
ARTICLE

Data-science driven autonomous process
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Autonomous process optimization involves the human intervention-free exploration of a

range process parameters to improve responses such as product yield and selectivity. Uti-

lizing off-the-shelf components, we develop a closed-loop system for carrying out parallel

autonomous process optimization experiments in batch. Upon implementation of our system

in the optimization of a stereoselective Suzuki-Miyaura coupling, we find that the definition of

a set of meaningful, broad, and unbiased process parameters is the most critical aspect of

successful optimization. Importantly, we discern that phosphine ligand, a categorical para-

meter, is vital to determination of the reaction outcome. To date, categorical parameter

selection has relied on chemical intuition, potentially introducing bias into the experimental

design. In seeking a systematic method for selecting a diverse set of phosphine ligands, we

develop a strategy that leverages computed molecular feature clustering. The resulting

optimization uncovers conditions to selectively access the desired product isomer in

high yield.
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Recent advancements in computer science and automation
technologies have led to the emergence of autonomous
chemistry systems designed to generate and test hypotheses

without the need for constant researcher intervention1–4. Such
systems typically involve three key components: (1) a machine
learning (ML) algorithm for hypothesis generation, (2) a robotic
system for experimental execution, and (3) an online analytics
platform for performance evaluation. The system then executes a
workflow with little to no human intervention. The level of
human intervention varies based on the degree of hardware and
software integration among the key components. In a fully
autonomous system, a “closed loop” is achieved, where the sci-
entist can define the search space, and then press “go”. Closed-
loop applications have ranged from biologically active compound
discovery5,6 to materials development7–9, novel reaction
scouting10–12, and process optimization in flow reactors13–23.

Autonomous process optimization involves the human-
intervention-free exploration of a range of predefined process
parameters to improve responses such as reaction yield, product
selectivity, and catalyst turnover number. The definition of a set of
meaningful, broad, and unbiased process parameters is arguably
the most critical aspect of a successful optimization. Work to date
has focused on the multivariate optimization of continuous para-
meters such as temperature, stoichiometry, and time; however,
vital categorical parameters such as reagent, solvent, or catalyst
have rarely been incorporated. In fact, leading examples involving
continuous and categorical parameter combinations have been
limited to fewer than eight catalysts or ten solvents24–26. Fur-
thermore, in these examples, categorical parameter selection was
guided through chemical intuition, potentially introducing an
element of bias into the experimental design. Thus, in our view,
categorical parameter selection in the context of autonomous
process optimization remains an unsolved challenge. We envi-
sioned developing a more systematic method for the selection of a
broad and diverse set of categorical parameters to fully represent
the chemical space, driving more effective optimization campaigns.

Successful optimization also hinges on the identification of
suitable automation equipment capable of effective experimental
execution and analysis. Current research focuses heavily on
custom-built continuous and segmented flow-reactor systems
outfitted with online analytics for experimental execution. While
these state-of-the-art systems have enabled the rapid multivariate
optimization of several processes, examples have still been limited
to the sequential execution of fast, homogeneous reactions
amenable to flow reactors. In this work, we expand the autono-
mous process optimization toolkit to include a broader set of
reaction methodologies by integrating off-the-shelf robotic

systems with online analytics to carry out parallel reaction loops
in 96-well plates.

The final aspect of successful optimization is the selection of an
effective ML algorithm. Recently, Bayesian optimization (BO)
algorithms have gained traction in the in autonomous chemistry
realm, leading to a number of successful optimization
campaigns27–30. BO constructs a statistical approximation of an
unknown experimental response surface based on existing mea-
surements to propose parameter points with promising predicted
performance. The statistical approximation is refined with
each measurement, resulting in an increasingly accurate
response surface model. The algorithm is configured to balance
the exploitation of areas of promising performance with the
exploration of areas of uncertainty to allow for the determination
of a global optimum response31. One limitation of BO is that
parameter point selection is typically sequential. The Phoenics32

and Gryffin33 algorithms developed by Häse et al. supplement
fundamental concepts from BO with a data smoothing technique
(kernel density estimation) to suggest parameter points for par-
allel experiments. Gryffin was developed specifically for the par-
allel optimization of categorical parameters. Given our interest in
the autonomous optimization of categorical and continuous
parameters in tandem through the execution of parallel batch
reactions, the Phoenics and Gryffin optimization strategies were
deemed ideal fits in our optimization workflow.

We identified a stereoselective Suzuki–Miyaura cross-coupling
reaction that would benefit from a tandem categorical and con-
tinuous parameter optimization (Fig. 1)34,35. Typically,
Suzuki–Miyaura cross-couplings of vinyl halides or sulfonates
proceed with retention of the olefin bond geometry36, but in this
example, vinyl sulfonate 1-E undergoes significant stereoinversion
under ligand-free and electron-rich dialkylbiaryl phosphine-
mediated palladium catalysis to generate product 2-Z. In con-
trast, stereoinversion is partially suppressed under ferrocenyl
bisphosphine-mediated palladium catalysis, facilitating a modest
selectivity for product 2-E. Thus, stereoselectivity in this system
appears to be influenced by both the phosphine ligand selection
and stoichiometry37–40. Importantly, traditional phosphines
preferred in Suzuki couplings, such as dialkylbiaryl phosphine
ligands41–44, appear to facilitate the undesired steroinversion
pathway. Finally, with reaction completion times on the order of
two hours, this system is not amenable to flow reactors due to
impractically long residence times.

Our goal was to improve the yield of stereoretention product 2-
E through an autonomous optimization campaign by exploring a
selection of phosphines and continuous process parameters in
tandem. We employed a Chemspeed SWING robotic system for
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Fig. 1 Phosphine ligand influence on a palladium-catalyzed stereoselective Suzuki–Miyaura coupling to generate the stereoinversion product (2-Z) or
stereoretention product (2-E). aConditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 20 µmol (3-(benzyloxy)phenyl)boronic acid 3, 0.4 µmol Pd
(ACN)2Cl2, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 25 °C. b,cConditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 11 µmol (3-(benzyloxy)
phenyl)boronic acid 3, 0.2 µmol Pd(ACN)2Cl2, 0.4 µmol L, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 25 °C. Ligand structures are provided in
Fig. 4. Tabulated results are provided in Supplementary Information Table SI-9.
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the experimental execution of parallel reaction loops in batch and
employed the Phoenics and Gryffin algorithms for the proposal of
parallel combinations continuous and categorical process para-
meter selections. Recognizing the impact of phosphine selection
on the optimization outcome, we employed a variety of catego-
rical parameter selection strategies, including chemical intuition
and computed molecular descriptor clustering of 365 commer-
cially available phosphines45. Here, we discuss the advantages and
limitations of each phosphine selection strategy and their impacts
on this challenging optimization problem.

Results
Establishing a closed-loop system. The establishment of a closed-
loop system required the integration of three main components: (1)
ChemOS46, the experimental scheduler for coordination of experi-
ments proposed by the ML algorithms (Phoenics and Gryffin), (2)
Chemspeed SWING, the robotic system for automated experimental
setup, and (3) Agilent 1100, the HPLC-UV system for measurement
of the experimental outcomes (Fig. 2). The only hardware custo-
mization required was the integration of the Agilent HPLC-UV
system with the Chemspeed SWING robotic platform. This inte-
gration was accomplished through the installation of an HPLC valve
on the Chemspeed robot deck and incorporation of relay switches

for triggering chromatographic resolution and photodiode array
detection47. The next step was to establish automated data flow from
the experimental scheduler to the robot, and from the online ana-
lytical system back to the experimental scheduler for the ML algo-
rithm to interpret results and propose subsequent experiments. In
lieu of developing a complex application programming interface
among the three software components (ChemOS, Chemspeed
AutoSuite, and Agilent ChemStation), we opted to develop a light-
weight Python framework for data transfer between these compo-
nents. The script translated ChemOS parameter suggestions into
stock mixture dispense volumes, calculated product assay yields
from HPLC peak area ratios to an internal standard, and reported
experimental measurements back to ChemOS.

Defining the process parameters and optimization objectives.
A set of categorical and continuous parameters was selected for
potential impact on the reaction outcome, including phosphine
ligand, phosphine to palladium ratio, palladium loading, arylboronic
acid equivalents, and reaction temperature (Table 1). Upper and
lower bound selection for each continuous parameter was guided by
chemical intuition but also designed to be sufficiently broad to
explore a diverse set of responses. Ligand set selections varied from
12 to up to 23 ligands, depending on the selection strategy. The ML
algorithms (Phoenics and Gryffin) were configured to maximize the
yield of the E-product, minimize the yield of the Z-product, mini-
mize the palladium loading, and minimize the arylboronic acid
equivalents, in that order (Table 1). Each objective was configured
with a 10% relative threshold that would only consider the next
objective once that threshold had been achieved. This multiobjective
optimization, or Pareto optimization design, was made possible
through the implementation of the scalarizing function Chimera48.

Designing the automation workflow and characterizing
reproducibility. Firstly, the number of reactions for the effective
evaluation of all selected ligands under a reasonable number of
continuous parameter points was estimated to reside somewhere
between 120 and 192. Secondly, conversion to product was esti-
mated to complete within two hours under the median points of
the defined continuous parameter ranges. Thus, if the maximum
number of 192 consecutive reactions were carried out sequen-
tially, the optimization campaign would take 16 days to complete.
This lengthy duration would serve to obviate the benefits of
autonomous optimization, and correspondingly, necessitated
parallelization of the reactions. Therefore, the reactions were
parallelized into loops of eight, allowing for a 192-reaction
campaign to be completed within 24 loops over a more reason-
able time period of four days. Conditions for the first loop of eight

Fig. 2 Closed-loop system for autonomous optimization in batch. The
three main components to enable this closed loop include (1) ChemOS to
coordinate experiments and data-driven approaches, (2) Chemspeed
SWING for automated experimental setup, and (3) Agilent 1100 to
characterize the experimental outcomes.

Table 1 Process parameters and optimization objectives.

Parameter Type Range Unit

Phosphine ligand (P ligand) Categorical 12–23 number of ligands
Phosphine to palladium ratio (P/Pd) Continuous 0.5–4.0 ratio
Palladium loading (Pd mol%) Continuous 1.0–5.0 mol%
Arylboronic acid equivalents (ArBA equiv)a Continuous 1.0–2.0 equivalents
Reaction temperature (Rxn temp) Continuous 10–40 °C

Response Objective Priority Unit

E-product assay yield (E-PR AY) Maximize First mol%
Z-product assay yield (Z-PR AY) Minimize Second mol%
Palladium loading (Pd mol%) Minimize Third mol%
Arylboronic acid equivalents (ArBA equiv)a Minimize Fourth equivalents

aThe arylboronic acid equivalents parameter and response were removed from the experimental design upon expanding the search space from 12 to 23 ligands.
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reactions were selected randomly by the ML algorithm. Sub-
sequent conditions were determined autonomously by Phoenics
and Gryffin as analytical results were returned, following a data-
driven strategy. ChemOS, the experimental scheduler, parallelized
the suggested reactions for the Chemspeed SWING system to
dispense and initiate in 15-min intervals. Analytical samples were
aliquoted and acquired at the endpoint of each reaction, also in
15-min intervals.

In order to evaluate the reproducibility and system performance,
two sets of eight standard experiments were carried out within in
each reaction block of a 192-reaction optimization campaign. We
determined that the standard deviation (SD) of measured 2-E and 2-
Z yields fell between 1 and 2mol% and relative SD ranged between 6
and 8% (Fig. 3). This level precision was determined to be acceptable
for meaningful data interpretation.

Trial runs and experimentally derived constraints for the
optimization strategy. Trial runs unveiled two instrument con-
straints that necessitated further enhancements of the optimization
strategy. The first constraint involved the need to fix the reaction
temperature across each loop of eight reactions given that these
reactions were designed to be carried out within the same reactor
block and timeframe. In order to accommodate this constraint, the
capabilities of the Phoenics and Gryffin optimization strategies were
extended to facilitate optimization with process constraints following
the idea of a previously introduced basic process-constrained BO
algorithm (pc-BO(basic))49. This extension allowed the suggestion
of a total of eight different experiments where the temperature was
fixed across one loop. The second instrument constraint was the
inability of the Chemspeed robot to execute submicroliter dispenses
accurately; thus, the Python script was augmented to round calcu-
lated dispense volumes to the microliter level and update the sug-
gested parameters with the executed parameters prior to returning
analytical results to ChemOS. These enhancements allowed for the
successful application of an algorithm in a constrained experimental
setting.

Autonomous optimization with ligands selected through che-
mical intuition. Initial ligand selection was carried out through
chemical intuition around phosphines with the potential to
accelerate palladium-catalyzed cross-couplings41–44 (here, che-
mical intuition refers to insight arising from a combination of
literature precedent and hands-on experience). Twelve ligands
were selected, including trialkyl, triaryl, ferrocenyl, and dia-
lkylbiaryl phosphines. These ligands were evaluated in combi-
nation with four continuous parameters, including phosphine to
palladium ratio, palladium loading, arylboronic acid equivalents,
and reaction temperature. The optimization campaign was car-
ried out in 15 loops of eight reactions, totaling 120 autonomous
iterations carried out over 60 h. Initial visualization of the two
product yields highlights the strong propensity for stereoinver-
sion under the majority of evaluated conditions, generating

significant levels of product 2-Z with nine out of 12 ligands
(L3–L6 and L8–L12, Fig. 4). Despite the demonstrated suscept-
ibility for stereoinversion, the optimization ultimately resulted in
conditions to access product 2-E in 65% yield and 1.6:1 E/Z
selectivity upon 118 iterations, under Pd-L7 catalysis. Notably,
the optimizer dedicated a higher number of iterations to L7
(DPPF), the top-performing ligand. Also, although initial results
with L7 were not promising in iterations 11 (1% 2-E), 12 (26% 2-
E), and 33 (6% 2-E), likely due to suboptimal phosphine to pal-
ladium ratios, the optimizer continued to sample this ligand
exploratively, revealing a combination of continuous parameter
points that resulted in the optimum conditions in iteration 118
(65% 2-E). Bearing in mind that the optimizer was not configured
with any background knowledge around this reaction system
except for the predefined process parameter ranges, arrival at this
optimum is an impressive demonstration of the power of algo-
rithmic optimization. It is also worth noting the algorithm’s
repeated sampling of L11 and L12 despite poor performance
under a number of parameter point selections. This behavior
could potentially be attributed to explorative sampling or opti-
mism bias in the algorithm’s predictions. Finally, although the
optimum conditions aligned nicely with those identified pre-
viously in manual searches, improvement to the yield of 2-E was
nominal (compared to 60% yield and 1.7:1 E/Z selectivity as
shown in Fig. 1). This nominal improvement was attributed to
ligand bias resulting from chemical intuition-based phosphine
selection, thus, we embarked upon the exploration of a metho-
dically selected set of ligands to access 2-E in even higher yield.

Autonomous optimization with ligands selected through
computed molecular features. To this end, we sought a sys-
tematic method for the selection of a diverse set of phosphines for
autonomous evaluation. A particularly attractive approach would
leverage computed molecular features of phosphines as these have
been applied to reaction optimization through predictive
modeling50–53. In our current study, 365 commercially available
monodentate phosphines were used to define the chemical space
(the focus was limited to monodentate phosphines in order to
more effectivity control the ligation state of palladium). For each
phosphine, features were obtained by computing molecular
properties for a representative set of conformers using DFT.
Then, k-means clustering was carried out on the first four prin-
cipal components of this descriptor set to divide the chemical
space into 24 regions (Fig. 5, see Supplementary Information
Descriptor Computation and Training Set Selection sections and
Table SI-14 through 15 for details). A single compound was
selected from each cluster for experimental evaluation based on
additional considerations such as availability, price, and antici-
pated stability (Fig. 6). One cluster contained ligands that were
deemed too challenging to implement due to low boiling points;
therefore, candidates from this cluster were not included in the
experimental design.
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Fig. 3 Standard experimental conditions for reproducibility testing. Conditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 15 µmol (3-(benzyloxy)phenyl)
boronic acid 3, 0.3 µmol Pd(ACN)2Cl2, 0.4 µmol L2, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 20 °C. Average yields for first set of replicates: 2-E: 30
(±2)%; 2-Z: 19(±1)% and second set of replicates: 2-E: 28(±2)%; 2-Z: 17(±1)%. Tabulated results are provided in Supplementary Information Table SI-13.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-021-00550-x

4 COMMUNICATIONS CHEMISTRY | (2021)4:112 | https://doi.org/10.1038/s42004-021-00550-x | www.nature.com/commschem

www.nature.com/commschem


Investigation of a larger ligand set necessitated the expansion of
the optimization campaign to 24 loops of eight reactions, totaling
192 autonomous iterations executed over 96 h (16 of which were
designated as test reactions to assess reproducibility as shown in
Fig. 4). In addition, the expanded ligand set also necessitated the
removal of the arylboronic acid equivalents parameter and
response from the experimental design. Initial visualization of the
two product yields highlights the strong propensity for stereo-
inversion under the majority of evaluated conditions, generating
significant levels of product 2-Z with 14 out of 23 ligands (L4,
L12–L19, L23, L27–L29, and L31, Fig. 6). Despite this, the second
campaign resulted in the identification of optimal conditions to

access product 2-E in 73% yield and 2.5:1 E/Z selectivity upon 161
iterations, using L30 as the ligand. Given that the ML algorithm
had no previous information to bias the search, and that ligand
selection was unbiased, an improved yield of 73% highlights the
potential of our novel optimization technology. As in the first
campaign, the algorithm dedicated a significant portion of
iterations to the top-performing ligand, previously L7 (DPPF),
now L30 (PhSPhos). Additional high-performing ligands also fell
under the triaryl phosphine category, with both electron-rich
(L20, L21) and electron-poor (L26) triaryl phosphines proving
effective. Surprisingly, ligands with significant structural similar-
ity to L30 (PhSPhos), including L28 and L31 (SPhos), did not

Fig. 4 Parameters and results of optimization with ligands selected through chemical intuition in campaign 1. Conditions: 10 µmol 1-E, 1 µmol 1,3,5-
trimethoxybenzene, 10–20 µmol (3-(benzyloxy)phenyl)boronic acid 3, 0.1–0.5 µmol Pd(ACN)2Cl2, 0.05–2 µmol L, 30 µmol K3PO4 (0.5M aq) in ACN
(0.05M), 2 h at 10–40 °C. Tabulated results are provided in Supplementary Information Table SI-10.
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selectively yield 2-E, presumably due to the presence of electron-
rich cyclohexyl substituents.

A deeper look into the influence of the continuous parameters
on the yield of product 2-E (Fig. 7) revealed that phosphine to
palladium ratios within the center of the studied range provided
optimal outcomes. As predicted, lower phosphine to palladium
ratios resulted in an increase in 2-Z yields, potentially due to the
presence of phosphine-free palladium, while higher phosphine to
palladium ratios resulted in an overall lack of reactivity, likely due
to blocking of coordination sites necessary for effective catalysis.
Conversely, performing the reaction at temperatures near the
upper bound of the evaluated range proved most effective in
driving product formation. Finally, although higher palladium
loadings resulted in improved product 2-E yields, the algorithm
did not default to maximize the loading to drive up the yield. It
appears that configuring the algorithm to minimize the palladium
loading resulted in a constrained evaluation of this response and
we were pleased to observe that the algorithm arrived at a more
reasonable optimum of 3.8 mol% palladium loading.

It can be challenging to evaluate the performance of a
multivariate BO because much of the algorithm’s decision-
making behavior occurs in a black box. One way to gain insight
into the algorithm’s success is to look at the relationship between
response variables, such as 2-E yield, and the algorithm’s
tendency to explore or exploit. Sample bias is a value that
measures the degree to which the algorithm was programmed to
explore or exploit for any given experiment, and in this run, an
array of eight evenly spaced sample bias values was selected,
ranging from −0.000104 (highly explorative) to 0.000104 (highly
exploitative). Plotting the yield of 2-E against experiment ID
while color coding for sample bias reveals that a majority of the
exploitative iterations focused on the top-performing ligand,
PhSPhos (L30), leading to a significant yield improvement of 20%
(Fig. 8a). Plotting the average yield of 2-E at each sample bias
value shows that on average, negative explorative sample biases
led to low 2-E yields, while positive exploitative sample biases led
to high 2-E yields (Fig. 8b). This balanced strategy allowed for
determination of the global optimum over the local optimum
because high-performing ligands could have been missed under
certain continuous parameter selections such as high phosphine
to palladium ratio.

Finally, comparison of the optimization results from the two
campaigns superimposed on the monodentate phosphine ligand
space clearly demonstrates the advantage of systematic ligand
selection over chemical intuition-based ligand selection (Fig. 9). A
wider range of product 2-E yields were observed through the
systematic exploration of a diverse set of ligands, ultimately
leading to the discovery of L30 as a superior ligand. This behavior
can be attributed to the challenging nature of the stereoselective

coupling under evaluation, where ligands typically employed in
Suzuki–Miyaura couplings resulted in high conversion, yet poor
E/Z selectivity. These results highlight the potential shadow that
expert bias could cast on the development of creative solutions to
atypical synthetic challenges, and the utility of unbiased study
designs.

At this stage, the only question that remained unanswered was
whether the algorithm’s optimization performance could be
improved if ligands were parametrized within the algorithm
instead of being treated as black-box categorical parameters. We
hypothesized that the utilization of computed molecular descrip-
tors as a means for the algorithm to relate among ligands could
accelerate convergence. We therefore manually selected 15 from
of the descriptors utilized in ligand selection for incorporation in
a third 192-iteration optimization campaign (see Supplementary
Data 1 for a list of the selected descriptors). We found that a
similar optimum was reached, accessing product 2-E in 74% yield
and 2.6:1 E/Z selectivity upon iteration 159, again under Pd-L30
catalysis. Surprisingly, the algorithm did not appear to converge
as clearly as in the previous campaign because fewer iterations
focused on the top ligand and, in fact, a high number of iterations
focused on unproductive ligands (see Supplementary Information
Table SI-12 and Fig. SI-9 for detailed results). This observation
may be attributed to some form of unproductive bias introduced
by the selected set of descriptors, solidifying that unbiased ligand
selection was critical to the success of this optimization.

Follow-up experiments with E-selective ligands identified
through predictive modeling. With two 192-iteration data sets in
hand, various modeling strategies were employed to predict
additional phosphines that could also promote E-selectivity54,55.
Thus, ligands with the potential for E-selectivity were proposed
based on a small ensemble of multivariable linear regression
models, as well as proximity in chemical space. In line with the
philosophy of combining exploitation and exploration, we chose
six additional ligands that included structures both similar (e.g.,
L33, L34), and different (e.g. L36, L37) to any ligand in the
training set, as well as predictions with low certainty (L38).
Manual experiments employing these ligands were carried out
utilizing the optimal conditions identified from autonomous
optimization to measure the selectivity outcome (Fig. 10,
see Supplementary Information Predictive Modeling section and
Fig. SI-11 through SI-15 for details). In addition, L30 was
employed in a control experiment.

Firstly, we were pleased to find that the experimental result of
the manual experiment with L30 agreed very well with the results
from the autonomous experimentation. Secondly, two ligands
(L35, L36) out of six were identified that surpassed the 50%
threshold for the yield of 2-E, providing a higher yield of 2-E than
any other ligand apart from L30 in the previous experiments
under the very first reaction conditions that were attempted.
Further iterations of data-driven ligand suggestion, design of new
ligands, and optimization of reaction conditions could possibly
lead to even improved yields of 2-E but that was not the focus of
the current study. It is important to note that the newly identified
E-selective ligands are structurally distinct from L30 and, thus, it
would have been unlikely to arrive at these selections through
chemical intuition.

Discussion
We have demonstrated the human-intervention-free multivariate
optimization of a stereoselective Suzuki–Miyaura coupling in
batch through the autonomous evaluation of a large phosphine
ligand set and continuous parameters in tandem. This success
was accomplished through a series of technological advances.

Fig. 5 K-means clustering on the first four principal components of the
molecular descriptor set for 365 commercial monodentate phosphines.
The chemical space is represented by a two-dimensional plot of the first
two principal components. Each cluster is represented by color and
highlighted boxes indicate selected ligands. Selected ligand structures are
provided in Fig. 6.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-021-00550-x

6 COMMUNICATIONS CHEMISTRY | (2021)4:112 | https://doi.org/10.1038/s42004-021-00550-x | www.nature.com/commschem

www.nature.com/commschem


First, the implementation of a robotic system capable of carrying
out parallel experiments with online analytics significantly
reduced cycle times. Second, the development of seamless com-
munication between the ML algorithm and robotic hardware
established a closed-loop system. Third, the incorporation of
Bayesian ML algorithms, here Phoenics and Gryffin, facilitated
tandem categorical and continuous parameter optimization.
Finally, the employment of computed molecular features enabled
the systematic and unbiased definition of the phosphine ligand
search space. The application of these advances resulted in the
rapid identification of optimal conditions and ligand clusters to
maximize the yield of product 2-E.

It is relevant to ask what advantage autonomous optimization
offers over more well-established process optimization strategies
such as high-throughput experimentation (HTE) or design of
experiments (DoE). Although we view algorithmic optimization
as a complementary technology, we also believe that its advantage
lies in the multivariate optimization of categorical and continuous
parameters in tandem within the fewest number of iterations. To
elaborate on this point, a theoretical comparison among the
technologies in the context of this Suzuki–Miyaura optimization
is warranted. The optimization results presented herein reveal
that a distinct combination of phosphine ligand and continuous
parameter selection is required for an optimal 2-E yield,

Fig. 6 Parameters and results of optimization with ligands selected through descriptor clustering in campaign 2. Conditions: 10 µmol 1-E, 1 µmol 1,3,5-
trimethoxybenzene, 15 µmol (3-(benzyloxy)phenyl)boronic acid 3, 0.1–0.5 µmol Pd(ACN)2Cl2, 0.05–2 µmol L, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M),
2 h at 10–40 °C. Tabulated results are provided in Supplementary Information Table SI-11. An animated chart of E-product yield over time is provided as
Supplementary Movie 2.
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supporting the need for a tandem categorical and continuous
parameter search. A typical experimenter would be unable to
thoroughly investigate a large search space involving 23 catego-
rical parameter choices in combination with three continuous
parameters within a budget of 192 experiments without some sort

of statistical experimental design tool such as DoE. However,
under the parameter ranges defined for this optimization, DoE
studies could only hope to reveal promising reaction conditions if
at least a three-level three-factor design was chosen, in order to
effectively tease out trends related to phosphine to palladium
ratios, which were optimal under the center points. Such a
design, however, would result in a total of 621 experiments (33 ×
23 ligands), which is considerably higher than the 192 experi-
mental budget to which we restricted our campaigns. Thus, both
brute-force HTE and DoE would be expected to require sub-
stantially more experiments than the strategy that we have
implemented.

We acknowledge that our comparisons to existing experiment
planning strategies are merely theoretical, and that an experi-
mental demonstration of the advantage of the Gryffin strategy
would be preferable. However, previous baseline tests suggest the
competitive advantage of our experimental planning strategy in
the context of similar optimizations32,33. In addition, although an
equal balance of explorative and exploitative sampling behaviors
were implemented in this work, the precise ratio of sampling

Fig. 8 Two-dimensional plots of 2-E yield for each experiment ID and average 2-E yield for each sample bias value in campaign 2. a Green indicates
positive, exploitative sample bias values, while purple indicates negative, explorative sample bias values. PhSPhos results are outlined; all other ligand
results are not outlined. b Green indicates positive, exploitative sample bias values, while purple indicates negative, explorative sample bias values.

Fig. 7 Three-dimensional plot of three continuous parameter selections
color coded for 2-E yield in campaign 2. PhSPhos results are outlined; all
other ligand results are not outlined.
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behaviors could be fine-tuned to improve future optimization
performance. Finally, we acknowledge that it may not possible to
rule out the possibility optimism bias in the algorithm’s predic-
tions in the absence of a comparison between predicted values
and experimental results. However, the optimism bias of a pre-
diction is not that significant in the context of a closed-loop
system, where experimental results are automatically generated
and the surrogate model updated with each loop. This ability to
self-correct is one of the advantages of the closed-loop system.

The autonomous optimization approach can easily be repli-
cated to solve a multitude of multivariate process optimization
problems. Once widely adopted, the technology has the potential
to empower modern-day researchers to shift their focus away
from routine experimental execution and toward higher-
complexity problem-solving. Areas for future improvement
include further extensions of algorithmic schemes to facilitate
process-constrained parallel optimization as well as enhance-
ments to multivariate data analysis to drive a better

Fig. 9 The maximum yield of 2-E obtained for each monodentate ligand explored in campaigns 1 and 2 mapped onto the chemical space of 365
commercial monodentate phosphines. The chemical space is represented by a two-dimensional plot of the first two principal components. Color indicates
the maximum yield of 2-E obtained for each evaluated monodentate phosphine ligand.
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understanding of reaction trends, in essence, to learn what the
algorithm learned.

Methods
Instrumentation. Autonomous optimization experiments were executed using a
Chemspeed SWING robotic system equipped with a four-needle dispense head and
four 1 ml syringe pumps to enable accurate dispenses at low volumes. Slurry dis-
pensing was enabled through 0.8 mm needle inner diameters. Agitation was carried
out through an integrated custom V&P scientific two-position tumble stirring
module and temperature control was achieved through an integrated Huber
Unistat chiller with temperature feedback control. Online HPLC analysis was
carried out through an integrated Agilent 1100 HPLC equipped with a photodiode
array detector and a custom sampling valve installed on the robot deck. See Sup-
plementary Information General Remarks section and Fig. SI-1 for details.

Automation of data flow. ChemOS was utilized as the scheduler that packaged
proposed experiments from the ML algorithm into loops of eight for execution by
the Chemspeed SWING robotic module. Communication of ChemOS with the
Chemspeed SWING robot and Agilent HPLC was established through a light-
weight Python tool. This script parsed experimental parameters proposed by
ChemOS, calculated dispense volumes based on stock solution concentrations, and
wrote those volumes to a CSV file actively being monitored by the Chemspeed
AutoSuite software. Upon automated experimental execution and subsequent
HPLC analysis, this script also parsed Agilent HPLC report files for peak area
counts and calculated product yields based on predetermined response factors,
which were then reported back to ChemOS for interpretation and proposal of new
experimental parameters. See Supplementary Information Data Integration and
Autonomous Optimization Protocol sections and Fig. SI-3 through SI-4 for details.
See Supplementary Data 2 for an example CSV file.

Experimental planning algorithms. The ML algorithms used for experiment
planning in this study, Phoenics and Gryffin, leverage fundamental concepts from
BO in combination with kernel density estimation. BO is an approach to global
optimization for applications where the evaluation of a single parameter point is
highly time or resource demanding. While several formulations exist, BO follows a
two-step strategy to suggest parameter points for future evaluation: (1) con-
structing a statistical approximation to the considered experiment based on col-
lected measurements, and (2) locating parameter points for which the
approximation predicts promising performance. Phoenics and Gryffin construct
the statistical approximation based on kernel density estimates of evaluated
parameters and suggest promising parameter points with an explicit balance of
exploitative and explorative sampling behavior with native support for parallel
optimization. See Supplementary Information Machine Learning Algorithms sec-
tion for details.

Automated experimental procedure
General. Stock solutions or slurries were prepared manually in anhydrous ACN
under N2 atmosphere and placed on the robot deck for autonomous execution.
Two fluoropolymer and PFA mat-sealed 96-well metal blocks with 1 ml glass vial
inserts were equilibrated at the designated reaction temperature under 20 psig of
N2 with 500 rpm agitation.

Representative procedure for test reactions. In campaigns involving 192 iterations,
eight wells from each 96-well reaction block were dedicated to standard reactions
to test for reproducibility. To each well was dispensed Pd(ACN)2Cl2 (0.25 µmol,
25 µl of 0.01 M stock solution) and L2 (PoTol3) (0.38 µmol, 19 µl of 0.02M stock
mixture), followed by 7 min of age time. Then, E-tosylate 1-E (10 µmol) with 1,3,5-
trimethoxybenzene (1 µmol) was dispensed (20 µl of 0.5 M/0.05 M stock solution),
followed by (3-(benzyloxy)phenyl)boronic acid 3 (15 µmol, 30 µl of 0.5 M stock
solution in degassed ACN 5% H2O), followed by anhydrous ACN (106 µl) to
ensure a total organic solvent volume of 200 µl. Then, a dispense of degassed
aqueous K3PO4 (30 µmol, 60 µl of 0.5 M stock solution) was carried out to initiate
the reaction. This procedure was executed sequentially for each well within a loop
of eight replicates in 15-min intervals. Each replicate was time stamped indivi-
dually, aged for 120 min, and sampled for online analysis.

Representative procedure for optimization reactions. In campaigns involving 192
iterations, 88 wells from each 96-well reaction block were dedicated to the opti-
mization reactions. To each well was dispensed Pd(ACN)2Cl2 (0.1–0.5 µmol,
10–50 µl of 0.01 M stock solution) and phosphine ligand (0.05–2.0 µmol, 3–100 µl
of 0.02 M stock mixture), followed by 7 min of age time. Then, E-tosylate 1-E
(10 µmol) with 1,3,5-trimethoxybenzene (1.0 µmol) was dispensed (20 µl of 0.5 M/
0.05M stock solution), followed by (3-(benzyloxy)phenyl)boronic acid 3 (15 µmol,
30 µl of 0.5 M stock solution in degassed ACN 5% H2O), followed by anhydrous
ACN (0–138 µl) to ensure a total organic solvent volume of 200 µl. Then, a dis-
pense of degassed aqueous K3PO4 (30 µmol, 60 µl of 0.5 M stock solution) was
carried out to initiate the reaction. This procedure was executed sequentially for

each well within a loop of eight experiments in 15-min intervals. Each reaction was
time stamped individually, aged for 120 min, and sampled for online analysis.

Sampling and analysis. Two polypropylene 96-well collection blocks sealed with a
silicone mats were manually prefilled with 800 µl of acetonitrile 10% aqueous pH
3.5 ammonium formate buffer and placed on the robot deck. Upon reaching the
reaction endpoint at 120 min, 10 µl of reaction mixture was aliquoted and dis-
pensed into the 800 µl quench solution in the collection block. Upon needle-
mixing, 40 µl of quenched sample from the collection block was aliquoted and
injected to the on-deck sampling valve outfitted with a 5 µl loop. The valve was
automatically switched to transfer the sample to the Agilent 1100 HPLC for
analysis.

See Supplementary Information Supplementary Methods section as well
as Table SI-1 through SI-5 and Fig. SI-2 for details. See Supplementary Movie 1 for
a recording of the robot deck during experimental execution.

Data availability
All data generated during this study are included in this published article,
the Supplementary Information Analytical Data section, Supplementary Information
Table SI-6 through SI-13, Supplementary Information Fig. SI-5 through SI-10,
Supplementary Data 1 through 2, and Supplementary Movie 1 through 2. The computed
molecular features utilized in this study have been made publicly available at https://
kraken.cs.toronto.edu/dashboard45.

Code availability
The custom code used in this study has been made publicly available on GitLab at https://
gitlab.com/heingroup/cs-auto-optimization under the MIT open source license.
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