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SUMMARY 11 

Understanding how cells are likely to evolve can guide medical interventions and bioengineering 12 

efforts that must contend with unwanted mutations. The adaptome of a cell—the neighborhood 13 

of genetic changes that are most likely to drive adaptation in a given environment—can be 14 

mapped by tracking rare beneficial variants during the early stages of clonal evolution. We used 15 

multiplex adaptome capture sequencing (mAdCap-Seq), a procedure that combines unique 16 

molecular identifiers and hybridization-based enrichment, to characterize mutations in eight 17 

Escherichia coli genes known to be under selection in a laboratory environment. We tracked 301 18 

mutations at frequencies as low as 0.01% and inferred the fitness effects of 240 of these 19 

mutations. There were distinct molecular signatures of selection on protein structure and function 20 

for the three genes with the most beneficial mutations. Our results demonstrate how mAdCap-21 

Seq can be used to deeply profile a targeted portion of a cell’s adaptome. 22 
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INTRODUCTION 27 

New mutations arise naturally in the genomes of cells during DNA replication and repair. These 28 

de novo mutations are the main drivers of adaptive evolution in clonal populations that have little 29 

or no recombination or standing genetic variation. For example, numerous lineages with different 30 

beneficial mutations arise and contend within large laboratory populations of asexual microbes 31 

before any one lineage outcompetes the ancestor and its competitors (Good et al., 2017; Lang et 32 

al., 2013; Maddamsetti et al., 2015). This ‘clonal interference’ leads to heterogeneous 33 

populations with many lineages simultaneously adapting via different sets of mutations (Desai et 34 

al., 2012; Gerrish and Lenski, 1998; Park and Krug, 2007). Often a majority of these mutations 35 

affect a small subset of genes involved in cellular processes that are under the strongest selection 36 

(Deatherage et al., 2017; Lang et al., 2013; Lind et al., 2015; Phaneuf et al., 2020). If the 37 

‘evolvome’ is defined as the set of all spontaneous genetic changes by which a cell can 38 

potentially evolve, then the beneficial mutations that are most likely to drive adaptation in a 39 

given environment can be described as constituting its ‘adaptome’ (Ryall et al., 2012). 40 

 Human cancers and microbial infections exhibit similar genetic dynamics to those observed 41 

in these laboratory evolution experiments: single cells clonally expand as they evolve driver 42 

mutations that lead to disease progression and drug resistance. In cancer, both solid tumors and 43 

blood cancers have been shown to be genetically heterogeneous (Marusyk et al., 2012; Merlo et 44 

al., 2006; Thomas et al., 2006). De novo mutations that arise and then take over normal cell 45 

populations can lead to carcinogenesis (Genovese et al., 2014; Watson et al., 2020). Mutations in 46 

cancer cells drive neoplastic progression (Merlo et al., 2010), differences in responses to 47 

chemotherapy (Landau et al., 2013), and relapse (Ding et al., 2012). Similarly, populations of 48 

Pseudomonas aeruginosa and other bacteria that persistently infect the lungs of cystic fibrosis 49 



patients become increasingly invasive and antibiotic resistant over time (Marvig et al., 2015; 50 

Stefani et al., 2017; Winstanley et al., 2016). In both cancers and infections, the same genes are 51 

often mutated in the cells that cause disease in different individuals. Mapping the adaptomes of 52 

these cells to understand how they are likely to evolve in other patients afflicted in the same way 53 

could inform treatment decisions and improve medical outcomes. 54 

 Cells used in biomanufacturing are also prone to evolving unwanted genetic heterogeneity 55 

(Renda et al., 2014; Rugbjerg and Sommer, 2019). Typically, these cells have been highly 56 

engineered to optimize the titer of a product of interest at the expense of rapid cellular replication 57 

(Lee and Kim, 2015; Nielsen and Keasling, 2016). Therefore, there are strong selective pressures 58 

for ‘escape mutations’ that cause production to decline. Usually escape mutations directly 59 

inactivate one or more key genes in the engineered pathway. The resulting nonproducing cells 60 

can become dominant during the many cell divisions that are necessary to scale these processes 61 

up to large bioreactors (Rugbjerg et al., 2018; Sandoval et al., 2014; Zelder and Hauer, 2000). 62 

Mapping the adaptomes of engineered cells to profile the evolutionary failure modes that are 63 

most common in nonproducing mutants before attempting scale-up could guide bioengineering 64 

design decisions and thereby improve the efficiency of industrial processes. 65 

Evolution experiments conducted in laboratory environments reproduce key aspects of 66 

microbial evolution that are observed in chronic infections and bioreactors (Barrick and Lenski, 67 

2013; Gresham and Dunham, 2014). Certain aspects of genomic and phenotypic evolution in 68 

these controlled systems predictably occur across multiple replicate populations (Barrick, 2020; 69 

Cvijović et al., 2018; Furusawa et al., 2018; McDonald, 2019; Rainey et al., 2017), making them 70 

a useful testbed for adaptome mapping methods. In theory, tracking the frequencies of mutations 71 

during the earliest stages of clonal evolution from a single cell in these populations should allow 72 



one to map that cell’s adaptome. However, many highly beneficial mutations arise but never 73 

reach appreciable frequencies in microbial populations before they are outcompeted by lineages 74 

with other beneficial mutations (Desai et al., 2012; Gerrish and Lenski, 1998). Thus, one must be 75 

able to track extremely rare mutations to recover more of the adaptome. During the initial burst 76 

of new beneficial genetic diversity when all beneficial mutations are still rare and very few cells 77 

have accumulated multiple mutations, each mutant is effectively competing only versus the 78 

ancestor. Therefore, one can also estimate each beneficial mutation’s fitness effect directly from 79 

how rapidly its frequency increases during this critical time window. 80 

High-throughput metagenomic DNA sequencing can be used to track rare mutations in 81 

cell populations, but most such studies of microbial evolution experiments have only been able 82 

to reliably identify mutations that are present at frequencies above ~1-10% due to limitations 83 

imposed by sequencing depth or error rates (Barrick and Lenski, 2009; Chubiz et al., 2012; Good 84 

et al., 2017; Lang et al., 2013; Traverse et al., 2013). At this point, the diversity and dynamics of 85 

the single-step beneficial mutations that constitute the clonal adaptome have typically been 86 

obscured by takeover of a few dominant mutants and further evolution of all lineages.  87 

Several methods exist to characterize rarer mutations. Amplicon sequencing (e.g., as in 88 

FREQ-seq) is a straightforward strategy for profiling genetic variants in a targeted subset of a 89 

cell’s genome (Chubiz et al., 2012; Fischer et al., 2017; Hong et al., 2018). However, the PCR 90 

enrichment step in this method requires optimizing conditions for each targeted region and 91 

introduces biases in inferring the frequencies of mutations that alter amplicon sizes. Another 92 

approach is to add unique molecular identifiers (UMIs) to the sequenced DNA fragments before 93 

any amplification steps. This information can be used to detect PCR duplicates to more 94 

accurately estimate mutation frequencies (Hong and Gresham, 2017; Kivioja et al., 2012) and to 95 



correct sequencing errors (Schmitt et al., 2012). But, the extra depth of sequencing needed when 96 

using UMIs for error correction generally makes it infeasible to employ this approach on a 97 

genome-wide scale to track rare variants in many samples. Sequencing short barcodes inserted 98 

into the genomes of progenitor cells (BAR-seq) allows one to economically track the frequencies 99 

of extremely rare lineages derived from these cells (Levy et al., 2015; Venkataram et al., 2016); 100 

but, a limitation of this method is that the cell of interest must be genetically engineered with 101 

high efficiency to introduce a sufficient diversity of cellular barcodes, which may be difficult or 102 

impossible in certain cell types or clinical samples. Additional whole-genome sequencing is also 103 

required to identify the beneficial mutations that are linked to the winning barcodes.  104 

  Here, we describe multiplex adaptome capture sequencing (mAdCap-Seq). This method 105 

allows one to characterize many beneficial mutations in specific genes in a clonally evolving cell 106 

population. The key components of mAdCap-Seq are: (1) increasing sequencing depth in a 107 

targeted portion of a genome through hybridization-based DNA capture, (2) lowering sequencing 108 

error rates using UMIs, and (3) analyzing a time course of samples from a population during the 109 

early stages of clonal evolution. We tested mAdCap-Seq on laboratory populations that used the 110 

same ancestral strains and nearly identical culture conditions as a >70,000-generation E. coli 111 

evolution experiment (Lenski et al., 1991). We were able to directly identify diverse beneficial 112 

mutations in eight genes when they were orders of magnitude lower in frequency than could be 113 

accomplished by standard metagenomic sequencing. The molecular signatures and fitness effects 114 

of the many beneficial mutations found in three of these genes made it possible to infer the 115 

nature of selection acting on their functions in this environment. Our results demonstrate how 116 

mAdCap-Seq can be used to deeply profile a targeted portion of the adaptome of a cell. 117 

 118 



RESULTS 119 

Replaying the beginning of a long-term evolution experiment 120 

We initially examined the evolution of nine replicate E. coli populations that were propagated 121 

via daily serial transfers in glucose-limited minimal medium for 500 generations. Our 122 

experiment used the same E. coli strains as the Lenski long-term evolution experiment (LTEE) 123 

and similar growth conditions (see Methods). Each population was inoculated with a 50/50 124 

mixture of the two neutrally marked LTEE ancestor strains to visualize the initial selective sweep 125 

(Hegreness et al., 2006). An initial 30 generations of evolution occurred as these two strains were 126 

grown separately from single cells before they were combined to begin the serial transfers. Most 127 

populations maintained a roughly equal representation of descendants of both ancestral strains 128 

through the first 300 generations of the evolution experiment (Fig. 1). These dynamics are in 129 

agreement with what has previously been observed in studies of the LTEE, where few mutations 130 

reach a high frequency in the first few hundred generations of evolution (Good et al., 2017). We 131 

chose to further analyze only six of the nine populations due to constraints on how many samples 132 

we could process and sequence. Two E. coli populations (A4 and A5) were purposefully omitted 133 

because they exhibited early sweeps of one marker type, which indicates that their dynamics 134 

might have been dominated by one or a few "jackpot" mutations that occurred very early during 135 

outgrowth of these populations from single cells. The third population that was not selected for 136 

further study (A8) exhibited typical marker dynamics. 137 

 138 

Tracking the trajectories of new beneficial mutations 139 

We next performed mAdCap-Seq on eight genes at ~25 generation increments over the entire 140 

500 generations of the evolution experiment for four of the six populations that we examined 141 



further. These eight genes (nadR, pykF, topA, spoT, fabR, ybaL, hslU, and iclR) are known to be 142 

targets of selection in the LTEE (Good et al., 2017; Tenaillon et al., 2016). Illumina libraries 143 

containing UMIs (Schmitt et al., 2012) were prepared for sequencing and enriched for the 144 

regions of interest using solution based hybridization (Bainbridge et al., 2010). Consensus 145 

sequence reads were generated based on groups of reads with identical UMIs and aligned to the 146 

E. coli genome to predict mutations, including using split-read mapping to identify transposon 147 

insertions and large deletions (Fig. 2A). The enrichment procedure was effective: an average of 148 

73.5% of consensus reads per sample mapped to the targeted regions that together constitute only 149 

0.780% of the 4.63 Mbp genome. In the sample with the median number of total consensus 150 

reads, the average coverage depth across each of the eight genes of interest exceeded 5,000 (Fig. 151 

2B). After eliminating variants that exhibited systematic biases in their frequency trajectories 152 

(see Methods), we were able to track the evolution and competition of 181 mutations, including 153 

when many were present in less than 0.1% of the cells in a population (Fig. 2C, Fig. 3). 154 

 Mutation trajectories in all four populations exhibited a burst of genetic diversity in the 155 

targeted genes followed by loss of this diversity. The initial dynamics are expected to be largely 156 

driven by new genotypes that each evolve a single beneficial mutation very early in the 157 

experiment. If their descendants escape stochastic loss, they will gradually increase in frequency 158 

over the first few hundred generations as they outcompete the ancestral genotype. Once the 159 

population becomes dominated by these first-step mutants, their frequency trajectories plateau 160 

because of clonal interference: they are now mainly competing against one another and are 161 

relatively evenly matched. In populations A1, A2, and A7, the total frequencies of the mutations 162 

we identified sums to 49.6-62.4% at generation 297, indicating that each population is mostly 163 



composed of genotypes with a mutation in one of the focal genes. We recovered less of the initial 164 

beneficial mutation diversity in population A3 where this sum was only 13.5%. 165 

 After around 300 generations, there is a steady decline in the frequencies of most mutations 166 

in the eight targeted genes. At this point, subpopulations of cells that have evolved multiple 167 

beneficial mutations begin to displace the genotypes that we initially tracked. Many of the most 168 

successful new genotypes are descended from cells that already had a mutation in one of the 169 

targeted genes. In these cases, the original mutations serve as markers for the further expansion 170 

of these subpopulations after a period during which their frequencies stagnate or decrease, but 171 

the new beneficial mutations responsible for this further increase in fitness are outside of the 172 

genomic regions we surveilled. The opposite situation, in which a beneficial mutation in one of 173 

the eight focal genes appears in a cell with an untracked beneficial mutation elsewhere in the 174 

genome, also occurs in a few cases. One example is a mutation in pykF that only appears after 175 

300 generations in population A3 but then rapidly increases in frequency and becomes dominant. 176 

These dynamics indicate that its increase is accelerated by the presence of a prior, unknown 177 

beneficial mutation in the genetic background in which it evolved.  178 

 179 

Fitness effects can be inferred from initial mutation trajectories 180 

We next sought to calculate the fitness benefits of individual mutations by tracking how rapidly 181 

their frequencies rose early in the experiment when they were largely competing versus the 182 

ancestral genotype because all new mutations in the population were still rare. To that end, we 183 

performed mAdCap-Seq on all six populations at ~13-generation increments from 169 to 236 184 

generations (Fig. 2D, Fig. 3). With this additional data we were able to track a total of 240 185 

mutations as they gradually increased in frequency during the critical time window from 186 



generation 163 to 243 that captures the dynamics of the first selective sweep. In the four 187 

populations we had already sequenced (A1, A2, A3, and A7), these mutations included 120 of 188 

the 181 previously found in the complete time course data spanning 500 generations and 54 189 

additional mutations that had not been detected when analyzing the original time course data 190 

alone. Using the new mAdCap-Seq data, we also identified 66 mutations in the two populations 191 

for which we did not have time course data at 25 generation increments across the entire 500 192 

generations of the evolution experiment (A6 and A9). Of the 240 total mutations, 93.3% 193 

occurred in just three of the eight targeted genes: nadR, pykF, and topA (Fig. 4A). 194 

 We were able to estimate the fitness effect of each of these 240 beneficial mutations by 195 

fitting a binomial logistic model to how the counts of reads supporting the variant versus 196 

reference sequence increased over time from 163 to 243 generations. In all populations, there is 197 

initially a log-linear increase in the frequency of each mutation as the first wave of evolved cells, 198 

nearly all of which are expected to have just one of these beneficial mutations, competes against 199 

a population that is still almost entirely cells with the ancestral genotype. Then, there is a 200 

deceleration in the rate at which the frequencies of the new mutations increase around generation 201 

196 that coincides with the onset of clonal interference. Genotypes with beneficial mutations 202 

begin to make up a sizable proportion of the population at this point, making it necessary to 203 

account for how they are increasingly competing against one another to estimate fitness effects.  204 

 We accounted for clonal interference by adding a stepwise increase in the average fitness of 205 

the entire cell population over time as an additional set of parameters to the binomial logistic 206 

model (Fig. 2E, Fig. 3). That is, we estimated how the fitness of the population, as a whole, was 207 

changing from the deceleration in the trajectories of the subset of mutations that we tracked in 208 

the targeted genes. Because overall population fitness dynamics are highly reproducible from 209 



population to population in the LTEE conditions (Lenski et al., 1991), we used one consensus 210 

model of how the fitness of the populations increased (fit from all tracked mutations in all six 211 

sequenced populations) to correct our estimates of individual mutation fitness effects for clonal 212 

interference. Most of the increase in population fitness occurs rapidly in a single step during the 213 

interval spanning 196-209 generations. This rapid change followed by stasis may seem at odds 214 

with the continuing increase in the trajectories of many beneficial mutations. However, this type 215 

of stepwise increase is a typical result of clonal dynamics in models and experiments (Gerrish 216 

and Lenski, 1998; Lenski et al., 1991). It could result from many mutations with small fitness 217 

effects, no one of which reaches an observable frequency, peaking and then being outcompeted 218 

by the more highly beneficial mutations that we are able to track, for example. 219 

 The mean fitness effect that we inferred for the 240 tracked mutations in all six populations 220 

was 9.00% with a standard deviation of 1.33%. Although the distributions of the fitness effects 221 

estimated for mutations in nadR, pykF, and topA overlap (Fig. 4B), there was a significant 222 

stratification among these genes. Mutations in nadR were 0.44% more beneficial than mutations 223 

in topA, on average, and this difference was significant (p = 0.022, one-tailed Mann–Whitney U 224 

test). In turn, mutations in topA were 0.70% more beneficial than those in pykF (p = 0.00046, 225 

one-tailed Mann–Whitney U test). The fitness effects of the 16 mutations in the other genes 226 

(spoT, fabR, ybaL, and iclR) were not significantly different from the those of the 224 mutations 227 

in nadR, pykF, and topA (p = 0.33, two-tailed Mann–Whitney U test). Thus, highly beneficial 228 

mutations are possible in these genes as well, but they occur at a much lower rate than similarly 229 

beneficial mutations in nadR, pykF, and topA. 230 

 One metric for how effectively we mapped the E. coli adaptome is the fraction of the 231 

increase in the fitness of each population that is captured by the subset of beneficial mutations 232 



tracked with mAdCap-Seq. The fitness increase of each population could be reliably estimated 233 

by generation 196, and separate estimates for each population were in close agreement with the 234 

consensus estimate that included all populations after generation 209 (Fig 1E, Fig. 2). Thus, we 235 

could make robust calculations beginning at these time points. The percentage of the fitness 236 

increase contributed by the tracked mutations ranged from a low of 10.4% in population A9 to a 237 

high of 34.9% in population A2 at generation 223. The mean across all six populations was 238 

27.5%. This fraction was not constant across time. As evolution continued, cells with these same 239 

mutations should account for a higher and higher fraction of the population fitness if they are 240 

displacing cells with less-beneficial mutations. In line with this expectation, they accounted for 241 

only 19.8% and 18.3%, on average, of the increase in population fitness earlier in the 242 

experiment, at generations 196 and 206, respectively. Later, the frequency trajectories plateaued 243 

for the beneficial mutations we tracked. This behavior means that the fitness of the whole 244 

population had caught up and was now roughly the same as the fitness of a cell with one of these 245 

beneficial mutations. Under this assumption, the tracked mutations account for 16.3–78.8% 246 

(42.9% on average) of the ~9% fitness increase observed at generation 270 in the four 247 

populations sequenced at this time. Overall, while we could account for a considerable portion of 248 

the fitness evolution of these populations with the mutations captured by mAdCap-Seq, 249 

mutations in other genes and/or less-beneficial mutations contributed more in most cases. 250 

  251 

Beneficial mutations reveal different signatures of selection on gene function 252 

Of the 301 total beneficial mutations that we were able to identify using mAdCap-Seq, 272 were 253 

in the nadR, pykF, or topA genes. This large set of beneficial mutations gave us the statistical 254 

power to test for several signatures of molecular evolution to ascertain what types of changes in 255 



the function of each gene improved E. coli fitness in this environment. Each of the three genes 256 

exhibited a distinct spectrum of beneficial mutations (Fig. 5). In some cases, different types of 257 

mutations were also unevenly distributed throughout the sequences of these three commonly hit 258 

genes and had noticeably different effects on bacterial fitness (Fig. 6A). 259 

 The E. coli nadR gene has three distinct functions related to NAD biosynthesis: (1) the N-260 

terminal domain is a helix-turn-helix that binds to DNA so that it can act as a negative 261 

transcriptional regulator of NAD salvage and transport pathways; (2) the internal domain is an 262 

NMN adenylyltransferase (Raffaelli et al., 1999); and (3) the C-terminal domain is predicted to 263 

have ribosylnicotinamide kinase activity (Kurnasov et al., 2003). Large deletions, frameshifts 264 

from small insertions or deletions (indels), insertions of transposable insertion sequence (IS) 265 

elements, and base substitutions creating stop codons dominate the nadR mutational spectrum 266 

(Fig. 5). These disruptive mutations, most of which are expected to result in complete loss of 267 

gene function, are significantly overrepresented versus nonsynonymous base substitutions in the 268 

first two domains of the gene compared to the remainder (13.7 odds ratio, p = 1.2 × 10−8, one-269 

tailed Fisher's exact test) (Fig. 6A). Yet, there was not a significantly greater fitness effect for 270 

disruptive mutations compared to nonsynonymous mutations overall (p = 0.063, one-tailed 271 

Mann–Whitney U test). These results indicate that complete inactivation of nadR yields the 272 

maximum benefit possible for a mutation in this gene. Consistent with our observations from 273 

mapping its adaptome, deletion of nadR has been shown to be highly beneficial in the very 274 

similar environment of the LTEE (Barrick et al., 2009). 275 

 Pyruvate kinase 1 (pykF) catalyzes the final step of glycolysis, transferring a phosphate group 276 

from phophoenolpyruvate (PEP) to ADP to generate pyruvate and ATP. It is a key enzyme in 277 

regulating glycolytic flux (Kochanowski et al., 2013; Siddiquee et al., 2004). We observed an 278 



intermediate representation of disruptive mutations in pykF: fewer than in nadR but more than in 279 

topA (Fig. 5). Nonsynonymous base substitutions in pykF tend to have a larger fitness effect than 280 

disruptive mutations (p = 0.00031, one-tailed Mann–Whitney U test) (Fig. 6A). This finding is in 281 

agreement with a study of various pykF alleles that arose in the LTEE which found that nearly all 282 

pykF point mutations were more beneficial than deletion of the pykF gene, both in the ancestor 283 

and in evolved genetic backgrounds (Peng et al., 2018). PykF forms a homotetramer in which 284 

each polypeptide folds into three structural domains (Donovan et al., 2016; Mattevi et al., 1995). 285 

The central domain A forms the active site at the interface with domain B and the binding site for 286 

the allosteric effector fructose 1,6-bisphosphate at the interface with domain C. The 287 

nonsynonymous mutations that we observed are more concentrated than expected in domain A 288 

versus the other structural domains based on their relative lengths in the gene sequence (p = 289 

0.0018 one-tailed binomial test) (Fig. 6B). Overall, adaptome mapping finds that complete 290 

inactivation of pykF is highly beneficial in the environment of our evolution experiment, but 291 

mutations that alter its activity—likely in ways that reduce glycolytic flux—are even more so. 292 

These results are consistent with a hypothesis that reducing pykF activity is beneficial in the 293 

similar glucose-limited conditions of the LTEE because this allows more PEP to be diverted to 294 

power import of glucose into cells via the phosphotransfer system (Woods et al., 2006). 295 

 DNA topoisomerase I (topA) relaxes negative supercoiling introduced into the chromosome 296 

by replication and transcription (Massé and Drolet, 1999). The mutations we observed in topA 297 

are almost exclusively single-base substitutions (Fig. 5). This type of adaptome signature implies 298 

that modulating the enzymatic activity of TopA provides the greatest fitness benefit. Complete 299 

loss of topA gene function is lethal to E. coli without compensatory mutations in DNA gyrase 300 

(Dinardo et al., 1982; Pruss et al., 1982). The structure of E. coli TopA consists of four N-301 



terminal domains (D1-D4) that make up the catalytic core and five C-terminal zinc finger and 302 

ribbon domains (D5-D9) (Tan et al., 2015). The few out-of-frame indels and the large deletion 303 

that we observe truncate TopA within domains D7-D9, which interact with single-stranded DNA 304 

and with RNA polymerase but are not critical for catalysis. Considering only the catalytic core, 305 

we find that nonsynonymous mutations are more concentrated in domains D1 and D4 versus D2 306 

and D3 than expected from their relative sizes (p = 0.00068, one-tailed binomial test) (Fig. 6C). 307 

D1 and D4 together form the ssDNA binding groove leading to the active site, and D1 also forms 308 

part of the active site at its interface with D3 (Perry and Mondragón, 2003). Several base 309 

substitutions in topA have been shown to increase positive supercoiling in evolved LTEE strains 310 

(Crozat et al., 2005, 2010). The exact reason that this change in supercoiling is beneficial is 311 

unknown, but it may be linked to increasing the expression of ribosomal RNAs (Crozat et al., 312 

2005), altering gene regulation responses to starvation or other stresses (Crozat et al., 2010), 313 

and/or increasing the expression of genes in divergently transcribed operons (Houdaigui et al., 314 

2019). 315 

 316 

Recurrent beneficial mutations do not have greater fitness effects 317 

We observed many examples of exact genetic parallelism. That is, the same mutation occurred 318 

and reached high frequency in different experimental populations. Each of these E. coli 319 

populations was founded from single cells, so we can conclude that these recurrent genetic 320 

changes are due to independent mutational events. We observed a total of 252 distinct genetic 321 

changes across all eight profiled genes and 31 of these were found in more than one population. 322 

While no single genetic change was detected in all six populations, 2, 2, 8 and 19 changes were 323 

detected in 5, 4, 3, and 2 populations, respectively. Most of these were in the three genes that 324 



were the main targets of selection (nadR, pykF, and topA), but one that occurred in three 325 

populations was in fabR. These mutations may be recurrent because they have a higher fitness 326 

benefit than other mutations, occur at a higher rate than other mutations, are more easily detected 327 

in the sequencing data, or due to some combination of these factors. We had fitness effect 328 

estimates for all of the 31 recurrent mutations and for 167 mutations that were each observed in 329 

only one population. The recurrent mutations had a 0.12% greater fitness effect, on average, 330 

compared to the singleton mutations, but this difference was not significant (p = 0.25, one-tailed 331 

Mann–Whitney U test). Thus, it is unlikely that many cases of exact genetic parallelism are due 332 

to these mutations being more beneficial than others in our dataset. 333 

 334 

DISCUSSION 335 

We used mAdCap-Seq to profile bacterial evolution during the initial stages of clonal 336 

competition when there is a burst of beneficial genetic diversity as many new subpopulations 337 

with different mutations evolve and begin to displace the ancestral genotype. We focused on 338 

eight genes known to accumulate adaptive mutations in the >70,000 generation Lenski long-term 339 

evolution experiment (LTEE) with E. coli that used nearly the same environment as our 340 

experiments. The only difference was that we added four times as much of the limiting nutrient 341 

(glucose). By combining Illumina sequencing using UMIs for error correction, hybridization-342 

based capture of DNA encoding these genes, and dense temporal sampling, we were able to 343 

identify more beneficial mutations and track them at much lower frequencies than is possible 344 

with standard metagenomic sequencing. We detected a total of 301 mutations in the focal genes: 345 

181 in the complete time courses of four populations and 240 during the initial selective sweep in 346 

these populations and two others, with 120 mutations overlapping between the two sets. 347 



 By densely sampling and deeply sequencing E. coli populations, we were able to characterize 348 

many beneficial mutations that never reached the normal detection limit of Illumina sequencing 349 

before they become casualties of clonal interference. Only 13 of the 181 mutations we detected 350 

in the complete time courses ever achieved a frequency of 5% or more, which can be reliably 351 

distinguished from noise without the use of UMIs or other error correction techniques, and only 352 

seven were this common for 100 or more generations, such that they were likely to be detected 353 

by a typical time-sampling scheme. Considering all of our data sets, we characterized 241 and 42 354 

mutations that never reached 1% or 0.1% thresholds, respectively, at any sampled time point. 355 

Our success in recovering rare variants meant that we discovered more examples of beneficial 356 

mutations in the three commonly mutated genes (topA, pykF, and nadR) than have been reported 357 

in all prior studies of the evolution of the twelve LTEE populations through 60,000 generations 358 

of evolution (Barrick et al., 2009; Deatherage et al., 2015; Good et al., 2017; Ostrowski et al., 359 

2008; Tenaillon et al., 2016; Woods et al., 2006). These large sets of mutations enabled us to 360 

identify distinct molecular signatures of adaptation in each protein. 361 

 mAdCap-Seq profiles genetic variation in specific genes. Whether and to what extent 362 

mutations in a given gene contribute to a cell’s adaptome depends on a combination of two main 363 

factors: how many mutations in that gene are sufficiently beneficial that they can compete with 364 

other top mutations (the distribution of fitness effects) and the chances that these mutations will 365 

evolve (the mutational target size). For the three genes with the most mutations in our 366 

experiment, we can rationalize the rank-order of their representation (nadR > pykF > topA) in 367 

terms of these parameters. First, mutations that we tracked in nadR are more beneficial than 368 

mutations in the other two genes, on average. Because complete loss of function of this gene is 369 

maximally beneficial, the target size for these mutations is also larger, as it includes not only 370 



base substitutions but also small indels causing frameshifts, larger deletions, and IS element 371 

insertions. The next most commonly mutated gene is pykF. The mutations we identified in pykF 372 

are actually slightly less beneficial on average than the mutations in topA. However, mutations 373 

that completely knock out topA function are not represented in the adaptome, whereas these 374 

types of mutations in pykF are highly beneficial. In this case, larger target size appears to 375 

outweigh smaller fitness effects in determining the representation of mutations in each gene.  376 

 From our experiment alone, it is unclear why mutations in the other five captured genes are 377 

rarer in the adaptome. We detected no mutations in hslU and iclR. Mutations we tracked in the 378 

other three genes (spoT, fabR, and ybaL) do not have significantly different fitness effects from 379 

those in the three genes with the most mutations (nadR, pykF, topA). However, our statistical 380 

power for detecting differences is limited by the small number of mutations detected in these 381 

genes, so we cannot definitively conclude that they are underrepresented solely due to having 382 

smaller target sizes for top-flight mutations. As described below, comparing our results to the 383 

long history of the LTEE does provide some further insights into why mutations in each of the 384 

genes that we profiled are more or less abundant in the adaptome in our evolution experiment.  385 

 We captured beneficial mutations in eight genes known to be targets of selection in the 386 

LTEE. Mutations in four of these (topA, pykF, spoT, and fabR) reach high frequencies within the 387 

first 1,000 generations of the LTEE in multiple populations (Deatherage et al., 2015; Good et al., 388 

2017). Mutations in the other four (hslU, nadR, ybaL, and iclR) are also common in the LTEE, 389 

but they typically occur later (often within the first 2,000 to 10,000 generations) (Good et al., 390 

2017; Tenaillon et al., 2016). Nearly all mutations in these genes in our evolution experiment 391 

were in topA, pykF, and nadR, but we also found multiple mutations that were similarly 392 

beneficial in spoT, fabR, and ybaL. Mutations in nadR were more widespread than expected in 393 



our experiment and may be more likely to completely disrupt its function than beneficial alleles 394 

that evolve in the LTEE (Ostrowski et al., 2008). Mutations in spoT and fabR were rarer than 395 

expected from the LTEE. The increased concentration of glucose in our experiment compared to 396 

the LTEE may explain these slight differences. These results are reminiscent of how changing a 397 

different aspect of the LTEE environment (temperature) re-focused the mutations of largest 398 

benefit that succeeded early onto different genes in two prior studies (Deatherage et al., 2017; 399 

Tenaillon et al., 2012). Despite the subtle difference between the LTEE and our experiment, we 400 

were still able to use mAdCap-Seq to effectively map the adaptome. We accounted for the 401 

majority of the genetic variation present after the first sweep in three of the four populations that 402 

we profiled over the entire 500 generations by capturing mutations in just eight genes.  403 

 We can ask to what extent profiling mutations while they were rare by mAdCap-Seq gave 404 

‘early warning’ of mutations driving adaptation in these clonal cell populations. In general, we 405 

were able to begin tracking most mutations when they were above a frequency of 0.01%. This 406 

level of profiling enabled us to first detect mutations an average of 69, 150, and 290 generations 407 

before they surpassed frequencies of 0.1%, 1%, and 5%, respectively. Under the conditions of 408 

our experiment these intervals take roughly 10, 23, and 44 days, respectively. (The amount of 409 

lead time becomes disproportionately longer when requiring a mutation to reach higher 410 

frequencies due to clonal interference between beneficial mutations.) Therefore, even though we 411 

made these observations retrospectively, there would have been sufficient time to complete the 412 

DNA isolation, library preparation, sequencing, and analysis steps in mAdCap-Seq quickly 413 

enough for this approach to give early warning of the types and targets of genetic variants 414 

driving evolution of these populations. The chances and timescales of early detection would be 415 

expected to increase even more if ecological interactions or spatial structure further slowed the 416 



takeover of new variants, as has been demonstrated and discussed in other microbial evolution 417 

experiments (Baym et al., 2016; Frenkel et al., 2015; Traverse et al., 2013). 418 

 Genes in which we observe early, but unsuccessful beneficial mutations may acquire 419 

mutations again and again until they are successful in a population's evolutionary future. The 420 

extent to which this occurs is determined by the nature of epistatic interactions. In the LTEE and 421 

other microbial evolution experiments, diminishing returns epistasis dominates between 422 

beneficial mutations in different genes (Chou et al., 2011; Khan et al., 2011; Kryazhimskiy et al., 423 

2014; Wei and Zhang, 2019; Wiser et al., 2013). That is, mutations in one gene that improve the 424 

fitness of the ancestor tend to still be beneficial to evolved genotypes containing beneficial 425 

mutations in other genes, just less so than when those other mutations are present. 426 

Subpopulations with mutations in both nadR and pykF evolve by 20,000 generations in all 12 427 

LTEE populations, and cells that also contain a mutation in topA are found in six of the LTEE 428 

populations at this point (Tenaillon et al., 2016). By this time, mutations in ybaL and spoT are 429 

also found in nine and six LTEE populations, respectively. So, for five of the six genes in which 430 

we detected multiple mutations in the initial burst phase, it is likely that nearly all of them would 431 

have eventually accumulated beneficial mutations if we continued our experiment.  432 

 The other three genes (fabR, iclR, and hslU) likely represent other scenarios. Mutations in 433 

fabR transiently appear within the first 2,000 generations of the LTEE (Deatherage et al., 2015). 434 

They interact unfavorably with beneficial mutations in spoT and other genes, such that a fabR 435 

mutation essentially precludes further adaptation by mutating the other set of genes and vice-436 

versa (Deatherage et al., 2015; Woods et al., 2011). We detected 9 mutations in fabR, which was 437 

more than the five we observed in ybaL. However, we predict that fabR mutations are unlikely to 438 

re-emerge and be successful in the future of these populations because of their negative 439 



interactions with other beneficial mutations. On the other hand, we detected only a single 440 

mutation in iclR and a single mutation in hslU. Of the 12 LTEE populations, 11 have sizable 441 

subpopulations with mutations in iclR and 11 have mutations in hslU by 20,000 generations, 442 

which makes them more common than mutations in spoT and ybaL in the long run. Therefore, 443 

mutations in iclR and hslU appear to either require the presence of mutations in other genes to 444 

become highly beneficial or may not be able to experience any mutations that are beneficial 445 

enough to make them competitive early on in our experiment.  446 

 The nature of epistasis and the limits that it imposes on predicting the future evolution of a 447 

cell population could be further probed using mAdCap-Seq in several ways. One could repeat the 448 

evolution experiment beginning with genotypes containing different first-step beneficial 449 

mutations and compare their adaptomes. One could also interrogate the diverse collections of 450 

cells containing different beneficial alleles that we have evolved, by taking the 150-generation 451 

populations and further evolving them under different conditions to map genotype by 452 

environment effects, for example. Such experiments might also reveal latent beneficial mutations 453 

in other genes (e.g., iclR and hslU) that were able to outcompete the ancestor in our experiment 454 

but remained below the detection limit because they were not as beneficial as mutations in topA, 455 

pykF, and nadR in this environment. There is precedent for changes in the environment 456 

reorienting selection to different subsets of the same genes. In an offshoot of the LTEE that 457 

began with a clone that had spoT, topA, and pykF mutations, selection focused further mutations 458 

on either hslU, iclR, or nadR depending on changes in temperature (Deatherage et al., 2017).  459 

mAdCap-Seq is one among several high-throughput methods for interrogating the 460 

possibilities that a cell’s descendants can explore in its fitness landscape. Different approaches 461 

reveal complementary types of information and have different limitations. For example, deep 462 



mutational scanning uses high-throughput sequencing to simultaneously query large libraries of 463 

mutations in a single gene (Fowler and Fields, 2014). Transposon insertion sequencing (Tn-Seq) 464 

allows one to infer the fitness effects of transposon insertions in essentially every gene in a 465 

genome (van Opijnen and Camilli, 2013). While nearly all Tn-Seq mutations disrupt gene 466 

function, CRISPR-enabled trackable genome engineering can make genetic changes of other 467 

types, including those that increase expression of a target gene, and track the abundance and 468 

thereby fitness of these variants in parallel by sequencing barcodes (Garst et al., 2017). These 469 

and other related methods rely on artificially constructing variant libraries and may test 470 

mutations in a nonnatural context (e.g., in genes on a plasmid). Thus, they do not provide 471 

information about which genetic variants are accessible by spontaneous mutations.  472 

Methods that characterize just those mutations that spontaneously arise in clonally 473 

evolving cell populations more specifically map adaptomes. For example, a capture-based 474 

enrichment and high-throughput sequencing method, similar to mAdCap-Seq but without UMIs, 475 

has been used to detect rare mutations in circulating tumor DNA in patient blood samples 476 

(Newman et al., 2014, 2016). FREQ-Seq is an example of a multiplexed amplicon sequencing 477 

approach that is similar to mAdCap-Seq in how it aims to track the frequencies of new beneficial 478 

mutations in specific, targeted regions of microbial genomes (Chubiz et al., 2012). When not 479 

employing UMIs for error correction, amplicon sequencing has a limited ability to differentiate 480 

extremely rare mutations from sequencing errors (Schmitt et al., 2012). Another issue is that the 481 

initial PCR steps used to create amplicons can bias detection. In our experiment with E. coli, IS 482 

element insertions are common. DNA templates with such large insertions would be highly 483 

disfavored during PCR amplification, leading one to greatly underestimate the frequencies of 484 

these mutations. By contrast, the hybridization-based capture approach utilized by mAdCap-Seq 485 



for target enrichment recovers DNA fragments with these and other types of mutations with the 486 

same efficiency. Large deletions in an evolved genome that completely remove a targeted region 487 

are an exception. These mutations create a blind spot for both amplicon and capture enrichment 488 

approaches. The lack of any reads from genomes with the deletion will lead to overestimating the 489 

frequencies of other mutations that preserve recovery of DNA from the region. While this is a 490 

general caveat that should be considered when using these approaches, large deletions are 491 

unlikely to have affected our mAdCap-Seq results. The genes we captured are rarely mutated in 492 

this way in the LTEE, and we tracked mutations early in the evolution of these populations from 493 

single cells when all new genetic variants were still rare.  494 

BAR-seq represents a class of lineage-tracking methods that can be used to characterize 495 

spontaneous mutations through monitoring changes in the frequencies of barcode sequences 496 

inserted into the genomes of cells (Blundell and Levy, 2014). Since all high-throughput 497 

sequencing reads can be concentrated into counting barcodes that differ from one another (to the 498 

extent that sequencing errors do not affect proper assignment), these methods can track rarer 499 

subpopulations of cells than mAdCap-Seq. This means they can characterize essentially all of the 500 

beneficial mutations competing in a population. For comparison, we tracked ~60 mutations per 501 

E. coli population in the initial selective sweep, but tens of thousands of mutations have been 502 

analyzed in this way using BAR-seq on a single yeast population (Levy et al., 2015). Thus, 503 

lineage-tracking methods have much greater power for reconstructing the distribution of fitness 504 

effects of all mutations that spontaneously arise in a cell population. However, there are trade-505 

offs relative to other approaches. Additional post-hoc whole-genome sequencing of many 506 

isolates from the evolved population is needed to link each barcode to a mutation causing the 507 

observed fitness change (Venkataram et al., 2016). But the foremost consideration is that one 508 



must genetically engineer cells to introduce barcodes into their genomes. This limitation has 509 

restricted the use of BAR-seq to populations of model organisms evolved in the laboratory so far.  510 

 The adaptome is the neighborhood of accessible genetic changes that are most likely to 511 

become dominant and contribute to ongoing adaptation of a population. We have demonstrated 512 

how mAdCap-Seq can be used to deeply profile a targeted portion of the adaptome of a bacterial 513 

cell undergoing clonal evolution in a controlled laboratory environment. Mapping clonal 514 

adaptomes, which consist solely of de novo beneficial mutations, is likely to be of particular 515 

interest and utility in systems that evolve repeatedly from a defined starting point. These range 516 

from bioreactors that are seeded with the same engineered strain in different production runs to 517 

lung infections in cystic fibrosis patients that start from similar, but not identical, strains of 518 

opportunistic pathogens. This approach could also be used to probe the fitness landscapes 519 

underlying how human infections and cancers evolve drug resistance and greater pathogenicity. 520 

Mapping out the likely evolutionary possibilities in these systems can potentially allow one to 521 

monitor for the appearance of especially costly or dangerous mutations and could even lead to 522 

developing interventions that deflect the population from these undesirable adaptive pathways.  523 

 Outside of the laboratory, some of the simplifying assumptions used in our study break 524 

down. In may be difficult or impossible to sample a new cell population found in the 525 

environment or in a patient multiple times during the critical time window before it has already 526 

evolved substantial genetic diversity. Furthermore, many microbes have mechanisms for sexual 527 

recombination that can rapidly combine multiple beneficial mutations into one genome, which 528 

may violate our assumption that double mutants are rare during the first selective sweep. While 529 

these real-world situations complicate evaluating the relative benefits of each new genetic variant 530 



from sequencing alone, mAdCap-Seq would still be a useful approach for characterizing whether 531 

mutations in specific genes are contributing to the leading edge of adaptation in these situations. 532 

 533 
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FIGURES 554 

 555 

Figure 1. Replaying the first selective sweep of a long-term evolution experiment. Nine E. 556 

coli populations were initiated from equal mixtures of two variants of the ancestral strain that 557 

differ in a neutral genetic marker for arabinose utilization (Ara). We observed the evolutionary 558 

dynamics of these populations over 500 generations of regrowth from 75 daily 1:100 serial 559 

transfers by periodically plating dilutions of each population on indicator agar. Each ancestral 560 

strain subpopulation was derived from a single colony isolate that experienced 30 generations of 561 

growth before it was combined with the opposite type to initiate the serial transfers. The ratio of 562 

Ara+ cells (pink colonies) to Ara– cells (red colonies) diverges from 1:1 when descendants of one 563 

ancestor type accumulate enough of a fitness advantage due to de novo beneficial mutations that 564 

they take over. We focused further analysis on six of the nine populations (thick lines). 565 
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566 

Figure 2. Profiling many beneficial mutations in the first selective sweep by deep 567 

sequencing. (A) Schematic of the deep sequencing approach. Genomic DNA is directly isolated 568 

from the E. coli populations and prepared for paired-end Illumina sequencing with sample 569 

barcodes and dual UMIs (colored ends attached to red/green double stranded DNA). DNA 570 

fragments matching the targeted genome regions (green centers) are captured by probes (blue) 571 

bound to magnetic beads and other sequences are washed away (red centers). Reads in pairs that 572 

have the same dual unique molecular identifiers, which implies that they were PCR amplified 573 

during library preparation from the same original genomic DNA fragment, are used to construct 574 

consensus reads to eliminate sequencing errors. Consensus reads are mapped to the reference 575 

genome to call sequence variants. (B) Enrichment of reads mapping to eight genes known to be 576 

early targets of selection in this environment from the long-term evolution experiment. The final 577 

coverage depth of consensus reads in and around these genes is shown for a typical sample 578 
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(population A7 at 500 generations). (C) Frequency trajectories for mutations in the eight targeted 579 

genes as well as the sum total frequency in population A1 over the complete time course of the 580 

evolution experiment. When a mutation was not detected at a time point, its trajectory is shown 581 

as passing through a frequency of 0.0001% (outside of the plot bounds). (D) Mutation frequency 582 

trajectories for population A1 during the selective sweep window from 163 to 243 generations 583 

when mutations were first reaching detectable frequencies and outcompeting the ancestral 584 

genotype. At time points when a mutation was not detected, its frequency is shown as 0.001% (at 585 

the bottom of the plot). (E) Estimated relative fitness of population A1 in each interval between 586 

sequenced time points. The frequency trajectories of all beneficial mutations in the initial sweep 587 

shown in D were used to jointly estimate the average fitness of the entire population from the 588 

deceleration in the rate of increase of the observed mutation trajectories as genotypes with 589 

beneficial mutations became common (see Methods). This fitness trajectory fit accounts for all 590 

cells in the population, regardless of whether they have a mutation in the targeted genes or 591 

elsewhere in the genome. The red line is the maximum likelihood estimate of the population 592 

fitness trajectory. The red shading around it shows 95% confidence intervals on this value in 593 

each interval. The black line shows the increase in fitness estimated for a consensus model that 594 

was jointly fit to all mutations tracked in all six populations. The consensus population fitness 595 

trajectory was used when estimating the fitness effects of individual mutations (see Methods).  596 
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Figure 3. Frequency trajectories of mutations in the remaining populations. The same plots 599 

described in Figure 2C-E for population A1 are shown for populations A2, A3, and A7 (top three 600 

sets of panels). For populations A6 and A9, sequencing was only performed at time points during 601 

the selective sweep window from 169 to 236 generations so only the plots corresponding to 602 

Figure 2D-E are shown (bottom two sets of panels).  603 



 604 

Figure 4. Characteristics of beneficial mutations in the initial selective sweep. (A) Total 605 

number of beneficial mutations in each of the eight targeted genes for which fitness effects could 606 

be estimated by analyzing their frequency trajectories between generations 163 and 243. (B) 607 

Distributions of fitness effects of beneficial mutations in the three genes that were the dominant 608 

targets of selection. Mutations are binned by the maximum likelihood estimates of their fitness 609 

effects. Vertical red lines show the mean of each distribution. 95% confidence limits in Figure 610 

6A show uncertainty in the fitness effect estimated for each of these mutations. 611 
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 612 

Figure 5. Spectra of early beneficial mutations in nadR, pykF, and topA. These three genes 613 

were the dominant targets of selection during the evolution experiment among the eight genes 614 

profiled for beneficial mutations. The total number of mutations identified in each gene is 615 

indicated above its column. The width of the bars distinguishes base substitutions (thin bars) 616 

from other types of mutations (thick bars).  617 
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618 

Figure 6. Mutations in the three genes that were the dominant targets of selection. (A) 619 

Nucleotide positions and properties of all mutations found in each of the three genes that were 620 

the dominant targets of selection during the evolution experiment. Colors represent the type of 621 

mutation. Symbols indicate whether each mutation was detected in the selective sweep window, 622 
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the complete time course, or both. The upper panel for each gene, shows the fitness effects 623 

estimated for mutations in that gene. Error bars are 95% confidence limits. When the same 624 

genetic change was detected in multiple populations, information from all of its frequency 625 

trajectories was combined to estimate one overall fitness value and confidence limit for all of 626 

those mutations (see Methods). Thus, the symbols and error bars completely overlap for each 627 

independent occurrence of these mutations in a different population. The reading frame of the 628 

gene is shown above this panel with protein domains labeled. Vertical dashed grey lines 629 

represent the start and end of each gene. Horizontal grey lines show the extent of large deletions 630 

within the pictured region. Horizontal red lines represent the average fitness effects for all 631 

mutations in a gene. The lower panel for each gene shows mutations that were only detected in 632 

the complete time courses and therefore do not have an estimated fitness effect. Symbols in this 633 

panel are randomly jittered in the vertical direction to improve their visibility. (B) Structural 634 

context of mutations in PykF. Sites of nonsymonymous mutations are highlighted by showing 635 

space-filling models of the ancestral amino acid residues. All four subunits of the PykF 636 

homotetramer are shown. (C) Structural context of mutations in the catalytic core of TopA. Sites 637 

of nonsymonymous mutations are highlighted by showing space-filling models of the ancestral 638 

amino acid residues. Only domains D1-D4 are present in the structure. The DNA strand 639 

interacting with TopA is shown as a stick model.  640 



STAR★METHODS  641 

Resource Availability 642 

Lead Contact 643 

Lead contact, Jeffrey E. Barrick (jbarrick@cm.utexas.edu), will provide additional information 644 

and fulfill any requests for materials. 645 

Materials availability 646 

Frozen E. coli populations from each sequenced time point are available.  647 

Data and code availability 648 

Illumina sequencing reads associated with this study have been deposited into the NCBI 649 

Sequence Read Archive (Accession: PRJNA601748). Code used for analysis and figure 650 

generation is archived on Zenodo (DOI: 10.5281/zenodo.5092871). 651 

 652 

Experimental Model and Subject Details 653 

Bacterial Strains and Culture Conditions 654 

E. coli B strains REL606 and REL607 and growth conditions are derived from the Lenski long-655 

term evolution experiment (Lenski and Travisano, 1994; Lenski et al., 1991). REL606 and 656 

REL607 differ by a mutation in an arabinose utilization gene enabling us to monitor their relative 657 

frequencies during the evolution experiment (Lenski et al., 1991). Growth was carried out in 50 658 

mL Erlenmeyer flasks in 10 mL of Davis Minimal (DM) media supplemented with 100 mg/L 659 

glucose (DM100). DM is made by dissolving 5.3 g/L K2HPO4, 2 g/L KH2PO4, 1 g/L (NH4)2 SO4, 660 

and 500 mg/L Na3C6H5O7 (H2O)2 in water. After autoclaving, 1 mL/L of a 10% (w/v) MgSO4 661 

stock solution (separately autoclaved) and 1 mL/L of a 0.2% (w/v) stock solution of thiamine 662 

(filter sterilized) are added. DM100 has a slightly higher concentration of glucose than the 25 663 



mg/L glucose (DM25) used in the LTEE, but it still well below the ~1000 mg/L concentration at 664 

which nutrients other than glucose begin to limit growth in this medium. We used this higher 665 

glucose concentration to ensure we had enough cells for sequencing and archiving. Liquid 666 

cultures were grown at 37°C with orbital shaking over a one-inch diameter at 120 RPM. 667 

 668 

Method Details 669 

Evolution experiment 670 

Nine colonies of E. coli B strain REL606 and nine of strain REL607 were selected at random and 671 

used to inoculate separate flasks containing 10 mL of DM25. Approximately 30 generations of 672 

growth occurred starting from the initial single cell that gave rise to each colony until saturation 673 

of these cultures. Populations A1 through A9 were founded by inoculating 10 mL of fresh 674 

DM100 with 50 µL of one REL606 culture and 50 µL of one REL607 culture. The remaining 675 

culture volume for all 18 founding colonies was archived in 15 mL conical tubes at −80°C with 2 676 

mL dimethyl sulfoxide (DMSO) added as cryoprotectant. Every 24 hours, 100 µL of overnight 677 

culture was transferred to 10 mL of fresh DM100, and the remaining culture volume was 678 

archived in the same way. This procedure was continued through 75 daily transfers. Periodically 679 

1 µL of culture was diluted 10,000-fold in sterile saline and plated on tetrazolium arabinose (TA) 680 

agar to allow growth of ~200 colonies. TA agar is made by adding 10 g/L tryptone, 1 g/L yeast 681 

extract, 5 g/L NaCl, and 16 g/L agar to water and autoclaving. Then, a separately autoclaved 682 

solution of 10 g/L arabinose in water is added. The combined volume of these two solutions is 683 

such that it yields the indicated final concentrations of each component. Roughly 4/5 and 1/5 of 684 

the total volume are used for the two solutions, respectively. As the solution cools, 1 mL/L of 5% 685 

(w/v) triphenyl tetrazolium chloride (filter sterilized) is added. On TA plates, the mutation in the 686 



arabinose utilization gene makes REL606 (Ara−) colonies red and REL607 (Ara+) colonies pink 687 

(Lenski et al., 1991). The ratio of red to pink colonies was used to monitor these populations for 688 

selective sweeps (Hegreness and Kishony, 2007; Woods et al., 2011). 689 

 690 

DNA isolation and library preparation 691 

Genomic DNA (gDNA) was isolated from frozen population samples by first thawing each 15 692 

mL conical tube on ice. Of the ~12 mL total volume of culture plus cryoprotectant, 1.2 mL was 693 

transferred to a 2 mL cryovial and refrozen. The remaining ~10.8 mL was centrifuged at 6,500 × 694 

g at 4°C for 15 minutes. The resulting cell pellets were transferred with a volume of remaining 695 

solution to 1.7 mL Eppendorf tubes. Then, gDNA was isolated using the PureLink Genomic 696 

DNA Mini kit (Life Technologies). For each sample, 1 µg of gDNA was randomly fragmented 697 

on a Covaris S2 Focused Ultrasonicator.  698 

 Illumina libraries were constructed using the Kappa Biosystems LTP Library Preparation Kit 699 

with the following modifications. Following the end-repair step, fragmented DNA was T-tailed 700 

(rather than A-tailed) in a 50 µl reaction including 10 mM dTTP and 5 units of Klenow 701 

fragment, exo– (New England Biolabs). In the adapter ligation step, modified Illumina adapters 702 

containing 12-base unique molecular identifiers were ligated to the T-tailed fragments as 703 

previously described (Schmitt et al., 2012). Adapters used here differ slightly from those used in 704 

(Schmitt et al., 2012) as full-length adapter sequences containing unique external sample 705 

barcodes were directly ligated to the T-tailed dsDNA inserts to reduce the risk of cross-706 

contamination between samples. The full list of DNA sequence adaptors is provided in Table S1.  707 

 708 

Probe design and target capture 709 



Oligonucleotide probes consisting of 60-base xGen Lockdown probes (Integrated DNA 710 

Technologies) were designed to tile across each of the eight genes of interest including upstream 711 

promoter elements. Probes for each gene were compared to the entire E. coli B strain REL606 712 

reference genome (GenBank: NC_012967.1) (Jeong et al., 2009) using BLASTN (Camacho et 713 

al., 2009). The starting positions of all probes in a set were shifted by one base at a time until 714 

every probe had only a single significant predicted binding location (match with E-value < 715 

2×10−5). The sequences of the final set of 242 probes are provided in Table S2.  716 

 Capture was performed using a SeqCap EZ Hybridization and Wash Kit (NimbleGen). The 717 

procedure in the SeqCap EZ Library SR User Guide v3.0 (NimbleGen) was followed with 718 

several modifications. First, 18 to 20 population samples with different sample barcodes were 719 

pooled together in a single capture reaction that contained a total of 1 µg of library DNA from all 720 

samples, 1 mmol of a universal blocking oligo, and 1 mmol of a degenerate sample barcode 721 

blocking oligo. The sequences of these blocking oligos are provided in Table S3. Second, after 722 

hybridization for 72 h, DNA fragments hybridized to the biotinylated probes were recovered 723 

using MyOne Streptavidin C1 Dynabeads (Life Technologies). Third, a final 8-cycle PCR step 724 

was performed with HiFi Hotstart DNA Polymerase (Kappa Biosystems).  725 

 726 

Sequencing  727 

Paired-end 101- or 125-base sequencing of the final libraries was performed on an Illumina 728 

HiSeq 2000 at the University of Texas at Austin the Genome Sequencing and Analysis Facility 729 

(GSAF). Read sequences have been deposited into the NCBI Sequence Read Archive 730 

(PRJNA601748).  731 

 732 



Quantification and Statistical Analysis 733 

Read processing 734 

Raw reads were used to generate Consensus Sequence Reads (CSR) using custom Python scripts 735 

that carried out the following steps. First, the beginning of each read was evaluated for the 736 

presence of the expected 5′-end tag, consisting of a random 12-base unique molecular identifier 737 

(UMI) followed by four fixed bases (5′-N12CAGT). Read pairs lacking the correct 5′-end tag on 738 

either read were discarded. Across all samples, 80.2% of read pairs had both UMIs. For 739 

remaining read pairs, the UMIs found on each end were concatenated to create a 24-base dual-740 

UMI that uniquely identifies the original DNA fragment that was amplified and sequenced. To 741 

group all reads corresponding to the same initial DNA molecule, a FASTA file of all dual-UMIs 742 

was used as input into the ustacks program from the Stacks software pipeline (Version 1.48) 743 

(Catchen et al., 2013) with the following options: a single read was sufficient to seed a stack, a 744 

single mismatch within the dual-UMI was allowed in assigning a read to a stack, secondary reads 745 

and haplotypes were disabled, and stacks with high coverage were preserved. Then, CSRs were 746 

generated for all dual-UMI groups sequenced at least twice by taking the straight consensus of 747 

all reads that were merged into that stack. If no base exceeded 50% frequency at a given position 748 

in this set of reads, then that base was set as unknown (N). Of the read pairs with valid dual-749 

UMIs, 41.6% were incorporated into consensus reads across all samples. The average number of 750 

dual-UMI read pairs utilized to create each consensus read was 2.46, which gives an overall 751 

yield of consensus reads per read in a pair with a valid dual-UMI 16.9%. 752 

 753 

Variant calling 754 



We used the breseq pipeline (Barrick et al., 2014; Deatherage and Barrick, 2014; Deatherage et 755 

al., 2015) (version 0.26.0) to call single-nucleotide variants (SNVs) and structural variants (SVs) 756 

from the CSRs. This pipeline used Bowtie2 (version 2.2.5) for read mapping (Langmead and 757 

Salzberg, 2012). We divided the genome sequence of the ancestral E. coli REL606 strain into 758 

two types of reference regions for mapping in this analysis. The eight regions of the genome tiled 759 

with probes—extended with hundreds of bases of flanking sequence on both sides—were input 760 

as "targeted" sequences, and the remainder of the genome with the identical eight regions 761 

masked to degenerate N bases was supplied as a "junction-only" reference (to which reads are 762 

mapped without variant calling). All 116 samples were analyzed using breseq in polymorphism 763 

prediction mode with all bias, minimum allele frequency, and read-count filters disabled. 764 

Evidence items in the Genome Diff (GD) files for all samples were combined using the gdtools 765 

utility program to generate a single merged GD file with each piece of evidence listed a single 766 

time, regardless of how many times it was detected in different samples. We then re-ran breseq 767 

using the same parameters except that this GD file was supplied as an input user-evidence file to 768 

force output of variant and reference information for these putative variants in every sample. 769 

Then, we extracted the number of variant reads supporting each putative variant allele and the 770 

total number of reads at that reference location from the GD file output by breseq. Subsequent 771 

statistical tests and fitting steps were performed in R (version 4.0.0) (R Core Team, 2016) using 772 

the ggplot2 package for data visualization (Wickham, 2016). 773 

 Since this original analysis was conducted at the level of breseq evidence (i.e., single 774 

columns of read pileups on the reference genome or instances of new sequence junctions), we 775 

next merged sets of observations that were consistent with a single mutational event when they 776 

also had frequency trajectories that tracked together. For example, a three-base deletion has 777 



separate evidence items for the first, second, and third missing bases at this stage in the analysis. 778 

To identify candidates for merging evidence into a single mutational event, we analyzed data 779 

from each complete time course (generation 30 to 530) and selective sweep window (generation 780 

163 to 243) separately. We only considered mutations that exceeded a threshold frequency of 781 

0.03% at some time during each time course as candidates for merging.  782 

 Read alignment (RA) evidence items were merged when they were located within 6 base 783 

pairs of one another and the normalized Canberra distance between the vectors of their frequency 784 

observations across all time points was ≤ 0.1. All RA evidence pairs of this kind were found to 785 

co-occur in the same sequencing reads. For these cases, the read counts for the first linked 786 

mutation were used to represent the entire event. For example, if a deletion of three base pairs 787 

was predicted from evidence of missing bases at positions x, y, and z; then the frequency of 788 

missing the first base (x) was assigned to the entire three-base deletion mutation.  789 

 For new junction (JC) evidence we performed the same merging procedure but allowed 790 

linked mutations to be within a larger window of 20 base pairs and within a normalized Canberra 791 

distance of 0.5. JC pairs passing these criteria were only merged if they were also consistent with 792 

an IS-element insertion in terms of their relative orientation and spacing. In this case the variant 793 

and total read counts were added together for the two different junctions, as the junctions on each 794 

side of the inserted IS element provide independent information for estimating the frequency of 795 

this type of mutation. We allowed unpaired JC evidence passing the filters to also predict IS 796 

element mutations. This situation may indicate that there was an IS-mediated deletion between 797 

an element that inserted within the gene and another element from the same family located 798 

outside of the targeted region or more complex chromosomal rearrangements involving a newly 799 

inserted IS element (Raeside et al., 2014). 800 



 801 

Time course filtering and fitness effect estimation 802 

After merging evidence of genetic variants into lists of putative mutations, we further eliminated 803 

some of these from consideration using several filtering steps. For the complete time courses, we 804 

first required that non-zero frequencies be observed for a mutation in samples from two different 805 

time points. We next applied a filter to eliminate spurious variants that can be recognized as 806 

arising from systematic sequencing or read alignment errors because they do not exhibit the 807 

correlated changes in frequency over time expected for the frequency trajectories of real 808 

mutations (Lang et al., 2013). Specifically, we required that the time-series of estimated 809 

frequencies for a mutation over all analyzed time points have an autocorrelation value ≥ 0.55. 810 

 For the analysis of mutation trajectories during the selective sweep window, we eliminated 811 

putative mutations for which there was great uncertainty in the estimated fitness effect or 812 

evidence that its trajectory reflected multiple beneficial mutations occurring in the same genome. 813 

Specifically, we required that a mutation was first observed at generation 196 or earlier and that 814 

its estimated frequency was ≥ 10–4 in every sample that was sequenced from generation 223 to 815 

243. Then, we fit a binomial logistic model with slope and y-intercept terms to the time courses 816 

of counts of variant and reference (total minus variant) observations for each mutation. We used 817 

a negative offset in the model of the number of generations up to each time point so that the 818 

slope represents one plus the selection coefficient that is characteristic of the subpopulation with 819 

that mutation. We filtered out any mutations for which this fit had an AIC < 200, a p-value for 820 

the slope differing from zero of > 0.005, or a y-intercept < –20. The fitness effects that we report 821 

for mutations are the selection coefficients fit from the model divided by the natural logarithm of 822 

two so that they are expressed per generations of binary cell division. One plus the fitness effect 823 



is the relative fitness of a cell with that mutation. These values can be directly compared to 824 

experimental measurements of relative fitness and mutation fitness effects made using co-culture 825 

competition assays (Lenski et al., 1991; Tenaillon et al., 2016). 826 

 This procedure for determining fitness effects assumes that the trajectories reflect 827 

competition purely against the ancestral strain. However, we detected a consistent deviation from 828 

linearity for all mutation trajectories after generation 196. The rates at which the frequencies of 829 

all mutations were increasing decelerated, indicating that the overall population fitness had 830 

improved to a degree that it reduced their effective advantage versus their competitors. To 831 

account for this change we fit additional parameters defining a stepwise increase in the average 832 

relative fitness of the population within each interval between sequenced samples from 833 

generation 196 onward. The increase in population fitness reduces the effective time basis used 834 

in the model to determine the slope to the number of generations in each interval divided by the 835 

average relative fitness during that interval. We determined the population fitness values that 836 

minimized the AIC of this modified binomial logistic model. The figures show the best stepwise 837 

increases in population fitness between the sequenced time points from generation 196 onward 838 

fitting to the trajectories of all mutations in a given population at the same time. We performed 839 

1000 bootstrap resamplings of the mutations in each population to estimate 95% confidence 840 

intervals on the estimated population fitness values in each interval for that population. 841 

 We combined information across multiple populations in two ways to further improve the 842 

estimates of mutation fitness effects. First, there was considerable uncertainty in the estimates of 843 

the stepwise population fitness increases for each population considered alone. Because the 844 

actual population fitness trajectories of all populations are expected to be highly similar to one 845 

another, we fit a consensus stepwise increase in population fitness over time that best improved 846 



the fits for all mutations from all populations. Second, we observed 27 cases in which the exact 847 

same change in a gene's sequence was observed and passed our filtering criteria in multiple 848 

experimental populations. Because each population was started from single cells, we can be sure 849 

that these are independent observations of the same mutation. Therefore, we fit one consensus 850 

fitness effect (slope) for each of these recurrent mutations across all populations. We still 851 

allowed the y-intercept for each of these mutations to vary from population to population because 852 

this parameter is related to how early the mutation evolved, which is expected to be different in 853 

each replicate population. 854 

 855 

Protein structure analysis 856 

Structural domains in NadR, PykF, and TopA were defined according to UniProt and papers 857 

reporting x-ray crystal structures. Mutations in PykF were mapped onto Protein Data Bank 858 

structure 4YNG (Donovan et al., 2016). Mutations in TopA were mapped onto Protein Data 859 

Bank structure 1MW8 (Perry and Mondragón, 2003). Protein structures were visualized using 860 

Pymol v2.3.5 (Schrödinger LLC). 861 

 862 

 863 

  864 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, peptides, and recombinant proteins 
Klenow fragment exo- New England Biolabs M0212S 
MyOne Streptavidin C1 Dynabeads Life Technologies 65001 
Critical commercial assays 
PureLink Genomic DNA Mini kit Life Technologies K210011 
LTP Library Preparation Kit Kappa Biosystems Kk8232 
SeqCap EZ Hybridization and Wash Kit NimbleGen 05 634 261 001 
KAPA Library Amplification Kit Kappa Biosystems KK2611 
Deposited data 
Raw Illumina Sequencing Data This paper NCBI SRA: 

PRJNA601748 
Experimental models: Organisms/strains 
E. coli: Strain background: REL606  Lenski et al., 1991 N/A 
E. coli: Strain background: REL607 Lenski et al., 1991 N/A 
Oligonucleotides 
21 Illumina Sequencing Adapters containing 12-base MI: 
See Table S1  

This paper N/A 

242 60-base xGen Lockdown probes: see Table S2 This paper N/A 
2 Blocking Oligos: see Table S3 This paper N/A 
Software and algorithms 
BLASTN Camacho et al., 2009 https://blast.ncbi.nlm
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CSR generation python script This paper DOI: 

10.5281/zenodo.509
2871 

Stacks v1.48 Catchen et al., 2013 https://catchenlab.lif
e.illinois.edu/stacks/ 

breseq v0.26.0 Deatherage and 
Barrick, 2014 
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rricklab/breseq 

Bowtie2 v2.2.5 Langmead and 
Salzberg, 2012 
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R v4.0.0 R Core Team, 2016 https://www.r-
project.org/ 

Custom breseq post-processing Python script This paper DOI: 
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Statistical testing and modeling of trajectories R script This paper DOI: 
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Table S1. Adapter sequences 

Name Sequence 
UTBC52 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAACATAATCTCGTATGCCGTCTTCTCGTTG 

UTBC75 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACGCCGATCTCGTATGCCGTCTTCTCGTTG 

TSBC25 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATCTCGTATGCCGTCTTCTCGTTG 

TSBC14 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCATCTCGTATGCCGTCTTCTCGTTG 

UTBC64 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATACGAATCTCGTATGCCGTCTTCTCGTTG 

TSBC34 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCATGGCATCTCGTATGCCGTCTTCTCGTTG 

TSBC36 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCAACAATCTCGTATGCCGTCTTCTCGTTG 

UTBC63 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCCCACATCTCGTATGCCGTCTTCTCGTTG 

TSBC37 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGGAATATCTCGTATGCCGTCTTCTCGTTG 

UTBC58 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGGTTAATCTCGTATGCCGTCTTCTCGTTG 

TSBC23 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATCTCGTATGCCGTCTTCTCGTTG 

TSBC09 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTCGTTG 

UTBC86 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCGGTATCTCGTATGCCGTCTTCTCGTTG 

TSBC20 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCATCTCGTATGCCGTCTTCTCGTTG 

UTBC69 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTATTATCTCGTATGCCGTCTTCTCGTTG 

UTBC56 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTAAGAAATCTCGTATGCCGTCTTCTCGTTG 

TSBC10 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTCGTTG 

TSBC45 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTCATTCATCTCGTATGCCGTCTTCTCGTTG 

UTBC51 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTGAAGGATCTCGTATGCCGTCTTCTCGTTG 

UTBC94 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTTCTATATCTCGTATGCCGTCTTCTCGTTG 

Univ-F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

/5Phos/ indicates that an oligonucleotide was chemically synthesized with a 5′ monophosphate. Red 
bases are sample barcodes. Blue bases are unique molecular identifiers (UMIs) that were synthesized 
with a mixture of all four bases at each N position. Green bases show where each sequence was 
individually annealed to Univ-F through the sequence and extended to make the double-stranded end of 
the adaptor that includes the unique molecular identifier before it was ligated to the DNA sample. 
  



Table S2. Probe sequences 
Name Sequence Start End 
ybaL_1 TATTTTTCATATTTTACATCCGGCAACCACCGTTTACCCCGTCACCACCTCACCCGCCGG 473596 473655 
ybaL_2 TGGCGTTTCCAGCAGTTCCAGCATGGTACGGGCGATTTCACGCTCGCCCATCACTACCTG 473656 473715 
ybaL_3 ATTCGCACCACGTTCGGTGATATACGCCACTTCATCGTCATAATGGGCGCGGGCAATAAT 473716 473775 
ybaL_4 CTCAATATCCGGATTTTTCGCGCGGGCAGATGCCACAATCTCACCCGCTTCATAACCGTT 473776 473835 
ybaL_5 GGGAATCGTCAGGATCAGCCATTTTGCACATTCCAGATGCGCCAGTTGCATAATTTCTTC 473836 473895 
ybaL_6 GTTCGCCGCATTGCCCAATACTGCGCGGACCCCGCGCTCTCGCAGCTCATCAACACGGGT 473896 473955 
ybaL_7 TCGTGACGTCTCAATCACCACCAGCGGAATATCAGAGGCGAGCAATTTCTCCCCCAGCAG 473956 474015 
ybaL_8 GCTGCCTACACGACCGTAACCCACCAGTAGCGCATGGTTGCAAATATCCACTGGGATCTG 474016 474075 
ybaL_9 CTTCTCTTCTTCGATTGCCTCTTCCAGCGTCTGCTCTTCCAGCGTTTCGGTCTTCGCCAG 474076 474135 
ybaL_10 ATATTTCTCCAGTAGTGCGAACAGTACCGGGTTGAGCATAATCGACAGGATCGCCCCTGC 474136 474195 
ybaL_11 CAGTACCAGGTTTTGTCCGGCCTGCGGCAGTAAATTCAATGCCATTCCCAGTCCCGCCAG 474196 474255 
ybaL_12 GATAAACGCGAACTCACCAATCTGCGCCAGGCTGGCGGCGATGGTTAATGCCGTACGTTG 474256 474315 
ybaL_13 GGAGTGACCAAACAGTCGCACCAGGAAAAATGCGGCTAACGACTTACCAAACAGAATAAT 474316 474375 
ybaL_14 CGCCAGCGTCGCCAGCACTGCCAGCGGTTGCTGAATCAGAATTAACGGATCAAACAACAT 474376 474435 
ybaL_15 CCCGACGGAGACAAAAAACAGCACCGCAAACGCGTCGCGCAATGGCAGCGTATCGTGGGC 474436 474495 
ybaL_16 GGCACGGTGACTCAGTTCAGACTCGTTCAGTACCATCCCGGCAAAGAACGCACCGAGTGC 474496 474555 
ybaL_17 AAAGGAGACATCAAACAGCTCTACCGCACCAAAGGCAACCCCTAACGCCAGCGCCAGCAC 474556 474615 
ybaL_18 CGACAGGGTAAACAGCTCGCGAGAACCGGTTGCCGCGCTGCGTGCCATAATCCACGGCAC 474616 474675 
ybaL_19 CAGACGGCGACCTACCAGCATCATAATGGCGATAAATGCGATCACTTTGCCGATGGTGAT 474676 474735 
ybaL_20 CCCCATATCGACTGCAAGAGTGGCAAAGCCCACATCGCCCTGTTCCATCATTCCTGCCAC 474736 474795 
ybaL_21 TGCGGGCAGCAACACCAGCGTCAGAACCATTACCAGGTCTTCCACAATCAACCAACCGAT 474796 474855 
ybaL_22 GGCGATTTGCCCACGCTGACTGTCAATTAATTGCCGTTCTTCAAGTGCGCGCAGTAACAC 474856 474915 
ybaL_23 CACGGTACTGGCGGTGGAAAGACATAAACCGAACACGATACCGGTCATTAACGACCAGCC 474916 474975 
ybaL_24 CAGCACGGCAGAGAGCGCCATACCCAGCAGCGTCGCCACGGCTATCTGGGCGATCGCACC 474976 475035 
ybaL_25 GGGAATGGCGATGGCCTTTACCGCCATCAAATCCTTCAGCGAAAAGTGCAAACCGACGCC 475036 475095 
ybaL_26 AAACATCAACAGAATGACGCCCAGTTCAGCCAGTTCCGGGGCAAGCTTGGTATCGGCAAC 475096 475155 
ybaL_27 AAAGCCCGGAGTGAATGGTCCTGCCAGCACACCCGCTAACAGATATCCCACCAGAGGAGA 475156 475215 
ybaL_28 AATACGTAGTTTATTGGCCAGCATGCCGAGGATAAAGGCGAGCACAAGGCCGCCAACAAT 475216 475275 
ybaL_29 GGTGGTGATAAGCGGGGTGGCGTGATGCATTCCGTCTCCTTTTCCTGGTGGTTATTGTCC 475276 475335 
ybaL_30 ATTTTTGGCCGGGAAAACCAAAATTACAGGTAATAGTTTATGACAATTTCATTGATGATG 475336 475395 
ybaL_31 TTCATGAATAATTATTGAATTTTGCAGAAAAATGGAATTAGCTGCAAAAAAAGCACGGAT 475396 475455 
topA_1 GCCTTACTGGCAACTTTGGATTTTGCATGCTAATAAAGTTGCGTATCGGATTTTATCAGG 1329119 1329178 
topA_2 TACAGTGTGACGCTTTCGTCAATCTGGCAATAGATTTGCTTGACATTCGACCAAAATTCC 1329179 1329238 
topA_3 GTCGTGCTATAGCGCCTGTAGGCCAAGACCTGTTAACTCAGTCACCTGAATTTTCGTGAA 1329239 1329298 
topA_4 CAGAGTCACGACAAGGGGTTGATATCCGCAGAGAGCGAGTCCATATCGGTAACTCGTTGC 1329299 1329358 
topA_5 CAGTGGAAGGTTTATCAACGTGCGACGCATTCCTGGAAGAATCAAATTAGGTAAGGTGAA 1329359 1329418 
topA_6 TATGGGTAAAGCTCTTGTCATCGTTGAGTCCCCGGCAAAAGCCAAAACGATCAACAAGTA 1329419 1329478 
topA_7 TCTGGGTAGTGACTACGTGGTGAAATCCAGCGTCGGTCACATCCGCGATTTGCCGACCAG 1329479 1329538 
topA_8 TGGCTCAGCTGCCAAAAAGAGTGCCGACTCTACCTCCACCAAGACGGCTAAAAAGCCTAA 1329539 1329598 
topA_9 AAAGGATGAACGTGGCGCTCTCGTCAACCGTATGGGGGTTGACCCGTGGCACAATTGGGA 1329599 1329658 
topA_10 GGCGCACTATGAAGTGTTGCCTGGTAAAGAGAAGGTCGTCTCTGAACTGAAACAACTGGC 1329659 1329718 
topA_11 TGAAAAAGCCGACCACATCTATCTCGCAACCGACCTTGACCGCGAAGGGGAAGCCATTGC 1329719 1329778 
topA_12 ATGGCACCTGCGGGAAGTGATTGGGGGTGATGATGCGCGCTATAGCCGAGTGGTGTTTAA 1329779 1329838 
topA_13 CGAAATTACTAAAAACGCGATCCGCCAGGCATTTAACAAACCGGGTGAGCTGAATATTGA 1329839 1329898 
topA_14 TCGTGTTAATGCCCAGCAGGCGCGTCGCTTTATGGACCGCGTGGTGGGGTATATGGTTTC 1329899 1329958 
topA_15 GCCGCTGCTATGGAAAAAGATCGCTCGTGGTCTGTCTGCCGGTCGTGTGCAGTCGGTGGC 1329959 1330018 
topA_16 GGTTCGCCTGGTGGTCGAGCGTGAGCGTGAAATTAAAGCGTTCGTGCCGGAAGAGTTCTG 1330019 1330078 
topA_17 GGAAGTCGATGCCAGCACGACCACGCCATCTGGTGAAGCGTTGGCGTTACAGGTGACTCA 1330079 1330138 
topA_18 TCAGAACGACAAACCGTTCCGTCCGGTCAACAAAGAACAAACTCAGGCTGCGGTAAGTCT 1330139 1330198 
topA_19 GCTGGAAAAAGCGCGCTACAGCGTGCTGGAACGTGAAGACAAACCGACAACCAGTAAACC 1330199 1330258 
topA_20 TGGCGCTCCTTTTATTACCTCTACGCTGCAACAAGCTGCCAGCACCCGTCTTGGATTTGG 1330259 1330318 
topA_21 CGTGAAAAAAACCATGATGATGGCGCAGCGTTTGTATGAAGCAGGCTATATCACTTACAT 1330319 1330378 
topA_22 GCGTACCGACTCCACTAACCTGAGTCAGGACGCGGTAAATATGGTTCGCGGTTATATCAG 1330379 1330438 
topA_23 CGATAATTTTGGTAAGAAATATCTGCCGGAAAGTCCGAATCAGTACGCCAGCAAAGAAAA 1330439 1330498 
topA_24 CTCACAGGAAGCGCACGAAGCGATTCGTCCTTCTGACGTCAATGTGATGGCGGAATCGCT 1330499 1330558 
topA_25 GAAGGATATGGAAGCAGATGCGCAGAAACTGTACCAGTTAATCTGGCGTCAGTTCGTTGC 1330559 1330618 
topA_26 CTGCCAGATGACCCCAGCGAAATATGACTCCACGACGCTGACCGTTGGTGCGGGCGATTT 1330619 1330678 
topA_27 CCGCCTGAAAGCACGCGGTCGTATTTTGCGTTTTGATGGCTGGACAAAAGTGATGCCTGC 1330679 1330738 
topA_28 GTTGCGTAAAGGCGATGAAGATCGCATCTTACCAGCAGTTAATAAAGGCGATGCTCTGAC 1330739 1330798 
topA_29 GCTCGTTGAACTTACACCAGCCCAGCACTTTACCAAGCCGCCAGCCCGTTTCAGTGAAGC 1330799 1330858 
topA_30 ATCGCTGGTTAAAGAGCTGGAAAAACGCGGTATCGGTCGTCCGTCTACCTATGCGTCGAT 1330859 1330918 
topA_31 CATTTCGACCATTCAGGATCGTGGCTACGTGCGAGTAGAAAATCGTCGTTTCTATGCGGA 1330919 1330978 
topA_32 AAAAATGGGCGAAATCGTCACCGATCGCCTTGAAGAAAATTTCCGCGAGTTAATGAACTA 1330979 1331038 
topA_33 CGATTTTACCGCGCAGATGGAAAACAGCCTCGACCAGGTGGCAAATCACGAAGCAGAGTG 1331039 1331098 
topA_34 GAAAGCTGTACTGGATCACTTCTTCTCGGATTTCACCCAGCAGTTAGATAAAGCTGAAAA 1331099 1331158 
topA_35 AGATCCGGAAGAGGGTGGTATGCGCCCGAACCAGATGGTTCTGACCAGCATTGACTGCCC 1331159 1331218 
topA_36 GACTTGTGGTCGCAAAATGGGGATTCGCACAGCGAGCACCGGGGTATTCCTTGGCTGTTC 1331219 1331278 
topA_37 TGGCTATGCGCTGCCGCCGAAAGAGCGTTGCAAAACCACCATTAACCTGGTGCCGGAAAA 1331279 1331338 
topA_38 CGAAGTGCTGAACGTGCTGGAAGGCGAAGATGCTGAAACCAACGCGCTGCGCGCAAAACG 1331339 1331398 
topA_39 TCGTTGCCCGAAATGCGGCACGGCGATGGACAGCTATCTCATCGATCCGAAACGTAAGTT 1331399 1331458 
topA_40 GCATGTCTGTGGTAATAACCCAACCTGCGACGGTTACGAGATCGAAGAGGGCGAATTCCG 1331459 1331518 
topA_41 CATTAAAGGTTATGACGGCCCGATCGTTGAGTGTGAAAAATGTGGCTCTGAAATGCACCT 1331519 1331578 
topA_42 GAAAATGGGGCGTTTCGGTAAATACATGGCCTGCACCAACGAAGAGTGTAAAAACACACG 1331579 1331638 
topA_43 TAAGATTTTACGTAACGGCGAAGTGGCACCACCGAAAGAAGATCCGGTGCCATTACCTGA 1331639 1331698 
topA_44 GCTGCCGTGCGAAAAATCAGATGCTTATTTCGTGCTGCGTGACGGTGCTGCCGGTGTGTT 1331699 1331758 
topA_45 CCTGGCTGCCAACACTTTCCCGAAATCGCGTGAAACGCGTGCGCCACTGGTGGAAGAGCT 1331759 1331818 
topA_46 TTATCGCTTCCGCGACCGTCTGCCGGAAAAACTGCGTTATCTGGCCGATGCGCCACAGCA 1331819 1331878 
topA_47 GGATCCGGAAGGTAATAAGACCATGGTTCGCTTTAGCCGTAAAACCAAACAGCAATATGT 1331879 1331938 
topA_48 CTCTTCGGAAAAAGACGGAAAGGCGACTGGCTGGTCAGCATTTTATGTTGATGGCAAATG 1331939 1331998 
topA_49 GGTTGAAGGAAAAAAATAACCTTTAATTCTGTCAGGTTTTTATAAACAAAGGGTCGCGAA 1331999 1332058 
pykF_1 AACGCTGTTTTTGTTTTCCTTTTGGATTAATTTCAGCGTATAATGCGCGCCAATTGACTC 1732685 1732744 
pykF_2 TTGAATGGTTTCAGCACTTTGGACTGTAGAACTCAACGACTCAAAAACAGGCACTCACGT 1732745 1732804 



Name Sequence Start End 
pykF_3 TGGGCTGAGACACAAGCACACATTCCTCTGCACGCTTTTTCGATGTCACCTATCCTTAGA 1732805 1732864 
pykF_4 GCGAGGCACCACCACTTTCGTAATACCGGATTCGCTTTCCGGCAGTGCGCCCAGAAAGCA 1732865 1732924 
pykF_5 AGTTTCTCCCATCCTTCTCAACTTAAAGACTAAGACTGTCATGAAAAAGACCAAAATTGT 1732925 1732984 
pykF_6 TTGCACCATCGGACCGAAAACCGAATCTGAAGAGATGTTAGCTAAAATGCTGGACGCTGG 1732985 1733044 
pykF_7 CATGAACGTTATGCGTCTGAACTTCTCTCATGGTGACTATGCAGAACACGGTCAGCGCAT 1733045 1733104 
pykF_8 TCAGAATCTGCGCAACGTGATGAGCAAAACTGGTAAAACCGCCGCTATCCTGCTTGATAC 1733105 1733164 
pykF_9 CAAAGGTCCGGAAATCCGCACCATGAAACTGGAAGGCGGTAACGACGTTTCTCTGAAAGC 1733165 1733224 
pykF_10 TGGTCAGACCTTTACTTTCACCACTGATAAATCTGTTATCGGCAACAGCGAAATGGTTGC 1733225 1733284 
pykF_11 GGTAACGTATGAAGGTTTCACTACTGACCTGTCTGTTGGCAACACCGTACTGGTTGACGA 1733285 1733344 
pykF_12 TGGTCTGATCGGTATGGAAGTTACCGCCATTGAAGGTAACAAAGTTATCTGTAAAGTGCT 1733345 1733404 
pykF_13 GAACAACGGTGACCTGGGCGAAAACAAAGGTGTGAACCTGCCTGGCGTTTCCATTGCTCT 1733405 1733464 
pykF_14 GCCAGCACTGGCTGAAAAAGACAAACAGGACCTGATCTTTGGTTGCGAACAAGGCGTAGA 1733465 1733524 
pykF_15 CTTTGTTGCTGCTTCCTTTATTCGTAAGCGTTCTGACGTTATCGAAATCCGTGAGCACCT 1733525 1733584 
pykF_16 GAAAGCGCACGGCGGCGAAAACATCCACATCATCTCCAAAATCGAAAACCAGGAAGGCCT 1733585 1733644 
pykF_17 CAACAACTTCGACGAAATCCTCGAAGCCTCTGACGGCATCATGGTTGCGCGTGGCGACCT 1733645 1733704 
pykF_18 GGGTGTAGAAATCCCGGTAGAAGAAGTTATCTTCGCCCAGAAGATGATGATCGAAAAATG 1733705 1733764 
pykF_19 TATCCGTGCACGTAAAGTCGTTATCACTGCGACCCAGATGCTGGATTCCATGATCAAAAA 1733765 1733824 
pykF_20 CCCACGCCCGACTCGCGCAGAAGCCGGTGACGTTGCAAACGCCATCCTCGACGGTACTGA 1733825 1733884 
pykF_21 CGCAGTGATGCTGTCTGGTGAATCCGCAAAAGGTAAATACCCGCTGGAAGCGGTTTCTAT 1733885 1733944 
pykF_22 CATGGCGACCATCTGCGAACGTACCGACCGCGTGATGAACAGCCGTCTCGAGTTCAACAA 1733945 1734004 
pykF_23 TGACAACCGTAAACTGCGCATTACCGAAGCGGTATGCCGTGGTGCCGTTGAAACTGCTGA 1734005 1734064 
pykF_24 AAAACTGGATGCTCCGCTGATCGTGGTTGCTACTCAGGGCGGTAAATCTGCTCGCGCAGT 1734065 1734124 
pykF_25 ACGTAAATACTTCCCGGATGCCACCATCCTGGCACTGACCACCAACGAAAAAACGGCTCA 1734125 1734184 
pykF_26 TCAGTTGGTACTGAGCAAAGGCGTTGTGCCGCAGCTTGTTAAAGAGATCACTTCTACTGA 1734185 1734244 
pykF_27 TGATTTCTACCGTCTGGGTAAAGAACTGGCTCTGCAGAGCGGTCTGGCACACAAAGGTGA 1734245 1734304 
pykF_28 CGTTGTAGTTATGGTTTCTGGTGCACTGGTACCGAGCGGCACTACTAACACCGCATCTGT 1734305 1734364 
pykF_29 TCACGTCCTGTAATATTGCTTTTGTGAATTAATTTGTATATCGAAGCGCCCTGATGGGCG 1734365 1734424 
spoT_1 GCAAATTGTTGGCAGACTGAACCTGATTTCAGTATCATGCCCAGTCATTTCTTCACCTGT 3760389 3760448 
spoT_2 GGAGCTTTTTAAGTATGGCACGCGTAACTGTTCAGGACGCTGTAGAGAAAATTGGTAACC 3760449 3760508 
spoT_3 GTTTTGACCTGGTACTGGTCGCCGCGCGTCGCGCTCGTCAGATGCAGGTAGGCGGAAAGG 3760509 3760568 
spoT_4 ATCCGCTGGTACCGGAAGAAAACGATAAAACCACTGTAATCGCGCTGCGCGAAATCGAAG 3760569 3760628 
spoT_5 AAGGTCTGATCAACAACCAGATCCTCGACGTTCGCGAACGCCAGGAACAGCAAGAGCAGG 3760629 3760688 
spoT_6 AAGCCGCTGAATTACAAGCCGTTACCGCTATTGCTGAAGGTCGTCGTTAATCACAAAGCG 3760689 3760748 
spoT_7 GGTCGCCCTTGTATCTGTTTGAAAGCCTGAATCAACTGATTCAAACCTACCTGCCGGAAG 3760749 3760808 
spoT_8 ACCAAATCAAGCGTCTGCGGCAGGCGTATCTCGTTGCACGTGATGCTCACGAGGGGCAAA 3760809 3760868 
spoT_9 CACGTTCAAGCGGTGAACCCTATATCACGCACCCGGTAGCGGTTGCCTGCATTCTGGCCG 3760869 3760928 
spoT_10 AGATGAAACTCGACTATGAAACGCTGATGGCGGCGCTGCTGCATGACGTGATTGAAGATA 3760929 3760988 
spoT_11 CTCCCGCCACCTACCAGGATATGGAACAGCTTTTTGGTAAAAGCGTCGCCGAGCTGGTAG 3760989 3761048 
spoT_12 AGGGGGTGTCGAAACTTGATAAACTCAAGTTCCGCGATAAGAAAGAGGCGCAGGCCGAAA 3761049 3761108 
spoT_13 ACTTTCGCAAGATGATTATGGCGATGGTGCAGGATATCCGCGTCATCCTCATCAAACTTG 3761109 3761168 
spoT_14 CCGACCGTACCCACAACATGCGCACGCTGGGCTCACTTCGCCCGGACAAACGTCGCCGCA 3761169 3761228 
spoT_15 TCGCCCGTGAAACTCTCGAAATTTACAGCCCGCTGGCGCACCGTTTAGGTATCCACCACA 3761229 3761288 
spoT_16 TTAAAACCGAACTCGAAGAGCTGGGTTTTGAGGCGCTGTATCCCAATCGTTACCGCGTAA 3761289 3761348 
spoT_17 TTAAAGAAGTGGTGAAAGCCGCGCGCGGCAACCGTAAAGAGATGATCCAAAAAATCCTCT 3761349 3761408 
spoT_18 CTGAAATCGAAGGGCGTTTGCAGGAAGCGGGAATACCGTGCCGCGTCAGTGGTCGCGAAA 3761409 3761468 
spoT_19 AGCATCTTTATTCGATTTACTGCAAAATGGTGCTCAAAGAGCAGCGTTTTCACTCAATCA 3761469 3761528 
spoT_20 TGGACATCTACGCTTTCCGCGTGATCGTCAATGATTCTGACACCTGTTATCGCGTGCTGG 3761529 3761588 
spoT_21 GCCAGATGCACAGCCTGTACAAGCCGCGTCCGGGCCGCGTGAAAGACTATATCGCCATTC 3761589 3761648 
spoT_22 CAAAAGCGAACGGCTATCAGTCGTTGCACACCTCGATGATTGGCCCGCACAGCGTGCCGG 3761649 3761708 
spoT_23 TTGAGGTCCAGATCCGTACCGAAGATATGGATCAGATGGCGGAGATGGGTGTTGCCGCGC 3761709 3761768 
spoT_24 ACTGGGCTTATAAAGAGCACGGCGAAACCAGTACTACCGCACAAATCCGCGCCCAGCGCT 3761769 3761828 
spoT_25 GGATGCAAAGCCTGCTGGAGCTGCAACAGAGCGCCGGTAGTTCGTTTGAATTTATCGAGA 3761829 3761888 
spoT_26 GCGTTAAATCCGATCTCTTCCCGGATGAGATTTACGTTTTCACACCGGAAGGGCGCATTG 3761889 3761948 
spoT_27 TCGAGCTGCCTGCCGGTGCAACGCCCGTCGACTTCGCTTATGCAGTGCATACCGATATCG 3761949 3762008 
spoT_28 GTCATGCCTGCGTGGGCGCACGCGTTGACCGCCAGCCTTACCCGCTGTCGCAGCCGCTTA 3762009 3762068 
spoT_29 CCAGCGGTCAAACCGTTGAAATCATTACCGCTCCGGGCGCTCGCCCGAATGCCGCTTGGC 3762069 3762128 
spoT_30 TGAACTTTGTCGTTAGCTCGAAAGCGCGCGCCAAAATTCGTCAGTTGCTGAAAAACCTCA 3762129 3762188 
spoT_31 AGCGTGATGATTCTGTAAGCCTGGGCCGTCGTCTGCTCAACCATGCTTTGGGTGGTAGCC 3762189 3762248 
spoT_32 GTAAGCTGAATGAAATCCCGCAGGAAAATATTCAGCGCGAGCTGGATCGCATGAAGCTGG 3762249 3762308 
spoT_33 CAACGCTTGACGATCTGCTGGCAGAAATCGGACTTGGTAACGCAATGAGCGTGGTGGTCG 3762309 3762368 
spoT_34 CGAAAAATCTGCAACATGGGGACGCCTCCATTCCACCGGCAACCCAAAGCCACGGACATC 3762369 3762428 
spoT_35 TGCCCATTAAAGGTGCCGATGGCGTGCTGATCACCTTTGCGAAATGCTGCCGCCCTATTC 3762429 3762488 
spoT_36 CTGGCGACCCGATTATCGCCCACGTCAGCCCCGGTAAAGGTCTGGTGATCCACCATGAAT 3762489 3762548 
spoT_37 CCTGCCGTAATATCCGTGGCTACCAGAAAGAGCCAGAGAAGTTTATGGCTGTGGAATGGG 3762549 3762608 
spoT_38 ATAAAGAGACGGCGCAGGAGTTCATCACCGAAATCAAGGTGGAGATGTTCAATCATCAGG 3762609 3762668 
spoT_39 GTGCGCTGGCAAACCTGACGGCGGCAATTAACACCACGACTTCGAATATTCAAAGTTTGA 3762669 3762728 
spoT_40 ATACGGAAGAGAAAGATGGTCGCGTCTACAGCGCCTTTATTCGTCTGACCGCTCGTGACC 3762729 3762788 
spoT_41 GTGTGCATCTGGCGAATATCATGCGCAAAATCCGCGTGATGCCAGACGTGATTAAAGTCA 3762789 3762848 
spoT_42 CCCGAAACCGAAATTAATGTTTTATGAACCCAACACGTTATGCACGCATCTGCGAAATGC 3762849 3762908 
hslU_1 AAATGGGGCCTTTCAGCCCCATCAAACAATGATGAAAATGATTGAACGCGATTATAGGAT 4099848 4099907 
hslU_2 AAAACGGCTCAGATCTTCATCTGCCACCAACGCATCCAGATGTTTGCTCACATAATCTGC 4099908 4099967 
hslU_3 GTCAATAGTGATATTTTGACCGCTTAAATCGCTGGCGTCGTAGGAAATCTCTTCCATTAA 4099968 4100027 
hslU_4 ACGCTCCAGAACAGTGTGTAAACGACGAGCACCGATGTTTTCGGTAGATTCGTTCACCTG 4100028 4100087 
hslU_5 CCATGCCGCTTCCGCGATGCGTTTAATACCGGAGTCGGTAAACTCGATATTTACGCCTTC 4100088 4100147 
hslU_6 AGTCGCCATCAGTGCTTTGTACTGCACGGTGATAGAGGCATTCGGCTCGGTCAGAATACG 4100148 4100207 
hslU_7 CTCGAAGTCGCTGGTGGTCAGCGCCTGCAGTTCAACGCGGATTGGCAGACGACCTTGCAG 4100208 4100267 
hslU_8 TTCCGGGATCAGGTCAGACGGTTTCGCAATCTGGAACGCGCCAGAAGCGATAAACAGAAT 4100268 4100327 
hslU_9 GTGGTCAGTTTTGACCATCCCGTGTTTGGTGGAAACGGTGCAACCTTCTACCAGCGGCAG 4100328 4100387 
hslU_10 CAGGTCACGCTGAACGCCTTCACGAGAAACATCCGGACCGGAAGACTCGCCGCGCTTACA 4100388 4100447 
hslU_11 GATTTTGTCGATTTCGTCGATAAACACGATCCCGTGCTGCTCAACAGCGTCGATAGCGTC 4100448 4100507 
hslU_12 TTGCTTCAGCTCTTCCGGGTTCACCAGTTTCGCCGCTTCTTCTTCAATCAGCAGCTTCAT 4100508 4100567 
hslU_13 GGCGTCTTTGATTTTCAGCTTACGCGCTTTTTGCTTCTGGCCGCCCAGGTTCTGGAACAT 4100568 4100627 
hslU_14 GGACTGCAGCTGGCTGGTCATCTCTTCCATGCCCGGAGGAGCCATAATTTCAACGCCCAT 4100628 4100687 
hslU_15 CGGTGCTGCGGCAAGATCGATCTCGATTTCTTTGTCATCAAGCTGGCCTTCACGCAGTTT 4100688 4100747 
hslU_16 TTTGCGGAATGCCTGACGAGCAGCGGACGGTTCCTGCTGCTGTTCGGTCTGTCCCCAGTT 4100748 4100807 



Name Sequence Start End 
hslU_17 GTTTTTAGCAGGTGGGATCAGCACGTCGAGAATACGTTCTTCTGCCAGTTCTTCAGCGCG 4100808 4100867 
hslU_18 ATAACGGTTTTTCTCGATAGCCTGGACGCGTACCATTTTCACGGCGGCATCGGTCAGATC 4100868 4100927 
hslU_19 GCGAATAATAGAATCCACTTCCTTACCGACGTAGCCCACTTCGGTGAATTTGGTCGCTTC 4100928 4100987 
hslU_20 AACTTTGATGAACGGCGCATTCGCCAGCTTAGCCAGACGACGGGCGATTTCAGTTTTACC 4100988 4101047 
hslU_21 GACACCGGTCGGGCCGATCATCAGGATATTTTTCGGGGTCACTTCATGGCGCAGCTCTTC 4101048 4101107 
hslU_22 GTTGAGCTGCATGCGACGCCAGCGGTTACGCAGAGCAATCGCCACAGAACGCTTGGCGTT 4101108 4101167 
hslU_23 GTCCTGGCCGATGATGTGCTTATCCAGTTCGCTGACGATTTCGCGTGGGGTCATTTCAGA 4101168 4101227 
hslU_24 CATGGGAGATCCTTACGCTTTGTAGCTTAATTCTTCGATGGTGTGGAAATGGTTGGTATA 4101228 4101287 
hslU_25 GATGCAAATGTCGCCTGCAATATCCAACGCCTTTTCAGCAATTTCACGGGCGCTAAGTTC 4101288 4101347 
hslU_26 AGTGTTTTCTAACAGCGCGCGCGCCGCAGCCTGGGCGTAAGGGCCGCCGGAGCCGATAGC 4101348 4101407 
hslU_27 AATAAGATCGTTTTCTGGCTGCACCACGTCACCGTTACCGGTGATGATAAGCGATGCAGT 4101408 4101467 
hslU_28 TTCATCCGCGACTGCCAGCAGTGCTTCAAGTTTGCGCAGCATGCGATCGGTACGCCAGTC 4101468 4101527 
hslU_29 TTTTGCCAGCTCAACGGCGGCTTTGACCAGATGGCCCTGATGCATTTCCAGTTTACGTTC 4101528 4101587 
hslU_30 AAACAGTTCGAACAGCGTAAAAGCATCCGCAGTACCGCCCGCAAAGCCCGCGATGACTTT 4101588 4101647 
hslU_31 GTCGTTGTACAGACGGCGGACCTTTTTCACGTTGCCTTTCATTACGGTATTGCCCAACGT 4101648 4101707 
hslU_32 GGCCTGACCATCACCAGCGATGACCACATGGCCGTTACGGCGTACGCTTACTATAGTTGT 4101708 4101767 
hslU_33 CACGAGCTGACCCCTTGGTTACGAATACAGAGTACAAACCCCGTACAAAAGTACGGGGCA 4101768 4101827 
hslU_34 TAATGCAATTATAGATGGGGGGGATTTTGAGGGTTTCAACCCCCGGCGGCGAGCCGAATG 4101828 4101887 
fabR_1 GCCGGGGCCGGAACCTATTACTATGGCATCGTAATCGTAGGAATGTGGCATGGTAGGGCT 4140601 4140660 
fabR_2 TACCTGTTCTTATACATAAAAGCAACAGAATGGTAACATTTTATCGCGGGTAAGCCAATT 4140661 4140720 
fabR_3 GATCCCCGTCATTTATCTGGCTATATCCTGAGCGGCCTTTGCTTTGTCTGTTTCTTACTT 4140721 4140780 
fabR_4 TTGCCCTGACGTTTTATTGGATTTTTATCGACGATACTCTCCGTTTAAGCGGCAGGTTTC 4140781 4140840 
fabR_5 CGCTGTACGTAAAAGAACCGGCCAAAGAATTGCAGTAAATATGTTTTATTGCGTTACCGT 4140841 4140900 
fabR_6 TCATTCACAATACTGGAGCAATCCAGTATGTTCATTCTCTGGTATAGTGCCAGCAGTACT 4140901 4140960 
fabR_7 TTTGGCAAGGATTCAGACATCGTGATGGGCGTAAGAGCGCAACAAAAAGAAAAAACCCGC 4140961 4141020 
fabR_8 CGTTCGCTGGTGGAAGCCGCATTTAGCCAATTAAGTGCTGAACGCAGCTTCGCCAGCCTG 4141021 4141080 
fabR_9 AGTTTGCGTGAAGTGGCGCGTGAAGCGGGCATTGCTCCCACCTCTTTTTATCGGCATTTC 4141081 4141140 
fabR_10 CGCGACGTAGACGAACTGGGTCTGACCATGGTTGATGAGAGCGGTTTAATGCTACGCCAA 4141141 4141200 
fabR_11 CTCATGCGCCAGGCGCGTCAGCGTATCGCCAAAGGCGGGAGTGTGATCCGCACCTCGGTC 4141201 4141260 
fabR_12 TCCACATTTATGGAGTTCATCGGTAATAATCCTAACGCCTTCCGGTTATTATTGCGGGAA 4141261 4141320 
fabR_13 CGCTCCGGCACCTCCGCTGCGTTTCGTGCCGCCGTTGCGCGTGAAATTCAGCACTTCATT 4141321 4141380 
fabR_14 GCGGAACTTGCGGACTATCTGGAACTCGAAAACCATATGCCGCGTGCGTTTACTGAAGCG 4141381 4141440 
fabR_15 CAAGCCGAAGCAATGGTGACAATTGTCTTCAGTGCGGGTGCCGAGGCGTTGGACGTCGGC 4141441 4141500 
fabR_16 GTCGAACAACGTCGGCAATTAGAAGAGCGACTGGTACTGCAACTGCGAATGATTTCGAAA 4141501 4141560 
fabR_17 GGGGCTTATTACTGGTATCGCCGTGAACAAGAGAAAACCGCAATTATTCCGGGAAATGTG 4141561 4141620 
fabR_18 AAGGACGAGTAATGAAACAAGCAAATCAAGATAGAGGTACGCTGCTGCTGGCGTTAGTTG 4141621 4141680 
iclR_1 TCTATTGCCACTCAGGTATGATGGGCAGAATATTGCCTCTGCCCGCCAGAAAAAGTCAGC 4201680 4201739 
iclR_2 GCATTCCACCGTACGCCAGCGTCACTTCCTTCGCCGCTTTAATCACCATTGCGCCAAACT 4201740 4201799 
iclR_3 CGGTCACGCGGTCATCGGTAATACGTGAAATCGGTCCGGAAATAGAAATTGCGGCAAACG 4201800 4201859 
iclR_4 GTTCACGGTGCTCATCGAAAATACACGCTGCAAGGCAACGTAGCCCCAGCGCATGTTCCT 4201860 4201919 
iclR_5 CATCGTCAAATGAATAACCCCGTTTGCGCGTTTGGGCGAGATCTTCTTTTAAATGCACAG 4201920 4201979 
iclR_6 GAGACACCAGCGTTGCGTGGGTATAGGCATGTAACCCTTTGCGGTGCAGCAGCTTCGTCA 4201980 4202039 
iclR_7 CCTGTTCTTCGCTCAGTTGGGCTAAAAAGGCTTTACCTGCACCGGAAGCGTGCATCGGCA 4202040 4202099 
iclR_8 ATTTACCGCCGATAGGCGCGGACATTCGCATCAGATGCGTACACTGTACCTGGTCGATAA 4202100 4202159 
iclR_9 TAATCGCTTCGTGATCGCTTTGATCAAGCACCGCCATATTGACCGTTTCGCCAGACTCTT 4202160 4202219 
iclR_10 CCATTAAATTGCGCAGGATAGGGTGAACAATCGCTAACAAATTACGGCTCTGGAGAAAGC 4202220 4202279 
iclR_11 TGCTGCCGACCATAAAGGCATGTGCGCCGATTGCCCAATGTCCCAGTTCGCCGACCTGAC 4202280 4202339 
iclR_12 GCACGAAACCCTGCTGTTGCATTGTGGTTAGCAGGCGGTGGGTCGTGGAATTGGGTAACC 4202340 4202399 
iclR_13 CGGCTTGTTGCGCCAGTTCCGTGAGTGCCACACTGCCATTGGATTCGGCAATCCACTCCA 4202400 4202459 
iclR_14 GTAATTTCAGGCCACGCGTTAAAGACTGAACCTGTCCAGTCGCTGGTGCGGTGGCAACGG 4202460 4202519 
iclR_15 CGGGTTTTCTGCCGCGTTTCGCGGGAATGGGTGCGACCATGACAGTCTCCTTTTTCTGTA 4202520 4202579 
iclR_16 TCGTGGAAATCATTTTCATTTTTATTGTTAGCTAATGCAATAGTTGCTGAACTGATCCGA 4202580 4202639 
iclR_17 TGAGTTAATGTTGAACAAATCTCATGTTGCGTGGTGGTCGCTTTTACCACAGATGCGTTT 4202640 4202699 
nadR_1 CTTAGCGTGTTCGACGACTTATAATGAGGAATACGGAGGGAGATATGTCGTCATTTGATT 4615485 4615544 
nadR_2 ACCTGAAAACTGCCATCAAGCAACAGGGCTGCACGCTACAGCAGGTGGCTGATGCCAGCG 4615545 4615604 
nadR_3 GTATGACCAAAGGGTATTTAAGCCAGTTACTGAATGCCAAAATCAAAAGCCCCAGCGCGC 4615605 4615664 
nadR_4 AAAAGCTGGAGGCGTTGCACCGTTTTTTGGGGCTTGAGTTTCCCCGGCAGAAGAAAACCA 4615665 4615724 
nadR_5 TTGGTGTGGTATTCGGTAAGTTCTACCCGCTGCATACCGGACATATCTACCTTATCCAGC 4615725 4615784 
nadR_6 GCGCCTGTAGCCAGGTTGACGAACTGCATATCATTATGGGTTTTGACGATACCCGCGATC 4615785 4615844 
nadR_7 GCGCGTTGTTTGAAGACAGCGCTATGTCGCAGCAGCCCACCGTGCCGGATCGTCTGCGCT 4615845 4615904 
nadR_8 GGTTATTACAAACTTTTAAATATCAGAAAAATATTCGCATTCATGCTTTCAACGAAGAGG 4615905 4615964 
nadR_9 GCATGGAGCCGTATCCGCACGGCTGGGATGTGTGGAGCAACGGCATCAAAAAGTTTATGG 4615965 4616024 
nadR_10 CTGAAAAGGGGATTCAGCCGGACCTGATCTACACCTCGGAAGAAGCCGATGCGCCACAGT 4616025 4616084 
nadR_11 ATATGGAACATCTGGGGATCGATACGGTGCTGGTCGATCCGAAACGTACCTTTATGAGTA 4616085 4616144 
nadR_12 TCAGCGGTGCGCAGATCCGCGAAAACCCGTTCCGCTACTGGGAATATATTCCTACGGAAG 4616145 4616204 
nadR_13 TGAAGCCGTTCTTTGTACGTACCGTGGCGATCCTTGGTGGCGAGTCGAACGGTAAATCCA 4616205 4616264 
nadR_14 CCCTGGTAAACAAACTTGCCAATATCTTCAATACCACCAGTGCGTGGGAATATGGTCGCG 4616265 4616324 
nadR_15 ATTATGTCTTTTCACACCTCGGCGGTGATGAGATCGCATTGCAGTATTCCGATTACGATA 4616325 4616384 
nadR_16 AAATCGCGCTGGGCCACGCACAATACATTGATTTTGCAGTGAAATATGCCAATAAAGTGG 4616385 4616444 
nadR_17 CGTTTATTGACACTGATTTTGTCACTACCCAGGCGTTCTGCAAAAAGTACGAAGGGCGTG 4616445 4616504 
nadR_18 AGCATCCGTTCGTACAGGCGTTGATTGATGAATACCGTTTCGATCTGGTGATCCTGCTGG 4616505 4616564 
nadR_19 AGAACAACACGCCGTGGGTGGCGGATGGTTTACGCAGCCTCGGCAGTTCGGTGGATCGCA 4616565 4616624 
nadR_20 AAGAGTTCCAGAACTTGCTGGTGGAGATGCTGGAAGAGAACAATATCGAATTCGTGCGGG 4616625 4616684 
nadR_21 TTGAAGAGGACGATTATGACAGCCGTTTCCTGCGCTGCGTGGAGCTGGTGCGGGAGATGA 4616685 4616744 
nadR_22 TGGGGGAGCAGAGATAACCGCGATGAAACGGCTCAAAGGCGAGGTATAAAATAAGTTTTT 4616745 4616804 

All sequences were ordered as xGen Lockdown probes with a 5′ biotin tag from Integrated DNA 
Technologies. Start and end are the positions where the first and last base map to in the E. coli REL606 
genome (GenBank:	NC_012967.1). 
  



Table S3. Blocker sequences 

Name Sequence 
Universal Blocker AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

Degenerate Sample Barcode Blocker CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

Red bases anneal to the sample barcodes. They were synthesized with a mixture of all four bases so that 
one blocking oligo could be used in pulldowns in which multiple different sample barcodes were present. 




