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Translational research: From basic research to regional biomedical

entrepreneurship

Sang-Min Park” and Nicholas S. Vonortas”

Abstract
This paper examines the effect of translational research on knowledge production and biomedical
entrepreneurship across U.S. regions. Researchers have earlier investigated the outputs of
translational research by focusing on academic publications. Little attention has been paid to
linking translational research to biomedical entrepreneurship. We construct an analytical model
based on the knowledge spillover theory of entrepreneurship and the entrepreneurial ecosystem
approach to examine the relationship between translational research, biomedical patents, clinical
trials, and biomedical entrepreneurship. We test the model across 381 U.S. metropolitan
statistical areas using 10 years of panel data related to the NIH Clinical and Translational
Science Awards (CTSA) program. CTSA appears to increase the number of biomedical patents,
and biomedical entrepreneurship as proxied by the NIH Small Business Innovation Research
(SBIR) grants. However, the magnitudes of the effects are relatively small. Path analysis shows
that the effect of translational research on regional biomedical entrepreneurship is not strongly

conveyed through biomedical patents or clinical trials.

Plain English Summary
Can programs designed to speed the transformation of research results into products / processes
increase regional entrepreneurship in the biomedical sector? Translational research programs
generally address the gap between basic science and clinical trials / commercialization. We
examine one such program, the National Institutes of Health (NIH)’s Clinical and Translational
Science Awards (CTSA) program, that has supported more than 60 U.S. universities and other

institutions since 2006. We find that the program has positively affected regional biomedical
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entrepreneurship. Translational research also appears to increase the number of regional
biomedical patents. The increased biomedical patents could not, however, be said to have
“caused” the higher levels of regional biomedical entrepreneurship. Policymakers may intensify
efforts to improve the utilization of knowledge produced by translational research activity by
boosting efforts to enhance the entrepreneurial awareness and inclination of translational

researchers.
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1 Introduction

Recent Covid-19 vaccine developments have demonstrated the importance of the rapid
transfer of scientific knowledge to the clinical and commercial fields for public health. The first
U.S. Covid-19 vaccine utilizes a novel technology, messenger RNA (mRNA), developed by a
biotech firm, and reduced the development time significantly (Zimmer et al., 2021). Other
Covid-19 vaccines also have been developed by rapidly transferring new technologies from labs
to hospitals (The Johns Hopkins Coronavirus Resource Center, n.d.; Zimmer et al., 2021).

Rapid transfer between basic research and clinical and commercial applications has been
discussed for a long time. The decreasing productivity—the average FDA approvals per R&D
investment—in the pharmaceutical sector has, however, put this topic once again at the center of
attention (Heller & de Melo-Martin, 2009; Juliano, 2013; Kim, 2019; Schuhmacher et al., 2016;
Wegener & Rujescu, 2013). The slow transfer has been pointed out as one of the reasons for
anemic performance (Institute of Medicine, 2013). Slow connection largely comes from multiple
barriers including risky and expensive clinical trials, data sharing issues, and lack of experts
(Coller & Califf, 2009; Heller & de Melo-Martin, 2009; Institute of Medicine, 2013).

In response to this policy concern, the National Institutes of Health’s (NIH) Clinical and
Translational Science Awards (CTSA) program has been providing over $500 million annually
to more than 60 U.S. universities and non-profit research institutions since 2006 to help address
those obstacles (Kim, 2019; Llewellyn et al., 2018). Through the improvement of translational
research conditions, the CTSA program desires to increase the speed and volume of the transfer
of scientific knowledge into more practical applications (NIH, 2006).

Scholars have analyzed the contribution of the CTSA program to increasing academic
publications (Kim, 2019; Kim et al., 2020; Liu et al., 2016; Llewellyn et al., 2018; Schneider et

al., 2017). However, the literature has yet to address whether and how this specific translational

4



research program contributes to the biomedical business. Also, the earlier appraisals were
generally restricted to the funding of recipient institutions and did not comprehensively consider
other factors surrounding translational research and their interactions. As translational research
aims to facilitate the transfer of basic research into more practical forms of knowledge, it is
important to examine its contribution to the biomedical enterprise, beyond the publication
performance of the grant recipients.

We examine the effect of translational research on biomedical knowledge production and
biomedical entrepreneurship. Based on the knowledge spillover theory of entrepreneurship and
entrepreneurial ecosystem approach, we construct an analytical model and test it across all 381
U.S. metropolitan statistical areas (MSAs) using 10 years of panel data. The NIH CTSA program
is utilized as an approximation for translational research while the NIH Small Business
Innovation Research (SBIR) program serves as an approximation for biomedical
entrepreneurship.

The results indicate a positive association between CTSA funding and regional SBIR
grants, but the magnitude is relatively small. CTSA funding increases biomedical patents but it
does not increase the number of clinical trials conducted regionally. Biomedical patents have a
positive relationship with SBIR grants, whereas clinical trials do not. Path analysis reveals that
the effect of the CTSA funding on SBIR grants is not strongly conveyed through either
biomedical patents or clinical trials. We thus conclude that translational research through the
CTSA program has had a limited impact on exploitable knowledge production and regional
biomedical entrepreneurship.

The rest of the paper is organized as follows. Section 2 presents background on

translational research, literature review, and research questions. In Section 3, we explain how we



construct and operationalize the analytical model. We present results in-detail in Section 4, and
discuss main findings and policy implications in the following section. The last section

concludes.

2 Literature review
2.1 The context of translational research

Translational research has emerged as an important driver to facilitate conversion and
increase biomedical productivity (Fishburn, 2013; Van der Laan & Boenink, 2015; Woolf, 2008;
Zerhouni, 2003). Translational research is generally understood as a concerted effort to produce
new products, services, or treatments from basic research in a rapid manner (Fishburn, 2013).
Van der Laan and Boenink (2015) succinctly summarize the emergence of translational research
as a reflection of the desire to get more benefit from society’s investment in basic research.

The conceptualization of “translational research” varies among researchers and continues
to evolve (Van der Laan & Boenink, 2015). Originally, translational research was viewed as a
two-phase process: the translation from basic science to human studies; and the translation of
new knowledge into clinical practice and health decision-making (Sung et al., 2003). NIH (2006)
has a similar definition, found in its first request for application for the Institutional CTSA
program.

In the biomedical sector, researchers have recently more narrowly conceptualized the
translation framework, which spans from basic science to translation to community (Blumberg et
al., 2012). This more elongated framework has been reflected in the NIH’s CTSA funding
opportunity announcement (NIH, 2012). The core elements in the newer translational research

framework are from basic science to translation to patients—processes to convert discoveries in



the laboratory into clinical trials (Fishburn, 2013). Similarly, the FDA also identified this part as
a “critical path” to drug development (Woodcock & Woosley, 2008, p. 4). Many biomedical
researchers focused on a narrow conception that usually covered the area “between basic
science...and new approaches for pre-clinical work™ (Van der Laan and Boenink, 2015, p. 37).

The domain between basic research and the near-market can be recognized as a market
failure because of the sub-optimal distribution of resources such as venture capital funding.
Public agencies like the NIH strongly support basic research, while the private sector heavily
invests in marketable products or services. However, the middle part—the so-called “valley of
death”—is often regarded as too risky for the private sector to invest in because it requires huge
investments (Butler, 2008), along with the uncertainty of getting a good return on such
investments. Fig. 1 illustrates the conceptualization of the valley of death along the translational
continuum in the biomedical sector.

The gap between basic science and clinical science is often referred “translational gap” in
the biomedical sector (Seyhan, 2019, p. 6). Crossing the gap requires not just enough funding,
but also strong support to advance discoveries in the lab toward the bedside. Thus, public
intervention is justified to mitigate the uncertainty and a large number of resource inputs when
developing scientific knowledge, products, and services. Proper policy measures have the
potential to shorten the time required for the development of biomedical products and services,

thereby contributing to the greater public good.
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Fig. 1 Illustration of valley of death in biomedical sector

Note: Adapted from Seyhan (2019, p.7) and Reis et al. (2008, p.10)

2.2 Extant literature and research questions

Several scholars have studied the effects of translational research on academic
publications, especially by analyzing the CTSA program (Kim, 2019; Kim et al., 2020; Liu et al.,
2016; Llewellyn et al., 2018; Schneider et al., 2017). A strong emphasis has been paid to the
number of articles published, among other outputs, resulting from the CTSA program.
Investigators have shown that the CTSA program has increased the recipients’ numbers of
publications (Kim, 2019; Liu et al., 2016; Llewellyn et al., 2018).

While publication is one critical channel to advance and spread knowledge in the
biomedical sector (Llewellyn et al., 2018), the literature has yet to address whether or how the
CTSA program contributes to economic activity. Economic activity matters because translational
research was initiated to facilitate the conversion of basic research into clinical and commercial
areas (NIH, 2006; Van der Laan & Boenink, 2015). Furthermore, the CTSA program considers

collaboration with industry and other stakeholders as one of its objectives (NIH, 2006, 2017).



The expansion of the scope of current research to address the impact of translational
research on the commercialization of the produced knowledge would be helpful in deepening our
understanding. For instance, one can consider whether translational research increases the
production of commercially exploitable knowledge, as approximated by biomedical patents and
clinical trials, and the extent to which this knowledge enhances biomedical entrepreneurship.

The extant literature on translational research also lacks a general theoretical framework
to analyze the effects of translational research comprehensively. Instead, investigators have
narrowly restricted their analysis only to the CTSA program recipients (e.g., Kim, 2019; Liu et
al., 2016; Llewellyn et al., 2018; Schneider et al., 2017). Furthermore, these examinations have
not taken into account the fact that translational research is a part of the complex biomedical
ecosystem. Indeed, diverse stakeholders (e.g., universities, biomedical firms, and
pharmaceuticals) take part in the process that moves a product or a service from its scientific
discovery to clinical and commercial fields (Fishburn, 2013; Pisano, 2006). Given that
translational research covers a wide spectrum within the broader biomedical ecosystem, it is
imperative to take into account how translational research interacts with other components in the
system (Simons et al., 2020).

In this vein, a more systemic focus on relevant interactions could lead to a more
comprehensive analysis of the effects of translational research. Additionally, we assert that a
relevant conceptual framework is needed linking translational research to economic and business
activities more comprehensively. We propose such an analytical model in the next section.

Knowledge is typically assumed to spill over from its original source. However, the flows
of the ideas and knowledge are hampered by the so-called “knowledge filter” including

institutional, geographical, and economic constraints (Almeida & Kogut, 1999; Carlsson et al.,



2009). Audretsch and Lehmann (2005, p. 1195) define knowledge filter as “the gap between new
knowledge and what Arrow (1962) referred to as economic knowledge or commercialized
knowledge.” The knowledge filter concept is in line with the notion of “barriers to transmission”
proposed by Hayter (2013).

The literature in the field of the knowledge spillover theory of entrepreneurship (KSTE)
provides a theoretical foundation for explaining knowledge production and utilization (Ghio et
al., 2015). Economic agents like entrepreneurs utilize the new knowledge to open opportunities
by creating new firms to exploit the unused knowledge that firms or research organizations have
generated (Acs et al., 2009; Audretsch, 1995; Braunerhjelm et al., 2010; Hayter, 2013). This
concept envisages entrepreneurship as an effective vehicle enabling the utilization of new
knowledge. At the same time, the KSTE implies that knowledge does not flow seamlessly from
the inventor to the innovator; neither is all knowledge commercially useful in its original form
(Braunerhjelm et al., 2010; Hayter, 2013).

Based on the KSTE, it is expected that more knowledge production and spillover would
lead to higher levels of entrepreneurship (Acs et al., 2009). By definition, translational research
is expected to generate more usable forms of knowledge, such as publications, patents, and
clinical trials. This, in turn, could affect entrepreneurship, since entrepreneurs can utilize
converted knowledge to start a new business, for instance, in the biomedical sector. Thus,
translational research activities would seem to facilitate knowledge exchange and help overcome
obstacles associated with the traditional linear model of technology transfer (Hayter et al., 2020).
It is in this sense that the KSTE can help us understand how translational research can affect

biomedical entrepreneurship through the conversion and utilization of knowledge.
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Another useful thread of research that provides insights for the current study is the
entrepreneurial ecosystem approach. Explaining what makes a particular region or city achieve
more than its counterparts has been an important focus for researchers and practitioners around
the globe (Brown & Mason, 2017; Feldman, 2014). The entrepreneurial ecosystem approach has
emerged as a conceptual framework to explain the dynamics within a system (Brown & Mason,
2017). While there is no standard definition of an entrepreneurial ecosystem (Stam & Van de
Ven, 2021), scholars proposed several working terms. For instance, an entrepreneurial ecosystem
is a dynamic system with diverse stakeholders, which can include entrepreneurs, universities,
government, and consumers (Audretsch & Belitski, 2017). More broadly, Stam (2015) defined
the entrepreneurial ecosystem as “a set of interdependent actors and factors coordinated in such a
way that they enable productive entrepreneurship” (p. 1765). While there has been some
criticism (See Stam & Van den Ven, 2021), the entrepreneurial ecosystem approach has provided
a compelling framework to analyze regional context (e.g., Mack & Mayer, 2016; Spigel, 2017).

The sectoral perspective of the biomedical sector should also be emphasized. Every
sector has different knowledge and technology bases, as well as different types of actors,
networks, and institutions (Malerba, 2004). Thus, entrepreneurial ecosystems could be formed or
worked based on industry-specific characters (Mason & Brown, 2014). As Pisano (2006)
described, the biotech sector has its own particular anatomy, quite distinct from other sectors like
information technology. Considering that the biomedical industry is a science-based business, in
this paper we define biomedical entrepreneurship as knowledge-intensive entrepreneurial
activities that utilize knowledge to exploit opportunities within the biotechnology sector
(Malerba & McKelvey, 2020; Pisano, 2006). In light of the KSTE and the entrepreneurial

ecosystem approach, we consider the following two research questions. First, to what extent do
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increased level of knowledge translate into biomedical entrepreneurship? Second, do biomedical

patents and clinical trials serve as effective forms of knowledge connecting translational research
to biomedical entrepreneurship? Further downstream than academic publications, we would like

to explore whether these two well-known forms of knowledge are the connecting rods between

basic research and biomedical entrepreneurship as described by scholars (e.g., Pisano, 2006).

3 Methodology
3.1 Empirical context

To support and facilitate the translation process, the NIH initiated a translational research
program called the Clinical and Translational Science Awards (CTSA) program in 2006.
Through it, the NIH provides about $500 million annually to approximately 60 universities and
nonprofit institutes (Llewellyn et al., 2018; NIH, 2019). The CTSA program is designed “to
transform the local, regional, and national environment for clinical and translational science,
thereby increasing the efficiency and speed of clinical and translational research” (NIH, 2006).
To achieve its goals, the program supports “training, research and infrastructure to help
researchers engage in clinical research—and cross the valley of death” (Butler, 2008, p. 841). In
particular, the funded projects and initiatives sponsor activities that influence the translation
environment. For instance, SMART IRB provides a platform to help researchers and institutions
researching multiple sites that require integrated collaboration. One thing to note is that unlike
other NIH awards supporting projects based on diseases, specialties, and investigators, the CTSA

program supports improvements specifically in the translational environment (NIH, 2006).

3.2 Model specification
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We construct an analytical model for biomedical knowledge production and biomedical
entrepreneurship. Considering that translational research helps facilitate the conversion of basic
science into more usable forms of knowledge, we expect that a vibrant translational research
activity increases more useful and commercially exploitable knowledge production. Then,
entrepreneurs have a wider set of relevant knowledge stocks to draw from. In this respect, the
knowledge spillover theory of entrepreneurship enables us to analyze whether translational
research increases biomedical entrepreneurship.

We explore the linkage between translational research and biomedical entrepreneurship,
biomedical patents, and clinical trials. Patents are regarded as an important milestone before
moving toward commercialization (Reitz & Czupich, 2014). Commercialization in the
biomedical sector generally occurs through the licensing of intellectual property rights (Kettler,
2000; Pisano, 2006; Scherer, 2010). Each stage of clinical trials generates critical information
regarding safety, efficacy, and others, and they are pre-requisite for commercialization in the
biomedical sector (NIH, n.d.-a; Varmaghani et al., 2020). In sum, our model posits that by
increasing such exploitable knowledge translational research endows entrepreneurs in a region
with a wider set of relevant knowledge stock to utilize.

In the construction of the model, we take into account the factors that influence
biomedical entrepreneurship. Translational research is not a stand-alone element but an
interconnected factor in the biomedical development system. We identify regional factors which
may affect regional biomedical entrepreneurship, including public and private biomedical R&D
investment, human capital, the presence of large biomedical firms, per capita income, population

size, and the size of the regional economy. Fig. 2 depicts a schematic description of the model.
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In Fig. 2, the thick black arrow from translational research to biomedical
entrepreneurship shows the “direct” relationship between two sides. For further exploration of
the detailed relationship, we separate biomedical patents and clinical trials from other outputs,
and investigate their roles in bridging translational research and biomedical entrepreneurship.
Two red dashed arrows from translational research to biomedical entrepreneurship through
biomedical patents and clinical trials depict the “indirect” relationships between two sides.
Regional factors are included as control variables in the model.

In the following sections, we first focus on estimating the direct relationship between
translational research and biomedical entrepreneurship. Subsequently, we estimate the indirect
relationships in order to investigate how the indirect effects of translational research affects

biomedical entrepreneurship through biomedical patents and clinical trials.

~ Biomedical patents ~

- > Clinical trials ~ ~ S e

Biomedical
Entrepreneurship
(NIH SBIR)

-

Translational Research
(NIH CTSA)

A 4

Regional Factors:
Public biomedical R&D;
Private biomedical R&D;

Human capital;
Large biomedical firms;
Size of regional economy;
Per capita income;
Agglomeration;
Regional economy size

Direct effect — =——f

Indirect effect — — »

Fig. 2 A schematic description of the analytical model

3.3 Operationalization of the model
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We empirically test the analytical model across all 381 U.S. metropolitan statistical areas
(MSAs!) with a panel dataset ranging from 2006 to 2015. The CTSA program is utilized herein
as an approximation for translational research while the NIH SBIR program serves as an
approximation for biomedical entrepreneurship.

First, we begin with estimating the direct effect of CTSA funding on SBIR grants.
Endogeneity is one challenge in estimating the relationship between CTSA funding and SBIR
grants. Institutions receiving CTSA funding are not randomly distributed, but they have been
selected based on scientific competence among the applicants (NIH, 2006). In addition, the SBIR
program selects small firms with “feasibility, technical merit, and commercial potential” (NIH,
n.d.-b). Thus, the competitiveness in winning the CTSA funding could be related to the
capability of getting the SBIR grants at the regional level.

To address the possible endogeneity, we employ the difference-in-difference (DID)
method. The treatment group is comprised of MSAs with CTSA funding, while the comparison
group is MSAs with no CTSA funding. A conventional DID equation can be written as Eq. 1.
The dependent variable, SBIR ., counts the number of SBIR grants received by small firms in
an MSA ,, in year t. We use the number of grants as a proxy for entrepreneurship (Lee et al.
2004; Qian et al. 2013).

SBIR ;s = au + B1 - (Treat » X Post ;) + Y - Treat ,, + A - Post s + € (Eq. 1)

One thing to note is that MSAs in the treatment group receive funding in different time
periods, of different durations and different funding sizes. MSAs in the comparison group have

zero CTSA funding throughout the whole period. Fig. 3 illustrates the difference in funding

1 An MSA is defined as an area with “at least one urbanized area of 50,000 or more population, plus adjacent
territory that has a high degree of social and economic integration with the core as measured by commuting ties
(Office of Budget and Management, 2018).
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between the treatment and comparison regions. The solid line represents a profile of one MSA in
the treatment group. In total, there are 46 different CTSA funding profiles, as all 46 MSAs in the
treatment group have different funding sizes during different periods. The MSAs in the
comparison group are represented by the dotted line in Fig. 3, which shows zero value for the

whole period.

An MSA
in the treatment group
(in solid line)
CTSA
funding

All MSAs
in the comparison group
(in dotted line)
r—— I EERERERR————..
2006 Year 2015

Fig. 3. Imaginary Profiles of CTSA Funding in the Treatment and Comparison Groups

In line with previous research (Angrist & Pischke, 2008, 2014; Bertland et al., 2004), we
replace the interaction term in Eq. 1 with CTSA funding, as shown in Eq. 2. Here, the CTSA
funding variable, CTSA ., measures the degree of treatment in MSA n, in year . Accordingly,
Eq. 2 includes the MSA dummy (Y ;) and the time dummy (A ;). X , as control variables. B> is
the coefficient of our interest. Standard errors are calculated by a robust method and clustered at
the MSA. As the dependent variables are count variables that are highly right-skewed, we use the
Poisson option.

SBIR =02+ Bor CTSA e+ 8 X+ Y m + X1+ € 2 (Eq. 2)
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Second, we estimate the effects of translational research on biomedical knowledge
production. Eq. 3 and Eq. 4 estimate the effects of CTSA funding on biomedical patents and on
clinical trials respectively. We use the same DID design as in Eq. 2.

Biomedical patent ;=03 + B3 CTSA i+ 6 X+ Y o + A+ € i3 (Eq. 3)

Clinical trials ;=04 + B4- CTSA i + 6 Xt + Y m A1+ € g (Eq. 4)

Third, we estimate the indirect effect of translational research on biomedical
entrepreneurship through biomedical patents and clinical trials. As shown in Fig. 2, biomedical
patents and clinical trials are endogenous variables. They are affected by the CTSA funding and
other regional conditions. They also affect another endogenous variable, SBIR grants. In this
estimation, we consider three paths between the CTSA funding and the SBIR grants: 1) Indirect
path 1—through biomedical patents; 2) Indirect path 2—through clinical trials; 3) Direct path—
all other outputs except biomedical patents and clinical trials. Eq. 5 describes three paths
between the CTSA funding and the SBIR grants.

SBIR s = as + Bs - Biomedical patent ,,; + Bs - Clinical trials ,; + B7 CTSA i+ 6 - X s +
Y m+ Aot € ms (Eq. 5)

We use path analysis/structural equation modeling to solve the set of simultaneous
equations indicated by Eq. 3, 4, and 5. While the negative binomial model might also be used
due to the count variables with over-dispersion, the Poisson option is used here. According to
Cameron and Trivedi (2010), the cluster-robust standard error can be used to address both over-
dispersion and serial correlation. Standard errors are calculated by a robust method and clustered
at the MSA. We also show the result with the negative binomial estimates in the following
section.

Regarding the decision rule of statistical analysis, we use the threshold of 0.1 and report
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the precise p-value. Amrhein et al. (2019, p.306) suggested that researchers need to discuss the
meaning of the estimates more explicitly, as well as provide a precise number for the p-value if
reported, rather an overly relying on “dichotomous” decision rules, like using p-values.
Following their recommendations, we report the precise p-values of the main results and then

discuss the implications in-depth.

3.4 Data and variables

Table 1 lists the variables, measures, and data sources. The NIH SBIR grant data were
obtained from the NIH RePORTER (NIH, n.d.-d). We include only new SBIR projects in Phase I
and Fast Track?, which means that renewed, supplemental, or extension projects have been
excluded. Projects in Phase II also are excluded because they are only available to successful
Phase I projects, which are influenced by diverse factors (e.g., firms’ management). The CTSA
funding data were likewise obtained from the NIH RePORTER (NIH, n.d.-d). We use the
funding opportunity announcements (FOAs)® of the CTSA program to identify relevant projects
(Liu et al., 2016).

Biomedical patent data were obtained from the U.S. Patent and Trademark Office (n.d.).
Following Cortright and Mayer (2002), we include three biomedical-related technology classes:
Class 424-Drug, Bio-Affecting, and Body Treating Compositions (includes Class 514); Class
435-Chemistry: Molecular Biology and Microbiology; and Class 800-Multicellular Living

Organisms and Unmodified Parts Thereof and Related Processes. The patent data include the

2 Fast Track allows the submission of both Phase I and Phase II together to reduce the funding gap between phases.
A Fast Track submission is recognized the same as a “new” project, just like new Phase I projects in the NIH
RePORTER system (NIH, n.d.-e).

3 The FOA numbers used in this research: RFA-RM-06-002, RFA-RM-07-007, RFA-RM-07-002, RFA-RM-07-006,
RFA-RM-08-002, RFA-RM-09-004, RFA-RM-09-019, RFA-RM-10-001, RFA-RM-10-020, RFA-RR-10-007,
RFA-RR-11-004, RFA-TR-12-006, RFA-TR-14-009.
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granted utility patents to an MSA from 2006 to 2015, which is the most recent year categorized
at the MSA level by the U.S. Patent and Trademark Office.

We obtained clinical trial data from the U.S. National Library of Medicine’s
ClinicalTrials.gov website. According to the U.S. law enacted in 1997 and 2007, and the
decision by the International Committee of Medical Journal Editors in 2005, all clinical studies
should be registered to the ClinicalTrials.gov registry (Califf et al., 2012). We downloaded
180,926 clinical studies based on the first study submission date between 2004 and 2015. Some
clinical studies were conducted at multiple sites, also including in foreign countries. We removed
those that had study locations outside the U.S. After this cleaning process, we were left with

523,341 U.S. clinical trial locations.

Table 1 Variables, measures, and data sources

Variable Measure Source

NIH SBIR grants NIH SBIR (New projects in Phase I and Fast Track) grants NIH RePORTER

Biomedical patents ~ Number of patents in biomedical-related technology U.S. PTO
Clinical trials Number of clinical trials conducted U.S. National
Library of Medicine
(ClinicalTrials.Gov)
CTSA funding Size of the CTSA funding NIH RePORTER
Public R&D R&D expenditure in the life science and medical field at NSF HERD Survey
the universities (after subtracting the CTSA funding)
Private R&D R&D expenditure by publicly-traded biomedical firms Compustat
Large biomedical Number of large biomedical firms belonging to the top 25 Compustat
firm percent in annual revenue
Human capital Percentage of adults (25+) holding a bachelor’s degree or U.S. Census
above
Per capita income Per capita income U.S. BEA
Agglomeration Population per area (i.e., square miles) U.S. Census
Regional economy Regional GDP U.S. BEA
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Variables representing regional conditions are added as control variables. First, regional
public R&D spending in the life science and medical research field is added to represent the
strength of scientific knowledge. As there is no aggregated public R&D spending data in life
science and medical fields at the MSA level, we collected university R&D expenditures from the
Higher Education Research and Development (HERD) Survey (National Science Foundation,
2011, 2015, 2018). The R&D spending data has been aggregated at the MSA level. As the
HERD data may include the CTSA funding, we subtracted CTSA funding from them to
construct the final dataset.

Second, we measure the R&D spending of biomedical firms to control the effect of
private R&D in that sector. Firm data is obtained from Compustat, a collection of financial
information of publicly traded companies. Biomedical firms are selected based on North
American Industry Classification System (NAICS) codes*, defined by DeVol et al. (2004).

Third, we approximate the regional human capital by the percentage of adults (above 25)
holding at least a bachelor’s degree or above (Florida, 2002; Qian et al., 2013). The data is
collected from the U.S. Census (n.d.-a).

Fourth, the number of large biomedical firms is added to proxy the role of the established
firms in the biomedical ecosystem as suggested by the anchor tenant theory (Agrawal &
Cockburn, 2003; Feldman, 2003). Firm data is obtained from Compustat. We counted
biomedical firms belonging to the top 25 percent (i.e., 75th percentile) in terms of annual
revenue to include relatively large firms.

Fifth, we add per capita income to represent the individual’s ability to start and support a

new business. Wallsten (2001) uses this variable in estimating the probability of winning the

4 NAICS (2017 version) codes used in this research: 325411, 325412, 325413, 325414, 339111, 339112, 339113,
339114, 339115, 339116, 335410, 335417, and 541714.
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SBIR grant at the MSA level. The data is obtained from the Bureau of Economic Analysis
(BEA) (n.d.-a).

Sixth, following Qian et al. (2013) we use regional population density since
agglomeration can facilitate knowledge sharing through close and frequent interactions. The
population and area data were obtained from the U.S. Census (n.d.-b, n.d.-c). Populations
between 2006 and 2010 are calculated by interpolating the population in 2000 and 2010 due to
the lack of data at the MSA level.

Seventh, the size of the regional economy is added to the list of controls. Access to
finance is an important element in expanding venture business and further growth (Isenberg,
2011). It 1s more critical in the biomedical sector because of large resource input needs and a
high level of uncertainty (DiMasi et al., 2016; Pisano, 2006; Sacks et al., 2014). We utilize
regional GDP to approximate the size of the regional economy and the strength of venture capital
financing. The GDP data was obtained from the U.S. Bureau of Economic Analysis (n.d.-b).
We used the zip code-MSA code conversion file provided by the U.S. Department of Housing
and Urban Development (n.d.) to aggregate the data at the MSA level. With the data introduced,

we constructed a panel data set of 10 years from 2006 to 2015.

4 Findings
4.1 Descriptive statistics
Summary statistics and the correlation matrix of key variables are presented in Table 2

and 3, respectively.
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Table 2 Summary statistics

CTSA-funded MSAs

Non-CTSA-funded MSAs

Variables Obs Mean SD Min Max Obs. Mean SD Min Max
SBIR grants (count) 460 5.95 6.85 0 42.00 3,350 0.28 0.75 0 7.00
Biomedical patents (count) 460 114.81 173.22 0 996 3,350 5.06 12.83 0 190
Biomedical patents (count, log) 460 3.89 1.32 0 6.90 3,350 0.93 1.14 0 5.25
Clinical trials (count) 460 656.41 547.94 80 3,204 3,350 66.09 131.64 0 1,821
Clinical trials (count, log) 460 6.20 77 4.39 8.07 3,350 3.25 1.41 0 7.51
CTSA funding ($M) 460 12.48 13.84 0 99.46 3,350 0 0 0 0.00
CTSA funding (8, log) 460 1273 6.79 0 18.42 3,350 0 0 0 0.00
CTSA funding (count: Institution) 460 1.02 0.93 0 6 3,350 0 0 0 0
Public R&D ($M) 460 496.03 429.20 0 2434.69 3,350 16.03 46.30 0 531.79
Public R&D (8, log) 460 19.15 3.32 0 21.61 3,350 7.72 7.79 0 20.09
Private R&D($M) 460 1488.64 5445.69 0 4572791 3,350 17.49 212.26 0 4789.50
Private R&D (8, log) 460 15.09 7.41 0 24.55 3,350 2.37 5.78 0 22.29
Human capital (%) 460 34.46 6.22 24.00 55.20 3,173 24.80 7.58 10.0 60.60
Human capital (log) 460 3.52 0.17 3.18 4.01 3,173 3.17 0.30 2.30 4.10
Large biomedical firms (count) 460 3.87 7.69 0 44.00 3,350 0.12 0.46 0 6.00
Large biomedical firms (count, log) 460 0.87 1.06 0 3.80 3,350 0.07 0.25 0 1.95
Per Capita income ($T) 460 45.55 8.18 31.96 85.01 3,350 37.37 7.96 18.73 117.15
Per Capita income ($, log) 460 10.71 0.17 10.37 11.35 3,350 10.51 0.18 9.84 11.67
Agglomeration (count: Thousands) 460 0.66 0.60 0.09 2.99 3,350 0.28 0.76 0.01 13.18
Agglomeration (count, log) 460 6.16 0.81 4.49 8.00 3,350 5.11 0.91 1.92 9.49
Regional economy ($M) 460  182,264.6 245,309.5 6,455.3 1,618,366 3,350 16,890.3  28,227.6 1,477.2 315,623.5
Regional economy ($, log) 460 2527 1.17 22.59 28.11 3350 2298 0.93 21.11 26.48

Note. The panel data set has a research period from 2006 to 2016 (10 years) and 381 MSAs. 177 missing values in the human capital variable due to the
changes in MSAs. ‘log’ indicates a natural log. $M indicates a million dollars and $T for a thousand dollars. ‘0’ in Min. in the line of CTSA funding (Count:
Institution) is due to the periods before the treatment group got the CTSA institution between 2006 and 2015.
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Table 3 Correlation matrix

Variables 1 2 3 4 5 6 7 8 9 10 11
1. SBIR grants (count) 1
2. Biomedical patents (log) 0.639*** ]
3. Clinical trials (log) 0.489%** (0.695%*** |
4. CTSA funding (log) 0.579%** (0.608%** (.528*** |
5. Public R&D (log) 0.370%** (0.609%** (.584%** (.391%** |
6. Private R&D (log) 0.537*** 0.675%** (.591%** (.517*** (0.419%** |
7. Human capital (log) 0.378%** (0.654%** (.511%** (0.361*** (.583*** (0.436%** |
8. Large biomedical firms (log) 0.800*** (0.638*** (.505%** (.507*** (0.359%** (0.676%** (0.353*** |
9. Per capita income (log) 0.393%** ().523%** ().415%** (.347*** (.247%** (.384%** (.592%** (.379%** |

10. Agglomeration (log)
11. Regional economy (log)

0.417*%% (0.524*%* (0.510%%* (.340%** (.337#** (0.461%** (0.271%**
0.599*#* (.763*** (.826%** 0.566%** 0.614%** (0.681*** (.465%**

0.424%#% (.323*#* |
0.639%*#* (.523*** (.615%** |

Note. * p<0.05, ** p<0.01, *** p<0.001. ‘log’ indicates a natural log.
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4.2 Parallel trends

With a DID design, the treatment and comparison groups need to have common trends
before the treatment. We examine whether the two groups have common trends in our dependent
variables—SBIR grants, biomedical patents, and clinical trials—respectively.

Fig. 3 presents the trend for the SBIR grants. As this study is not an ordinary pre- and
post-treatment setting, there is no shared variable to indicate the treatment point. The treatment
years are centered on the first CTSA funding years of each treated MSA. The comparison group
is normalized in 2006, the first CTSA program funding year. The y-axis is the mean SBIR count.
The top line represents the treatment group, and the bottom line is the comparison group. The

dotted line represents the mean SBIR counts for all the MSAs (entire group).
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Comparison grou

Fig. 3 The trends of the NIH SBIR grant

Note: Treatment group (top line), comparison group (bottom line), entire group (middle line)

For the five years prior to the treatment, all three lines declined: the treatment group by
7.4%"; the comparison group by 14.8%; and the entire group by 9.4%. This indicates that the two

groups had very similar declining trends before the treatment. The overall declining trends are
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consistent with other NIH SBIR award data, presented in Fig. 4, which continued to decline over

our research period (NIH, n.d.-e).
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Fig. 4 The trend of the NIH SBIR awards (Phase I and Fast Track)

Source: Authors, based on the NIH Data Handbook. National Institutes of Health (n.d.-¢).

After the treatment, the slopes are quite different: the treatment group declines only by
5.7%; the comparison group declines by 29.8%; and the entire group declines by 27.9%. The
comparison group seems to follow the general declining trend of the SBIR grants, whereas the
treatment group shows a slight upward trajectory with some fluctuations. Thus, the data indicate
that the two groups have common trends before the funding and changed courses afterwards.

To examine the data further, Fig. 5 presents each group’s ratio to the entire group’s mean
SBIR grants. Each group’s line in Fig. 5 was calculated by dividing the mean of the SBIR grants
of each group by the mean of the SBIR grants of the entire group. For instance, the treatment
group’s mean SBIR grants are six times larger than the mean SBIR grants of the entire group of
MSAs. Before the treatment, the two groups have similar parallel trends, but after the treatment,

the treated line increases slightly and steadily, whereas the comparison line declines.
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Similarly, we also review the trends of biomedical patents and clinical trials. Before the
treatment (funding), the two groups’ trends in biomedical patents show similar, parallel trends.
After the treatment, the treated line climbs rapidly, whereas the untreated line goes flat (See Fig.

6 and 7). Thus, we conclude that two groups suffice parallel trend conditions for the DID design.
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Fig. 6 The trends of biomedical patents

Note: Treatment group (top line), comparison group (bottom line), entire group (middle line)
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However, we found that clinical trials of these two groups have different trends before
the treatment: the treatment group rose by 24% and the comparison group rose by 88% (See Fig.
8 and 9). This limits the ability to make a causal claim when estimating the effect of CTSA

funding on clinical trials.
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Fig. 8 The trends of clinical trials

Note: Treatment group (top line), comparison group (bottom line), entire group (middle line)
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4.3 Results
4.3.1 Direct relationship between CTSA funding on the SBIR grants

We first estimate the effect of CTSA funding on the SBIR grants (Eq. 2). Panel A in
Table 4 presents the results. Column (3) is the model with the year and MSA fixed effects. The
CTSA coefficient is 0.00725 and statistically significant at the 0.05 level (p-value: 0.047). The
result indicates that a 1% increase in the CTSA funding is expected to increase the number of
SBIR grants in an MSA by 0.00725%°. With the fixed effect negative binomial estimate, we
have virtually the same coefficient, but a slightly larger standard error (p-value: 0.086).
Considering that we cannot get the clustered-robust standard error using negative binomial
model and the over-dispersion can be addressed by the Poisson model (Cameron & Trivedi,
2010), the estimate with the Poisson holds. Given that the average of SBIR grant counts in the

treatment group is 5.95, doubling the CTSA funding size may change the received SBIR grants

5 The Poisson regression has the exponential form: E(y|x) = exp (x'B).
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by 0.043 (=5.95*0.00725). In sum, we found that CTSA funding increases the number of SBIR
grants, but the effect size seems relatively small.

We also tested the time lag effects for the CTSA and SBIR association by lagging the
CTSA funding. The CTSA coefficient increases to 0.00952 which is statistically significant at
the 0.01 level (p-value: 0.001) at the length of 5 years. The coefficient is slightly reduced to
0.00822 (p-value: 0.062) at the length of 6 years, but it is still larger than the original coefficient.

The CTSA coefficients are small and insignificant with other time lags.

Table 4 Poisson regression: CTSA funding to SBIR grants

Panel A Panel B
(@) 2) 3) “4) (©)
Variables Poisson Poisson OLS
SBIR grants (Count) SBIR grants SBIR grants
(Count) (8, log)
CTSA funding (log) 0.00715%* 0.00729**  0.00725%* 0.004463%*
(0.00366)  (0.00368)  (0.00365) (0.02671)
CTSA institution (count) 0.06297%**
(0.02343)
Public R&D (log) -0.00146 -0.00234 -0.00262 0.00539
(0.01309)  (0.01320) (0.01315) (0.02495)
Private R&D (log) -0.00555 -0.00533 -0.00562 0.01867
(0.00657)  (0.00679) (0.00701) (0.03907)
Human capital (log) -0.69000 -0.76102 -0.76688 -0.52955
(0.62904)  (0.63107) (0.62288) (0.79447)
Large biomedical firms (log) -0.11340 -0.11183 -0.09766 0.42355
(0.08407)  (0.08231) (0.08084) (0.58331)
Per capita income (log) 0.62325 0.54059 3.01921
(0.83169) (0.84510) (2.26751)
Agglomeration (log) 0.19679 0.31258 0.74944
(0.63845) (0.63674) (0.67024)
Regional economy (log) 0.23878 0.23534 -0.18227
(0.59313) (0.59122) (1.39347)
Constant -25.95169
(22.47628)
Year/MSA Fixed effect YES YES YES YES YES
Observations 1,810 1,759 1,759 1,759 3,633
Number of MSA 181 178 178 178 381
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Note. Robust standard errors are adjusted for MSAs and in parentheses: *** p<0.01, ** p<0.05, * p<0.1. ‘log’
indicates a natural log. Due to the missing data in the human capital variable, 177 observations were dropped in (2),
(3), (4), and (5). 200 groups (2,000 obs.) in (1) and 203 groups (1874 obs.) in (2), (3), and (4) were dropped because
of all zero outcomes.

To check the robustness of the results, we utilize the number of CTSA institutions as the
main predictor instead of CTSA funding. We draw on the anchor tenant hypothesis, which posits
that large firms provide supports for regional innovation activities (Agrawal & Cockburn, 2003;
Feldman, 2003). Given that CTSA institutions are generally large universities with hospitals and
substantial research capabilities in the region, one can assume that they work like large
established organizations facilitating innovation. The NIH calls CTSA-funded institutions
“hubs,” and emphasizes collaboration with regional biomedical networks (NIH, 2012, 2016;
Obeid et al. 2014). Even though there might be some variations in the scope of their roles in the
MSA, it is reasonable to assume that CTSA institutions have similar functionality in facilitating
translational research in a particular region. The results are presented in column (4), Panel B of
Table 4. The CTSA institution coefficient is highly significant (p-value: 0.007). It indicates that
additional CTSA institutions in an MSA increase the number of SBIR grants by 6.3%.

As a second robustness check, we utilize the aggregated monetary value of the SBIR
grants as a dependent variable instead of using the SBIR grant counts. Column (5), Panel B of
Table 4 shows the results of the Ordinary Least Squares (OLS). The dependent variable is SBIR
funding in log form. We found that the CTSA funding coefficient is significant at the 0.1 level
(p-value: 0.096), and the results show that a 1% increase in CTSA funding increases the SBIR
funding by 0.045%. Thus, the robustness checks using the number of CTSA institutions as the
main independent variable and the monetary value of SBIR grants as the dependent variable

support the main findings in Panel A in Table 4.
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4.3.2 The effect of CTSA funding on biomedical knowledge production

In this section, we estimate the effect of the CTSA funding on biomedical patents and
clinical trials. To do so, we estimate Eq. 3 and 4. Table 5 shows the results. The first column in
Panel A presents the relationship between CTSA funding and biomedical patents. The coefficient
is significant at around 0.05 level (p-value: 0.053). The estimate indicates that a 1% increase in
CTSA funding increases the number of biomedical patents by 0.0518%. As the mean of
biomedical patents in the CTSA-funded MSAs is 114.8, doubling the CTSA funding can change

the number of biomedical patents by 0.6 (=114.8*0.0052) on average.

Table 5 Poisson regression: CTSA funding, biomedical patents, clinical trials, SBIR grants

Panel A Panel B
(1) @) (3)
Variables Poisson Poisson
Biomedical patents Clinical trials SBIR grants
(Count) (Count) (Count)
CTSA funding (log) 0.00518%* 0.00140 0.00663*
(0.00268) (0.00196) (0.00352)
Biomedical patents (log) 0.12744%**
(0.06173)
Clinical trials (log) -0.00078
(0.10110)
Public R&D (log) -0.00198 0.00605 -0.00216
(0.00448) (0.00441) (0.01336)
Private R&D (log) -0.00390 0.00088 -0.00450
(0.00420) (0.00175) (0.00686)
Human capital (log) 0.28140 0.28561** -0.79167
(0.36227) (0.13402) (0.62189)
Large biomedical firms (log) 0.02555 0.01575 -0.11516
(0.03348) (0.02422) (0.08209)
Per capita income (log) -0.66308 -0.64215%* 0.69396
(0.47406) (0.27643) (0.82894)
Agglomeration (log) 0.01178 0.40153%* 0.19827
(0.40512) (0.15615) (0.65063)
Regional economy (log) 0.00214 -0.08568 0.23510
(0.42701) (0.17859) (0.59408)
Year/MSA Fixed effect YES YES YES
Observations 3,121 3,627 1,759
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Number of MSA 313 379 178

Note. Robust standard errors are adjusted for MSAs and in parentheses: *** p<0.01, ** p<0.05, * p<0.1. ‘log’
indicates a natural log. Due to the missing data in the human capital variable, 177 observations were dropped in (1),
(2), and (3). 68 groups (512 obs.) in (1), 1 group (3 obs.) in (2), and 203 groups (1874 obs.) in (3) were dropped
because of all zero outcomes.

A reasonable question is whether the CTSA funding affects patents in different industries
or technology fields. In other words, is the relationship presented in column (1) of Table 5
specific to patents in the biomedical field? To examine this question, we collected patent data in
two different technology fields: Class 361-Electricity: Electrical Systems and Devices; and Class
726-Information Security. We estimate the effect using the same model specification (i.e., Eq. 3).
As shown in columns 4 and 6 of Table 6, all CTSA funding coefficients are statistically
insignificant leading to a conclusion that the effect of CTSA funding on patents seems to be
biomedical field-specific. Notably, we test only two different classes here; one should be

cautious about making overly broad generalizations to other fields.

Table 6 Poisson regression: CTSA funding, different patent classes

(@) 2 3) 4 (©) (6)
Variables - - Poisson
Biomedical patents Class 361 patents Class 762 patents
(Count) (Count) (Count)
CTSA funding (log) 0.00512*  0.00518*  0.00562 0.00643 0.00724 0.00541
(0.00280) (0.00268) (0.00444) (0.00451) (0.00754) (0.00712)
Public R&D (log) -0.00198 -0.00882 -0.00060
(0.00448) (0.00863) (0.01027)
Private R&D (log) -0.00390 0.00815 0.00029
(0.00420) (0.00816) (0.00953)
Human capital (log) 0.28140 0.36519 -0.91471
(0.36227) (0.73272) (0.88861)
Large biomedical firms (log) 0.02555 0.08916 0.08800
(0.03348) (0.07086) (0.06978)
Per capita income (log) -0.66308 2.04252%%* 0.95887
(0.47406) (0.89937) (1.19784)
Agglomeration (log) 0.01178 0.48248 -1.37949
(0.40512) (0.55665) (1.56983)
Regional economy (log) 0.00214 -0.78395 -0.50014
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(0.42701) (0.63131) (0.88726)

Year/MSA Fixed effect YES YES YES YES YES YES
Observations 3,130 3,121 2,310 2,303 1,910 1,907
Number of MSA 313 313 231 231 191 191

Note. Robust standard errors are adjusted for MSAs and in parentheses: *** p<0.01, ** p<0.05, * p<0.1. ‘log’
indicates a natural log. Due to the missing data in the human capital variable, 177 observations were dropped in
columns 2, 4, and 6. 68 groups (680 obs.), 68 groups (512 obs.), 149 groups (1490 obs.), 149 groups (1320 obs.), 190
groups (1900 obs.), 190 groups (1726 obs.) were dropped in each column because of all zero outcomes.

The second column in Panel A of Table 5 shows the relationship between CTSA funding
and the number of clinical trials conducted. The results indicate that CTSA funding is not
associated with the clinical trials conducted in a region. The CTSA coefficient in the second
column of Table 5 is not statistically significant at all. The results rather indicate that the number
of clinical trials is affected by human capital and population. We discuss this later in Section 6.

Considering the estimates presented in Panel A of Table 5 combined, one may conclude
that the effects of CTSA funding on biomedical knowledge production vary depending on the

types of knowledge.

4.3.3 Three paths from CTSA funding to SBIR grants

We now present the regression results of Eq. 5, which estimate the effects of CTSA
funding, biomedical patents, and clinical trials on SBIR grants. The third column, Panel B of
Table 5 shows the results. The CTSA funding and biomedical patents coefficients are shown to
be significant at the 0.1 level (p-values are 0.06 and 0.039 respectively). The CTSA coefficient
on the SBIR grants, 0.00663, is slightly smaller than that obtained earlier in the direct
relationship between the two (Table 4). We conjecture that this result is because the effect of
CTSA funding is divided into three paths from CTSA funding to SBIR grants.

The biomedical patent coefficient on the SBIR grants is 0.127, which means that a 1%

increase in the number of biomedical patents in a region is associated with increases numbers of
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SBIR grants. Even though the magnitude is quite small, this result supports the knowledge
spillover theory of entrepreneurship (KSTE), which links new knowledge production and
entrepreneurial activity (Acs et al., 2009). This result provides one more piece of evidence that
KSTE holds in a sectoral context like the biomedical sector.

The effect of clinical trials on the SBIR grants is negative and not significant as shown in
the third column of Table 5. In conjunction with the statistically significant relationship between
biomedical patents and SBIR grants, we may conclude that the effect of biomedical knowledge

on SBIR grants depends on the type of knowledge as well.

4.3.4 Path analysis

Using path analysis, we estimate the indirect effects of the CTSA funding on the SBIR
grants through biomedical patents and clinical trials. Fig. 10 summarizes the path results,
showing the main relationships between CTSA funding, biomedical patents, clinical trials, and
SBIR grants. The path coefficients from the structural equation modeling are those obtained from

the regressions presented in Table 10.
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Fig. 10 Path analysis result

Note. Poisson option and year/MSA fixed effects used in Stata. N = 3,633 due to missing values in the human
capital variable. The robust standard errors are adjusted for 381 MSAs and are in parentheses. ***p<0.01, **p<0.05,
*p<0.1. The solid lines indicate statistically significant relationships, while the dotted lines indicate insignificant
ones at the 0.1 level.

Following the discussion in Section 3, we estimate two indirect paths between CTSA
funding and SBIR grants: 1) Indirect path 1—through biomedical patents, and 2) Indirect path
2—through clinical trials.

Indirect path 1 from CTSA funding to SBIR grants through biomedical patents is small
and insignificant. The coefficient for the indirect path 1 is 0.00066 and the p-value is 0.145. The
coefficient is around one-tenth of the direct path (i.e., 0.00663) as shown in Fig. 10. This result is
contrary to our expectation that the increased biomedical patents by CTSA funding increase
SBIR grants. Indirect path 2 from CTSA funding to SBIR grants through clinical trials is also
small and insignificant. The coefficient is -0.0000011, and the p-value is 0.994.

These small coefficients and high p-values of the indirect paths indicate that CTSA
funding has a limited effect on SBIR grants through either biomedical patents or clinical trials.
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On the other hand, the direct path of CTSA funding on SBIR grants was found to be larger and
significant. The coefficient of the direct effect is 0.00663 and significant at the 0.1 level (p-value:
0.06). As discussed earlier, the direct path includes the effects of all outputs other than
biomedical patents and clinical trials. Thus, the large differences could indicate that the indirect
paths through biomedical patents or clinical trials are not the main channels between CTSA
funding and SBIR grants. With the reference to the recent literature (e.g., Kim, 2019, Llewellyn
et al., 2018), one might think that items like scientific publications could be the potential
connector between public funding for translational research and biomedical entrepreneurship.
Unfortunately, we could not test this due to the lack of relevant publication data at the MSA

level.

5 Discussion and policy implications

A core finding of this analysis is that publicly funded translational research does
contribute to regional biomedical entrepreneurship. As described, translational research aims to
facilitate the transformation of basic science into more usable forms of knowledge. Thus, this
result supports the knowledge spillover theory of entrepreneurship (KSTE), that posits that more
knowledge leads to higher entrepreneurship (Acs et al. 2009). This is also consistent with the
widespread belief in the policy community that a region would benefit from vibrant translational
research activity in promoting biomedical business. It is notable that academic centers in the
biomedical field observe the growth of vibrant activities at the local level and appreciate
entrepreneurship (Kimberly & Berglund, 2022).

However, the estimated magnitude appears relatively small. We offer three potential

reasons. First, we only analyzed the first 10 years of the CTSA program, thus the effect of the

36



program might not have been fully exerted on the regional biomedical ecosystem for the years
reviewed in this study. Considering the long-time span involved in biomedical development
processes (DiMasi et al., 2003; Pisano, 2006), it is conceivable that it might require a longer
period to observe this relationship more accurately. Second, we could have underestimated the
effect by including only SBIR grants received by regional entrepreneurs while excluding other
biomedical activities in a region. As noted earlier in the paper, NIH SBIR recipients account for
only about 20% of all NIH SBIR applicants (NIH, n.d.-c). If the selected and the unselected
applicants used the CTSA-related outputs with the same frequency, our measurement could have
underestimated the true value. Furthermore, NIH SBIR grants are only a small fraction of total
financing sources for biomedical firms. Thus, those entrepreneurs who did not apply might have
absorbed the effect of the CTSA program on the SBIR grants, in which case, the CTSA
coefficient would again be underestimated. Third, the CTSA funding is relatively small
compared to other public and private biomedical research funding. The annual CTSA funding for
over 60 institutions is equal to about 500 million dollars which compares to the total annual
budget of NIH amounting to 39.1 billion dollars in 2019 (Kaiser, 2018).

Path analysis indicates that the effect of CTSA funding is not transmitted through
biomedical patents. One conceivable reason is the mismatch between the patent production and
utilization time, and between the patent production and utilization location. It could be the case
that entrepreneurs are not limited to using knowledge produced in their particular regions, but
rather, they search for knowledge more globally. For instance, entrepreneurs might have used
biomedical patents produced outside their regions from years prior.

Similarly, the effect of CTSA funding on SBIR grants through clinical trials is also weak.

We consider three potential explanations. First, some clinical trials are just participating sites that
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are not influenced by the CTSA activities in a region. According to our data from
ClinicaTrials.gov, 13.8 percent of clinical studies were conducted on more than 10 sites
worldwide and 27 clinical studies had more than 1,000 sites worldwide. Thus, the large number
of participating sites could have attenuated the strength of the relationship between the CTSA
and clinical trials. Second, clinical trial site selection is heavily influenced by diverse factors
such as recruitment-related factors (Dombernowsky et al., 2019; Hurtado-Chong et al., 2017;
Silva, 2018). As shown in Table 5, the number of clinical trials is strongly associated with
population density and income per capita. Thus, these factors might have influenced the clinical
trials variable more heavily than other factors, such as CTSA funding. Third, when viewed from
the perspective of entrepreneurs, there might be a mismatch between needed knowledge and
produced knowledge. Some entrepreneurs require case-specific information for their
technological developments and businesses, but the clinical trials conducted in their specific
regions might not be directly relevant to their entrepreneurial activities.

Policymakers should intensify efforts to improve the utilization of knowledge produced
by translational research activity. The CTSA program could, for instance, expand its educational
program for young researchers regarding entrepreneurship. Policymakers can borrow key
elements from the I-Corps program of the National Science Foundation supporting the
commercialization of basic research. Such an expansion of the CTSA program can provide
young researchers with relevant business education and allow them to get more involved in
commercialization field. Local governments can also enhance their role in facilitating knowledge
utilization by regional biomedical entrepreneurs. They may establish information sharing and
connecting organizations adjacent to research-intensive areas to improve the flow of new

knowledge between inventors and entrepreneurs. Local governments may also provide more
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sophisticated support to biomedical entrepreneurs beyond the current SBIR-related support, as
surveyed by Lanahan and Feldman (2015). For instance, state governments may help the
establishment of wet-labs for early-stage start-ups like LabCentral in Cambridge, Massachusetts,

partly supported by the state government (LabCentral, n.d.).

6 Conclusion

In this paper, we investigated the effects of translational research on biomedical
knowledge production and entrepreneurship. We constructed an analytical model, positing that
translational research increases biomedical entrepreneurship by increasing knowledge, namely
biomedical patents and clinical trials, available to regional entrepreneurs.

The results show that CTSA funding has increased regional SBIR grants, but the impact
is relatively small. CTSA funding also increases regional biomedical patents, but it does not
seem to increase clinical trials conducted regionally. Biomedical patents have a positive
relationship with regional SBIR grants, but clinical trials do not. Path analysis indicates that the
effect of the CTSA program on regional SBIR grants is not strongly conveyed through
biomedical patents or clinical trials. Based on these results, we conclude that translational
research through the CTSA program has a fairly limited incremental impact on exploitable
knowledge production and regional biomedical entrepreneurship. However, we will be quick to
add the caveats in Section 5 above.

This research contributes to the literature on the intersection of translational research and
entrepreneurship by explicitly linking translational research to regional biomedical business
activity. We broadened the scope of analysis in two respects: 1) from the program-recipient level

to the regional level, and 2) from specific outputs to broader socioeconomic impacts (e.g.,
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biomedical entrepreneurship). In relation to the first point, we used the metropolitan statistical
area (MSA) as a unit of observation to capture regional economic activities as used by Anselin et
al. (1997), Florida and Mellander (2010), and Qian and Jung (2017). We also provided empirical
evidence that translational research contributes to biomedical knowledge production in a region,
but the knowledge production depends on the type of knowledge. Finally, we added empirical
evidence that the knowledge spillover theory of entrepreneurship (Acs et al., 2009) holds at the
sectoral level like the biomedical field.

As a final note for future research, it should be stressed that the CTSA funding does not
represent all translational research activities and that the NIH SBIR grants proxy a small fraction
of biomedical business in a region. Obtaining additional data, including a wider spectrum of
translational research and biomedical entrepreneurship activities, should improve the accuracy of
the results. In addition, upon getting the relevant publication data at the MSA level, researchers

can consider additional indirect paths from the CTSA funding to biomedical entrepreneurship.
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