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SUMMARY

Understanding how cells are likely to evolve can guide medical interventions and bioengineering
efforts that must contend with unwanted mutations. The adaptome of a cell—the neighborhood
of genetic changes that are most likely to drive adaptation in a given environment—can be
mapped by tracking rare beneficial variants during the early stages of clonal evolution. We used
multiplex adaptome capture sequencing (mAdCap-Seq), a procedure that combines unique
molecular identifiers and hybridization-based enrichment, to characterize mutations in eight
Escherichia coli genes known to be under selection in a laboratory environment. We tracked 301
mutations at frequencies as low as 0.01% and inferred the fitness effects of 240 of these
mutations. There were distinct molecular signatures of selection on protein structure and function
for the three genes with the most beneficial mutations. Our results demonstrate how mAdCap-

Seq can be used to deeply profile a targeted portion of a cell’s adaptome.
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INTRODUCTION

New mutations arise naturally in the genomes of cells during DNA replication and repair. These
de novo mutations are the main drivers of adaptive evolution in clonal populations that have little
or no recombination or standing genetic variation. For example, numerous lineages with different
beneficial mutations arise and contend within large laboratory populations of asexual microbes
before any one lineage outcompetes the ancestor and its competitors (Good et al., 2017; Lang et
al., 2013; Maddamsetti et al., 2015). This ‘clonal interference’ leads to heterogeneous
populations with many lineages simultaneously adapting via different sets of mutations (Desai et
al., 2012; Gerrish and Lenski, 1998; Park and Krug, 2007). Often a majority of these mutations
affect a small subset of genes involved in cellular processes that are under the strongest selection
(Deatherage et al., 2017; Lang et al., 2013; Lind et al., 2015; Phaneuf et al., 2020). If the
‘evolvome’ is defined as the set of all spontaneous genetic changes by which a cell can
potentially evolve, then the beneficial mutations that are most likely to drive adaptation in a
given environment can be described as constituting its ‘adaptome’ (Ryall et al., 2012).

Human cancers and microbial infections exhibit similar genetic dynamics to those observed
in these laboratory evolution experiments: single cells clonally expand as they evolve driver
mutations that lead to disease progression and drug resistance. In cancer, both solid tumors and
blood cancers have been shown to be genetically heterogeneous (Marusyk et al., 2012; Merlo et
al., 2006; Thomas et al., 2006). De novo mutations that arise and then take over normal cell
populations can lead to carcinogenesis (Genovese et al., 2014; Watson et al., 2020). Mutations in
cancer cells drive neoplastic progression (Merlo et al., 2010), differences in responses to
chemotherapy (Landau et al., 2013), and relapse (Ding et al., 2012). Similarly, populations of

Pseudomonas aeruginosa and other bacteria that persistently infect the lungs of cystic fibrosis
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patients become increasingly invasive and antibiotic resistant over time (Marvig et al., 2015;
Stefani et al., 2017; Winstanley et al., 2016). In both cancers and infections, the same genes are
often mutated in the cells that cause disease in different individuals. Mapping the adaptomes of
these cells to understand how they are likely to evolve in other patients afflicted in the same way
could inform treatment decisions and improve medical outcomes.

Cells used in biomanufacturing are also prone to evolving unwanted genetic heterogeneity
(Renda et al., 2014; Rugbjerg and Sommer, 2019). Typically, these cells have been highly
engineered to optimize the titer of a product of interest at the expense of rapid cellular replication
(Lee and Kim, 2015; Nielsen and Keasling, 2016). Therefore, there are strong selective pressures
for ‘escape mutations’ that cause production to decline. Usually escape mutations directly
inactivate one or more key genes in the engineered pathway. The resulting nonproducing cells
can become dominant during the many cell divisions that are necessary to scale these processes
up to large bioreactors (Rugbjerg et al., 2018; Sandoval et al., 2014; Zelder and Hauer, 2000).
Mapping the adaptomes of engineered cells to profile the evolutionary failure modes that are
most common in nonproducing mutants before attempting scale-up could guide bioengineering
design decisions and thereby improve the efficiency of industrial processes.

Evolution experiments conducted in laboratory environments reproduce key aspects of
microbial evolution that are observed in chronic infections and bioreactors (Barrick and Lenski,
2013; Gresham and Dunham, 2014). Certain aspects of genomic and phenotypic evolution in
these controlled systems predictably occur across multiple replicate populations (Barrick, 2020;
Cvijovi¢ et al., 2018; Furusawa et al., 2018; McDonald, 2019; Rainey et al., 2017), making them
a useful testbed for adaptome mapping methods. In theory, tracking the frequencies of mutations

during the earliest stages of clonal evolution from a single cell in these populations should allow
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one to map that cell’s adaptome. However, many highly beneficial mutations arise but never
reach appreciable frequencies in microbial populations before they are outcompeted by lineages
with other beneficial mutations (Desai et al., 2012; Gerrish and Lenski, 1998). Thus, one must be
able to track extremely rare mutations to recover more of the adaptome. During the initial burst
of new beneficial genetic diversity when all beneficial mutations are still rare and very few cells
have accumulated multiple mutations, each mutant is effectively competing only versus the
ancestor. Therefore, one can also estimate each beneficial mutation’s fitness effect directly from
how rapidly its frequency increases during this critical time window.

High-throughput metagenomic DNA sequencing can be used to track rare mutations in
cell populations, but most such studies of microbial evolution experiments have only been able
to reliably identify mutations that are present at frequencies above ~1-10% due to limitations
imposed by sequencing depth or error rates (Barrick and Lenski, 2009; Chubiz et al., 2012; Good
et al., 2017; Lang et al., 2013; Traverse et al., 2013). At this point, the diversity and dynamics of
the single-step beneficial mutations that constitute the clonal adaptome have typically been
obscured by takeover of a few dominant mutants and further evolution of all lineages.

Several methods exist to characterize rarer mutations. Amplicon sequencing (e.g., as in
FREQ-seq) is a straightforward strategy for profiling genetic variants in a targeted subset of a
cell’s genome (Chubiz et al., 2012; Fischer et al., 2017; Hong et al., 2018). However, the PCR
enrichment step in this method requires optimizing conditions for each targeted region and
introduces biases in inferring the frequencies of mutations that alter amplicon sizes. Another
approach is to add unique molecular identifiers (UMIs) to the sequenced DNA fragments before
any amplification steps. This information can be used to detect PCR duplicates to more

accurately estimate mutation frequencies (Hong and Gresham, 2017; Kivioja et al., 2012) and to
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correct sequencing errors (Schmitt et al., 2012). But, the extra depth of sequencing needed when
using UMIs for error correction generally makes it infeasible to employ this approach on a
genome-wide scale to track rare variants in many samples. Sequencing short barcodes inserted
into the genomes of progenitor cells (BAR-seq) allows one to economically track the frequencies
of extremely rare lineages derived from these cells (Levy et al., 2015; Venkataram et al., 2016);
but, a limitation of this method is that the cell of interest must be genetically engineered with
high efficiency to introduce a sufficient diversity of cellular barcodes, which may be difficult or
impossible in certain cell types or clinical samples. Additional whole-genome sequencing is also
required to identify the beneficial mutations that are linked to the winning barcodes.

Here, we describe multiplex adaptome capture sequencing (mAdCap-Seq). This method
allows one to characterize many beneficial mutations in specific genes in a clonally evolving cell
population. The key components of mAdCap-Seq are: (1) increasing sequencing depth in a
targeted portion of a genome through hybridization-based DNA capture, (2) lowering sequencing
error rates using UMIs, and (3) analyzing a time course of samples from a population during the
early stages of clonal evolution. We tested mAdCap-Seq on laboratory populations that used the
same ancestral strains and nearly identical culture conditions as a >70,000-generation E. coli
evolution experiment (Lenski et al., 1991). We were able to directly identify diverse beneficial
mutations in eight genes when they were orders of magnitude lower in frequency than could be
accomplished by standard metagenomic sequencing. The molecular signatures and fitness effects
of the many beneficial mutations found in three of these genes made it possible to infer the
nature of selection acting on their functions in this environment. Our results demonstrate how

mAdCap-Seq can be used to deeply profile a targeted portion of the adaptome of a cell.
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RESULTS

Replaying the beginning of a long-term evolution experiment

We initially examined the evolution of nine replicate E. coli populations that were propagated
via daily serial transfers in glucose-limited minimal medium for 500 generations. Our
experiment used the same E. coli strains as the Lenski long-term evolution experiment (LTEE)
and similar growth conditions (see Methods). Each population was inoculated with a 50/50
mixture of the two neutrally marked LTEE ancestor strains to visualize the initial selective sweep
(Hegreness et al., 2006). An initial 30 generations of evolution occurred as these two strains were
grown separately from single cells before they were combined to begin the serial transfers. Most
populations maintained a roughly equal representation of descendants of both ancestral strains
through the first 300 generations of the evolution experiment (Fig. 1). These dynamics are in
agreement with what has previously been observed in studies of the LTEE, where few mutations
reach a high frequency in the first few hundred generations of evolution (Good et al., 2017). We
chose to further analyze only six of the nine populations due to constraints on how many samples
we could process and sequence. Two E. coli populations (A4 and AS5) were purposefully omitted
because they exhibited early sweeps of one marker type, which indicates that their dynamics
might have been dominated by one or a few "jackpot" mutations that occurred very early during
outgrowth of these populations from single cells. The third population that was not selected for

further study (AS8) exhibited typical marker dynamics.

Tracking the trajectories of new beneficial mutations
We next performed mAdCap-Seq on eight genes at ~25 generation increments over the entire

500 generations of the evolution experiment for four of the six populations that we examined
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further. These eight genes (nadR, pykF, topA, spoT, fabR, ybaL, hslU, and ic/R) are known to be
targets of selection in the LTEE (Good et al., 2017; Tenaillon et al., 2016). [llumina libraries
containing UMIs (Schmitt et al., 2012) were prepared for sequencing and enriched for the
regions of interest using solution based hybridization (Bainbridge et al., 2010). Consensus
sequence reads were generated based on groups of reads with identical UMIs and aligned to the
E. coli genome to predict mutations, including using split-read mapping to identify transposon
insertions and large deletions (Fig. 2A). The enrichment procedure was effective: an average of
73.5% of consensus reads per sample mapped to the targeted regions that together constitute only
0.780% of the 4.63 Mbp genome. In the sample with the median number of total consensus
reads, the average coverage depth across each of the eight genes of interest exceeded 5,000 (Fig.
2B). After eliminating variants that exhibited systematic biases in their frequency trajectories
(see Methods), we were able to track the evolution and competition of 181 mutations, including
when many were present in less than 0.1% of the cells in a population (Fig. 2C, Fig. 3).
Mutation trajectories in all four populations exhibited a burst of genetic diversity in the
targeted genes followed by loss of this diversity. The initial dynamics are expected to be largely
driven by new genotypes that each evolve a single beneficial mutation very early in the
experiment. If their descendants escape stochastic loss, they will gradually increase in frequency
over the first few hundred generations as they outcompete the ancestral genotype. Once the
population becomes dominated by these first-step mutants, their frequency trajectories plateau
because of clonal interference: they are now mainly competing against one another and are
relatively evenly matched. In populations A1, A2, and A7, the total frequencies of the mutations

we identified sums to 49.6-62.4% at generation 297, indicating that each population is mostly
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composed of genotypes with a mutation in one of the focal genes. We recovered less of the initial
beneficial mutation diversity in population A3 where this sum was only 13.5%.

After around 300 generations, there is a steady decline in the frequencies of most mutations
in the eight targeted genes. At this point, subpopulations of cells that have evolved multiple
beneficial mutations begin to displace the genotypes that we initially tracked. Many of the most
successful new genotypes are descended from cells that already had a mutation in one of the
targeted genes. In these cases, the original mutations serve as markers for the further expansion
of these subpopulations after a period during which their frequencies stagnate or decrease, but
the new beneficial mutations responsible for this further increase in fitness are outside of the
genomic regions we surveilled. The opposite situation, in which a beneficial mutation in one of
the eight focal genes appears in a cell with an untracked beneficial mutation elsewhere in the
genome, also occurs in a few cases. One example is a mutation in pykF that only appears after
300 generations in population A3 but then rapidly increases in frequency and becomes dominant.
These dynamics indicate that its increase is accelerated by the presence of a prior, unknown

beneficial mutation in the genetic background in which it evolved.

Fitness effects can be inferred from initial mutation trajectories

We next sought to calculate the fitness benefits of individual mutations by tracking how rapidly
their frequencies rose early in the experiment when they were largely competing versus the
ancestral genotype because all new mutations in the population were still rare. To that end, we
performed mAdCap-Seq on all six populations at ~13-generation increments from 169 to 236
generations (Fig. 2D, Fig. 3). With this additional data we were able to track a total of 240

mutations as they gradually increased in frequency during the critical time window from
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generation 163 to 243 that captures the dynamics of the first selective sweep. In the four
populations we had already sequenced (A1, A2, A3, and A7), these mutations included 120 of
the 181 previously found in the complete time course data spanning 500 generations and 54
additional mutations that had not been detected when analyzing the original time course data
alone. Using the new mAdCap-Seq data, we also identified 66 mutations in the two populations
for which we did not have time course data at 25 generation increments across the entire 500
generations of the evolution experiment (A6 and A9). Of the 240 total mutations, 93.3%
occurred in just three of the eight targeted genes: nadR, pykF, and topA (Fig. 4A).

We were able to estimate the fitness effect of each of these 240 beneficial mutations by
fitting a binomial logistic model to how the counts of reads supporting the variant versus
reference sequence increased over time from 163 to 243 generations. In all populations, there is
initially a log-linear increase in the frequency of each mutation as the first wave of evolved cells,
nearly all of which are expected to have just one of these beneficial mutations, competes against
a population that is still almost entirely cells with the ancestral genotype. Then, there is a
deceleration in the rate at which the frequencies of the new mutations increase around generation
196 that coincides with the onset of clonal interference. Genotypes with beneficial mutations
begin to make up a sizable proportion of the population at this point, making it necessary to
account for how they are increasingly competing against one another to estimate fitness effects.

We accounted for clonal interference by adding a stepwise increase in the average fitness of
the entire cell population over time as an additional set of parameters to the binomial logistic
model (Fig. 2E, Fig. 3). That is, we estimated how the fitness of the population, as a whole, was
changing from the deceleration in the trajectories of the subset of mutations that we tracked in

the targeted genes. Because overall population fitness dynamics are highly reproducible from
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population to population in the LTEE conditions (Lenski et al., 1991), we used one consensus
model of how the fitness of the populations increased (fit from all tracked mutations in all six
sequenced populations) to correct our estimates of individual mutation fitness effects for clonal
interference. Most of the increase in population fitness occurs rapidly in a single step during the
interval spanning 196-209 generations. This rapid change followed by stasis may seem at odds
with the continuing increase in the trajectories of many beneficial mutations. However, this type
of stepwise increase is a typical result of clonal dynamics in models and experiments (Gerrish
and Lenski, 1998; Lenski et al., 1991). It could result from many mutations with small fitness
effects, no one of which reaches an observable frequency, peaking and then being outcompeted
by the more highly beneficial mutations that we are able to track, for example.

The mean fitness effect that we inferred for the 240 tracked mutations in all six populations
was 9.00% with a standard deviation of 1.33%. Although the distributions of the fitness effects
estimated for mutations in nadR, pykF, and topA overlap (Fig. 4B), there was a significant
stratification among these genes. Mutations in nadR were 0.44% more beneficial than mutations
in fopA, on average, and this difference was significant (p = 0.022, one-tailed Mann—Whitney U
test). In turn, mutations in top4 were 0.70% more beneficial than those in pykF (p = 0.00046,
one-tailed Mann—Whitney U test). The fitness effects of the 16 mutations in the other genes
(spoT, fabR, ybaL, and ic/R) were not significantly different from the those of the 224 mutations
in nadR, pykF, and topA (p = 0.33, two-tailed Mann—Whitney U test). Thus, highly beneficial
mutations are possible in these genes as well, but they occur at a much lower rate than similarly
beneficial mutations in nadR, pykF, and topA.

One metric for how effectively we mapped the E. coli adaptome is the fraction of the

increase in the fitness of each population that is captured by the subset of beneficial mutations
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tracked with mAdCap-Seq. The fitness increase of each population could be reliably estimated
by generation 196, and separate estimates for each population were in close agreement with the
consensus estimate that included all populations after generation 209 (Fig 1E, Fig. 2). Thus, we
could make robust calculations beginning at these time points. The percentage of the fitness
increase contributed by the tracked mutations ranged from a low of 10.4% in population A9 to a
high of 34.9% in population A2 at generation 223. The mean across all six populations was
27.5%. This fraction was not constant across time. As evolution continued, cells with these same
mutations should account for a higher and higher fraction of the population fitness if they are
displacing cells with less-beneficial mutations. In line with this expectation, they accounted for
only 19.8% and 18.3%, on average, of the increase in population fitness earlier in the
experiment, at generations 196 and 206, respectively. Later, the frequency trajectories plateaued
for the beneficial mutations we tracked. This behavior means that the fitness of the whole
population had caught up and was now roughly the same as the fitness of a cell with one of these
beneficial mutations. Under this assumption, the tracked mutations account for 16.3—78.8%
(42.9% on average) of the ~9% fitness increase observed at generation 270 in the four
populations sequenced at this time. Overall, while we could account for a considerable portion of
the fitness evolution of these populations with the mutations captured by mAdCap-Seq,

mutations in other genes and/or less-beneficial mutations contributed more in most cases.

Beneficial mutations reveal different signatures of selection on gene function
Of the 301 total beneficial mutations that we were able to identify using mAdCap-Seq, 272 were
in the nadR, pykF, or topA genes. This large set of beneficial mutations gave us the statistical

power to test for several signatures of molecular evolution to ascertain what types of changes in
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the function of each gene improved E. coli fitness in this environment. Each of the three genes
exhibited a distinct spectrum of beneficial mutations (Fig. 5). In some cases, different types of
mutations were also unevenly distributed throughout the sequences of these three commonly hit
genes and had noticeably different effects on bacterial fitness (Fig. 6A).

The E. coli nadR gene has three distinct functions related to NAD biosynthesis: (1) the N-
terminal domain is a helix-turn-helix that binds to DNA so that it can act as a negative
transcriptional regulator of NAD salvage and transport pathways; (2) the internal domain is an
NMN adenylyltransferase (Raffaelli et al., 1999); and (3) the C-terminal domain is predicted to
have ribosylnicotinamide kinase activity (Kurnasov et al., 2003). Large deletions, frameshifts
from small insertions or deletions (indels), insertions of transposable insertion sequence (IS)
elements, and base substitutions creating stop codons dominate the nadR mutational spectrum
(Fig. 5). These disruptive mutations, most of which are expected to result in complete loss of
gene function, are significantly overrepresented versus nonsynonymous base substitutions in the
first two domains of the gene compared to the remainder (13.7 odds ratio, p = 1.2 x 107%, one-
tailed Fisher's exact test) (Fig. 6A). Yet, there was not a significantly greater fitness effect for
disruptive mutations compared to nonsynonymous mutations overall (p = 0.063, one-tailed
Mann—Whitney U test). These results indicate that complete inactivation of nadR yields the
maximum benefit possible for a mutation in this gene. Consistent with our observations from
mapping its adaptome, deletion of nadR has been shown to be highly beneficial in the very
similar environment of the LTEE (Barrick et al., 2009).

Pyruvate kinase 1 (pykF) catalyzes the final step of glycolysis, transferring a phosphate group
from phophoenolpyruvate (PEP) to ADP to generate pyruvate and ATP. It is a key enzyme in

regulating glycolytic flux (Kochanowski et al., 2013; Siddiquee et al., 2004). We observed an
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intermediate representation of disruptive mutations in pykF: fewer than in nadR but more than in
topA (Fig. 5). Nonsynonymous base substitutions in pykF tend to have a larger fitness effect than
disruptive mutations (p = 0.00031, one-tailed Mann—Whitney U test) (Fig. 6A). This finding is in
agreement with a study of various pykF alleles that arose in the LTEE which found that nearly all
pykF point mutations were more beneficial than deletion of the pykF gene, both in the ancestor
and in evolved genetic backgrounds (Peng et al., 2018). PykF forms a homotetramer in which
each polypeptide folds into three structural domains (Donovan et al., 2016; Mattevi et al., 1995).
The central domain A forms the active site at the interface with domain B and the binding site for
the allosteric effector fructose 1,6-bisphosphate at the interface with domain C. The
nonsynonymous mutations that we observed are more concentrated than expected in domain A
versus the other structural domains based on their relative lengths in the gene sequence (p =
0.0018 one-tailed binomial test) (Fig. 6B). Overall, adaptome mapping finds that complete
inactivation of pykF is highly beneficial in the environment of our evolution experiment, but
mutations that alter its activity—Ilikely in ways that reduce glycolytic flux—are even more so.
These results are consistent with a hypothesis that reducing pykF activity is beneficial in the
similar glucose-limited conditions of the LTEE because this allows more PEP to be diverted to
power import of glucose into cells via the phosphotransfer system (Woods et al., 2006).

DNA topoisomerase I (fopA) relaxes negative supercoiling introduced into the chromosome
by replication and transcription (Massé and Drolet, 1999). The mutations we observed in fopA
are almost exclusively single-base substitutions (Fig. 5). This type of adaptome signature implies
that modulating the enzymatic activity of TopA provides the greatest fitness benefit. Complete
loss of topA gene function is lethal to E. coli without compensatory mutations in DNA gyrase

(Dinardo et al., 1982; Pruss et al., 1982). The structure of E. coli TopA consists of four N-
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terminal domains (D1-D4) that make up the catalytic core and five C-terminal zinc finger and
ribbon domains (D5-D9) (Tan et al., 2015). The few out-of-frame indels and the large deletion
that we observe truncate TopA within domains D7-D9, which interact with single-stranded DNA
and with RNA polymerase but are not critical for catalysis. Considering only the catalytic core,
we find that nonsynonymous mutations are more concentrated in domains D1 and D4 versus D2
and D3 than expected from their relative sizes (p = 0.00068, one-tailed binomial test) (Fig. 6C).
D1 and D4 together form the ssDNA binding groove leading to the active site, and D1 also forms
part of the active site at its interface with D3 (Perry and Mondragdn, 2003). Several base
substitutions in fopA have been shown to increase positive supercoiling in evolved LTEE strains
(Crozat et al., 2005, 2010). The exact reason that this change in supercoiling is beneficial is
unknown, but it may be linked to increasing the expression of ribosomal RNAs (Crozat et al.,
2005), altering gene regulation responses to starvation or other stresses (Crozat et al., 2010),
and/or increasing the expression of genes in divergently transcribed operons (Houdaigui et al.,

2019).

Recurrent beneficial mutations do not have greater fitness effects

We observed many examples of exact genetic parallelism. That is, the same mutation occurred
and reached high frequency in different experimental populations. Each of these E. coli
populations was founded from single cells, so we can conclude that these recurrent genetic
changes are due to independent mutational events. We observed a total of 252 distinct genetic
changes across all eight profiled genes and 31 of these were found in more than one population.
While no single genetic change was detected in all six populations, 2, 2, 8 and 19 changes were

detected in 5, 4, 3, and 2 populations, respectively. Most of these were in the three genes that
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were the main targets of selection (nadR, pykF, and topA), but one that occurred in three
populations was in fabR. These mutations may be recurrent because they have a higher fitness
benefit than other mutations, occur at a higher rate than other mutations, are more easily detected
in the sequencing data, or due to some combination of these factors. We had fitness effect
estimates for all of the 31 recurrent mutations and for 167 mutations that were each observed in
only one population. The recurrent mutations had a 0.12% greater fitness effect, on average,
compared to the singleton mutations, but this difference was not significant (p = 0.25, one-tailed
Mann—Whitney U test). Thus, it is unlikely that many cases of exact genetic parallelism are due

to these mutations being more beneficial than others in our dataset.

DISCUSSION

We used mAdCap-Seq to profile bacterial evolution during the initial stages of clonal
competition when there is a burst of beneficial genetic diversity as many new subpopulations
with different mutations evolve and begin to displace the ancestral genotype. We focused on
eight genes known to accumulate adaptive mutations in the >70,000 generation Lenski long-term
evolution experiment (LTEE) with E. coli that used nearly the same environment as our
experiments. The only difference was that we added four times as much of the limiting nutrient
(glucose). By combining Illumina sequencing using UMIs for error correction, hybridization-
based capture of DNA encoding these genes, and dense temporal sampling, we were able to
identify more beneficial mutations and track them at much lower frequencies than is possible
with standard metagenomic sequencing. We detected a total of 301 mutations in the focal genes:
181 in the complete time courses of four populations and 240 during the initial selective sweep in

these populations and two others, with 120 mutations overlapping between the two sets.
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By densely sampling and deeply sequencing E. coli populations, we were able to characterize
many beneficial mutations that never reached the normal detection limit of Illumina sequencing
before they become casualties of clonal interference. Only 13 of the 181 mutations we detected
in the complete time courses ever achieved a frequency of 5% or more, which can be reliably
distinguished from noise without the use of UMISs or other error correction techniques, and only
seven were this common for 100 or more generations, such that they were likely to be detected
by a typical time-sampling scheme. Considering all of our data sets, we characterized 241 and 42
mutations that never reached 1% or 0.1% thresholds, respectively, at any sampled time point.
Our success in recovering rare variants meant that we discovered more examples of beneficial
mutations in the three commonly mutated genes (topA, pykF, and nadR) than have been reported
in all prior studies of the evolution of the twelve LTEE populations through 60,000 generations
of evolution (Barrick et al., 2009; Deatherage et al., 2015; Good et al., 2017; Ostrowski et al.,
2008; Tenaillon et al., 2016; Woods et al., 2006). These large sets of mutations enabled us to
identify distinct molecular signatures of adaptation in each protein.

mAdCap-Seq profiles genetic variation in specific genes. Whether and to what extent
mutations in a given gene contribute to a cell’s adaptome depends on a combination of two main
factors: how many mutations in that gene are sufficiently beneficial that they can compete with
other top mutations (the distribution of fitness effects) and the chances that these mutations will
evolve (the mutational target size). For the three genes with the most mutations in our
experiment, we can rationalize the rank-order of their representation (nadR > pykF > topA) in
terms of these parameters. First, mutations that we tracked in nadR are more beneficial than
mutations in the other two genes, on average. Because complete loss of function of this gene is

maximally beneficial, the target size for these mutations is also larger, as it includes not only
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base substitutions but also small indels causing frameshifts, larger deletions, and IS element
insertions. The next most commonly mutated gene is pykF. The mutations we identified in pykF
are actually slightly less beneficial on average than the mutations in top4. However, mutations
that completely knock out topA4 function are not represented in the adaptome, whereas these
types of mutations in pykF are highly beneficial. In this case, larger target size appears to
outweigh smaller fitness effects in determining the representation of mutations in each gene.

From our experiment alone, it is unclear why mutations in the other five captured genes are
rarer in the adaptome. We detected no mutations in 4s/U and ic/R. Mutations we tracked in the
other three genes (spo7, fabR, and ybaL) do not have significantly different fitness effects from
those in the three genes with the most mutations (nadR, pykF, topA). However, our statistical
power for detecting differences is limited by the small number of mutations detected in these
genes, so we cannot definitively conclude that they are underrepresented solely due to having
smaller target sizes for top-flight mutations. As described below, comparing our results to the
long history of the LTEE does provide some further insights into why mutations in each of the
genes that we profiled are more or less abundant in the adaptome in our evolution experiment.

We captured beneficial mutations in eight genes known to be targets of selection in the
LTEE. Mutations in four of these (fopA, pykF, spoT, and fabR) reach high frequencies within the
first 1,000 generations of the LTEE in multiple populations (Deatherage et al., 2015; Good et al.,
2017). Mutations in the other four (hs/U, nadR, ybaL, and ic/R) are also common in the LTEE,
but they typically occur later (often within the first 2,000 to 10,000 generations) (Good et al.,
2017; Tenaillon et al., 2016). Nearly all mutations in these genes in our evolution experiment
were in fopA, pykF, and nadR, but we also found multiple mutations that were similarly

beneficial in spoT, fabR, and ybaL. Mutations in nadR were more widespread than expected in
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our experiment and may be more likely to completely disrupt its function than beneficial alleles
that evolve in the LTEE (Ostrowski et al., 2008). Mutations in spoT and fabR were rarer than
expected from the LTEE. The increased concentration of glucose in our experiment compared to
the LTEE may explain these slight differences. These results are reminiscent of how changing a
different aspect of the LTEE environment (temperature) re-focused the mutations of largest
benefit that succeeded early onto different genes in two prior studies (Deatherage et al., 2017;
Tenaillon et al., 2012). Despite the subtle difference between the LTEE and our experiment, we
were still able to use mAdCap-Seq to effectively map the adaptome. We accounted for the
majority of the genetic variation present after the first sweep in three of the four populations that
we profiled over the entire 500 generations by capturing mutations in just eight genes.

We can ask to what extent profiling mutations while they were rare by mAdCap-Seq gave
‘early warning’ of mutations driving adaptation in these clonal cell populations. In general, we
were able to begin tracking most mutations when they were above a frequency of 0.01%. This
level of profiling enabled us to first detect mutations an average of 69, 150, and 290 generations
before they surpassed frequencies of 0.1%, 1%, and 5%, respectively. Under the conditions of
our experiment these intervals take roughly 10, 23, and 44 days, respectively. (The amount of
lead time becomes disproportionately longer when requiring a mutation to reach higher
frequencies due to clonal interference between beneficial mutations.) Therefore, even though we
made these observations retrospectively, there would have been sufficient time to complete the
DNA isolation, library preparation, sequencing, and analysis steps in mAdCap-Seq quickly
enough for this approach to give early warning of the types and targets of genetic variants
driving evolution of these populations. The chances and timescales of early detection would be

expected to increase even more if ecological interactions or spatial structure further slowed the
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takeover of new variants, as has been demonstrated and discussed in other microbial evolution
experiments (Baym et al., 2016; Frenkel et al., 2015; Traverse et al., 2013).

Genes in which we observe early, but unsuccessful beneficial mutations may acquire
mutations again and again until they are successful in a population's evolutionary future. The
extent to which this occurs is determined by the nature of epistatic interactions. In the LTEE and
other microbial evolution experiments, diminishing returns epistasis dominates between
beneficial mutations in different genes (Chou et al., 2011; Khan et al., 2011; Kryazhimskiy et al.,
2014; Wei and Zhang, 2019; Wiser et al., 2013). That is, mutations in one gene that improve the
fitness of the ancestor tend to still be beneficial to evolved genotypes containing beneficial
mutations in other genes, just less so than when those other mutations are present.
Subpopulations with mutations in both nadR and pykF evolve by 20,000 generations in all 12
LTEE populations, and cells that also contain a mutation in topA4 are found in six of the LTEE
populations at this point (Tenaillon et al., 2016). By this time, mutations in ybalL and spoT are
also found in nine and six LTEE populations, respectively. So, for five of the six genes in which
we detected multiple mutations in the initial burst phase, it is likely that nearly all of them would
have eventually accumulated beneficial mutations if we continued our experiment.

The other three genes (fabR, ic/R, and hs/U) likely represent other scenarios. Mutations in
fabR transiently appear within the first 2,000 generations of the LTEE (Deatherage et al., 2015).
They interact unfavorably with beneficial mutations in spoT and other genes, such that a fabR
mutation essentially precludes further adaptation by mutating the other set of genes and vice-
versa (Deatherage et al., 2015; Woods et al., 2011). We detected 9 mutations in fabR, which was
more than the five we observed in ybaL. However, we predict that fabR mutations are unlikely to

re-emerge and be successful in the future of these populations because of their negative
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interactions with other beneficial mutations. On the other hand, we detected only a single
mutation in ic/R and a single mutation in As/U. Of the 12 LTEE populations, 11 have sizable
subpopulations with mutations in ic/R and 11 have mutations in A4s/U by 20,000 generations,
which makes them more common than mutations in spo7 and ybaL in the long run. Therefore,
mutations in ic/R and hslU appear to either require the presence of mutations in other genes to
become highly beneficial or may not be able to experience any mutations that are beneficial
enough to make them competitive early on in our experiment.

The nature of epistasis and the limits that it imposes on predicting the future evolution of a
cell population could be further probed using mAdCap-Seq in several ways. One could repeat the
evolution experiment beginning with genotypes containing different first-step beneficial
mutations and compare their adaptomes. One could also interrogate the diverse collections of
cells containing different beneficial alleles that we have evolved, by taking the 150-generation
populations and further evolving them under different conditions to map genotype by
environment effects, for example. Such experiments might also reveal latent beneficial mutations
in other genes (e.g., icIR and hslU) that were able to outcompete the ancestor in our experiment
but remained below the detection limit because they were not as beneficial as mutations in topA4,
pykF, and nadR in this environment. There is precedent for changes in the environment
reorienting selection to different subsets of the same genes. In an offshoot of the LTEE that
began with a clone that had spoT, topA4, and pykF mutations, selection focused further mutations
on either AslU, iclR, or nadR depending on changes in temperature (Deatherage et al., 2017).

mAdCap-Seq is one among several high-throughput methods for interrogating the
possibilities that a cell’s descendants can explore in its fitness landscape. Different approaches

reveal complementary types of information and have different limitations. For example, deep
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mutational scanning uses high-throughput sequencing to simultaneously query large libraries of
mutations in a single gene (Fowler and Fields, 2014). Transposon insertion sequencing (Tn-Seq)
allows one to infer the fitness effects of transposon insertions in essentially every gene in a
genome (van Opijnen and Camilli, 2013). While nearly all Tn-Seq mutations disrupt gene
function, CRISPR-enabled trackable genome engineering can make genetic changes of other
types, including those that increase expression of a target gene, and track the abundance and
thereby fitness of these variants in parallel by sequencing barcodes (Garst et al., 2017). These
and other related methods rely on artificially constructing variant libraries and may test
mutations in a nonnatural context (e.g., in genes on a plasmid). Thus, they do not provide
information about which genetic variants are accessible by spontaneous mutations.

Methods that characterize just those mutations that spontaneously arise in clonally
evolving cell populations more specifically map adaptomes. For example, a capture-based
enrichment and high-throughput sequencing method, similar to mAdCap-Seq but without UMISs,
has been used to detect rare mutations in circulating tumor DNA in patient blood samples
(Newman et al., 2014, 2016). FREQ-Seq is an example of a multiplexed amplicon sequencing
approach that is similar to mAdCap-Seq in how it aims to track the frequencies of new beneficial
mutations in specific, targeted regions of microbial genomes (Chubiz et al., 2012). When not
employing UMIs for error correction, amplicon sequencing has a limited ability to differentiate
extremely rare mutations from sequencing errors (Schmitt et al., 2012). Another issue is that the
initial PCR steps used to create amplicons can bias detection. In our experiment with E. coli, IS
element insertions are common. DNA templates with such large insertions would be highly
disfavored during PCR amplification, leading one to greatly underestimate the frequencies of

these mutations. By contrast, the hybridization-based capture approach utilized by mAdCap-Seq
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for target enrichment recovers DNA fragments with these and other types of mutations with the
same efficiency. Large deletions in an evolved genome that completely remove a targeted region
are an exception. These mutations create a blind spot for both amplicon and capture enrichment
approaches. The lack of any reads from genomes with the deletion will lead to overestimating the
frequencies of other mutations that preserve recovery of DNA from the region. While this is a
general caveat that should be considered when using these approaches, large deletions are
unlikely to have affected our mAdCap-Seq results. The genes we captured are rarely mutated in
this way in the LTEE, and we tracked mutations early in the evolution of these populations from
single cells when all new genetic variants were still rare.

BAR-seq represents a class of lineage-tracking methods that can be used to characterize
spontaneous mutations through monitoring changes in the frequencies of barcode sequences
inserted into the genomes of cells (Blundell and Levy, 2014). Since all high-throughput
sequencing reads can be concentrated into counting barcodes that differ from one another (to the
extent that sequencing errors do not affect proper assignment), these methods can track rarer
subpopulations of cells than mAdCap-Seq. This means they can characterize essentially all of the
beneficial mutations competing in a population. For comparison, we tracked ~60 mutations per
E. coli population in the initial selective sweep, but tens of thousands of mutations have been
analyzed in this way using BAR-seq on a single yeast population (Levy et al., 2015). Thus,
lineage-tracking methods have much greater power for reconstructing the distribution of fitness
effects of all mutations that spontaneously arise in a cell population. However, there are trade-
offs relative to other approaches. Additional post-hoc whole-genome sequencing of many
isolates from the evolved population is needed to link each barcode to a mutation causing the

observed fitness change (Venkataram et al., 2016). But the foremost consideration is that one
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must genetically engineer cells to introduce barcodes into their genomes. This limitation has
restricted the use of BAR-seq to populations of model organisms evolved in the laboratory so far.
The adaptome is the neighborhood of accessible genetic changes that are most likely to
become dominant and contribute to ongoing adaptation of a population. We have demonstrated
how mAdCap-Seq can be used to deeply profile a targeted portion of the adaptome of a bacterial
cell undergoing clonal evolution in a controlled laboratory environment. Mapping clonal
adaptomes, which consist solely of de novo beneficial mutations, is likely to be of particular
interest and utility in systems that evolve repeatedly from a defined starting point. These range
from bioreactors that are seeded with the same engineered strain in different production runs to
lung infections in cystic fibrosis patients that start from similar, but not identical, strains of
opportunistic pathogens. This approach could also be used to probe the fitness landscapes
underlying how human infections and cancers evolve drug resistance and greater pathogenicity.
Mapping out the likely evolutionary possibilities in these systems can potentially allow one to
monitor for the appearance of especially costly or dangerous mutations and could even lead to
developing interventions that deflect the population from these undesirable adaptive pathways.
Outside of the laboratory, some of the simplifying assumptions used in our study break
down. In may be difficult or impossible to sample a new cell population found in the
environment or in a patient multiple times during the critical time window before it has already
evolved substantial genetic diversity. Furthermore, many microbes have mechanisms for sexual
recombination that can rapidly combine multiple beneficial mutations into one genome, which
may violate our assumption that double mutants are rare during the first selective sweep. While

these real-world situations complicate evaluating the relative benefits of each new genetic variant



531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

from sequencing alone, mAdCap-Seq would still be a useful approach for characterizing whether

mutations in specific genes are contributing to the leading edge of adaptation in these situations.
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556  Figure 1. Replaying the first selective sweep of a long-term evolution experiment. Nine E.
557  coli populations were initiated from equal mixtures of two variants of the ancestral strain that
558  differ in a neutral genetic marker for arabinose utilization (Ara). We observed the evolutionary
559  dynamics of these populations over 500 generations of regrowth from 75 daily 1:100 serial

560 transfers by periodically plating dilutions of each population on indicator agar. Each ancestral
561  strain subpopulation was derived from a single colony isolate that experienced 30 generations of
562  growth before it was combined with the opposite type to initiate the serial transfers. The ratio of
563  Ara’ cells (pink colonies) to Ara™ cells (red colonies) diverges from 1:1 when descendants of one

564  ancestor type accumulate enough of a fitness advantage due to de novo beneficial mutations that

565  they take over. We focused further analysis on six of the nine populations (thick lines).
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Figure 2. Profiling many beneficial mutations in the first selective sweep by deep
sequencing. (A) Schematic of the deep sequencing approach. Genomic DNA is directly isolated
from the E. coli populations and prepared for paired-end Illumina sequencing with sample
barcodes and dual UMIs (colored ends attached to red/green double stranded DNA). DNA
fragments matching the targeted genome regions (green centers) are captured by probes (blue)
bound to magnetic beads and other sequences are washed away (red centers). Reads in pairs that
have the same dual unique molecular identifiers, which implies that they were PCR amplified
during library preparation from the same original genomic DNA fragment, are used to construct
consensus reads to eliminate sequencing errors. Consensus reads are mapped to the reference
genome to call sequence variants. (B) Enrichment of reads mapping to eight genes known to be
early targets of selection in this environment from the long-term evolution experiment. The final

coverage depth of consensus reads in and around these genes is shown for a typical sample
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(population A7 at 500 generations). (C) Frequency trajectories for mutations in the eight targeted
genes as well as the sum total frequency in population A1 over the complete time course of the
evolution experiment. When a mutation was not detected at a time point, its trajectory is shown
as passing through a frequency of 0.0001% (outside of the plot bounds). (D) Mutation frequency
trajectories for population Al during the selective sweep window from 163 to 243 generations
when mutations were first reaching detectable frequencies and outcompeting the ancestral
genotype. At time points when a mutation was not detected, its frequency is shown as 0.001% (at
the bottom of the plot). (E) Estimated relative fitness of population A1 in each interval between
sequenced time points. The frequency trajectories of all beneficial mutations in the initial sweep
shown in D were used to jointly estimate the average fitness of the entire population from the
deceleration in the rate of increase of the observed mutation trajectories as genotypes with
beneficial mutations became common (see Methods). This fitness trajectory fit accounts for all
cells in the population, regardless of whether they have a mutation in the targeted genes or
elsewhere in the genome. The red line is the maximum likelihood estimate of the population
fitness trajectory. The red shading around it shows 95% confidence intervals on this value in
each interval. The black line shows the increase in fitness estimated for a consensus model that
was jointly fit to all mutations tracked in all six populations. The consensus population fitness

trajectory was used when estimating the fitness effects of individual mutations (see Methods).
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Figure 3. Frequency trajectories of mutations in the remaining populations. The same plots
described in Figure 2C-E for population A1 are shown for populations A2, A3, and A7 (top three
sets of panels). For populations A6 and A9, sequencing was only performed at time points during
the selective sweep window from 169 to 236 generations so only the plots corresponding to

Figure 2D-E are shown (bottom two sets of panels).
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Figure 4. Characteristics of beneficial mutations in the initial selective sweep. (A) Total
number of beneficial mutations in each of the eight targeted genes for which fitness effects could
be estimated by analyzing their frequency trajectories between generations 163 and 243. (B)
Distributions of fitness effects of beneficial mutations in the three genes that were the dominant
targets of selection. Mutations are binned by the maximum likelihood estimates of their fitness
effects. Vertical red lines show the mean of each distribution. 95% confidence limits in Figure

6A show uncertainty in the fitness effect estimated for each of these mutations.



612
613

614

615

616

617

114 97 61

100% -
Base substitutions

[ Intergenic

[ Synonymous
[ Nonsynonymous
B Nonsense

75%

50% -

Mutations

Other mutations
[ Deletion (=50 bp)

Il Indel (<50 bp)
[ Insertion sequence

25%

0%

naldR pylkF topA
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from other types of mutations (thick bars).
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619  Figure 6. Mutations in the three genes that were the dominant targets of selection. (A)
620  Nucleotide positions and properties of all mutations found in each of the three genes that were
621  the dominant targets of selection during the evolution experiment. Colors represent the type of

622  mutation. Symbols indicate whether each mutation was detected in the selective sweep window,
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the complete time course, or both. The upper panel for each gene, shows the fitness effects
estimated for mutations in that gene. Error bars are 95% confidence limits. When the same
genetic change was detected in multiple populations, information from all of its frequency
trajectories was combined to estimate one overall fitness value and confidence limit for all of
those mutations (see Methods). Thus, the symbols and error bars completely overlap for each
independent occurrence of these mutations in a different population. The reading frame of the
gene is shown above this panel with protein domains labeled. Vertical dashed grey lines
represent the start and end of each gene. Horizontal grey lines show the extent of large deletions
within the pictured region. Horizontal red lines represent the average fitness effects for all
mutations in a gene. The lower panel for each gene shows mutations that were only detected in
the complete time courses and therefore do not have an estimated fitness effect. Symbols in this
panel are randomly jittered in the vertical direction to improve their visibility. (B) Structural
context of mutations in PykF. Sites of nonsymonymous mutations are highlighted by showing
space-filling models of the ancestral amino acid residues. All four subunits of the PykF
homotetramer are shown. (C) Structural context of mutations in the catalytic core of TopA. Sites
of nonsymonymous mutations are highlighted by showing space-filling models of the ancestral
amino acid residues. Only domains D1-D4 are present in the structure. The DNA strand

interacting with TopA is shown as a stick model.
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STARXMETHODS

Resource Availability

Lead Contact

Lead contact, Jeffrey E. Barrick (jbarrick@cm.utexas.edu), will provide additional information
and fulfill any requests for materials.

Materials availability

Frozen E. coli populations from each sequenced time point are available.

Data and code availability

[llumina sequencing reads associated with this study have been deposited into the NCBI
Sequence Read Archive (Accession: PRINA601748). Code used for analysis and figure

generation is archived on Zenodo (DOI: 10.5281/zenodo.5092871).

Experimental Model and Subject Details

Bacterial Strains and Culture Conditions

E. coli B strains REL606 and REL607 and growth conditions are derived from the Lenski long-
term evolution experiment (Lenski and Travisano, 1994; Lenski et al., 1991). REL606 and
REL607 differ by a mutation in an arabinose utilization gene enabling us to monitor their relative
frequencies during the evolution experiment (Lenski et al., 1991). Growth was carried out in 50
mL Erlenmeyer flasks in 10 mL of Davis Minimal (DM) media supplemented with 100 mg/L
glucose (DM100). DM is made by dissolving 5.3 g/L K;HPOs, 2 g/l KH2POs, 1 g/L. (NHs)2 SOq,
and 500 mg/L Na3;Ce¢Hs507 (H20); in water. After autoclaving, 1 mL/L of a 10% (w/v) MgSO4
stock solution (separately autoclaved) and 1 mL/L of a 0.2% (w/v) stock solution of thiamine

(filter sterilized) are added. DM 100 has a slightly higher concentration of glucose than the 25
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mg/L glucose (DM25) used in the LTEE, but it still well below the ~1000 mg/L concentration at
which nutrients other than glucose begin to limit growth in this medium. We used this higher
glucose concentration to ensure we had enough cells for sequencing and archiving. Liquid

cultures were grown at 37°C with orbital shaking over a one-inch diameter at 120 RPM.

Method Details

Evolution experiment

Nine colonies of E. coli B strain REL606 and nine of strain REL607 were selected at random and
used to inoculate separate flasks containing 10 mL of DM25. Approximately 30 generations of
growth occurred starting from the initial single cell that gave rise to each colony until saturation
of these cultures. Populations A1 through A9 were founded by inoculating 10 mL of fresh
DM100 with 50 pL of one REL606 culture and 50 pL of one REL607 culture. The remaining
culture volume for all 18 founding colonies was archived in 15 mL conical tubes at —80°C with 2
mL dimethyl sulfoxide (DMSO) added as cryoprotectant. Every 24 hours, 100 pL of overnight
culture was transferred to 10 mL of fresh DM 100, and the remaining culture volume was
archived in the same way. This procedure was continued through 75 daily transfers. Periodically
1 uL of culture was diluted 10,000-fold in sterile saline and plated on tetrazolium arabinose (TA)
agar to allow growth of ~200 colonies. TA agar is made by adding 10 g/L tryptone, 1 g/L yeast
extract, 5 g/L NaCl, and 16 g/L agar to water and autoclaving. Then, a separately autoclaved
solution of 10 g/L arabinose in water is added. The combined volume of these two solutions is
such that it yields the indicated final concentrations of each component. Roughly 4/5 and 1/5 of
the total volume are used for the two solutions, respectively. As the solution cools, 1 mL/L of 5%

(w/v) triphenyl tetrazolium chloride (filter sterilized) is added. On TA plates, the mutation in the
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arabinose utilization gene makes REL606 (Ara”) colonies red and REL607 (Ara®) colonies pink
(Lenski et al., 1991). The ratio of red to pink colonies was used to monitor these populations for

selective sweeps (Hegreness and Kishony, 2007; Woods et al., 2011).

DNA isolation and library preparation

Genomic DNA (gDNA) was isolated from frozen population samples by first thawing each 15
mL conical tube on ice. Of the ~12 mL total volume of culture plus cryoprotectant, 1.2 mL was
transferred to a 2 mL cryovial and refrozen. The remaining ~10.8 mL was centrifuged at 6,500 x
g at 4°C for 15 minutes. The resulting cell pellets were transferred with a volume of remaining
solution to 1.7 mL Eppendorf tubes. Then, gDNA was isolated using the PureLink Genomic
DNA Mini kit (Life Technologies). For each sample, 1 ug of gDNA was randomly fragmented
on a Covaris S2 Focused Ultrasonicator.

[llumina libraries were constructed using the Kappa Biosystems LTP Library Preparation Kit
with the following modifications. Following the end-repair step, fragmented DNA was T-tailed
(rather than A-tailed) in a 50 pl reaction including 10 mM dTTP and 5 units of Klenow
fragment, exo~ (New England Biolabs). In the adapter ligation step, modified [llumina adapters
containing 12-base unique molecular identifiers were ligated to the T-tailed fragments as
previously described (Schmitt et al., 2012). Adapters used here differ slightly from those used in
(Schmitt et al., 2012) as full-length adapter sequences containing unique external sample
barcodes were directly ligated to the T-tailed dsSDNA inserts to reduce the risk of cross-

contamination between samples. The full list of DNA sequence adaptors is provided in Table S1.

Probe design and target capture
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Oligonucleotide probes consisting of 60-base xGen Lockdown probes (Integrated DNA
Technologies) were designed to tile across each of the eight genes of interest including upstream
promoter elements. Probes for each gene were compared to the entire E. coli B strain REL606
reference genome (GenBank: NC 012967.1) (Jeong et al., 2009) using BLASTN (Camacho et
al., 2009). The starting positions of all probes in a set were shifted by one base at a time until
every probe had only a single significant predicted binding location (match with E-value <
2x107%). The sequences of the final set of 242 probes are provided in Table S2.

Capture was performed using a SeqCap EZ Hybridization and Wash Kit (NimbleGen). The
procedure in the SeqCap EZ Library SR User Guide v3.0 (NimbleGen) was followed with
several modifications. First, 18 to 20 population samples with different sample barcodes were
pooled together in a single capture reaction that contained a total of 1 pg of library DNA from all
samples, 1 mmol of a universal blocking oligo, and 1 mmol of a degenerate sample barcode
blocking oligo. The sequences of these blocking oligos are provided in Table S3. Second, after
hybridization for 72 h, DNA fragments hybridized to the biotinylated probes were recovered
using MyOne Streptavidin C1 Dynabeads (Life Technologies). Third, a final 8-cycle PCR step

was performed with HiFi Hotstart DNA Polymerase (Kappa Biosystems).

Sequencing

Paired-end 101- or 125-base sequencing of the final libraries was performed on an [llumina
HiSeq 2000 at the University of Texas at Austin the Genome Sequencing and Analysis Facility
(GSAF). Read sequences have been deposited into the NCBI Sequence Read Archive

(PRINA601748).
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Quantification and Statistical Analysis

Read processing

Raw reads were used to generate Consensus Sequence Reads (CSR) using custom Python scripts
that carried out the following steps. First, the beginning of each read was evaluated for the
presence of the expected 5’-end tag, consisting of a random 12-base unique molecular identifier
(UMI) followed by four fixed bases (5'-N12CAGT). Read pairs lacking the correct 5'-end tag on
either read were discarded. Across all samples, 80.2% of read pairs had both UMIs. For
remaining read pairs, the UMIs found on each end were concatenated to create a 24-base dual-
UMI that uniquely identifies the original DNA fragment that was amplified and sequenced. To
group all reads corresponding to the same initial DNA molecule, a FASTA file of all dual-UMIs
was used as input into the ustacks program from the Stacks software pipeline (Version 1.48)
(Catchen et al., 2013) with the following options: a single read was sufficient to seed a stack, a
single mismatch within the dual-UMI was allowed in assigning a read to a stack, secondary reads
and haplotypes were disabled, and stacks with high coverage were preserved. Then, CSRs were
generated for all dual-UMI groups sequenced at least twice by taking the straight consensus of
all reads that were merged into that stack. If no base exceeded 50% frequency at a given position
in this set of reads, then that base was set as unknown (N). Of the read pairs with valid dual-
UMIs, 41.6% were incorporated into consensus reads across all samples. The average number of
dual-UMI read pairs utilized to create each consensus read was 2.46, which gives an overall

yield of consensus reads per read in a pair with a valid dual-UMI 16.9%.

Variant calling
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We used the breseq pipeline (Barrick et al., 2014; Deatherage and Barrick, 2014; Deatherage et
al., 2015) (version 0.26.0) to call single-nucleotide variants (SNVs) and structural variants (SVs)
from the CSRs. This pipeline used Bowtie2 (version 2.2.5) for read mapping (Langmead and
Salzberg, 2012). We divided the genome sequence of the ancestral E. coli REL606 strain into
two types of reference regions for mapping in this analysis. The eight regions of the genome tiled
with probes—extended with hundreds of bases of flanking sequence on both sides—were input
as "targeted" sequences, and the remainder of the genome with the identical eight regions
masked to degenerate N bases was supplied as a "junction-only" reference (to which reads are
mapped without variant calling). All 116 samples were analyzed using breseq in polymorphism
prediction mode with all bias, minimum allele frequency, and read-count filters disabled.
Evidence items in the Genome Diff (GD) files for all samples were combined using the gdtools
utility program to generate a single merged GD file with each piece of evidence listed a single
time, regardless of how many times it was detected in different samples. We then re-ran breseq
using the same parameters except that this GD file was supplied as an input user-evidence file to
force output of variant and reference information for these putative variants in every sample.
Then, we extracted the number of variant reads supporting each putative variant allele and the
total number of reads at that reference location from the GD file output by breseq. Subsequent
statistical tests and fitting steps were performed in R (version 4.0.0) (R Core Team, 2016) using
the ggplot2 package for data visualization (Wickham, 2016).

Since this original analysis was conducted at the level of breseq evidence (i.e., single
columns of read pileups on the reference genome or instances of new sequence junctions), we
next merged sets of observations that were consistent with a single mutational event when they

also had frequency trajectories that tracked together. For example, a three-base deletion has
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separate evidence items for the first, second, and third missing bases at this stage in the analysis.
To identify candidates for merging evidence into a single mutational event, we analyzed data
from each complete time course (generation 30 to 530) and selective sweep window (generation
163 to 243) separately. We only considered mutations that exceeded a threshold frequency of
0.03% at some time during each time course as candidates for merging.

Read alignment (RA) evidence items were merged when they were located within 6 base
pairs of one another and the normalized Canberra distance between the vectors of their frequency
observations across all time points was < 0.1. All RA evidence pairs of this kind were found to
co-occur in the same sequencing reads. For these cases, the read counts for the first linked
mutation were used to represent the entire event. For example, if a deletion of three base pairs
was predicted from evidence of missing bases at positions x, y, and z; then the frequency of
missing the first base (x) was assigned to the entire three-base deletion mutation.

For new junction (JC) evidence we performed the same merging procedure but allowed
linked mutations to be within a larger window of 20 base pairs and within a normalized Canberra
distance of 0.5. JC pairs passing these criteria were only merged if they were also consistent with
an IS-element insertion in terms of their relative orientation and spacing. In this case the variant
and total read counts were added together for the two different junctions, as the junctions on each
side of the inserted IS element provide independent information for estimating the frequency of
this type of mutation. We allowed unpaired JC evidence passing the filters to also predict IS
element mutations. This situation may indicate that there was an IS-mediated deletion between
an element that inserted within the gene and another element from the same family located
outside of the targeted region or more complex chromosomal rearrangements involving a newly

inserted IS element (Raeside et al., 2014).
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Time course filtering and fitness effect estimation
After merging evidence of genetic variants into lists of putative mutations, we further eliminated
some of these from consideration using several filtering steps. For the complete time courses, we
first required that non-zero frequencies be observed for a mutation in samples from two different
time points. We next applied a filter to eliminate spurious variants that can be recognized as
arising from systematic sequencing or read alignment errors because they do not exhibit the
correlated changes in frequency over time expected for the frequency trajectories of real
mutations (Lang et al., 2013). Specifically, we required that the time-series of estimated
frequencies for a mutation over all analyzed time points have an autocorrelation value > 0.55.
For the analysis of mutation trajectories during the selective sweep window, we eliminated
putative mutations for which there was great uncertainty in the estimated fitness effect or
evidence that its trajectory reflected multiple beneficial mutations occurring in the same genome.
Specifically, we required that a mutation was first observed at generation 196 or earlier and that
its estimated frequency was > 10~* in every sample that was sequenced from generation 223 to
243. Then, we fit a binomial logistic model with slope and y-intercept terms to the time courses
of counts of variant and reference (total minus variant) observations for each mutation. We used
a negative offset in the model of the number of generations up to each time point so that the
slope represents one plus the selection coefficient that is characteristic of the subpopulation with
that mutation. We filtered out any mutations for which this fit had an AIC <200, a p-value for
the slope differing from zero of > 0.005, or a y-intercept < —20. The fitness effects that we report
for mutations are the selection coefficients fit from the model divided by the natural logarithm of

two so that they are expressed per generations of binary cell division. One plus the fitness effect
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is the relative fitness of a cell with that mutation. These values can be directly compared to
experimental measurements of relative fitness and mutation fitness effects made using co-culture
competition assays (Lenski et al., 1991; Tenaillon et al., 2016).

This procedure for determining fitness effects assumes that the trajectories reflect
competition purely against the ancestral strain. However, we detected a consistent deviation from
linearity for all mutation trajectories after generation 196. The rates at which the frequencies of
all mutations were increasing decelerated, indicating that the overall population fitness had
improved to a degree that it reduced their effective advantage versus their competitors. To
account for this change we fit additional parameters defining a stepwise increase in the average
relative fitness of the population within each interval between sequenced samples from
generation 196 onward. The increase in population fitness reduces the effective time basis used
in the model to determine the slope to the number of generations in each interval divided by the
average relative fitness during that interval. We determined the population fitness values that
minimized the AIC of this modified binomial logistic model. The figures show the best stepwise
increases in population fitness between the sequenced time points from generation 196 onward
fitting to the trajectories of all mutations in a given population at the same time. We performed
1000 bootstrap resamplings of the mutations in each population to estimate 95% confidence
intervals on the estimated population fitness values in each interval for that population.

We combined information across multiple populations in two ways to further improve the
estimates of mutation fitness effects. First, there was considerable uncertainty in the estimates of
the stepwise population fitness increases for each population considered alone. Because the
actual population fitness trajectories of all populations are expected to be highly similar to one

another, we fit a consensus stepwise increase in population fitness over time that best improved
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the fits for all mutations from all populations. Second, we observed 27 cases in which the exact
same change in a gene's sequence was observed and passed our filtering criteria in multiple
experimental populations. Because each population was started from single cells, we can be sure
that these are independent observations of the same mutation. Therefore, we fit one consensus
fitness effect (slope) for each of these recurrent mutations across all populations. We still
allowed the y-intercept for each of these mutations to vary from population to population because
this parameter is related to how early the mutation evolved, which is expected to be different in

each replicate population.

Protein structure analysis

Structural domains in NadR, PykF, and TopA were defined according to UniProt and papers
reporting x-ray crystal structures. Mutations in PykF were mapped onto Protein Data Bank
structure 4YNG (Donovan et al., 2016). Mutations in TopA were mapped onto Protein Data
Bank structure IMWS (Perry and Mondragén, 2003). Protein structures were visualized using

Pymol v2.3.5 (Schrédinger LLC).
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LTP Library Preparation Kit Kappa Biosystems Kk8232
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PRJNAG01748

Experimental models: Organisms/strains
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Table S1. Adapter sequences

Name Sequence

UTBC52 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAACATAATCTCGTATGCCGTCTTCTCGTTG
UTBC75 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACGCCGATCTCGTATGCCGTCTTCTCGTTG
TSBC25 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATCTCGTATGCCGTCTTCTCGTTG
TSBC14 /5Phos/ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCATCTCGTATGCCGTCTTCTCGTTG
UTBC64 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATACGAATCTCGTATGCCGTCTTCTCGTTG
TSBC34 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCATGGCATCTCGTATGCCGTCTTCTCGTTG
TSBC36 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCAACAATCTCGTATGCCGTCTTCTCGTTG
UTBC63 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCCCACATCTCGTATGCCGTCTTCTCGTTG
TSBC37 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGGAATATCTCGTATGCCGTCTTCTCGTTG
UTBC58 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGGTTAATCTCGTATGCCGTCTTCTCGTTG
TSBC23 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATCTCGTATGCCGTCTTCTCGTTG
TSBC09 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTCGTTG
UTBCS86 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCGGTATCTCGTATGCCGTCTTCTCGTTG
TSBC20 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCATCTCGTATGCCGTCTTCTCGTTG
UTBC69 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTATTATCTCGTATGCCGTCTTCTCGTTG
UTBC56 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTAAGAAATCTCGTATGCCGTCTTCTCGTTG
TSBC10 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTCGTTG
TSBC45 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTCATTCATCTCGTATGCCGTCTTCTCGTTG
UTBC51 /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTGAAGGATCTCGTATGCCGTCTTCTCGTTG
UTBCY9% /5Phos /ACTGNNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTTCTATATCTCGTATGCCGTCTTCTCGTTG
Univ-F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

/5Phos/ indicates that an oligonucleotide was chemically synthesized with a 5 monophosphate. Red
bases are sample barcodes. Blue bases are unique molecular identifiers (UMIs) that were synthesized
with a mixture of all four bases at each N position. Green bases show where each sequence was
individually annealed to Univ-F through the sequence and extended to make the double-stranded end of
the adaptor that includes the unique molecular identifier before it was ligated to the DNA sample.



Table S2. Probe sequences

Name Sequence Start End
ybaL 1 TATTTTTCATATTTTACATCCGGCAACCACCGTTTACCCCGTCACCACCTCACCCGCCGG 473596 473655
ybaL 2 TGGCGTTTCCAGCAGTTCCAGCATGGTACGGGCGATTTCACGCTCGCCCATCACTACCTG 473656 473715
ybaL 3 ATTCGCACCACGTTCGGTGATATACGCCACTTCATCGTCATAATGGGCGCGGGCAATAAT 473716 473775
ybal 4 CTCAATATCCGGATTTTTCGCGCGGGCAGATGCCACAATCTCACCCGCTTCATAACCGTT 473776 473835
ybaL_5 GGGAATCGTCAGGATCAGCCATTTTGCACATTCCAGATGCGCCAGTTGCATAATTTCTTC 473836 473895
ybaL_6 GTTCGCCGCATTGCCCAATACTGCGCGGACCCCGCGCTCTCGCAGCTCATCAACACGGGT 473896 473955
ybaL_7 TCGTGACGTCTCAATCACCACCAGCGGAATATCAGAGGCGAGCAATTTCTCCCCCAGCAG 473956 474015
ybaL 8 GCTGCCTACACGACCGTAACCCACCAGTAGCGCATGGTTGCAAATATCCACTGGGATCTG 474016 474075
ybaL 9 CTTCTCTTCTTCGATTGCCTCTTCCAGCGTCTGCTCTTCCAGCGTTTCGGTCTTCGCCAG 474076 474135
ybaL 10 ATATTTCTCCAGTAGTGCGAACAGTACCGGGTTGAGCATAATCGACAGGATCGCCCCTGC 474136 474195
ybaL 11 CAGTACCAGGTTTTGTCCGGCCTGCGGCAGTAAATTCAATGCCATTCCCAGTCCCGCCAG 474196 474255
ybaL_12 GATAAACGCGAACTCACCAATCTGCGCCAGGCTGGCGGCGATGGTTAATGCCGTACGTTG 474256 474315
ybaL_13 GGAGTGACCAAACAGTCGCACCAGGAARAAATGCGGCTAACGACTTACCAAACAGAATAAT 474316 474375
ybaL_14 CGCCAGCGTCGCCAGCACTGCCAGCGGTTGCTGAATCAGAAT TAACGGATCAAACAACAT 474376 474435
ybaL 15 CCCGACGGAGACARARAACAGCACCGCAAACGCGTCGCGCAATGGCAGCGTATCGTGGGC 474436 474495
ybaL 16 GGCACGGTGACTCAGTTCAGACTCGTTCAGTACCATCCCGGCARAGAACGCACCGAGTGC 474496 474555
ybaL 17 AAAGGAGACATCAAACAGCTCTACCGCACCARAGGCAACCCCTAACGCCAGCGCCAGCAC 474556 474615
ybaL 18 CGACAGGGTAAACAGCTCGCGAGAACCGGTTGCCGCGCTGCGTGCCATAATCCACGGCAC 474616 474675
ybaL_19 CAGACGGCGACCTACCAGCATCATAATGGCGATAAATGCGATCACTTTGCCGATGGTGAT 474676 474735
ybaL_20 CCCCATATCGACTGCAAGAGTGGCAAAGCCCACATCGCCCTGTTCCATCATTCCTGCCAC 474736 474795
ybaL_21 TGCGGGCAGCAACACCAGCGTCAGAACCATTACCAGGTCTTCCACAATCAACCAACCGAT 474796 474855
ybaL 22 GGCGATTTGCCCACGCTGACTGTCAATTAATTGCCGTTCTTCAAGTGCGCGCAGTAACAC 474856 474915
ybaL 23 CACGGTACTGGCGGTGGAAAGACATAAACCGAACACGATACCGGTCATTAACGACCAGCC 474916 474975
ybaL 24 CAGCACGGCAGAGAGCGCCATACCCAGCAGCGTCGCCACGGCTATCTGGGCGATCGCACC 474976 475035
ybaL 25 GGGAATGGCGATGGCCTTTACCGCCATCARATCCTTCAGCGAAAAGTGCAAACCGACGCC 475036 475095
ybaL_26 ARACATCAACAGAATGACGCCCAGTTCAGCCAGTTCCGGGGCAAGCTTGGTATCGGCAAC 475096 475155
ybaL_27 ARAGCCCGGAGTGAATGGTCCTGCCAGCACACCCGCTAACAGATATCCCACCAGAGGAGA 475156 475215
ybaL_28 AATACGTAGTTTATTGGCCAGCATGCCGAGGATAAAGGCGAGCACAAGGCCGCCAACAAT 475216 475275
ybaL 29 GGTGGTGATAAGCGGGGTGGCGTGATGCATTCCGTCTCCTTTTCCTGGTGGTTATTGTCC 475276 475335
ybaL 30 ATTTTTGGCCGGGAAAACCAAAATTACAGGTAATAGTTTATGACAATTTCATTGATGATG 475336 475395
ybaL 31 TTCATGAATAATTATTGAATTTTGCAGARAAATGGAATTAGCTGCAAAAARAGCACGGAT 475396 475455
topA_1 GCCTTACTGGCAACTTTGGATTTTGCATGCTAATAAAGTTGCGTATCGGATTTTATCAGG 1329119 1329178
topA_2 TACAGTGTGACGCTTTCGTCAATCTGGCAATAGATTTGCTTGACATTCGACCAAAATTCC 1329179 1329238
topA_3 GTCGTGCTATAGCGCCTGTAGGCCAAGACCTGTTAACTCAGTCACCTGAATTTTCGTGAA 1329239 1329298
topA_4 CAGAGTCACGACAAGGGGTTGATATCCGCAGAGAGCGAGTCCATATCGGTAACTCGTTGC 1329299 1329358
topA_S CAGTGGAAGGTTTATCAACGTGCGACGCATTCCTGGAAGAATCARATTAGGTAAGGTGAA 1329359 1329418
topA_6 TATGGGTAAAGCTCTTGTCATCGTTGAGTCCCCGGCAAAAGCCAAAACGATCAACAAGTA 1329419 1329478
topA_7 TCTGGGTAGTGACTACGTGGTGAAATCCAGCGTCGGTCACATCCGCGATTTGCCGACCAG 1329479 1329538
topA_8 TGGCTCAGCTGCCAAAAAGAGTGCCGACTCTACCTCCACCAAGACGGCTARRAAGCCTAA 1329539 1329598
topA_9 ARAGGATGAACGTGGCGCTCTCGTCAACCGTATGGGGGTTGACCCGTGGCACAATTGGGA 1329599 1329658
topA_10 GGCGCACTATGAAGTGTTGCCTGGTARAGAGAAGGTCGTCTCTGAACTGARACAACTGGC 1329659 1329718
topA_11 TGAARAAGCCGACCACATCTATCTCGCAACCGACCTTGACCGCGAAGGGGAAGCCATTGC 1329719 1329778
topA_12 ATGGCACCTGCGGGAAGTGATTGGGGGTGATGATGCGCGCTATAGCCGAGTGGTGTTTAA 1329779 1329838
topA_13 CGAAATTACTAAAAACGCGATCCGCCAGGCATTTAACAAACCGGGTGAGCTGAATATTGA 1329839 1329898
topA_14 TCGTGTTAATGCCCAGCAGGCGCGTCGCTTTATGGACCGCGTGGTGGGGTATATGGTTTC 1329899 1329958
topA_15 GCCGCTGCTATGGAARAAGATCGCTCGTGGTCTGTCTGCCGGTCGTGTGCAGTCGGTGGC 1329959 1330018
topA_16 GGTTCGCCTGGTGGTCGAGCGTGAGCGTGAAATTAAAGCGTTCGTGCCGGAAGAGTTCTG 1330019 1330078
topA_17 GGAAGTCGATGCCAGCACGACCACGCCATCTGGTGAAGCGTTGGCGTTACAGGTGACTCA 1330079 1330138
topA_18 TCAGAACGACARACCGTTCCGTCCGGTCAACAAAGAACAAACTCAGGCTGCGGTAAGTCT 1330139 1330198
topA_19 GCTGGAAARAGCGCGCTACAGCGTGCTGGAACGTGAAGACAAACCGACAACCAGTAAACC 1330199 1330258
topA_20 TGGCGCTCCTTTTATTACCTCTACGCTGCAACAAGCTGCCAGCACCCGTCTTGGATTTGG 1330259 1330318
topA_21 CGTGAAAARAACCATGATGATGGCGCAGCGTTTGTATGAAGCAGGCTATATCACTTACAT 1330319 1330378
topA_22 GCGTACCGACTCCACTAACCTGAGTCAGGACGCGGTAAATATGGTTCGCGGTTATATCAG 1330379 1330438
topA_23 CGATAATTTTGGTAAGAAATATCTGCCGGAAAGTCCGAATCAGTACGCCAGCAAAGAAAA 1330439 1330498
topA_24 CTCACAGGAAGCGCACGAAGCGATTCGTCCTTCTGACGTCAATGTGATGGCGGAATCGCT 1330499 1330558
topA_25 GAAGGATATGGAAGCAGATGCGCAGAAACTGTACCAGTTAATCTGGCGTCAGTTCGTTGC 1330559 1330618
topA_26 CTGCCAGATGACCCCAGCGAAATATGACTCCACGACGCTGACCGTTGGTGCGGGCGATTT 1330619 1330678
topA_27 CCGCCTGARAGCACGCGGTCGTATTTTGCGTTTTGATGGCTGGACARAAGTGATGCCTGC 1330679 1330738
topA_28 GTTGCGTARAGGCGATGAAGATCGCATCTTACCAGCAGTTAATAAAGGCGATGCTCTGAC 1330739 1330798
topA_29 GCTCGTTGAACTTACACCAGCCCAGCACTTTACCAAGCCGCCAGCCCGTTTCAGTGAAGC 1330799 1330858
topA_30 ATCGCTGGTTAAAGAGCTGGAAAAACGCGGTATCGGTCGTCCGTCTACCTATGCGTCGAT 1330859 1330918
topA_31 CATTTCGACCATTCAGGATCGTGGCTACGTGCGAGTAGAARATCGTCGTTTCTATGCGGA 1330919 1330978
topA_32 ARAAATGGGCGARATCGTCACCGATCGCCTTGAAGAAAATTTCCGCGAGTTAATGAACTA 1330979 1331038
topA_33 CGATTTTACCGCGCAGATGGAAAACAGCCTCGACCAGGTGGCARATCACGAAGCAGAGTG 1331039 1331098
topA_34 GAAAGCTGTACTGGATCACTTCTTCTCGGATTTCACCCAGCAGTTAGATAAAGCTGAARA 1331099 1331158
topA_35 AGATCCGGAAGAGGGTGGTATGCGCCCGAACCAGATGGTTCTGACCAGCATTGACTGCCC 1331159 1331218
topA_36 GACTTGTGGTCGCAARATGGGGATTCGCACAGCGAGCACCGGGGTATTCCTTGGCTGTTC 1331219 1331278
topA_37 TGGCTATGCGCTGCCGCCGAAAGAGCGTTGCAAAACCACCATTAACCTGGTGCCGGAARA 1331279 1331338
topA_38 CGAAGTGCTGAACGTGCTGGAAGGCGAAGATGCTGAAACCAACGCGCTGCGCGCAAAACG 1331339 1331398
topA_39 TCGTTGCCCGAAATGCGGCACGGCGATGGACAGCTATCTCATCGATCCGAAACGTAAGTT 1331399 1331458
topA_40 GCATGTCTGTGGTAATAACCCAACCTGCGACGGTTACGAGATCGAAGAGGGCGAATTCCG 1331459 1331518
topA_41 CATTAAAGGTTATGACGGCCCGATCGTTGAGTGTGAAARATGTGGCTCTGARATGCACCT 1331519 1331578
topA_42 GAAAATGGGGCGTTTCGGTAAATACATGGCCTGCACCAACGAAGAGTGTAAAAACACACG 1331579 1331638
topA_43 TAAGATTTTACGTAACGGCGAAGTGGCACCACCGAAAGAAGATCCGGTGCCATTACCTGA 1331639 1331698
topA_44 GCTGCCGTGCGAARAATCAGATGCTTATTTCGTGCTGCGTGACGGTGCTGCCGGTGTGTT 1331699 1331758
topA_45 CCTGGCTGCCAACACTTTCCCGAAATCGCGTGARACGCGTGCGCCACTGGTGGAAGAGCT 1331759 1331818
topA_46 TTATCGCTTCCGCGACCGTCTGCCGGAARAACTGCGTTATCTGGCCGATGCGCCACAGCA 1331819 1331878
topA_47 GGATCCGGAAGGTAATAAGACCATGGTTCGCTTTAGCCGTAAAACCAAACAGCAATATGT 1331879 1331938
topA_48 CTCTTCGGAAAAAGACGGAAAGGCGACTGGCTGGTCAGCATTTTATGTTGATGGCARATG 1331939 1331998
topA_49 GGTTGAAGGAAAAAAATAACCTTTAATTCTGTCAGGTTTTTATARACAAAGGGTCGCGAA 1331999 1332058
pykF 1 AACGCTGTTTTTGTTTTCCTTTTGGATTAATTTCAGCGTATAATGCGCGCCAATTGACTC 1732685 1732744
pykF_2 TTGAATGGTTTCAGCACTTTGGACTGTAGAACTCAACGACTCAAAAACAGGCACTCACGT 1732745 1732804



Name Sequence Start End
pykF 3 TGGGCTGAGACACAAGCACACATTCCTCTGCACGCTTTTTCGATGTCACCTATCCTTAGA 1732805 1732864
pykF_4 GCGAGGCACCACCACTTTCGTAATACCGGATTCGCTTTCCGGCAGTGCGCCCAGARAGCA 1732865 1732924
pykF_5 AGTTTCTCCCATCCTTCTCAACTTAAAGACTAAGACTGTCATGAAAAAGACCARAATTGT 1732925 1732984
pykF_6 TTGCACCATCGGACCGAAAACCGAATCTGAAGAGATGTTAGCTAAAATGCTGGACGCTGG 1732985 1733044
pykF 7 CATGAACGTTATGCGTCTGAACTTCTCTCATGGTGACTATGCAGAACACGGTCAGCGCAT 1733045 1733104
pykF 8 TCAGAATCTGCGCAACGTGATGAGCAAAACTGGTARRACCGCCGCTATCCTGCTTGATAC 1733105 1733164
pykF 9 CAAAGGTCCGGAAATCCGCACCATGAAACTGGAAGGCGGTAACGACGTTTCTCTGAAAGC 1733165 1733224
pykF_10 TGGTCAGACCTTTACTTTCACCACTGATAAATCTGTTATCGGCAACAGCGARATGGTTGC 1733225 1733284
pykF_11 GGTAACGTATGAAGGTTTCACTACTGACCTGTCTGTTGGCAACACCGTACTGGTTGACGA 1733285 1733344
pykF_12 TGGTCTGATCGGTATGGAAGT TACCGCCATTGAAGGTAACAAAGTTATCTGTAAAGTGCT 1733345 1733404
pykF_13 GAACAACGGTGACCTGGGCGARAACARAGGTGTGAACCTGCCTGGCGTTTCCATTGCTCT 1733405 1733464
pykF 14 GCCAGCACTGGCTGARAAAGACAAACAGGACCTGATCTTTGGTTGCGAACARGGCGTAGA 1733465 1733524
pykF 15 CTTTGTTGCTGCTTCCTTTATTCGTAAGCGTTCTGACGTTATCGARATCCGTGAGCACCT 1733525 1733584
pykF_16 GAAAGCGCACGGCGGCGAAAACATCCACATCATCTCCARAATCGARRACCAGGAAGGCCT 1733585 1733644
pykF 17 CAACAACTTCGACGARATCCTCGAAGCCTCTGACGGCATCATGGTTGCGCGTGGCGACCT 1733645 1733704
pykF_18 GGGTGTAGAARATCCCGGTAGAAGAAGTTATCTTCGCCCAGAAGATGATGATCGARAAATG 1733705 1733764
pykF_19 TATCCGTGCACGTAAAGTCGTTATCACTGCGACCCAGATGCTGGATTCCATGATCAAAAA 1733765 1733824
pykF_20 CCCACGCCCGACTCGCGCAGAAGCCGGTGACGTTGCARACGCCATCCTCGACGGTACTGA 1733825 1733884
pykF 21 CGCAGTGATGCTGTCTGGTGAATCCGCARAAGGTAAATACCCGCTGGAAGCGGTTTCTAT 1733885 1733944
pykF 22 CATGGCGACCATCTGCGAACGTACCGACCGCGTGATGAACAGCCGTCTCGAGTTCAACAA 1733945 1734004
pykF 23 TGACAACCGTAAACTGCGCATTACCGAAGCGGTATGCCGTGGTGCCGTTGARACTGCTGA 1734005 1734064
pykF 24 AAAACTGGATGCTCCGCTGATCGTGGTTGCTACTCAGGGCGGTAAATCTGCTCGCGCAGT 1734065 1734124
pykF_25 ACGTAAATACTTCCCGGATGCCACCATCCTGGCACTGACCACCAACGAAAAAACGGCTCA 1734125 1734184
pykF_26 TCAGTTGGTACTGAGCAAAGGCGTTGTGCCGCAGCTTGTTARAGAGATCACTTCTACTGA 1734185 1734244
pykF_27 TGATTTCTACCGTCTGGGTAAAGAACTGGCTCTGCAGAGCGGTCTGGCACACAAAGGTGA 1734245 1734304
pykF 28 CGTTGTAGTTATGGTTTCTGGTGCACTGGTACCGAGCGGCACTACTAACACCGCATCTGT 1734305 1734364
pykF 29 TCACGTCCTGTAATATTGCTTTTGTGAATTAATTTGTATATCGAAGCGCCCTGATGGGCG 1734365 1734424
spoT_1 GCAAATTGTTGGCAGACTGAACCTGATTTCAGTATCATGCCCAGTCATTTCTTCACCTGT 3760389 3760448
spoT_2 GGAGCTTTTTAAGTATGGCACGCGTAACTGTTCAGGACGCTGTAGAGAAAATTGGTAACC 3760449 3760508
spoT_3 GTTTTGACCTGGTACTGGTCGCCGCGCGTCGCGCTCGTCAGATGCAGGTAGGCGGAAAGG 3760509 3760568
spoT_4 ATCCGCTGGTACCGGAAGAAAACGATAAAACCACTGTAATCGCGCTGCGCGARATCGAAG 3760569 3760628
spoT_5 AAGGTCTGATCAACAACCAGATCCTCGACGTTCGCGAACGCCAGGAACAGCAAGAGCAGG 3760629 3760688
spoT_6 AAGCCGCTGAATTACAAGCCGTTACCGCTATTGCTGAAGGTCGTCGTTAATCACAAAGCG 3760689 3760748
spoT_7 GGTCGCCCTTGTATCTGTTTGAAAGCCTGAATCAACTGATTCAAACCTACCTGCCGGAAG 3760749 3760808
spoT_8 ACCAAATCAAGCGTCTGCGGCAGGCGTATCTCGTTGCACGTGATGCTCACGAGGGGCAAA 3760809 3760868
spoT_9 CACGTTCAAGCGGTGAACCCTATATCACGCACCCGGTAGCGGTTGCCTGCATTCTGGCCG 3760869 3760928
spoT_10 AGATGAAACTCGACTATGARACGCTGATGGCGGCGCTGCTGCATGACGTGATTGAAGATA 3760929 3760988
spoT_11 CTCCCGCCACCTACCAGGATATGGAACAGCTTTTTGGTAAAAGCGTCGCCGAGCTGGTAG 3760989 3761048
spoT_12 AGGGGGTGTCGAAACTTGATAAACTCAAGTTCCGCGATAAGARAGAGGCGCAGGCCGAAA 3761049 3761108
spoT_13 ACTTTCGCAAGATGATTATGGCGATGGTGCAGGATATCCGCGTCATCCTCATCARACTTG 3761109 3761168
spoT_14 CCGACCGTACCCACAACATGCGCACGCTGGGCTCACTTCGCCCGGACAAACGTCGCCGCA 3761169 3761228
spoT_15 TCGCCCGTGAAACTCTCGAAATTTACAGCCCGCTGGCGCACCGTTTAGGTATCCACCACA 3761229 3761288
spoT_16 TTAAAACCGAACTCGAAGAGCTGGGTTTTGAGGCGCTGTATCCCAATCGTTACCGCGTAA 3761289 3761348
spoT_17 TTAAAGAAGTGGTGAAAGCCGCGCGCGGCAACCGTAAAGAGATGATCCAAAAAATCCTCT 3761349 3761408
spoT_18 CTGAAATCGAAGGGCGTTTGCAGGAAGCGGGAATACCGTGCCGCGTCAGTGGTCGCGAAA 3761409 3761468
spoT_19 AGCATCTTTATTCGATTTACTGCAAARATGGTGCTCARAAGAGCAGCGTTTTCACTCAATCA 3761469 3761528
spoT_20 TGGACATCTACGCTTTCCGCGTGATCGTCAATGATTCTGACACCTGTTATCGCGTGCTGG 3761529 3761588
spoT 21 GCCAGATGCACAGCCTGTACAAGCCGCGTCCGGGCCGCGTGAAAGACTATATCGCCATTC 3761589 3761648
spoT_22 CAAAAGCGRACGGCTATCAGTCGTTGCACACCTCGATGATTGGCCCGCACAGCGTGCCGG 3761649 3761708
spoT_23 TTGAGGTCCAGATCCGTACCGAAGATATGGATCAGATGGCGGAGATGGGTGTTGCCGCGC 3761709 3761768
spoT_24 ACTGGGCTTATARAGAGCACGGCGAARACCAGTACTACCGCACAAATCCGCGCCCAGCGLT 3761769 3761828
spoT_25 GGATGCAAAGCCTGCTGGAGCTGCAACAGAGCGCCGGTAGTTCGTTTGAATTTATCGAGA 3761829 3761888
spoT_26 GCGTTAAATCCGATCTCTTCCCGGATGAGATTTACGTTTTCACACCGGAAGGGCGCATTG 3761889 3761948
spoT_27 TCGAGCTGCCTGCCGGTGCAACGCCCGTCGACTTCGCTTATGCAGTGCATACCGATATCG 3761949 3762008
spoT 28 GTCATGCCTGCGTGGGCGCACGCGTTGACCGCCAGCCTTACCCGCTGTCGCAGCCGCTTA 3762009 3762068
spoT_29 CCAGCGGTCAAACCGTTGAAATCATTACCGCTCCGGGCGCTCGCCCGAATGCCGCTTGGC 3762069 3762128
spoT_30 TGAACTTTGTCGTTAGCTCGARAGCGCGCGCCAAAATTCGTCAGTTGCTGARAAACCTCA 3762129 3762188
spoT_31 AGCGTGATGATTCTGTAAGCCTGGGCCGTCGTCTGCTCAACCATGCTTTGGGTGGTAGCC 3762189 3762248
spoT_32 GTAAGCTGAATGAAATCCCGCAGGAARATATTCAGCGCGAGCTGGATCGCATGAAGCTGG 3762249 3762308
spoT_33 CAACGCTTGACGATCTGCTGGCAGAAATCGGACTTGGTAACGCAATGAGCGTGGTGGTCG 3762309 3762368
spoT_34 CGAAAAATCTGCAACATGGGGACGCCTCCATTCCACCGGCAACCCARAGCCACGGACATC 3762369 3762428
spoT_35 TGCCCATTAAAGGTGCCGATGGCGTGCTGATCACCTTTGCGAAATGCTGCCGCCCTATTC 3762429 3762488
spoT_36 CTGGCGACCCGATTATCGCCCACGTCAGCCCCGGTARAGGTCTGGTGATCCACCATGAAT 3762489 3762548
spoT_37 CCTGCCGTAATATCCGTGGCTACCAGAAAGAGCCAGAGRAAGTTTATGGCTGTGGAATGGG 3762549 3762608
spoT_38 ATAAAGAGACGGCGCAGGAGTITCATCACCGAAATCAAGGTGGAGATGTTCAATCATCAGG 3762609 3762668
spoT_39 GTGCGCTGGCAAACCTGACGGCGGCAATTAACACCACGACTTCGAATATTCAAAGTTTGA 3762669 3762728
spoT_40 ATACGGAAGAGARAGATGGTCGCGTCTACAGCGCCTTTATTCGTCTGACCGCTCGTGACC 3762729 3762788
spoT_41 GTGTGCATCTGGCGAATATCATGCGCARAATCCGCGTGATGCCAGACGTGATTAAAGTCA 3762789 3762848
spoT_42 CCCGAAACCGAAATTAATGTTTTATGAACCCAACACGTTATGCACGCATCTGCGAAATGC 3762849 3762908
hslU_1 AAATGGGGCCTTTCAGCCCCATCAAACAATGATGAAAATGATTGAACGCGATTATAGGAT 4099848 4099907
hslU 2 AAAACGGCTCAGATCTTCATCTGCCACCAACGCATCCAGATGTTTGCTCACATAATCTGC 4099908 4099967
hslU_3 GTCAATAGTGATATTTTGACCGCTTAARATCGCTGGCGTCGTAGGAAATCTCTTCCATTAA 4099968 4100027
hslU_4 ACGCTCCAGAACAGTGTGTAAACGACGAGCACCGATGTTTTCGGTAGATTCGTTCACCTG 4100028 4100087
hslU_5 CCATGCCGCTTCCGCGATGCGTTTAATACCGGAGTCGGTARACTCGATATTTACGCCTTC 4100088 4100147
hslU_6 AGTCGCCATCAGTGCTTTGTACTGCACGGTGATAGAGGCATTCGGCTCGGTCAGAATACG 4100148 4100207
hslU_7 CTCGAAGTCGCTGGTGGTCAGCGCCTGCAGTTCAACGCGGATTGGCAGACGACCTTGCAG 4100208 4100267
hslU_8 TTCCGGGATCAGGTCAGACGGTTTCGCAATCTGGAACGCGCCAGAAGCGATAAACAGAAT 4100268 4100327
hslU 9 GTGGTCAGTTTTGACCATCCCGTGTTTGGTGGAAACGGTGCAACCTTCTACCAGCGGCAG 4100328 4100387
hslU_10 CAGGTCACGCTGAACGCCTTCACGAGAAACATCCGGACCGGAAGACTCGCCGCGCTTACA 4100388 4100447
hslU_11 GATTTTGTCGATTTCGTCGATAAACACGATCCCGTGCTGCTCAACAGCGTCGATAGCGTC 4100448 4100507
hslU_12 TTGCTTCAGCTCTTCCGGGTTCACCAGTTTCGCCGCTTCTTCTTCAATCAGCAGCTTCAT 4100508 4100567
hslU_13 GGCGTCTTTGATTTTCAGCTTACGCGCTTTTTGCTTCTGGCCGCCCAGGTTCTGGAACAT 4100568 4100627
hslU_14 GGACTGCAGCTGGCTGGTCATCTCTTCCATGCCCGGAGGAGCCATAATTTCAACGCCCAT 4100628 4100687
hslU_15 CGGTGCTGCGGCARGATCGATCTCGATTTCTTTGTCATCAAGCTGGCCTTCACGCAGTTT 4100688 4100747
hslU_16 TTTGCGGAATGCCTGACGAGCAGCGGACGGTTCCTGCTGCTGTTCGGTCTGTCCCCAGTT 4100748 4100807



Name Sequence Start End
hslU_17 GTTTTTAGCAGGTGGGATCAGCACGTCGAGAATACGTTCTTCTGCCAGTTCTTCAGCGCG 4100808 4100867
hslU_18 ATAACGGTTTTTCTCGATAGCCTGGACGCGTACCATTTTCACGGCGGCATCGGTCAGATC 4100868 4100927
hslU_19 GCGAATAATAGAATCCACTTCCTTACCGACGTAGCCCACTTCGGTGAATTTGGTCGCTTC 4100928 4100987
hslU_20 AACTTTGATGAACGGCGCATTCGCCAGCTTAGCCAGACGACGGGCGATTTCAGTTTTACC 4100988 4101047
hslU_21 GACACCGGTCGGGCCGATCATCAGGATATTTTTCGGGGTCACTTCATGGCGCAGCTCTTC 4101048 4101107
hslU_22 GTTGAGCTGCATGCGACGCCAGCGGTTACGCAGAGCAATCGCCACAGAACGCTTGGCGTT 4101108 4101167
hslU_23 GTCCTGGCCGATGATGTGCTTATCCAGTTCGCTGACGATTTCGCGTGGGGTCATTTCAGA 4101168 4101227
hslU_24 CATGGGAGATCCTTACGCTTTGTAGCTTAATTCTTCGATGGTGTGGAAATGGTTGGTATA 4101228 4101287
hslU_25 GATGCAAATGTCGCCTGCAATATCCAACGCCTTTTCAGCAATTTCACGGGCGCTAAGTTC 4101288 4101347
hslU_26 AGTGTTTTCTAACAGCGCGCGCGCCGCAGCCTGGGCGTARGGGCCGCCGGAGCCGATAGC 4101348 4101407
hslU_27 AATAAGATCGTTTTCTGGCTGCACCACGTCACCGTTACCGGTGATGATAAGCGATGCAGT 4101408 4101467
hslU_28 TTCATCCGCGACTGCCAGCAGTGCTTCAAGTTTGCGCAGCATGCGATCGGTACGCCAGTC 4101468 4101527
hslU_29 TTTTGCCAGCTCAACGGCGGCTTTGACCAGATGGCCCTGATGCATTTCCAGTTTACGTTC 4101528 4101587
hslU_30 AAACAGTTCGAACAGCGTAAAAGCATCCGCAGTACCGCCCGCAAAGCCCGCGATGACTTT 4101588 4101647
hslU_31 GTCGTTGTACAGACGGCGGACCTTTTTCACGTTGCCTTTCATTACGGTATTGCCCAACGT 4101648 4101707
hslU_32 GGCCTGACCATCACCAGCGATGACCACATGGCCGTTACGGCGTACGCTTACTATAGTTGT 4101708 4101767
hslU_33 CACGAGCTGACCCCTTGGTTACGAATACAGAGTACAAACCCCGTACAAAAGTACGGGGCA 4101768 4101827
hslU_34 TAATGCAATTATAGATGGGGGGGATTTTGAGGGTTTCAACCCCCGGCGGCGAGCCGAATG 4101828 4101887
fabR_1 GCCGGGGCCGGAACCTATTACTATGGCATCGTAATCGTAGGAATGTGGCATGGTAGGGCT 4140601 4140660
fabR_2 TACCTGTTCTTATACATAAAAGCAACAGAATGGTAACATTTTATCGCGGGTAAGCCAATT 4140661 4140720
fabR_3 GATCCCCGTCATTTATCTGGCTATATCCTGAGCGGCCTTTGCTTTGTCTGTTTCTTACTT 4140721 4140780
fabR_4 TTGCCCTGACGTTTTATTGGATTTTTATCGACGATACTCTCCGTTTAAGCGGCAGGTTTC 4140781 4140840
fabR_5 CGCTGTACGTAAAAGAACCGGCCAAAGAATTGCAGTARATATGTTTTATTGCGTTACCGT 4140841 4140900
fabR_6 TCATTCACAATACTGGAGCAATCCAGTATGTTCATTCTCTGGTATAGTGCCAGCAGTACT 4140901 4140960
fabR_7 TTTGGCAAGGATTCAGACATCGTGATGGGCGTAAGAGCGCAACAARAAAGAARAAACCCGC 4140961 4141020
fabR_8 CGTTCGCTGGTGGAAGCCGCATTTAGCCAATTAAGTGCTGAACGCAGCTTCGCCAGCCTG 4141021 4141080
fabR_9 AGTTTGCGTGAAGTGGCGCGTGAAGCGGGCATTGCTCCCACCTCTTTTTATCGGCATTTC 4141081 4141140
fabR_10 CGCGACGTAGACGAACTGGGTCTGACCATGGTTGATGAGAGCGGTTTAATGCTACGCCAA 4141141 4141200
fabR_11 CTCATGCGCCAGGCGCGTCAGCGTATCGCCARAGGCGGGAGTGTGATCCGCACCTCGGTC 4141201 4141260
fabR_12 TCCACATTTATGGAGTTCATCGGTAATAATCCTAACGCCTTCCGGTTATTATTGCGGGAA 4141261 4141320
fabR_13 CGCTCCGGCACCTCCGCTGCGTTTCGTGCCGCCGTTGCGCGTGARATTCAGCACTTCATT 4141321 4141380
fabR_14 GCGGAACTTGCGGACTATCTGGAACTCGAAAACCATATGCCGCGTGCGTTTACTGAAGCG 4141381 4141440
fabR_15 CAAGCCGAAGCAATGGTGACAATTGTCTTCAGTGCGGGTGCCGAGGCGTTGGACGTCGGC 4141441 4141500
fabR_16 GTCGAACAACGTCGGCAATTAGAAGAGCGACTGGTACTGCAACTGCGAATGATTTCGARA 4141501 4141560
fabR_17 GGGGCTTATTACTGGTATCGCCGTGAACAAGAGAAAACCGCAATTATTCCGGGAAATGTG 4141561 4141620
fabR_18 AAGGACGAGTAATGAAACAAGCAAATCAAGATAGAGGTACGCTGCTGCTGGCGTTAGTTG 4141621 4141680
icIR_1 TCTATTGCCACTCAGGTATGATGGGCAGAATATTGCCTCTGCCCGCCAGAARAAGTCAGC 4201680 4201739
iclR_2 GCATTCCACCGTACGCCAGCGTCACTTCCTTCGCCGCTTTAATCACCATTGCGCCAAACT 4201740 4201799
iclR_3 CGGTCACGCGGTCATCGGTAATACGTGAAATCGGTCCGGAAATAGAAATTGCGGCAAACG 4201800 4201859
iclR 4 GTTCACGGTGCTCATCGAAAATACACGCTGCAAGGCAACGTAGCCCCAGCGCATGTTCCT 4201860 4201919
iclR_5 CATCGTCARATGAATAACCCCGTTTGCGCGTTTGGGCGAGATCTTCTTTTARATGCACAG 4201920 4201979
iclR_6 GAGACACCAGCGTTGCGTGGGTATAGGCATGTAACCCTTTGCGGTGCAGCAGCTTCGTCA 4201980 4202039
iclR_7 CCTGTTCTTCGCTCAGTTGGGCTAAAAAGGCTTTACCTGCACCGGAAGCGTGCATCGGCA 4202040 4202099
icIR_8 ATTTACCGCCGATAGGCGCGGACATTCGCATCAGATGCGTACACTGTACCTGGTCGATAA 4202100 4202159
iclR_9 TAATCGCTTCGTGATCGCTTTGATCAAGCACCGCCATATTGACCGTTTCGCCAGACTCTT 4202160 4202219
iclR_10 CCATTAAATTGCGCAGGATAGGGTGAACAATCGCTAACAAATTACGGCTCTGGAGARAGC 4202220 4202279
iclR_11 TGCTGCCGACCATAAAGGCATGTGCGCCGATTGCCCAATGTCCCAGTTCGCCGACCTGAC 4202280 4202339
iclR_12 GCACGAAACCCTGCTGTTGCATTGTGGTTAGCAGGCGGTGGGTCGTGGAATTGGGTAACC 4202340 4202399
iclR_13 CGGCTTGTTGCGCCAGTTCCGTGAGTGCCACACTGCCATTGGATTCGGCAATCCACTCCA 4202400 4202459
iclR_14 GTAATTTCAGGCCACGCGTTARAGACTGAACCTGTCCAGTCGCTGGTGCGGTGGCAACGG 4202460 4202519
icIR_15 CGGGTTTTCTGCCGCGTTTCGCGGGAATGGGTGCGACCATGACAGTCTCCTTTTTCTGTA 4202520 4202579
iclR_16 TCGTGGAARATCATTTTCATTTTTATTGTTAGCTAATGCAATAGTTGCTGAACTGATCCGA 4202580 4202639
iclR_17 TGAGTTAATGTTGAACARATCTCATGTTGCGTGGTGGTCGCTTTTACCACAGATGCGTTT 4202640 4202699
nadR_1 CTTAGCGTGTTCGACGACTTATAATGAGGAATACGGAGGGAGATATGTCGTCATTTGATT 4615485 4615544
nadR_2 ACCTGAAAACTGCCATCAAGCAACAGGGCTGCACGCTACAGCAGGTGGCTGATGCCAGCG 4615545 4615604
nadR_3 GTATGACCAAAGGGTATTTAAGCCAGTTACTGAATGCCAAAATCARRAGCCCCAGCGCGC 4615605 4615664
nadR_4 ARAAGCTGGAGGCGTTGCACCGTTTTTTGGGGCTTGAGTTTCCCCGGCAGAAGARAACCA 4615665 4615724
nadR_S TTGGTGTGGTATTCGGTAAGTTCTACCCGCTGCATACCGGACATATCTACCTTATCCAGC 4615725 4615784
nadR_6 GCGCCTGTAGCCAGGTTGACGAACTGCATATCATTATGGGTTTTGACGATACCCGCGATC 4615785 4615844
nadR_7 GCGCGTTGTTTGAAGACAGCGCTATGTCGCAGCAGCCCACCGTGCCGGATCGTCTGCGCT 4615845 4615904
nadR_8 GGTTATTACAAACTTTTAAATATCAGAAAAATATTCGCATTCATGCTTTCAACGAAGAGG 4615905 4615964
nadR_9 GCATGGAGCCGTATCCGCACGGCTGGGATGTGTGGAGCAACGGCATCAAAAAGTTTATGG 4615965 4616024
nadR_10 CTGAAAAGGGGATTCAGCCGGACCTGATCTACACCTCGGAAGAAGCCGATGCGCCACAGT 4616025 4616084
nadR_11 ATATGGAACATCTGGGGATCGATACGGTGCTGGTCGATCCGAAACGTACCTTTATGAGTA 4616085 4616144
nadR_12 TCAGCGGTGCGCAGATCCGCGAAAACCCGTTCCGCTACTGGGAATATATTCCTACGGAAG 4616145 4616204
nadR_13 TGAAGCCGTTCTTTGTACGTACCGTGGCGATCCTTGGTGGCGAGTCGAACGGTAAATCCA 4616205 4616264
nadR_14 CCCTGGTAAACAAACTTGCCAATATCTTCAATACCACCAGTGCGTGGGAATATGGTCGCG 4616265 4616324
nadR_15 ATTATGTCTTTTCACACCTCGGCGGTGATGAGATCGCATTGCAGTATTCCGATTACGATA 4616325 4616384
nadR_16 AAATCGCGCTGGGCCACGCACAATACATTGATTTTGCAGTGAAATATGCCAATARAGTGG 4616385 4616444
nadR_17 CGTTTATTGACACTGATTTTGTCACTACCCAGGCGTTCTGCAAAAAGTACGAAGGGCGTG 4616445 4616504
nadR_18 AGCATCCGTTCGTACAGGCGTTGATTGATGAATACCGTTTCGATCTGGTGATCCTGCTGG 4616505 4616564
nadR_19 AGAACAACACGCCGTGGGTGGCGGATGGTTTACGCAGCCTCGGCAGTTCGGTGGATCGCA 4616565 4616624
nadR_20 ARGAGTTCCAGAACTTGCTGGTGGAGATGCTGGAAGAGAACAATATCGAATTCGTGCGGG 4616625 4616684
nadR_21 TTGAAGAGGACGATTATGACAGCCGTTTCCTGCGCTGCGTGGAGCTGGTGCGGGAGATGA 4616685 4616744
nadR 22 TGGGGGAGCAGAGATAACCGCGATGAAACGGCTCARAGGCGAGGTATAAAATAAGTTTTT 4616745 4616804

All sequences were ordered as xGen Lockdown probes with a 5 biotin tag from Integrated DNA

Technologies. Start and end are the positions where the first and last base map to in the E. coli REL606
genome (GenBank: NC _012967.1).



Table S3. Blocker sequences

Name Sequence

Universal Blocker AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
Degenerate Sample Barcode Blocker CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Red bases anneal to the sample barcodes. They were synthesized with a mixture of all four bases so that
one blocking oligo could be used in pulldowns in which multiple different sample barcodes were present.





