports calls to external ayn<r> functions.

Finally, although the implementation techniques explained
in this section all talk about how they apply to the graph
domain, it is very easy to see how these can be applied to
DSLs from other domains. The generalized DSL framework
part of BuilDSL provides the basic blocks like extracting
CUDA kernels, support for Kernel Fusion, etc. The scheduling,
analysis, and transformations can be made specific to the
domain by extending the types.

Our companion paper [20] shows the implementation
and schedules for five graph applications implemented with
BuilDSL and discusses in detail the generated CUDA code for
each of them.

V. EVALUATIONS

In this section, we demonstrate the performance of the code
generated from BuilDSL and how it compares against the
code generated from the state-of-the-art GPU graph compiler
Graphlt. We will also compare the lines of code required to
implement BuilDSL with that of the Graphlt DSL compiler.

A. Implementation Complexity

The primary metric for the quality of a DSL is the
performance of the code it generates and how it stacks up
against other library and compiler frameworks. However, with
the increasing number of DSLs coming out tailored to very
specific domains, it is also important to see how easy or difficult
it is to implement the compiler for the particular DSL. In
this paper, we make the case that using staging and BuilDSL
makes it significantly easier to rapidly prototype and test a
DSL without having to compromise on performance. We will
start with comparing the number of lines of code required to
implement various parts of BuilDSL explained in Section
with the lines of code required to implement the corresponding
features in the Graphlt DSL compiler as passes. Table [I| shows
the various components and the lines of C++ code required to
implement them.

Looking at the total lines of code we can see right away that
BuilDSL takes only about 15% of the lines of code required
to implement a full DSL compiler. This difference becomes

even more prominent when we ignore the number of lines
of code that go into the runtime library (8.4%). Buildlt a
library that BuilDSL primarily depends upon currently stands
at 6,808 lines of C++ code and has been shown separately
in the table. Although this a large component of BuilDSL,
BuildIt is a generalized C++ library for multi-stage execution
and is completely independent of any DSL implementation.
For fairness reasons, we have counted only the lines of code of
Graphlt that are required for the GPU backend and the GPU
runtime library although it also implements a CPU backend.
The bulk of the implementation complexity of Graphlt lies in
the front-end and the mid-end. This is because the frontend has
a tokenizer, a parser, front-end IR definitions which BuilDSL
doesn’t have to implement because the DSL is implemented
embedded in C++ on top of Buildlt and its types. The mid-end
of Graphlt has the IR definitions and the bulk of the analysis
and transformation passes which implement visitors over the IR
and manipulate it. This mode of transformation takes up more
lines of code compared to the staging-based specialization in
BuilDSL as part of the types and operator implementation.
Finally, Graphlt’s GPU backend implementation is also huge
because it has to manually generate code as strings by visiting
every IR node for both GPUs and the host. The backend also
has to do specialized code generation for transferring data
between hosts and GPUs and implement Kernel Fusion. The
code generation in BuilDSL on the other hand is completely
handled by Buildlt and hence is for free. The only small part
that we have to implement is the CUDA extraction passes and
the Kernel Fusion infrastructure as part of the generalized DSL
framework. Once again, this implementation is very generic
and can be reused across DSLs. Finally, the runtime library
in BuilDSL is slightly smaller than that of Graphlt’s because
Graphlt implements all load balancing as a series of runtime
library routines whereas BuilDSL takes care of load balancing
in the operator implementation itself.

The Graphlt DSL compiler is also a large project created
over more than 3 years and maintained by at least 4 developers.
BuilDSL on the other hand was developed entirely by just one
developer over a few months. Although BuilDSL borrows a
lot of design decisions and optimization tricks from Graphlt it
still shows that BuilDSL can significantly reduce the time for
prototyping and testing the DSL especially for tricky backends
like GPUs.

B. Performance Evaluations

Now that we have shown how BuilDSL makes it easier
to implement DSLs over traditional compiler techniques, we
want to demonstrate that the code generated from BuilDSL
is on-par with the code from other frameworks in terms of
performance. Since Graphlt already shows that its performance
beats or very closely matches the performance from other state-
of-the-art frameworks like Gunrock [21]], GSwitch [22] and
SEP-Graph [23]], we only compare the performance of the code
generated from BuilDSL with that of Graphlt. The relative
performance to other frameworks can be calculated from the
evaluations in the Graphlt paper [9].

TABLE II. GRAPH INPUTS USED FOR EVALUATION. THE EDGE COUNT
SHOWS THE NUMBER OF UNDIRECTED EDGES.

Graph Input [Vertex count [Edge count |

soc-orkut [24] (OK) 2,997,166 | 212,698,418
soc-twitter-2010 [24] (TW) 21,297,772 | 530,051,090
soc-LiveJournal [25] (LJ) 4,847,571 85,702,474
soc-sinaweibo [24] (SW) 58,655,849 | 522,642,066
hollywood-2009 [25] (HW) 1,139,905 | 112,751,422
indochina-2004 [25] (IC) 7,414,865 | 301,969,638
road_usa [26] (RU) 23,947,347 57,708,624
road_central [25] (RC) 14,081,816 33,866,826
roadNet-CA [25] (RN) 1,971,281 5,533,214

We benchmark 5 applications - PageRank (PR), Breadth
First Search (BFS), Single Source Shortest Path with Delta
Stepping (SSSP), Betweenness Centrality (BC) and Connected
Components (CC). These applications include a mix of
topology-driven, data-driven, and priority-driven algorithms
that fully stress the various aspects of BuilDSL. Similarly, we
use 9 different graph datasets with these applications (shown
in Table [[). These datasets include a mix of power-law degree
and bounded degree high-diameter graphs which have different
characteristics and sparsity patterns. We run our evaluations
on an NVIDIA Volta V100 (32 GB memory, 4MB L2 cache,
and 80 SMs) GPU. Both for Graphlt and BuilDSL we tune
the best schedule for each algorithm and graph input for a
fair comparison (since the programming interface and the
scheduling language for both BuilDSL and Graphlt is similar,
these schedules are very close to each other).

Figure [11| shows the execution time of the code generated
from BuilDSL normalized to the execution time of the code
generated from Graphlt across the 5 applications and 9 graph
inputs. In both cases the best schedule is chosen for each
algorithm and graph input. Across all applications graphs,
BuilDSL has a 1.03x geometrical mean speedup with an at
most 8.38% slowdown and up to 25.15% speedup. BuilDSL
can match the performance of Graphlt because we support the
exact same space of optimization choices as that of Graphlt.

For topology-driven applications like PR and CC, where
all the edges are processed each round, BuilDSL switches
the layout of the graph data structure to COO which is more
suitable and easier to load balance on GPUs. PR also benefits
from Edge Blocking which BuilDSL supports the same way
as Graphlt. Applications like BFS and BC whose performance
is very susceptible to variations in sizes of the active vertex
set across rounds, greatly benefit from the hybrid scheduling
in BuilDSL which as explained in Section [[V|is implemented
as specialization based on dayn<T> expressions as opposed to
just static<r> expression. We apply direction optimization and
changing data structures for the vertex sets to improve the
performance of BFS and BC. Both these algorithms also apply
Kernel Fusion for bounded-degree large diameter graphs to
reduce the kernel launch overhead which is made possible by
the infrastructure support from the generalized DSL framework
in BuilDSL. SSSP uses the priority queue abstraction that is
mostly implemented by calls to a runtime library, but the actual
vertex set processing is done by the same operators in BuilDSL.

62

5 16 PR s -
G BFS mmm
o 14r CC mmmmm
@ N BC mmmm |
T 1 = __] e R e N _ __
3
S 08
g 06H
=
s 0.4 H
"g 02 H
i 0

OK T™W™ LJ SW IC HW RN RU RC

Graph Dataset Name

Fig. 11. Execution time of code generated from BuilDSL normalized to the execution time of the code generated from Graphlt across 5 applications and 9
graph inputs (lower the better). The best schedule for each algorithm and input is chosen in both the cases

SSSP also uses kernel fusion for road graphs like BC and BFS.

Our evaluation shows that all the optimizations that we have
implemented in BuilDSL are critical for performance across
commonly used applications. The Graphlt GPU paper has
shown that the lack of some of these optimizations can lead
to up to 1000x slowdown in some cases.

VI. RELATED WORKS

High-performance DSLs have played a critical role in opti-
mizing applications from several domains. Halide a DSL
for image processing applications was the first that introduced
the idea of separating algorithms from schedules. Other DSLs
like Graphlt [7]-[10], TACO [27]], Tiramisu [5]], Taichi
have applied the same ideas to other high-performance appli-
cation domains. Lightweight Modular Staging [29] and other
works [30]-[38]] have contributed to the idea of staging and its
applications to other domains. Works like Forge [39], Jet [13]],
StagedSAC and others [I]], [40], either apply the
idea of Futamura Projections to interpreters to create
DSL compilers or implement end-to-end DSL frameworks
with staging. A lot of these DSLs also target high-performance
domains and generate code for different architectures like GPUs
and CPUs. BuildIt extends ideas from the BUILDER
framework and brings the idea of multi-stage programming
with a library approach to C++. This is critical because
most high-performance DSLs want to generate C or C++
and BuildIt brings the two stages together. Delite and
other related works [44]-[46] have created building blocks for
components of high-performance DSLs that make it easy to
rapidly prototype a DSL for a new domain. MLIR is a
DSL framework that makes it easy to reuse compiler analysis
and transformation passes across domains with its extensible
IR. But MLIR still requires a lot of compiler knowledge and
is not necessarily easy to use for domain experts. Many high-
performance graph libraries and frameworks have been built to
target different platforms like Ligra [18]], (48], Gunrock [21]],
GSwitch [22], SEP-Graph [23]), IrGL among others [50]—
[68]. Graphlt [7]-[10] is a high-performance graph DSL that

63

can generate code for CPUs, GPUs, multi-cores and other
hardware accelerators with its unique GraphlIR intermediate
representation and scheduling language. The Graphlt GPU
backend combines 7 orthogonal dimensions of scheduling that
enables it to generate the code most suitable for each algorithm
and input. The GraphIR and GraphVMs allow for code reuse
when developing different backends but the framework is very
large and not as accessible for domain experts.

VII. CONCLUSION

We present BuilDSL, a DSL framework built on top of the
light-weight C++ staging library BuildIt. BuilDSL provides
the framework support for GPU code generation, kernel fusion,
analyses, and specialization based on schedules all of which
are commonly required to implement high-performance DSL.
We build a graph DSL on top of BuilDSL that generates high-
performance GPU code that matches the performance of the
code generated from the state-of-the-art graph DSL compiler
Graphlt with a small fraction (8.4%) of the lines of the code.

VIII. DATA AVAILABILITY STATEMENT

BuilDSL and all its components are available open-source
under the MIT license [69]]. The procedure to obtain the dataset
and reproduce the results in this paper are also included. All
of the source code for BuilDSL including the generalized
DSL framework and the graph DSL implementation can be
found under the BuilDSL/include and BuilDSL/src
directories adding up to 2021 lines of C++ code. The implemen-
tation for the five applications with their schedules are under
the BuilDSL/apps directory. Our companion paper [20]
explains in detail the implementation of these applications and
the generated code for each of them.

ACKNOWLEDGMENTS

This research was supported by DARPA SDH Award
#HRO011-18-3-0007, Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC
and DARPA.

[1]

[2]

[3

=

[4

=

[5

[6

=

[8]

[9

—

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]
[18]
[19]
[20]

[21]

[22]

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, 2019.

F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: An
automated end-to-end optimizing compiler for deep learning,” in Proc.
OSDI, 2018.

R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proc. CGO, 2019.
F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“Graphit: A high-performance graph dsl,” in Proc. OOPSLA, 2018.

Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun, “Optimizing ordered graph algorithms
with graphit,” in Proc. CGO, 2020.

A. Brahmakshatriya, Y. Zhang, C. Hong, S. Kamil, J. Shun, and
S. Amarasinghe, “Compiling graph applications for gpus with graphit,”
in Proc. CGO, 2021.

A. Brahmakshatriya, E. Furst, V. Ying, C. Hsu, C. Hong, M. Ruttenberg,
Y. Zhang, D. C. Jung, D. Richmond, M. Taylor, J. Shun, M. Oskin,
D. Sanchez, and S. Amarasinghe, “Taming the zoo: A unified graph
compiler framework for novel architectures,” in Proc. ISCA, 2021.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proc. PLDI, 2013.

A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf, M. Odersky,
and K. Olukotun, “Forge: Generating a high performance dsl implemen-
tation from a declarative specification,” in Prof. GPCE, 2013.

S. Ackermann, V. Jovanovic, T. Rompf, and M. Odersky, “Jet: An
embedded dsl for high performance big data processing,” in Proc.
BigData, 2012.

V. Ureche, T. Rompf, A. Sujeeth, H. Chafi, and M. Odersky, “Stagedsac:
A case study in performance-oriented dsl development,” in Proc. PEPM,
2012.

H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous parallelism,”
in Proc. PPoPP, 2011.

A. Brahmakshatriya and S. Amarasinghe, “Buildit: A type based
multistage programming framework for code generation in c++,” in
Proc. CGO, 2021.

Y. Futamura, “Partial evaluation of computation process, revisited,”
HOSC, 1999.

J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013.

S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, 2015.

A. Brahmakshatriya and A. Saman, “Application suite for a graph dsl in
buildsl,” 2022.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,”
SIGPLAN Not., 2016.

K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on GPUs,” in Proc. PPoPP, 2019.

64

(23]

[24]
[25]
[26]

[27]

(28]

[29]

[30]
(31]
[32]

[33

—

[34]

(35]

(36]
[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang, “SEP-
Graph: Finding shortest execution paths for graph processing under a
hybrid framework on GPU,” in Proc. PPoPP, 2019.

R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proc. AAAI, 2015.

T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., 2011.

C. Demetrescu, A. Goldberg, and D. Johnson, “9th DIMACS implemen-
tation challenge - shortest paths,” http://www.dis.uniromal.it/challenge9/.
F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda, D. Chen,
E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe,
“Simit: A language for physical simulation,” ACM Trans. Graph., 2016.
Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi:
A language for high-performance computation on spatially sparse data
structures,” ACM Trans. Graph., 2019.

T. Rompf and M. Odersky, “Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled dsls,” SIGPLAN Not.,
2010.

W. Taha, “A gentle introduction to multi-stage programming,” in Proc.
Domain-Specific Program Generation, 2004.

W. Taha and T. Sheard, “Multi-stage programming with explicit annota-
tions,” in Proc. PEPM, 1997.

W. Taha and T. Sheard, “Multi-stage programming with explicit annota-
tions,” SIGPLAN Not., 1997.

C. Calcagno, W. Taha, L. Huang, and X. Leroy, “Implementing multi-
stage languages using asts, gensym, and reflection,” in Proc. GPCE,
2003.

E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha,
“Mint: Java multi-stage programming using weak separability,” SIGPLAN
Not., 2010.

K. Swadi, W. Taha, O. Kiselyov, and E. Pasalic, “A monadic approach
for avoiding code duplication when staging memoized functions,” in
Proc. PEPM, 2006.

Y. Kameyama, O. Kiselyov, and C.-c. Shan, “Closing the stage: From
staged code to typed closures,” in Proc. PEPM, 2008.

Y. Kameyama, O. Kiselyov, and C.-c. Shan, “Shifting the stage: Staging
with delimited control,” in Proc. PEPM, 2009.

G. Wei, Y. Chen, and T. Rompf, “Staged abstract interpreters: Fast
and modular whole-program analysis via meta-programming,” in Proc.
OOPSLA, 2019.

A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf, M. Odersky,
and K. Olukotun, “Forge: Generating a high performance dsl implemen-
tation from a declarative specification,” SIGPLAN Not., 2013.

T. Rompf and N. Amin, “Functional pearl: A sql to ¢ compiler in 500
lines of code,” SIGPLAN Not., 2015.

K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. De Sa, C. Aberger,
and K. Olukotun, “Have abstraction and eat performance, too: Optimized
heterogeneous computing with parallel patterns,” in Proc. CGO, 2016.

Stanford Compiler Group, “The builder library, a tool to construct or
modify suif code within the suif compiler,” 1994. [Online]. Available:
https://suif.stanford.edu/suif/suif1/docs/builder_toc.html

H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous parallelism,”
SIGPLAN Not., 2011.

T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky, and
K. Olukotun, “Building-blocks for performance oriented dsls,” EPTCS,
2011.

K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for domain-
specific languages,” in Proc. PACT, 2011.

A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky, “A generic parallel
collection framework,” in Proc. Euro-Par, 2011.

C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. A. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in Proc. CGO,
2021.

L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proc. SPAA,
2017.

S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on gpus,” SIGPLAN Not., 2016.

D. Merrill, M. Garland, and A. Grimshaw, “High-performance and
scalable GPU graph traversal,” ACM Trans. Parallel Comput., 2015.

http://tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://suif.stanford.edu/suif/suif1/docs/builder_toc.html

[51]

[52]

(53]

[54]

[55]
[56]
(571
(58]
[59]

[60]

S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on GPUSs,” in Proc. OOPSLA, 2016.

T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asynchronous
multi-GPU programming model for irregular computations,” in Proc.
PPoPP, 2017.

H. Liu and H. H. Huang, “SIMD-x: Programming and processing of
graph algorithms on GPUs,” in Proc. USENIX ATC, 2019.

A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular
graphs for GPU-friendly graph processing,” in Proc. ASPLOS-XXIII,
2018.

F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “CuSha: Vertex-
centric graph processing on GPUs,” in Proc. HPDC, 2014.

F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable SIMD-efficient
graph processing on GPUs,” in Proc. PACT, 2015.

P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in Proc. HIPC, 2007.

S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proc. PPoPP, 2011.

H. Liu and H. H. Huang, “Enterprise: breadth-first graph traversal on
GPUs,” in Proc. SC, 2015.

X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin, “Frog:
Asynchronous graph processing on GPU with hybrid coloring model,”
TKDE, 2017.

65

[61]

[62]

[63]
[64]
[65]

[66]

[67]
[68]

[69]

C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan, “Multigraph:
Efficient graph processing on GPUs,” in Proc. PACT, 2017.

A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel GPU methods for single-source shortest paths,” in Proc. IPDPS,
2014.

J. Soman, K. Kishore, and P. Narayanan, “A fast GPU algorithm for
graph connectivity,” in Proc. IPDPSW, 2010.

R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus topology-
driven irregular computations on GPUs,” in Prof. IPDPS, 2013.

S. Che, “GasCL: A vertex-centric graph model for GPUs,” in Proc.
HPEC, 2014.

M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, “GTS: A fast and
scalable graph processing method based on streaming topology to GPUs,”
in Proc. SIGMOD, 2016.

A. Gaihre, Z. Wu, F. Yao, and H. Liu, “XBFS: eXploring runtime
optimizations for breadth-first search on GPUs,” in Proc. HPDC, 2019.
W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-scale
asynchronous graph traversals on just a GPU,” in Proc. PACT, 2017.
A. Brahmakshatriya and S. Amarasinghe, “Replication package for
the paper: Graphit to cuda compiler in 2021 loc: A case for
high-performance dsl implementation via staging with buildsl.” [Online].
Available: https://n2t.net/10.5281/zenodo.5788581

https://n2t.net/10.5281/zenodo.5788581

	Introduction
	Motivating Example
	Background and Challenges
	The GraphIt DSL
	Staging with BuildIt
	UDF Analysis and Transformations
	Scheduling Language and Specialization
	GPU Code Generation
	Kernel Fusion

	Implementation
	Graph DSL Programming Model
	GPU Code Generation
	Kernel Fusion
	UDF Analysis and Transformations
	Scheduling language and specialization
	Runtime Library

	Evaluations
	Implementation Complexity
	Performance Evaluations

	Related Works
	Conclusion
	Data Availability Statement
	References

