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Abstract 

This paper examines the effect of translational research on knowledge production and biomedical 

entrepreneurship across U.S. regions. Researchers have earlier investigated the outputs of 

translational research by focusing on academic publications. Little attention has been paid to 

linking translational research to biomedical entrepreneurship. We construct an analytical model 

based on the knowledge spillover theory of entrepreneurship and the entrepreneurial ecosystem 

approach to examine the relationship between translational research, biomedical patents, clinical 

trials, and biomedical entrepreneurship. We test the model across 381 U.S. metropolitan 

statistical areas using 10 years of panel data related to the NIH Clinical and Translational 

Science Awards (CTSA) program. CTSA appears to increase the number of biomedical patents, 

and biomedical entrepreneurship as proxied by the NIH Small Business Innovation Research 

(SBIR) grants. However, the magnitudes of the effects are relatively small. Path analysis shows 

that the effect of translational research on regional biomedical entrepreneurship is not strongly 

conveyed through biomedical patents or clinical trials. 

 

Plain English Summary 

Can programs designed to speed the transformation of research results into products / processes 

increase regional entrepreneurship in the biomedical sector? Translational research programs 

generally address the gap between basic science and clinical trials / commercialization. We 

examine one such program, the National Institutes of Health (NIH)’s Clinical and Translational 

Science Awards (CTSA) program, that has supported more than 60 U.S. universities and other 

institutions since 2006. We find that the program has positively affected regional biomedical 
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entrepreneurship. Translational research also appears to increase the number of regional 

biomedical patents. The increased biomedical patents could not, however, be said to have 

“caused” the higher levels of regional biomedical entrepreneurship. Policymakers may intensify 

efforts to improve the utilization of knowledge produced by translational research activity by 

boosting efforts to enhance the entrepreneurial awareness and inclination of translational 

researchers.  
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1 Introduction  

Recent Covid-19 vaccine developments have demonstrated the importance of the rapid 

transfer of scientific knowledge to the clinical and commercial fields for public health. The first 

U.S. Covid-19 vaccine utilizes a novel technology, messenger RNA (mRNA), developed by a 

biotech firm, and reduced the development time significantly (Zimmer et al., 2021). Other 

Covid-19 vaccines also have been developed by rapidly transferring new technologies from labs 

to hospitals (The Johns Hopkins Coronavirus Resource Center, n.d.; Zimmer et al., 2021).  

Rapid transfer between basic research and clinical and commercial applications has been 

discussed for a long time. The decreasing productivity—the average FDA approvals per R&D 

investment—in the pharmaceutical sector has, however, put this topic once again at the center of 

attention (Heller & de Melo-Martín, 2009; Juliano, 2013; Kim, 2019; Schuhmacher et al., 2016; 

Wegener & Rujescu, 2013). The slow transfer has been pointed out as one of the reasons for 

anemic performance (Institute of Medicine, 2013). Slow connection largely comes from multiple 

barriers including risky and expensive clinical trials, data sharing issues, and lack of experts 

(Coller & Califf, 2009; Heller & de Melo-Martín, 2009; Institute of Medicine, 2013).  

In response to this policy concern, the National Institutes of Health’s (NIH) Clinical and 

Translational Science Awards (CTSA) program has been providing over $500 million annually 

to more than 60 U.S. universities and non-profit research institutions since 2006 to help address 

those obstacles (Kim, 2019; Llewellyn et al., 2018). Through the improvement of translational 

research conditions, the CTSA program desires to increase the speed and volume of the transfer 

of scientific knowledge into more practical applications (NIH, 2006).  

Scholars have analyzed the contribution of the CTSA program to increasing academic 

publications (Kim, 2019; Kim et al., 2020; Liu et al., 2016; Llewellyn et al., 2018; Schneider et 

al., 2017). However, the literature has yet to address whether and how this specific translational 
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research program contributes to the biomedical business. Also, the earlier appraisals were 

generally restricted to the funding of recipient institutions and did not comprehensively consider 

other factors surrounding translational research and their interactions. As translational research 

aims to facilitate the transfer of basic research into more practical forms of knowledge, it is 

important to examine its contribution to the biomedical enterprise, beyond the publication 

performance of the grant recipients.  

We examine the effect of translational research on biomedical knowledge production and 

biomedical entrepreneurship. Based on the knowledge spillover theory of entrepreneurship and 

entrepreneurial ecosystem approach, we construct an analytical model and test it across all 381 

U.S. metropolitan statistical areas (MSAs) using 10 years of panel data. The NIH CTSA program 

is utilized as an approximation for translational research while the NIH Small Business 

Innovation Research (SBIR) program serves as an approximation for biomedical 

entrepreneurship.  

The results indicate a positive association between CTSA funding and regional SBIR 

grants, but the magnitude is relatively small. CTSA funding increases biomedical patents but it 

does not increase the number of clinical trials conducted regionally. Biomedical patents have a 

positive relationship with SBIR grants, whereas clinical trials do not. Path analysis reveals that 

the effect of the CTSA funding on SBIR grants is not strongly conveyed through either 

biomedical patents or clinical trials. We thus conclude that translational research through the 

CTSA program has had a limited impact on exploitable knowledge production and regional 

biomedical entrepreneurship.  

The rest of the paper is organized as follows. Section 2 presents background on 

translational research, literature review, and research questions. In Section 3, we explain how we 
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construct and operationalize the analytical model. We present results in-detail in Section 4, and 

discuss main findings and policy implications in the following section. The last section 

concludes.  

 

2 Literature review 

2.1 The context of translational research 

Translational research has emerged as an important driver to facilitate conversion and 

increase biomedical productivity (Fishburn, 2013; Van der Laan & Boenink, 2015; Woolf, 2008; 

Zerhouni, 2003). Translational research is generally understood as a concerted effort to produce 

new products, services, or treatments from basic research in a rapid manner (Fishburn, 2013). 

Van der Laan and Boenink (2015) succinctly summarize the emergence of translational research 

as a reflection of the desire to get more benefit from society’s investment in basic research.  

The conceptualization of “translational research” varies among researchers and continues 

to evolve (Van der Laan & Boenink, 2015). Originally, translational research was viewed as a 

two-phase process: the translation from basic science to human studies; and the translation of 

new knowledge into clinical practice and health decision-making (Sung et al., 2003). NIH (2006) 

has a similar definition, found in its first request for application for the Institutional CTSA 

program.  

In the biomedical sector, researchers have recently more narrowly conceptualized the 

translation framework, which spans from basic science to translation to community (Blumberg et 

al., 2012). This more elongated framework has been reflected in the NIH’s CTSA funding 

opportunity announcement (NIH, 2012). The core elements in the newer translational research 

framework are from basic science to translation to patients—processes to convert discoveries in 
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the laboratory into clinical trials (Fishburn, 2013). Similarly, the FDA also identified this part as 

a “critical path” to drug development (Woodcock & Woosley, 2008, p. 4). Many biomedical 

researchers focused on a narrow conception that usually covered the area “between basic 

science…and new approaches for pre-clinical work” (Van der Laan and Boenink, 2015, p. 37).  

The domain between basic research and the near-market can be recognized as a market 

failure because of the sub-optimal distribution of resources such as venture capital funding. 

Public agencies like the NIH strongly support basic research, while the private sector heavily 

invests in marketable products or services. However, the middle part—the so-called “valley of 

death”—is often regarded as too risky for the private sector to invest in because it requires huge 

investments (Butler, 2008), along with the uncertainty of getting a good return on such 

investments. Fig. 1 illustrates the conceptualization of the valley of death along the translational 

continuum in the biomedical sector.  

The gap between basic science and clinical science is often referred “translational gap” in 

the biomedical sector (Seyhan, 2019, p. 6). Crossing the gap requires not just enough funding, 

but also strong support to advance discoveries in the lab toward the bedside. Thus, public 

intervention is justified to mitigate the uncertainty and a large number of resource inputs when 

developing scientific knowledge, products, and services. Proper policy measures have the 

potential to shorten the time required for the development of biomedical products and services, 

thereby contributing to the greater public good.  
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Fig. 1 Illustration of valley of death in biomedical sector 

Note: Adapted from Seyhan (2019, p.7) and Reis et al. (2008, p.10) 

 

2.2 Extant literature and research questions 

Several scholars have studied the effects of translational research on academic 

publications, especially by analyzing the CTSA program (Kim, 2019; Kim et al., 2020; Liu et al., 

2016; Llewellyn et al., 2018; Schneider et al., 2017). A strong emphasis has been paid to the 

number of articles published, among other outputs, resulting from the CTSA program. 

Investigators have shown that the CTSA program has increased the recipients’ numbers of 

publications (Kim, 2019; Liu et al., 2016; Llewellyn et al., 2018).  

 While publication is one critical channel to advance and spread knowledge in the 

biomedical sector (Llewellyn et al., 2018), the literature has yet to address whether or how the 

CTSA program contributes to economic activity. Economic activity matters because translational 

research was initiated to facilitate the conversion of basic research into clinical and commercial 

areas (NIH, 2006; Van der Laan & Boenink, 2015). Furthermore, the CTSA program considers 

collaboration with industry and other stakeholders as one of its objectives (NIH, 2006, 2017).   
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The expansion of the scope of current research to address the impact of translational 

research on the commercialization of the produced knowledge would be helpful in deepening our 

understanding. For instance, one can consider whether translational research increases the 

production of commercially exploitable knowledge, as approximated by biomedical patents and 

clinical trials, and the extent to which this knowledge enhances biomedical entrepreneurship. 

The extant literature on translational research also lacks a general theoretical framework 

to analyze the effects of translational research comprehensively. Instead, investigators have 

narrowly restricted their analysis only to the CTSA program recipients (e.g., Kim, 2019; Liu et 

al., 2016; Llewellyn et al., 2018; Schneider et al., 2017). Furthermore, these examinations have 

not taken into account the fact that translational research is a part of the complex biomedical 

ecosystem. Indeed, diverse stakeholders (e.g., universities, biomedical firms, and 

pharmaceuticals) take part in the process that moves a product or a service from its scientific 

discovery to clinical and commercial fields (Fishburn, 2013; Pisano, 2006). Given that 

translational research covers a wide spectrum within the broader biomedical ecosystem, it is 

imperative to take into account how translational research interacts with other components in the 

system (Simons et al., 2020).  

In this vein, a more systemic focus on relevant interactions could lead to a more 

comprehensive analysis of the effects of translational research. Additionally, we assert that a 

relevant conceptual framework is needed linking translational research to economic and business 

activities more comprehensively. We propose such an analytical model in the next section.  

Knowledge is typically assumed to spill over from its original source. However, the flows 

of the ideas and knowledge are hampered by the so-called “knowledge filter” including 

institutional, geographical, and economic constraints (Almeida & Kogut, 1999; Carlsson et al., 
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2009). Audretsch and Lehmann (2005, p. 1195) define knowledge filter as “the gap between new 

knowledge and what Arrow (1962) referred to as economic knowledge or commercialized 

knowledge.” The knowledge filter concept is in line with the notion of “barriers to transmission” 

proposed by Hayter (2013).  

The literature in the field of the knowledge spillover theory of entrepreneurship (KSTE) 

provides a theoretical foundation for explaining knowledge production and utilization (Ghio et 

al., 2015). Economic agents like entrepreneurs utilize the new knowledge to open opportunities 

by creating new firms to exploit the unused knowledge that firms or research organizations have 

generated (Acs et al., 2009; Audretsch, 1995; Braunerhjelm et al., 2010; Hayter, 2013). This 

concept envisages entrepreneurship as an effective vehicle enabling the utilization of new 

knowledge. At the same time, the KSTE implies that knowledge does not flow seamlessly from 

the inventor to the innovator; neither is all knowledge commercially useful in its original form 

(Braunerhjelm et al., 2010; Hayter, 2013).  

Based on the KSTE, it is expected that more knowledge production and spillover would 

lead to higher levels of entrepreneurship (Acs et al., 2009). By definition, translational research 

is expected to generate more usable forms of knowledge, such as publications, patents, and 

clinical trials. This, in turn, could affect entrepreneurship, since entrepreneurs can utilize 

converted knowledge to start a new business, for instance, in the biomedical sector. Thus, 

translational research activities would seem to facilitate knowledge exchange and help overcome 

obstacles associated with the traditional linear model of technology transfer (Hayter et al., 2020).   

It is in this sense that the KSTE can help us understand how translational research can affect 

biomedical entrepreneurship through the conversion and utilization of knowledge.  
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 Another useful thread of research that provides insights for the current study is the 

entrepreneurial ecosystem approach. Explaining what makes a particular region or city achieve 

more than its counterparts has been an important focus for researchers and practitioners around 

the globe (Brown & Mason, 2017; Feldman, 2014). The entrepreneurial ecosystem approach has 

emerged as a conceptual framework to explain the dynamics within a system (Brown & Mason, 

2017). While there is no standard definition of an entrepreneurial ecosystem (Stam & Van de 

Ven, 2021), scholars proposed several working terms. For instance, an entrepreneurial ecosystem 

is a dynamic system with diverse stakeholders, which can include entrepreneurs, universities, 

government, and consumers (Audretsch & Belitski, 2017). More broadly, Stam (2015) defined 

the entrepreneurial ecosystem as “a set of interdependent actors and factors coordinated in such a 

way that they enable productive entrepreneurship” (p. 1765).  While there has been some 

criticism (See Stam & Van den Ven, 2021), the entrepreneurial ecosystem approach has provided 

a compelling framework to analyze regional context (e.g., Mack & Mayer, 2016; Spigel, 2017).   

The sectoral perspective of the biomedical sector should also be emphasized. Every 

sector has different knowledge and technology bases, as well as different types of actors, 

networks, and institutions (Malerba, 2004). Thus, entrepreneurial ecosystems could be formed or 

worked based on industry-specific characters (Mason & Brown, 2014). As Pisano (2006) 

described, the biotech sector has its own particular anatomy, quite distinct from other sectors like 

information technology. Considering that the biomedical industry is a science-based business, in 

this paper we define biomedical entrepreneurship as knowledge-intensive entrepreneurial 

activities that utilize knowledge to exploit opportunities within the biotechnology sector 

(Malerba & McKelvey, 2020; Pisano, 2006). In light of the KSTE and the entrepreneurial 

ecosystem approach, we consider the following two research questions. First, to what extent do 
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increased level of knowledge translate into biomedical entrepreneurship? Second, do biomedical 

patents and clinical trials serve as effective forms of knowledge connecting translational research 

to biomedical entrepreneurship? Further downstream than academic publications, we would like 

to explore whether these two well-known forms of knowledge are the connecting rods between 

basic research and biomedical entrepreneurship as described by scholars (e.g., Pisano, 2006).  

 

3 Methodology 

3.1 Empirical context 

To support and facilitate the translation process, the NIH initiated a translational research 

program called the Clinical and Translational Science Awards (CTSA) program in 2006. 

Through it, the NIH provides about $500 million annually to approximately 60 universities and 

nonprofit institutes (Llewellyn et al., 2018; NIH, 2019). The CTSA program is designed “to 

transform the local, regional, and national environment for clinical and translational science, 

thereby increasing the efficiency and speed of clinical and translational research” (NIH, 2006). 

To achieve its goals, the program supports “training, research and infrastructure to help 

researchers engage in clinical research—and cross the valley of death” (Butler, 2008, p. 841). In 

particular, the funded projects and initiatives sponsor activities that influence the translation 

environment. For instance, SMART IRB provides a platform to help researchers and institutions 

researching multiple sites that require integrated collaboration. One thing to note is that unlike 

other NIH awards supporting projects based on diseases, specialties, and investigators, the CTSA 

program supports improvements specifically in the translational environment (NIH, 2006).  

 

3.2 Model specification 
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We construct an analytical model for biomedical knowledge production and biomedical 

entrepreneurship. Considering that translational research helps facilitate the conversion of basic 

science into more usable forms of knowledge, we expect that a vibrant translational research 

activity increases more useful and commercially exploitable knowledge production. Then, 

entrepreneurs have a wider set of relevant knowledge stocks to draw from. In this respect, the 

knowledge spillover theory of entrepreneurship enables us to analyze whether translational 

research increases biomedical entrepreneurship.  

We explore the linkage between translational research and biomedical entrepreneurship, 

biomedical patents, and clinical trials. Patents are regarded as an important milestone before 

moving toward commercialization (Reitz & Czupich, 2014). Commercialization in the 

biomedical sector generally occurs through the licensing of intellectual property rights (Kettler, 

2000; Pisano, 2006; Scherer, 2010). Each stage of clinical trials generates critical information 

regarding safety, efficacy, and others, and they are pre-requisite for commercialization in the 

biomedical sector (NIH, n.d.-a; Varmaghani et al., 2020). In sum, our model posits that by 

increasing such exploitable knowledge translational research endows entrepreneurs in a region 

with a wider set of relevant knowledge stock to utilize. 

 In the construction of the model, we take into account the factors that influence 

biomedical entrepreneurship. Translational research is not a stand-alone element but an 

interconnected factor in the biomedical development system. We identify regional factors which 

may affect regional biomedical entrepreneurship, including public and private biomedical R&D 

investment, human capital, the presence of large biomedical firms, per capita income, population 

size, and the size of the regional economy. Fig. 2 depicts a schematic description of the model.   
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In Fig. 2, the thick black arrow from translational research to biomedical 

entrepreneurship shows the “direct” relationship between two sides. For further exploration of 

the detailed relationship, we separate biomedical patents and clinical trials from other outputs, 

and investigate their roles in bridging translational research and biomedical entrepreneurship. 

Two red dashed arrows from translational research to biomedical entrepreneurship through 

biomedical patents and clinical trials depict the “indirect” relationships between two sides. 

Regional factors are included as control variables in the model.  

In the following sections, we first focus on estimating the direct relationship between 

translational research and biomedical entrepreneurship. Subsequently, we estimate the indirect 

relationships in order to investigate how the indirect effects of translational research affects 

biomedical entrepreneurship through biomedical patents and clinical trials.  

 

 

Fig. 2 A schematic description of the analytical model 

 

3.3 Operationalization of the model 
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We empirically test the analytical model across all 381 U.S. metropolitan statistical areas 

(MSAs1) with a panel dataset ranging from 2006 to 2015. The CTSA program is utilized herein 

as an approximation for translational research while the NIH SBIR program serves as an 

approximation for biomedical entrepreneurship.  

First, we begin with estimating the direct effect of CTSA funding on SBIR grants. 

Endogeneity is one challenge in estimating the relationship between CTSA funding and SBIR 

grants. Institutions receiving CTSA funding are not randomly distributed, but they have been 

selected based on scientific competence among the applicants (NIH, 2006). In addition, the SBIR 

program selects small firms with “feasibility, technical merit, and commercial potential” (NIH, 

n.d.-b). Thus, the competitiveness in winning the CTSA funding could be related to the 

capability of getting the SBIR grants at the regional level.  

To address the possible endogeneity, we employ the difference-in-difference (DID) 

method. The treatment group is comprised of MSAs with CTSA funding, while the comparison 

group is MSAs with no CTSA funding. A conventional DID equation can be written as Eq. 1. 

The dependent variable, SBIR mt, counts the number of SBIR grants received by small firms in 

an MSA m in year t. We use the number of grants as a proxy for entrepreneurship (Lee et al. 

2004; Qian et al. 2013).  

SBIR mt = α1 + β1 ∙ (Treat m × Post t) + ϒ ∙ Treat m + λ ∙ Post t + ε mt1    (Eq. 1) 

One thing to note is that MSAs in the treatment group receive funding in different time 

periods, of different durations and different funding sizes. MSAs in the comparison group have 

zero CTSA funding throughout the whole period. Fig. 3 illustrates the difference in funding 

 
1 An MSA is defined as an area with “at least one urbanized area of 50,000 or more population, plus adjacent 

territory that has a high degree of social and economic integration with the core as measured by commuting ties 

(Office of Budget and Management, 2018). 
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between the treatment and comparison regions. The solid line represents a profile of one MSA in 

the treatment group. In total, there are 46 different CTSA funding profiles, as all 46 MSAs in the 

treatment group have different funding sizes during different periods. The MSAs in the 

comparison group are represented by the dotted line in Fig. 3, which shows zero value for the 

whole period.   

 

 

Fig. 3. Imaginary Profiles of CTSA Funding in the Treatment and Comparison Groups 

 

In line with previous research (Angrist & Pischke, 2008, 2014; Bertland et al., 2004), we 

replace the interaction term in Eq. 1 with CTSA funding, as shown in Eq. 2. Here, the CTSA 

funding variable, CTSA mt, measures the degree of treatment in MSA m in year t. Accordingly, 

Eq. 2 includes the MSA dummy (ϒ m) and the time dummy (λ t). X mt as control variables. β2 is 

the coefficient of our interest. Standard errors are calculated by a robust method and clustered at 

the MSA. As the dependent variables are count variables that are highly right-skewed, we use the 

Poisson option. 

SBIR mt = α2 + β2∙ CTSA mt + 𝛿 ∙X mt + ϒ m + λ t + ε mt2    (Eq. 2) 
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Second, we estimate the effects of translational research on biomedical knowledge 

production. Eq. 3 and Eq. 4 estimate the effects of CTSA funding on biomedical patents and on 

clinical trials respectively. We use the same DID design as in Eq. 2. 

Biomedical patent mt = α3 + β3 ∙ CTSA mt + 𝛿 ∙ X mt + ϒ m + λ t + ε mt3             (Eq. 3) 

Clinical trials mt = α4 + β4 ∙ CTSA mt + 𝛿 ∙ X mt + ϒ m + λ t + ε mt4                   (Eq. 4) 

Third, we estimate the indirect effect of translational research on biomedical 

entrepreneurship through biomedical patents and clinical trials. As shown in Fig. 2, biomedical 

patents and clinical trials are endogenous variables. They are affected by the CTSA funding and 

other regional conditions. They also affect another endogenous variable, SBIR grants. In this 

estimation, we consider three paths between the CTSA funding and the SBIR grants: 1) Indirect 

path 1—through biomedical patents; 2) Indirect path 2—through clinical trials; 3) Direct path—

all other outputs except biomedical patents and clinical trials. Eq. 5 describes three paths 

between the CTSA funding and the SBIR grants.  

SBIR mt = α5 + β5 ∙ Biomedical patent mt + β6 ∙ Clinical trials mt + β7 ∙CTSA mt + 𝛿 ∙ X mt + 

ϒ m + λ t + ε mt5             (Eq. 5) 

We use path analysis/structural equation modeling to solve the set of simultaneous 

equations indicated by Eq. 3, 4, and 5. While the negative binomial model might also be used 

due to the count variables with over-dispersion, the Poisson option is used here. According to 

Cameron and Trivedi (2010), the cluster-robust standard error can be used to address both over-

dispersion and serial correlation. Standard errors are calculated by a robust method and clustered 

at the MSA. We also show the result with the negative binomial estimates in the following 

section.  

Regarding the decision rule of statistical analysis, we use the threshold of 0.1 and report 
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the precise p-value. Amrhein et al. (2019, p.306) suggested that researchers need to discuss the 

meaning of the estimates more explicitly, as well as provide a precise number for the p-value if 

reported, rather an overly relying on “dichotomous” decision rules, like using p-values. 

Following their recommendations, we report the precise p-values of the main results and then 

discuss the implications in-depth.  

 

3.4 Data and variables 

Table 1 lists the variables, measures, and data sources. The NIH SBIR grant data were 

obtained from the NIH RePORTER (NIH, n.d.-d). We include only new SBIR projects in Phase I 

and Fast Track2, which means that renewed, supplemental, or extension projects have been 

excluded. Projects in Phase II also are excluded because they are only available to successful 

Phase I projects, which are influenced by diverse factors (e.g., firms’ management). The CTSA 

funding data were likewise obtained from the NIH RePORTER (NIH, n.d.-d). We use the 

funding opportunity announcements (FOAs)3 of the CTSA program to identify relevant projects 

(Liu et al., 2016).  

Biomedical patent data were obtained from the U.S. Patent and Trademark Office (n.d.). 

Following Cortright and Mayer (2002), we include three biomedical-related technology classes: 

Class 424-Drug, Bio-Affecting, and Body Treating Compositions (includes Class 514); Class 

435-Chemistry: Molecular Biology and Microbiology; and Class 800-Multicellular Living 

Organisms and Unmodified Parts Thereof and Related Processes. The patent data include the 

 
2 Fast Track allows the submission of both Phase I and Phase II together to reduce the funding gap between phases. 

A Fast Track submission is recognized the same as a “new” project, just like new Phase I projects in the NIH 

RePORTER system (NIH, n.d.-e). 
3 The FOA numbers used in this research: RFA-RM-06-002, RFA-RM-07-007, RFA-RM-07-002, RFA-RM-07-006, 

RFA-RM-08-002, RFA-RM-09-004, RFA-RM-09-019, RFA-RM-10-001, RFA-RM-10-020, RFA-RR-10-007, 

RFA-RR-11-004, RFA-TR-12-006, RFA-TR-14-009. 
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granted utility patents to an MSA from 2006 to 2015, which is the most recent year categorized 

at the MSA level by the U.S. Patent and Trademark Office.  

We obtained clinical trial data from the U.S. National Library of Medicine’s 

ClinicalTrials.gov website. According to the U.S. law enacted in 1997 and 2007, and the 

decision by the International Committee of Medical Journal Editors in 2005, all clinical studies 

should be registered to the ClinicalTrials.gov registry (Califf et al., 2012). We downloaded 

180,926 clinical studies based on the first study submission date between 2004 and 2015. Some 

clinical studies were conducted at multiple sites, also including in foreign countries. We removed 

those that had study locations outside the U.S. After this cleaning process, we were left with 

523,341 U.S. clinical trial locations.  

 

Table 1 Variables, measures, and data sources 

Variable Measure Source 

   

NIH SBIR grants NIH SBIR (New projects in Phase I and Fast Track) grants NIH RePORTER 

Biomedical patents Number of patents in biomedical-related technology  U.S. PTO  

Clinical trials Number of clinical trials conducted U.S. National 

Library of Medicine 

(ClinicalTrials.Gov) 

CTSA funding Size of the CTSA funding  NIH RePORTER 

Public R&D R&D expenditure in the life science and medical field at 

the universities (after subtracting the CTSA funding) 

NSF HERD Survey 

Private R&D R&D expenditure by publicly-traded biomedical firms  Compustat 

Large biomedical 

firm 

Number of large biomedical firms belonging to the top 25 

percent in annual revenue  

Compustat 

Human capital  Percentage of adults (25+) holding a bachelor’s degree or 

above  

U.S. Census 

Per capita income Per capita income U.S. BEA 

Agglomeration Population per area (i.e., square miles) U.S. Census 

Regional economy Regional GDP U.S. BEA 

 

https://www.nlm.nih.gov/
https://www.nlm.nih.gov/
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  Variables representing regional conditions are added as control variables. First, regional 

public R&D spending in the life science and medical research field is added to represent the 

strength of scientific knowledge. As there is no aggregated public R&D spending data in life 

science and medical fields at the MSA level, we collected university R&D expenditures from the 

Higher Education Research and Development (HERD) Survey (National Science Foundation, 

2011, 2015, 2018). The R&D spending data has been aggregated at the MSA level. As the 

HERD data may include the CTSA funding, we subtracted CTSA funding from them to 

construct the final dataset.  

Second, we measure the R&D spending of biomedical firms to control the effect of 

private R&D in that sector. Firm data is obtained from Compustat, a collection of financial 

information of publicly traded companies. Biomedical firms are selected based on North 

American Industry Classification System (NAICS) codes4, defined by DeVol et al. (2004).  

Third, we approximate the regional human capital by the percentage of adults (above 25) 

holding at least a bachelor’s degree or above (Florida, 2002; Qian et al., 2013). The data is 

collected from the U.S. Census (n.d.-a).  

Fourth, the number of large biomedical firms is added to proxy the role of the established 

firms in the biomedical ecosystem as suggested by the anchor tenant theory (Agrawal & 

Cockburn, 2003; Feldman, 2003). Firm data is obtained from Compustat. We counted 

biomedical firms belonging to the top 25 percent (i.e., 75th percentile) in terms of annual 

revenue to include relatively large firms.  

Fifth, we add per capita income to represent the individual’s ability to start and support a 

new business. Wallsten (2001) uses this variable in estimating the probability of winning the 

 
4 NAICS (2017 version) codes used in this research: 325411, 325412, 325413, 325414, 339111, 339112, 339113, 

339114, 339115, 339116, 335410, 335417, and 541714. 
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SBIR grant at the MSA level. The data is obtained from the Bureau of Economic Analysis 

(BEA) (n.d.-a).  

Sixth, following Qian et al. (2013) we use regional population density since 

agglomeration can facilitate knowledge sharing through close and frequent interactions. The 

population and area data were obtained from the U.S. Census (n.d.-b, n.d.-c). Populations 

between 2006 and 2010 are calculated by interpolating the population in 2000 and 2010 due to 

the lack of data at the MSA level.  

Seventh, the size of the regional economy is added to the list of controls. Access to 

finance is an important element in expanding venture business and further growth (Isenberg, 

2011). It is more critical in the biomedical sector because of large resource input needs and a 

high level of uncertainty (DiMasi et al., 2016; Pisano, 2006; Sacks et al., 2014). We utilize 

regional GDP to approximate the size of the regional economy and the strength of venture capital 

financing. The GDP data was obtained from the U.S. Bureau of Economic Analysis (n.d.-b). 

We used the zip code-MSA code conversion file provided by the U.S. Department of Housing 

and Urban Development (n.d.) to aggregate the data at the MSA level. With the data introduced, 

we constructed a panel data set of 10 years from 2006 to 2015.  

 

4 Findings 

4.1 Descriptive statistics  

Summary statistics and the correlation matrix of key variables are presented in Table 2 

and 3, respectively.  
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Table 2 Summary statistics 

Variables 

CTSA-funded MSAs  Non-CTSA-funded MSAs 

Obs

. 
Mean SD Min Max  Obs. Mean SD Min Max 

      
 

     

SBIR grants (count) 460 5.95 6.85 0 42.00  3,350 0.28 0.75 0 7.00 

Biomedical patents (count) 460 114.81 173.22 0 996  3,350 5.06 12.83 0 190 

Biomedical patents (count, log) 460 3.89 1.32 0 6.90  3,350 0.93 1.14 0 5.25 

Clinical trials (count) 460 656.41 547.94 80 3,204  3,350 66.09 131.64 0 1,821 

Clinical trials (count, log) 460 6.20 .77 4.39 8.07  3,350 3.25 1.41 0 7.51 

CTSA funding ($M) 460 12.48 13.84 0 99.46  3,350 0 0 0 0.00 

CTSA funding ($, log) 460 12.73 6.79 0 18.42  3,350 0 0 0 0.00 

CTSA funding (count: Institution) 460 1.02 0.93 0 6  3,350 0 0 0 0 

Public R&D ($M) 460 496.03 429.20 0 2434.69  3,350 16.03 46.30 0 531.79 

Public R&D ($, log) 460 19.15 3.32 0 21.61  3,350 7.72 7.79 0 20.09 

Private R&D($M) 460 1488.64 5445.69 0 45727.91  3,350 17.49 212.26 0 4789.50 

Private R&D ($, log) 460 15.09 7.41 0 24.55  3,350 2.37 5.78 0 22.29 

Human capital (%) 460 34.46 6.22 24.00 55.20  3,173 24.80 7.58 10.0 60.60 

Human capital (log) 460 3.52 0.17 3.18 4.01  3,173 3.17 0.30 2.30 4.10 

Large biomedical firms (count) 460 3.87 7.69 0 44.00  3,350 0.12 0.46 0 6.00 

Large biomedical firms (count, log) 460 0.87 1.06 0 3.80  3,350 0.07 0.25 0 1.95 

Per Capita income ($T) 460 45.55 8.18 31.96 85.01  3,350 37.37 7.96 18.73 117.15 

Per Capita income ($, log) 460 10.71 0.17 10.37 11.35  3,350 10.51 0.18 9.84 11.67 

Agglomeration (count: Thousands) 460 0.66 0.60 0.09 2.99  3,350 0.28 0.76 0.01 13.18 

Agglomeration (count, log) 460 6.16 0.81 4.49 8.00  3,350 5.11 0.91 1.92 9.49 

Regional economy ($M) 460 182,264.6 245,309.5 6,455.3 1,618,366 
 

3,350 16,890.3 28,227.6 1,477.2 315,623.5 

Regional economy ($, log) 460 25.27 1.17 22.59 28.11 
 

3,350 22.98 0.93 21.11 26.48 

Note. The panel data set has a research period from 2006 to 2016 (10 years) and 381 MSAs. 177 missing values in the human capital variable due to the 

changes in MSAs. ‘log’ indicates a natural log. $M indicates a million dollars and $T for a thousand dollars. ‘0’ in Min. in the line of CTSA funding (Count: 

Institution) is due to the periods before the treatment group got the CTSA institution between 2006 and 2015.   

 

  



23 

 

Table 3 Correlation matrix 

Variables 1 2 3 4 5 6 7 8 9 10 11 

            

1. SBIR grants (count) 1           

2. Biomedical patents (log) 0.639*** 1          

3. Clinical trials (log) 0.489*** 0.695*** 1         

4. CTSA funding (log) 0.579*** 0.608*** 0.528*** 1        

5. Public R&D (log) 0.370*** 0.609*** 0.584*** 0.391*** 1       

6. Private R&D (log) 0.537*** 0.675*** 0.591*** 0.517*** 0.419*** 1      

7. Human capital (log) 0.378*** 0.654*** 0.511*** 0.361*** 0.583*** 0.436*** 1     

8. Large biomedical firms (log) 0.800*** 0.638*** 0.505*** 0.507*** 0.359*** 0.676*** 0.353*** 1    

9. Per capita income (log) 0.393*** 0.523*** 0.415*** 0.347*** 0.247*** 0.384*** 0.592*** 0.379*** 1   

10. Agglomeration (log) 0.417*** 0.524*** 0.510*** 0.340*** 0.337*** 0.461*** 0.271*** 0.424*** 0.323*** 1  

11. Regional economy (log) 0.599*** 0.763*** 0.826*** 0.566*** 0.614*** 0.681*** 0.465*** 0.639*** 0.523*** 0.615*** 1 

Note. * p<0.05, ** p<0.01, *** p<0.001. ‘log’ indicates a natural log. 
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4.2 Parallel trends 

With a DID design, the treatment and comparison groups need to have common trends 

before the treatment. We examine whether the two groups have common trends in our dependent 

variables—SBIR grants, biomedical patents, and clinical trials—respectively. 

Fig. 3 presents the trend for the SBIR grants. As this study is not an ordinary pre- and 

post-treatment setting, there is no shared variable to indicate the treatment point. The treatment 

years are centered on the first CTSA funding years of each treated MSA. The comparison group 

is normalized in 2006, the first CTSA program funding year. The y-axis is the mean SBIR count. 

The top line represents the treatment group, and the bottom line is the comparison group. The 

dotted line represents the mean SBIR counts for all the MSAs (entire group).  

 

Fig. 3 The trends of the NIH SBIR grant 

Note: Treatment group (top line), comparison group (bottom line), entire group (middle line) 

 

For the five years prior to the treatment, all three lines declined: the treatment group by 

7.4%5; the comparison group by 14.8%; and the entire group by 9.4%. This indicates that the two 

groups had very similar declining trends before the treatment. The overall declining trends are 
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consistent with other NIH SBIR award data, presented in Fig. 4, which continued to decline over 

our research period (NIH, n.d.-e).  

 

Fig. 4 The trend of the NIH SBIR awards (Phase I and Fast Track) 

Source: Authors, based on the NIH Data Handbook. National Institutes of Health (n.d.-e). 

 

After the treatment, the slopes are quite different: the treatment group declines only by 

5.7%; the comparison group declines by 29.8%; and the entire group declines by 27.9%. The 

comparison group seems to follow the general declining trend of the SBIR grants, whereas the 

treatment group shows a slight upward trajectory with some fluctuations. Thus, the data indicate 

that the two groups have common trends before the funding and changed courses afterwards.  

To examine the data further, Fig. 5 presents each group’s ratio to the entire group’s mean 

SBIR grants. Each group’s line in Fig. 5 was calculated by dividing the mean of the SBIR grants 

of each group by the mean of the SBIR grants of the entire group. For instance, the treatment 

group’s mean SBIR grants are six times larger than the mean SBIR grants of the entire group of 

MSAs. Before the treatment, the two groups have similar parallel trends, but after the treatment, 

the treated line increases slightly and steadily, whereas the comparison line declines.  
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Fig. 5 The trends of the NIH SBIR grant ratio 

Note: Treatment group (top line), comparison group (bottom line) 

 

Similarly, we also review the trends of biomedical patents and clinical trials. Before the 

treatment (funding), the two groups’ trends in biomedical patents show similar, parallel trends. 

After the treatment, the treated line climbs rapidly, whereas the untreated line goes flat (See Fig. 

6 and 7). Thus, we conclude that two groups suffice parallel trend conditions for the DID design.  

 

Fig. 6 The trends of biomedical patents 

Note: Treatment group (top line), comparison group (bottom line), entire group (middle line) 
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Fig. 7 The trends of biomedical patent ratio 

Note: Treatment group (top line), comparison group (bottom line) 

 

However, we found that clinical trials of these two groups have different trends before 

the treatment: the treatment group rose by 24% and the comparison group rose by 88% (See Fig. 

8 and 9). This limits the ability to make a causal claim when estimating the effect of CTSA 

funding on clinical trials.  

  

Fig. 8 The trends of clinical trials  

Note: Treatment group (top line), comparison group (bottom line), entire group (middle line) 
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Fig. 9 The trends of clinical trials ratio 

Note: Treatment group (top line), comparison group (bottom line) 

 

4.3 Results 

4.3.1 Direct relationship between CTSA funding on the SBIR grants 

We first estimate the effect of CTSA funding on the SBIR grants (Eq. 2). Panel A in 

Table 4 presents the results. Column (3) is the model with the year and MSA fixed effects. The 

CTSA coefficient is 0.00725 and statistically significant at the 0.05 level (p-value: 0.047). The 

result indicates that a 1% increase in the CTSA funding is expected to increase the number of 

SBIR grants in an MSA by 0.00725%6. With the fixed effect negative binomial estimate, we 

have virtually the same coefficient, but a slightly larger standard error (p-value: 0.086). 

Considering that we cannot get the clustered-robust standard error using negative binomial 

model and the over-dispersion can be addressed by the Poisson model (Cameron & Trivedi, 

2010), the estimate with the Poisson holds.  Given that the average of SBIR grant counts in the 

treatment group is 5.95, doubling the CTSA funding size may change the received SBIR grants 

 
6 The Poisson regression has the exponential form: E(y|x) = exp (x`β). 
 



29 

 

by 0.043 (=5.95*0.00725). In sum, we found that CTSA funding increases the number of SBIR 

grants, but the effect size seems relatively small.  

 We also tested the time lag effects for the CTSA and SBIR association by lagging the 

CTSA funding. The CTSA coefficient increases to 0.00952 which is statistically significant at 

the 0.01 level (p-value: 0.001) at the length of 5 years. The coefficient is slightly reduced to 

0.00822 (p-value: 0.062) at the length of 6 years, but it is still larger than the original coefficient. 

The CTSA coefficients are small and insignificant with other time lags.   

 

Table 4 Poisson regression: CTSA funding to SBIR grants 

Variables 

Panel A  Panel B 

(1) (2) (3)  (4)  (5) 

Poisson  Poisson  OLS 

SBIR grants (Count)  SBIR grants 

(Count) 

 SBIR grants  

($, log) 

        

CTSA funding (log) 0.00715* 0.00729** 0.00725**    0.004463* 

 (0.00366) (0.00368) (0.00365)    (0.02671) 

CTSA institution (count)     0.06297***   

     (0.02343)   

Public R&D (log)  -0.00146 -0.00234  -0.00262  0.00539 

  (0.01309) (0.01320)  (0.01315)  (0.02495) 

Private R&D (log)  -0.00555 -0.00533  -0.00562  0.01867 

  (0.00657) (0.00679)  (0.00701)  (0.03907) 

Human capital (log)  -0.69000 -0.76102  -0.76688  -0.52955 

  (0.62904) (0.63107)  (0.62288)  (0.79447) 

Large biomedical firms (log)  -0.11340 -0.11183  -0.09766  0.42355 

  (0.08407) (0.08231)  (0.08084)  (0.58331) 

Per capita income (log)   0.62325  0.54059  3.01921 

   (0.83169)  (0.84510)  (2.26751) 

Agglomeration (log)   0.19679  0.31258  0.74944 

   (0.63845)  (0.63674)  (0.67024) 

Regional economy (log)   0.23878  0.23534  -0.18227 

   (0.59313)  (0.59122)  (1.39347) 

Constant       -25.95169 

       (22.47628) 

Year/MSA Fixed effect YES YES YES  YES  YES 

Observations 1,810 1,759 1,759  1,759  3,633 

Number of MSA 181 178 178  178  381 
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Note. Robust standard errors are adjusted for MSAs and in parentheses: *** p<0.01, ** p<0.05, * p<0.1. ‘log’ 

indicates a natural log. Due to the missing data in the human capital variable, 177 observations were dropped in (2), 

(3), (4), and (5). 200 groups (2,000 obs.) in (1) and 203 groups (1874 obs.) in (2), (3), and (4) were dropped because 

of all zero outcomes. 

 

To check the robustness of the results, we utilize the number of CTSA institutions as the 

main predictor instead of CTSA funding. We draw on the anchor tenant hypothesis, which posits 

that large firms provide supports for regional innovation activities (Agrawal & Cockburn, 2003; 

Feldman, 2003). Given that CTSA institutions are generally large universities with hospitals and 

substantial research capabilities in the region, one can assume that they work like large 

established organizations facilitating innovation. The NIH calls CTSA-funded institutions 

“hubs,” and emphasizes collaboration with regional biomedical networks (NIH, 2012, 2016; 

Obeid et al. 2014). Even though there might be some variations in the scope of their roles in the 

MSA, it is reasonable to assume that CTSA institutions have similar functionality in facilitating 

translational research in a particular region. The results are presented in column (4), Panel B of 

Table 4. The CTSA institution coefficient is highly significant (p-value: 0.007). It indicates that 

additional CTSA institutions in an MSA increase the number of SBIR grants by 6.3%.  

As a second robustness check, we utilize the aggregated monetary value of the SBIR 

grants as a dependent variable instead of using the SBIR grant counts. Column (5), Panel B of 

Table 4 shows the results of the Ordinary Least Squares (OLS). The dependent variable is SBIR 

funding in log form. We found that the CTSA funding coefficient is significant at the 0.1 level 

(p-value: 0.096), and the results show that a 1% increase in CTSA funding increases the SBIR 

funding by 0.045%. Thus, the robustness checks using the number of CTSA institutions as the 

main independent variable and the monetary value of SBIR grants as the dependent variable 

support the main findings in Panel A in Table 4.  
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4.3.2 The effect of CTSA funding on biomedical knowledge production 

 In this section, we estimate the effect of the CTSA funding on biomedical patents and 

clinical trials. To do so, we estimate Eq. 3 and 4. Table 5 shows the results. The first column in 

Panel A presents the relationship between CTSA funding and biomedical patents. The coefficient 

is significant at around 0.05 level (p-value: 0.053). The estimate indicates that a 1% increase in 

CTSA funding increases the number of biomedical patents by 0.0518%. As the mean of 

biomedical patents in the CTSA-funded MSAs is 114.8, doubling the CTSA funding can change 

the number of biomedical patents by 0.6 (=114.8*0.0052) on average. 

 

Table 5 Poisson regression: CTSA funding, biomedical patents, clinical trials, SBIR grants 

Variables 

Panel A  Panel B 

(1) (2)  (3) 

Poisson  Poisson 

Biomedical patents 

(Count) 

Clinical trials 

(Count) 

 SBIR grants 

(Count) 

     

CTSA funding (log) 0.00518* 0.00140  0.00663* 

 (0.00268) (0.00196)  (0.00352) 

Biomedical patents (log)    0.12744** 

    (0.06173) 

Clinical trials (log)    -0.00078 

    (0.10110) 

Public R&D (log) -0.00198 0.00605  -0.00216 

 (0.00448) (0.00441)  (0.01336) 

Private R&D (log) -0.00390 0.00088  -0.00450 

 (0.00420) (0.00175)  (0.00686) 

Human capital (log) 0.28140 0.28561**  -0.79167 

 (0.36227) (0.13402)  (0.62189) 

Large biomedical firms (log) 0.02555 0.01575  -0.11516 

 (0.03348) (0.02422)  (0.08209) 

Per capita income (log) -0.66308 -0.64215**  0.69396 

 (0.47406) (0.27643)  (0.82894) 

Agglomeration (log) 0.01178 0.40153**  0.19827 

 (0.40512) (0.15615)  (0.65063) 

Regional economy (log) 0.00214 -0.08568  0.23510 

 (0.42701) (0.17859)  (0.59408) 

Year/MSA Fixed effect YES YES  YES 

Observations 3,121 3,627  1,759 
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Number of MSA 313 379  178 

Note. Robust standard errors are adjusted for MSAs and in parentheses: *** p<0.01, ** p<0.05, * p<0.1. ‘log’ 

indicates a natural log. Due to the missing data in the human capital variable, 177 observations were dropped in (1), 

(2), and (3). 68 groups (512 obs.) in (1), 1 group (3 obs.) in (2), and 203 groups (1874 obs.) in (3) were dropped 

because of all zero outcomes. 

 

 

A reasonable question is whether the CTSA funding affects patents in different industries 

or technology fields. In other words, is the relationship presented in column (1) of Table 5 

specific to patents in the biomedical field? To examine this question, we collected patent data in 

two different technology fields: Class 361-Electricity: Electrical Systems and Devices; and Class 

726-Information Security. We estimate the effect using the same model specification (i.e., Eq. 3). 

As shown in columns 4 and 6 of Table 6, all CTSA funding coefficients are statistically 

insignificant leading to a conclusion that the effect of CTSA funding on patents seems to be 

biomedical field-specific. Notably, we test only two different classes here; one should be 

cautious about making overly broad generalizations to other fields. 

 

Table 6 Poisson regression: CTSA funding, different patent classes 

Variables 

(1) (2) (3) (4) (5) (6) 

Poisson 

Biomedical patents 

(Count) 

Class 361 patents 

(Count) 

Class 762 patents 

(Count) 

       

CTSA funding (log) 0.00512* 0.00518* 0.00562 0.00643 0.00724 0.00541 

 (0.00280) (0.00268) (0.00444) (0.00451) (0.00754) (0.00712) 

Public R&D (log)  -0.00198  -0.00882  -0.00060 

  (0.00448)  (0.00863)  (0.01027) 

Private R&D (log)  -0.00390  0.00815  0.00029 

  (0.00420)  (0.00816)  (0.00953) 

Human capital (log)  0.28140  0.36519  -0.91471 

  (0.36227)  (0.73272)  (0.88861) 

Large biomedical firms (log)  0.02555  0.08916  0.08800 

  (0.03348)  (0.07086)  (0.06978) 

Per capita income (log)  -0.66308  2.04252**  0.95887 

  (0.47406)  (0.89937)  (1.19784) 

Agglomeration (log)  0.01178  0.48248  -1.37949 

  (0.40512)  (0.55665)  (1.56983) 

Regional economy (log)  0.00214  -0.78395  -0.50014 

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/cls_cbsa/361cbsa_gd.htm
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/cls_cbsa/726cbsa_gd.htm
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  (0.42701)  (0.63131)  (0.88726) 

Year/MSA Fixed effect YES YES YES YES YES YES 

Observations 3,130 3,121 2,310 2,303 1,910 1,907 

Number of MSA 313 313 231 231 191 191 

Note. Robust standard errors are adjusted for MSAs and in parentheses: *** p<0.01, ** p<0.05, * p<0.1. ‘log’ 

indicates a natural log. Due to the missing data in the human capital variable, 177 observations were dropped in 

columns 2, 4, and 6. 68 groups (680 obs.), 68 groups (512 obs.), 149 groups (1490 obs.), 149 groups (1320 obs.), 190 

groups (1900 obs.), 190 groups (1726 obs.) were dropped in each column because of all zero outcomes. 

 

The second column in Panel A of Table 5 shows the relationship between CTSA funding 

and the number of clinical trials conducted. The results indicate that CTSA funding is not 

associated with the clinical trials conducted in a region. The CTSA coefficient in the second 

column of Table 5 is not statistically significant at all. The results rather indicate that the number 

of clinical trials is affected by human capital and population. We discuss this later in Section 6.  

Considering the estimates presented in Panel A of Table 5 combined, one may conclude 

that the effects of CTSA funding on biomedical knowledge production vary depending on the 

types of knowledge. 

 

4.3.3 Three paths from CTSA funding to SBIR grants 

We now present the regression results of Eq. 5, which estimate the effects of CTSA 

funding, biomedical patents, and clinical trials on SBIR grants. The third column, Panel B of 

Table 5 shows the results. The CTSA funding and biomedical patents coefficients are shown to 

be significant at the 0.1 level (p-values are 0.06 and 0.039 respectively). The CTSA coefficient 

on the SBIR grants, 0.00663, is slightly smaller than that obtained earlier in the direct 

relationship between the two (Table 4). We conjecture that this result is because the effect of 

CTSA funding is divided into three paths from CTSA funding to SBIR grants.  

The biomedical patent coefficient on the SBIR grants is 0.127, which means that a 1% 

increase in the number of biomedical patents in a region is associated with increases numbers of 
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SBIR grants. Even though the magnitude is quite small, this result supports the knowledge 

spillover theory of entrepreneurship (KSTE), which links new knowledge production and 

entrepreneurial activity (Acs et al., 2009). This result provides one more piece of evidence that 

KSTE holds in a sectoral context like the biomedical sector.  

The effect of clinical trials on the SBIR grants is negative and not significant as shown in 

the third column of Table 5. In conjunction with the statistically significant relationship between 

biomedical patents and SBIR grants, we may conclude that the effect of biomedical knowledge 

on SBIR grants depends on the type of knowledge as well. 

 

4.3.4 Path analysis 

Using path analysis, we estimate the indirect effects of the CTSA funding on the SBIR 

grants through biomedical patents and clinical trials. Fig. 10 summarizes the path results, 

showing the main relationships between CTSA funding, biomedical patents, clinical trials, and 

SBIR grants. The path coefficients from the structural equation modeling are those obtained from 

the regressions presented in Table 10.  
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Fig. 10 Path analysis result 

Note. Poisson option and year/MSA fixed effects used in Stata. N = 3,633 due to missing values in the human 

capital variable. The robust standard errors are adjusted for 381 MSAs and are in parentheses. ***p<0.01, **p<0.05, 

*p<0.1. The solid lines indicate statistically significant relationships, while the dotted lines indicate insignificant 

ones at the 0.1 level. 

 

 Following the discussion in Section 3, we estimate two indirect paths between CTSA 

funding and SBIR grants: 1) Indirect path 1—through biomedical patents, and 2) Indirect path 

2—through clinical trials.  

 Indirect path 1 from CTSA funding to SBIR grants through biomedical patents is small 

and insignificant. The coefficient for the indirect path 1 is 0.00066 and the p-value is 0.145. The 

coefficient is around one-tenth of the direct path (i.e., 0.00663) as shown in Fig. 10. This result is 

contrary to our expectation that the increased biomedical patents by CTSA funding increase 

SBIR grants. Indirect path 2 from CTSA funding to SBIR grants through clinical trials is also 

small and insignificant. The coefficient is ˗0.0000011, and the p-value is 0.994.  

These small coefficients and high p-values of the indirect paths indicate that CTSA 

funding has a limited effect on SBIR grants through either biomedical patents or clinical trials. 
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On the other hand, the direct path of CTSA funding on SBIR grants was found to be larger and 

significant. The coefficient of the direct effect is 0.00663 and significant at the 0.1 level (p-value: 

0.06). As discussed earlier, the direct path includes the effects of all outputs other than 

biomedical patents and clinical trials. Thus, the large differences could indicate that the indirect 

paths through biomedical patents or clinical trials are not the main channels between CTSA 

funding and SBIR grants. With the reference to the recent literature (e.g., Kim, 2019, Llewellyn 

et al., 2018), one might think that items like scientific publications could be the potential 

connector between public funding for translational research and biomedical entrepreneurship. 

Unfortunately, we could not test this due to the lack of relevant publication data at the MSA 

level.  

 

5 Discussion and policy implications  

A core finding of this analysis is that publicly funded translational research does 

contribute to regional biomedical entrepreneurship. As described, translational research aims to 

facilitate the transformation of basic science into more usable forms of knowledge. Thus, this 

result supports the knowledge spillover theory of entrepreneurship (KSTE), that posits that more 

knowledge leads to higher entrepreneurship (Acs et al. 2009). This is also consistent with the 

widespread belief in the policy community that a region would benefit from vibrant translational 

research activity in promoting biomedical business. It is notable that academic centers in the 

biomedical field observe the growth of vibrant activities at the local level and appreciate 

entrepreneurship (Kimberly & Berglund, 2022).  

However, the estimated magnitude appears relatively small. We offer three potential 

reasons. First, we only analyzed the first 10 years of the CTSA program, thus the effect of the 
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program might not have been fully exerted on the regional biomedical ecosystem for the years 

reviewed in this study. Considering the long-time span involved in biomedical development 

processes (DiMasi et al., 2003; Pisano, 2006), it is conceivable that it might require a longer 

period to observe this relationship more accurately. Second, we could have underestimated the 

effect by including only SBIR grants received by regional entrepreneurs while excluding other 

biomedical activities in a region. As noted earlier in the paper, NIH SBIR recipients account for 

only about 20% of all NIH SBIR applicants (NIH, n.d.-c). If the selected and the unselected 

applicants used the CTSA-related outputs with the same frequency, our measurement could have 

underestimated the true value. Furthermore, NIH SBIR grants are only a small fraction of total 

financing sources for biomedical firms. Thus, those entrepreneurs who did not apply might have 

absorbed the effect of the CTSA program on the SBIR grants, in which case, the CTSA 

coefficient would again be underestimated. Third, the CTSA funding is relatively small 

compared to other public and private biomedical research funding. The annual CTSA funding for 

over 60 institutions is equal to about 500 million dollars which compares to the total annual 

budget of NIH amounting to 39.1 billion dollars in 2019 (Kaiser, 2018).  

Path analysis indicates that the effect of CTSA funding is not transmitted through 

biomedical patents. One conceivable reason is the mismatch between the patent production and 

utilization time, and between the patent production and utilization location. It could be the case 

that entrepreneurs are not limited to using knowledge produced in their particular regions, but 

rather, they search for knowledge more globally. For instance, entrepreneurs might have used 

biomedical patents produced outside their regions from years prior.  

Similarly, the effect of CTSA funding on SBIR grants through clinical trials is also weak. 

We consider three potential explanations. First, some clinical trials are just participating sites that 
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are not influenced by the CTSA activities in a region. According to our data from 

ClinicaTrials.gov, 13.8 percent of clinical studies were conducted on more than 10 sites 

worldwide and 27 clinical studies had more than 1,000 sites worldwide. Thus, the large number 

of participating sites could have attenuated the strength of the relationship between the CTSA 

and clinical trials. Second, clinical trial site selection is heavily influenced by diverse factors 

such as recruitment-related factors (Dombernowsky et al., 2019; Hurtado-Chong et al., 2017; 

Silva, 2018). As shown in Table 5, the number of clinical trials is strongly associated with 

population density and income per capita. Thus, these factors might have influenced the clinical 

trials variable more heavily than other factors, such as CTSA funding. Third, when viewed from 

the perspective of entrepreneurs, there might be a mismatch between needed knowledge and 

produced knowledge. Some entrepreneurs require case-specific information for their 

technological developments and businesses, but the clinical trials conducted in their specific 

regions might not be directly relevant to their entrepreneurial activities. 

Policymakers should intensify efforts to improve the utilization of knowledge produced 

by translational research activity. The CTSA program could, for instance, expand its educational 

program for young researchers regarding entrepreneurship. Policymakers can borrow key 

elements from the I-Corps program of the National Science Foundation supporting the 

commercialization of basic research. Such an expansion of the CTSA program can provide 

young researchers with relevant business education and allow them to get more involved in 

commercialization field. Local governments can also enhance their role in facilitating knowledge 

utilization by regional biomedical entrepreneurs. They may establish information sharing and 

connecting organizations adjacent to research-intensive areas to improve the flow of new 

knowledge between inventors and entrepreneurs. Local governments may also provide more 
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sophisticated support to biomedical entrepreneurs beyond the current SBIR-related support, as 

surveyed by Lanahan and Feldman (2015). For instance, state governments may help the 

establishment of wet-labs for early-stage start-ups like LabCentral in Cambridge, Massachusetts, 

partly supported by the state government (LabCentral, n.d.).  

 

6 Conclusion 

In this paper, we investigated the effects of translational research on biomedical 

knowledge production and entrepreneurship. We constructed an analytical model, positing that 

translational research increases biomedical entrepreneurship by increasing knowledge, namely 

biomedical patents and clinical trials, available to regional entrepreneurs.  

The results show that CTSA funding has increased regional SBIR grants, but the impact 

is relatively small. CTSA funding also increases regional biomedical patents, but it does not 

seem to increase clinical trials conducted regionally. Biomedical patents have a positive 

relationship with regional SBIR grants, but clinical trials do not. Path analysis indicates that the 

effect of the CTSA program on regional SBIR grants is not strongly conveyed through 

biomedical patents or clinical trials. Based on these results, we conclude that translational 

research through the CTSA program has a fairly limited incremental impact on exploitable 

knowledge production and regional biomedical entrepreneurship. However, we will be quick to 

add the caveats in Section 5 above.  

This research contributes to the literature on the intersection of translational research and 

entrepreneurship by explicitly linking translational research to regional biomedical business 

activity. We broadened the scope of analysis in two respects: 1) from the program-recipient level 

to the regional level, and 2) from specific outputs to broader socioeconomic impacts (e.g., 
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biomedical entrepreneurship). In relation to the first point, we used the metropolitan statistical 

area (MSA) as a unit of observation to capture regional economic activities as used by Anselin et 

al. (1997), Florida and Mellander (2010), and Qian and Jung (2017). We also provided empirical 

evidence that translational research contributes to biomedical knowledge production in a region, 

but the knowledge production depends on the type of knowledge. Finally, we added empirical 

evidence that the knowledge spillover theory of entrepreneurship (Acs et al., 2009) holds at the 

sectoral level like the biomedical field.  

As a final note for future research, it should be stressed that the CTSA funding does not 

represent all translational research activities and that the NIH SBIR grants proxy a small fraction 

of biomedical business in a region. Obtaining additional data, including a wider spectrum of 

translational research and biomedical entrepreneurship activities, should improve the accuracy of 

the results. In addition, upon getting the relevant publication data at the MSA level, researchers 

can consider additional indirect paths from the CTSA funding to biomedical entrepreneurship.  
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