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ARTICLE INFO ABSTRACT

Keywords: The evolution of visual patterns is a frontier in the theory of sexual selection as we seek to understand the

Camo“ﬂa_ge function of complex visual patterning in courtship. Recently, the sensory drive and sensory bias models of sexual

Ez’;""lt“m“al neural networks selection have been applied to higher-level visual processing. One prediction of this application is that animals'
eostoma

sexual signals will mimic the visual statistics of their habitats. An enduring difficulty of testing predictions of
visual pattern evolution is in developing quantitative methods for comparing patterns. Advances in artificial
neural networks address this challenge by allowing for the direct comparison of images using both simple and
complex features. Here, we use VGG19, an industry-leading image classification network to test predictions of
sensory drive, by comparing visual patterns in darter fish (Etheostoma spp.) to images of their habitats. We find
that images of female darters are significantly more similar to images of their habitat than are images of males,
supporting a role of camouflage in female patterning. We do not find direct evidence for sensory drive shaping
the design of male patterns; however, this work demonstrates the utility of network methods for pattern analysis
and suggests future directions for visual pattern research.

Sensory drive
Sexual selection
Visual patterns

1. Introduction

The evolution of visual pattern is an enduring problem in evolu-
tionary biology. Despite the ubiquity and diversity of visual patterns,
relatively few empirical studies have examined how sexual selection can
influence their design (Endler and Mappes, 2017; Gluckman and Car-
doso, 2010; Pérez-Rodriguez et al., 2013; Pérez-Rodriguez et al., 2017;
Sibeaux et al., 2019; Tibbetts and Dale, 2004). The classical models of
sexual selection, such as Fisherian processes, good genes, and direct
benefits, explain why signals might be elaborated, yet offer little in
terms of understanding their design (Endler and Basolo, 1998; Ryan,
1998). In the late 20th century, new theoretical developments in sexual
selection expanded our ability to predict the direction of signal design
(Endler, 1992; Endler and Basolo, 1998; Ryan and Cummings, 2013).
“Sensory drive” describes the effect of the environment on the trans-
mission, reception, and evolution of signals (Cummings and Endler,
2018). “Sensory bias” is an example of sensory drive, describing how
signals and signal preferences originating in non-sexual contexts, like
foraging, can have profound effects on signals used in sexual contexts
(Fuller et al., 2005). These models have been successfully applied to
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understand signal features in many systems, such as the color of African
cichlid displays, and the peak frequency of tiingara frog calls (Cummings
and Endler, 2018; Ryan and Rand, 1990; Seehausen et al., 2008).
However, not until recently were these models applied to complex visual
patterns.

Recently, Renoult and Mendelson expanded the conceptual frame-
work of sensory drive to encompass higher level visual processing in
addition to peripheral sensory transduction (Renoult and Mendelson,
2019). Natural visual scenes contain statistical regularities that sensory
systems can leverage (Barlow, 1961; Olshausen and Field, 2004;
Simoncelli and Olshausen, 2001). The efficient coding hypothesis pre-
dicts that sensory systems will evolve sensory codes that minimize sta-
tistical redundancies in the environment, in order to reduce the
metabolic cost of information processing (Barlow, 1961). That hypoth-
esis suggests that the optimal sensory code is environment dependent.
Thus, if habitats vary in their visual statistics, then animals evolving in
different habitats should exhibit differences in sensory coding, which
can in turn lead to differences in pattern preferences, and ultimately
signal design (Renoult and Mendelson, 2019). Thus, Renoult and Men-
delson (2019) predict that visual sexual ornaments should match the
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visual statistics of their habitats. Whereas previously explored mecha-
nisms of sensory drive focus on simple features such as the color of a
visual display, or peak frequency of a call, this framework offers a po-
tential explanation for a broader class of signals.

The prediction that the visual statistics of ornaments will match
those of their habitat was recently bolstered by Hulse and colleagues,
who investigate the Fourier slopes of the preferred habitats of darter fish
species and the nuptial displays of the fishes themselves (Hulse et al.,
2020). They find a correlation between the slope of habitats and that of
nuptial display for males but not for females, suggesting that male
darters have evolved visual patterns that mimic the visual statistics of
their specific habitat. The Fourier slope is a measure of the relationship
between spatial scale and contrast intensity in visual patterns, and
represents only one component of visual signaling, however. Testing the
predictions of the efficient coding hypothesis will require methods that
capture more components of visual signals.

One roadblock on the way to testing predictions of visual pattern
evolution is the difficulty of quantifying pattern differences (Pérez-
Rodriguez et al., 2017). Image similarity is inherently subjective; to
produce a metric of similarity, it is essential to understand how visual
scenes are perceived by the brain (Rogowitz et al., 1998; Sinha and
Russell, 2011). Information theory and image analysis provide
numerous methods, including Fourier analysis, and Fractal Dimension,
which can be used to generate biologically relevant summary statistics
about images (Pouli et al., 2013). These approaches have been suc-
cessfully applied to understanding the role of sexual selection role in
visual pattern evolution (Menzel et al., 2015; Pérez-Rodriguez et al.,
2013; Pérez-Rodriguez et al., 2017), but they do not incorporate higher-
level image processing, such as that beyond V1 of the mammalian visual
cortex (Simoncelli and Olshausen, 2001). In higher-level visual pro-
cessing, neurons become tuned to abstract features which are difficult to
capture through traditional methods (DiCarlo et al., 2012). For
modeling these higher-level processes, artificial neural networks are one
of the most promising methodologies currently available (Kriegeskorte,
2015; Wenliang and Seitz, 2018).

The development of deep convolutional neural networks (CNNs) has
revolutionized computer vision by mimicking the architecture of
vertebrate visual processing (LeCun et al., 2015). CNNs are a feed-
forward network, composed of multiple layers of connected units,
which have activation levels (the response level of each node in a layer)
determined by the units in the preceding layer. These types of networks
can be highly invariant to image rotation and skew, long standing dif-
ficulties for traditional computer vision approaches (Lo et al., 2018).
CNN-based approaches encode images similarly to vertebrate brains,
and have been able to mimic the individual neurons in the human
inferior temporal cortex (Kuzovkin et al., 2018; Yamins et al., 2014).
Furthermore, researchers found that network performance in object
classification tasks is strongly correlated with its ability to predict in-
dividual cortical neuron activations. In addition to their performance in
classifying man-made objects, neural networks have also been success-
fully used to make species identifications in a many taxa (Hansen et al.,
2020; Nguyen et al., 2016; Zhou et al., 2016). CNNs can perform well
even when they are not trained on the objects they are classifying, a
technique known as transfer learning (Gogul and Kumar, 2017; Shaha
and Pawar, 2018). The success of transfer learning shows that the fea-
tures learned by CNNs are broadly useful across many different image
classes. Additionally, the hierarchical architecture of convolutional
neural networks means that image representations become increasingly
abstract deeper in the network (Kuzovkin et al., 2018; Wenliang and
Seitz, 2018). For example, at shallow layers, each unit responds to small-
scale, local features and often functions as edge and corner detectors. At
deeper layers, units are tuned to more abstract image features that may
occur anywhere in the image, such as face-like objects.

Computer scientists have recently devised new methods based on
convolutional neural networks to separate the style of an image from its
content (Gatys et al., 2016). It may be difficult to objectively define
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style, but mostly it is defined in terms of texture (Gatys et al., 2017),
which, generally speaking, describes properties of an image such as
smoothness, regularity and variation in brightness (Bharati et al., 2004).
At the heart of texture analysis is the Gram matrix, which is used to
represent the style of an image at a given layer. The Gram matrix is a
measure of covariance between different features within an image.
Differences in texture-like features may be important differentiators for
visual patterns between species of animals, thus the Gram matrix may be
a useful tool in the quantitative analysis of visual patterns.

CNN s can also be used to generate metrics of image similarity based
on features at multiple spatial scales and multiple levels of abstraction
(Appalaraju and Chaoji, 2018; Bell and Bala, 2015). By measuring the
differences in activations or Gram matrices between two images at
different layers in a neural network, we can see how images differ at
different levels of abstraction. These approaches are highly effective in
providing a quantitative measure of image similarity that closely
matches human similarity judgments (Zhang et al., 2018). Despite the
clear utility of these networks, CNNs have seen limited use in the study
of signal design and pattern evolution. Combining new tools such as
CNNs with predictive models of signal design provides new opportu-
nities to investigate the evolution and diversity of animal patterns. For
instance, we can test the prediction that the spatial features in animal
patterns will be more visually similar to their native habitats than they
are to non-native habitats.

Darters (Percidae: Etheostoma), a group of North American fresh-
water fish, make an excellent model for studying how sexual selection
affects visual pattern evolution. During their breeding season in the
spring, males of different species exhibit an incredible diversity of
colorful nuptial patterns. Males use their nuptial patterns for display in
both male-male and male-female contexts. Previous studies have shown
that both female and male darters have a strong preference for
conspecific color and pattern (Williams and Mendelson, 2010; Williams
and Mendelson, 2011; Williams and Mendelson, 2013). Furthermore,
different species of darters occupy habitat types with distinct visual
statistics (Hulse et al., 2020; Stauffer et al., 1996; Welsh and Perry,
1998).

Here, we use VGG19, a benchmark convolutional neural network,
and a previously collected library of darter and habitat images to test
hypotheses about the evolution of sexually selected visual patterns
(Simonyan and Zisserman, 2015). First, we test whether a pre-trained
network can be used to accurately classify images of darters and their
habitats. We then compare the visual similarity of darter patterns and
their habitats to test a hypothesis of sensory drive.

2. Materials and methods
2.1. Image collection and processing

We used a previously obtained collection of photographs, containing
images of 11 species of darters as well as underwater photography of
darter habitats representing five classes of habitat. The species included
were Etheostoma barrenense, E. blennioides, E. caeruleum, E. camurum,
E. chlorosomum, E. gracile, E. olmstedi, E. pyrrhogaster, E. swaini, E. zonale
and E. zonistium (for habitat classifications and detailed methods, see
Hulse et al., 2020). In total, we analyzed 550 darter images (288 male
and 262 female) and 597 habitat images. Although the number of in-
dividuals photographed for each species was relatively small for neural
network analyses, this is less of a concern for our study as we do not train
any networks. The full description of the photography methods can be
found in Hulse et al. (2020). All images were resized to 224 x 224 pixels
to match the input dimensions of the network and preprocessed so that
the mean pixel values matched those of the images used to pretrain the
CNN. For the fish images, we used cropped images of the darters' flank,
to match methods used in Hulse et al. (2020). Both fish and habitat
images were converted to greyscale to negate the influence of color and
thus focus all analyses on patterning only. Examples of fish and habitat
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images are shown in Fig. 1.

2.2. Convolutional neural network analysis

To examine how each species of fish is encoded by deep convolu-
tional networks, and to determine how well species cluster at each layer,
we used the VGG19 deep convolutional network pre-trained on the
Imagenet database (Fig. 2, Simonyan and Zisserman, 2015). Imagenet
contains over 14 million labeled images representing a broad spectrum
of objects and is a standard training library in machine learning (Deng
et al., 2009). VGG19 consists of 19 layers with five 3 x 3 convolutional
filters and five max pooling layers. We omitted the last three fully
connected layers as they are related to assigning features to specific
object classifications. After each max pooling layer, the channel
dimension is reduced by a factor of 4, and the number of filters increased
by a factor of 2. Each layer contains between 64 and 512 filters, which
activate selectively for specific image features. Each channel is repre-
sented by a square matrix of activations. Previous studies have shown
that using pre-trained networks such as this is sufficient for many visual
recognition tasks, and without massive computational effort is often
better than training a network from scratch (Shaha and Pawar, 2018).
Our VGG19 implementation was built using the keras library for python,
and Google's TensorFlow v2.5.0 platform.

2.3. Classification accuracy

For each species of darter, we designated half of our images as
reference images and half as test images. In cases where there were an
odd number of images, the training set was given the larger number. For
each species, we first inputted the reference images into VGG19 and
calculated the mean activation for every neuron at every layer. For a
given layer, the vector of mean activations is used as the species centroid
representing the prototype of that species. Additionally, at each layer,
we computed the Gram matrix and calculated the species centroids from
all the images in the reference set. The Gram matrix can be computed
from the activations in each layer as G = F'F, where F is the matrix of
activations such that each column is a flattened filter (Fig. 3). Each entry
of the Gram matrix can be thought of as the covariance between the ith
and jth channel, thus the Gram matrix encodes how often image features
cooccur.

Next, to generate our classification accuracy metric, we computed
the activations for the test image set. An image was accurately classified
at a given layer if the Euclidean distance between its activations and its
corresponding species centroid was less than the distances between its
activations and any other species' centroids. For each species, we
calculated the proportion of images accurately classified. The accuracy
computation was performed for both activations and Gram matrix-based
classification. The overall classification accuracy at each layer was

E.camurum E.gracile E.caeruleum E.olmstedi

o i a@f

E. blennioides E.swaini E.zonale

A —Ah— APl -2

E. pyrrhogaster E. chlorosomum E. barrenense E. zonistium
gravel boulder bedrock detritus

Fig. 1. Sample images of the 11 darter species and 5 habitat classes used in
this study.
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Fig. 2. Schematic of the VGG19 Convolutional Neural Network. At shallow
layers, images are represented with a relatively small number of high-resolution
filters. At deeper layers, the spatial resolution of the filters decreases while the
number of filters increases. This leads to neurons at deeper layers having larger
receptive fields than at shallow layers.
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Fig. 3. Diagram depicting the computation of the Gram matrix. At each layer,
all of the features (represented by a matrix) are extracted and flattened into a
vector. Each entry of the Gram matrix is then calculated as the inner product of
the two feature vectors corresponding to the row and column of the
Gram matrix.

calculated as the mean classification accuracy across all species.

In addition to evaluating the classification accuracy for fish, we
performed the classification analysis for the habitat images, using the
same procedure as for the fish images. Habitat images (n = 597) were
classified into five categories, which were evenly divided into the
reference and test sets. Habitat classifications were sand (n = 110),
gravel (n = 120), boulder (n = 128), detritus (n = 123) and bedrock (n =
116), representing typical habitat types for darters. We then calculated
the proportion of habitat images in the test set that were accurately
classified by Euclidean distance from their class centroid, both for
activation and Gram matrix-based classification.

2.4. Species-habitat comparison

To determine whether darter species are more visually similar to
their preferred habitat (hereafter, “matched”) than to habitats in which
they are not typically found (hereafter, “non-matched”), we analyzed
the Euclidean distance between the habitat images and the darter im-
ages, for both matched and non-matched habitats. Habitat preferences
were determined through field observations as well as a literature search
(Bailey and Etnier, 1988; Etnier and Starnes, 1993; Kuehne and Barbour,
2015). For all species, we computed the distance between each indi-
vidual and their matched habitat centroid, as well as the distances from
each individual to each non-matched centroid, treating every layer
separately. For each species, we then averaged the matched darter-
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habitat distances separately from the non-matched distances (a given
species has only one matching habitat and several non-matching habi-
tats; for non-matching habitats we averaged all distances). If darter vi-
sual patterns match their habitat, we predicted that the distance
between darters and matched habitat would be less than the distance
between darters and their unmatched habitat. We tested this prediction
using a paired t-test. Pairwise comparisons were performed separately
for males and females, for each layer, considering either distances be-
tween activations or between Gram matrices.

Aside from the strength of correlations between matched and non-
matched habitats, one possibility is that males could be more visually
similar to darter habitats overall than females, (or vice-versa). To test
this, we performed a paired t-test, comparing the distance between male
images and all habitat classes to the distance between female images and
all habitat classes. This test was performed for each species separately,
considering either activations or the Gram matrix. We performed this
test at the third layer of VGG, where the differences between matched
and non-matched distances were greatest.

2.5. Visualization of gram matrix space

We also used multi-dimensional scaling to visualize how darter and
habitat images associate in the Gram matrix space. This method is
similar to other dimensionality reduction methods, such as principal
components analysis, but tends to perform better with very high
dimensional data, such as the Gram matrix space, which can have up to
thousands of dimensions. We performed the multi-dimensional scaling
keeping only the first two dimensions, at both layers 3 and 18, in order
to visualize the resemblance between the visual styles of habitats and
fish as encoded in one shallow and one deep layer.

3. Results
3.1. Classification accuracy

Classification accuracy for both males and females increased across
layers of the network (Fig. 4). In general, classification accuracy was
similar for activation-based classification and Gram matrix-based clas-
sification (Fig. 4). For males, across all layers, the average classification
accuracy was 60.6% +/— 14.6% based on activations and 55.3% +/—
16.8% based on Gram matrix differences (Fig. 4a). For females, across all
layers the average classification accuracy was 52.9% +/ 12.2% for ac-
tivations and 57.9% +/— 16.9% for the Gram matrix (Fig. 4b). The
probability of a correct classification based on random chance is 9.1%.

For the habitat images, we also observed a continuous improvement
in classification accuracy towards deeper layers. Across all layers, the
average classification accuracy was 59.3% +/— 6.7% for activations,
and 55.1% +/— 8.4% for the Gram matrix (Fig. 5). The probability of a
correct classification based on random chance is 20%.

Accuracy

—— Activations Gram Matrix

Fig. 4. Proportion of male (a) and female (b) fish images correctly classified by
species. Activation-based classifications are in blue and Gram matrix-based
classifications are in orange. Solid vertical bars indicate the standard devia-
tion across species. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. Proportion of habitat images correctly classified by habitat type.

Activation-based classifications are in blue and Gram matrix-based classifica-

tions are in orange. Solid vertical bars indicate the standard deviation across

habitat classes. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

3.2. Species-habitat comparison

We did not find a significant difference in distances between darters
and matched habitats versus non-matched habitats in males, (activa-
tions: t = 0.44, df = 10, p = 0.67; Gram matrices: t = 0.74, df = 10,p =
0.47; Figs. 6-7) or in females (activations: t = —0.05, df = 10, p = 0.96;
Gram matrices: t = 0.49, df = 10, p = 0.64; Figs. 6-7).

At shallow layers, we found that female darters were significantly
more similar to darter habitats than were males for Gram matrices, but
not activations (activations: t = —0.67, df = 10, p = 0.52; Gram matrices:
t = 3.28, df = 10, p = 0.0083; Fig. 8).

The multi-dimensional scaling generated for layers 3 and 18 provides
a visual representation of how fish images and habitat images cluster in
Gram matrix space (Fig. 9). We observed separation between fish and
habitat images for both layers, but the separation is clearer for layer 18.
Additionally, it appears that the primary axis of variation for fish images

Activations: males Gram matrix: males
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Fig. 6. Matched and non-matched darter-habitat distances for layer 3. The left
panel displays activation distances and the right panel indicates gram-matrix
distances. Blue boxes represent data for males, and orange boxes indicate
data for females. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7. Distances between darters and matched or non-matched habitats for
both males and females, averaged across each species. (a) Activations, (b) Gram
Matrices. Distances have been normalized for visualization purposes; raw dis-
tances were used in statistical tests.
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Fig. 8. Sex differences in distances between habitat images and darter images.
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Fig. 9. First two dimensions of a multi-dimensional scaling analysis performed
on Gram matrices with both fish patterns and habitat images. This was per-
formed for males at layer 3 (a), males at layer 18 (b), females at layer 3 (c), and
females at layer 18 (d). Darters are notated by checks while habitat images are
notated with circles. Red marks denote gravel images and species associated
with gravel habitats; green denotes sand and sand-associated species; yellow
denotes boulder and boulder-associated species; black denotes detritus and
detritus-associated species, and blue denotes bedrock and bedrock-associated
species. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

in layer 3 is different than that of the habitat images.
4. Discussion

Early on, Darwin stressed the importance of visual patterns in sexual
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selection. Yet our understanding of their evolution and function in mate
choice, and more generally in animal communication does not match
their ubiquity or importance (Cummings and Endler, 2018). Clearly, the
field requires new tools to study the design of communication signals,
encompassing both their simple (e.g., color, roundness, dominant ori-
entations) and complex (e.g., relative position of complex forms like
circles) components. Considering how closely they mimic biological
vision, convolutional neural networks (CNNs) have opened previously
intractable ways for us to understand the evolution of sexual signaling.
Our results show that CNNs can discriminate fish species even when
trained on very different data sets. The observed discrimination accu-
racy further supports the feasibility of using a small number of images to
characterize each species. Our approach uses a general image classifi-
cation algorithm, meaning that our results are likely transferable to
other systems. Remarkably, although performance is worse for shallow
layers, where each neuron's receptive field is only a 3 x 3 pixel patch,
they are still able to distinguish between species beyond chance. This
result indicates that species diagnostic characters occur at all spatial
scales, and includes both small, very localized components, as well as
large visual components spanning the entire fish flanks. In a separate
analysis using images of entire fish instead of only the fish flanks, we
were able to replicate and even exceed this performance (Hulse et al.,
unpublished data), likely because darter species differ by overall body
shape in addition to body patterning. Whether or not darters effectively
use visual components at all spatial scales to recognize conspecifics
would require behavioral tests.

Interestingly, our results do not provide evidence that, in darter
species, the male nuptial pattern matches that of species-specific habi-
tats, contradicting our previous results. In Hulse et al. (2020), using the
very same dataset, we found a statistically significant correlation be-
tween the Fourier slope of darter nuptial patterns and that of their
habitats for males, but not for females. The Fourier slope describes the
relative strength of luminance contrasts (averaged over orientations)
across spatial scales. The Fourier slope has been implicated as a factor in
human aesthetic preferences, which may be related to mimicking the
Fourier statistics of natural scenes (Juricevic et al., 2010; Menzel et al.,
2015; Renoult et al., 2016). To ensure that the kind of information
encoded by the Fourier statistics was not missed by our CNN-based
analyses, we generated datasets of white noise filtered with different
Fourier slopes, and we tested whether these could be discriminated by
VGG19 trained on Imagenet. Even with difference in Fourier slope as
small as 0.1, using the same methods as in our fish classification, VGG19
is able to correctly classify white noise images of varying slopes with
100% accuracy at all layers (Hulse et al., unpublished data). While it is
clear that VGG19 can detect differences in Fourier slope, it is unclear
how these differences affect overall activation and Gram matrix differ-
ences. Since VGG19 is an object classification network, the relative
importance of visual components related to the Fourier slope may be
minor if they are not useful for classification.

The absence of a significant similarity between darter patterns and
their preferred habitats does not support a role of sensory drive in
pattern evolution; however, there are many ways in which our analysis
may not have detected it. Firstly, we might expect fish-habitat corre-
spondence to be stronger in the shallow layers of the network. It is here
that the network is tuned to local, less abstract features, which are more
likely to be shared between fish and habitats than the large-scale, highly
abstract features of deep layers. The greater specificity in deep layers
can be observed from the multidimensional scaling of the Gram matrix
space (Fig. 9), where there is a greater separation between fish and
habitats at the deeper layer. The greater degree of shared features be-
tween habitat images and darter images at shallow layers could be an
issue, as these shallow layers are also where we see the least differen-
tiation between species of darters (Fig. 4). Thus, in the shallow layers
where we would expect to see similarities in texture between fish and
habitats, there is likely not enough variation between species to accu-
rately group species with their habitats. Future work should thus employ
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tailored approaches that can pick out subtle differences in shallow
features.

Second, general image classification networks such as VGG19 might
miss subtle features relevant to the processing of fish and habitat images
(Firestone, 2020). One solution might be to use a network specifically
trained to discriminate between the image classes of interest. For
example, training a network to discriminate fishes versus habitats might
force the network to learn features that are relevant for coding fish and
habitat information. Alternatively, using VGG19 trained on Imagenet as
we did here, one could train a classifier (e.g., a linear Support Vector
Machine) to discriminate between fishes and habitats from activations of
shallow layers to identify the most relevant features, and analyze these
features only. Another approach could use sparse autoencoders, trained
on relevant images, with a sparseness constraint on the intermediate
layers. These networks remove redundancies in input images, similar to
what Barlow hypothesized for biological neural systems. Like convolu-
tional neural networks, sparse autoencoders trained on natural images
learn features similar to cells in the mammalian visual cortex (Olshausen
and Field, 2004). These approaches were not feasible for our study, as
training neural networks requires a database of images much larger than
ours. Generating such a database while maintaining the degree of
standardization applied here is beyond the scope of this investigation.

One clear result of our study is that the patterns of female darters are
more similar to stream habitats than are the patterns of males. This
result is perhaps best explained by females being more cryptically
camouflaged in their environment. In darters, males are actively
signaling to females during the breeding season, investing considerable
energy in display behavior. While there is pressure for both males and
females to be inconspicuous to predators, the male darter reproductive
strategy requires them to be conspicuous to females; thus, males are
likely limited in the extent to which they can be camouflaged. Darter
mating behavior therefore predicts that females will be more camou-
flaged than males. Our results are consistent with this prediction.
Importantly, the predictions of camouflage and efficient coding are not
mutually exclusive. Empirical evidence suggests that visual signals can
be used both for camouflage and sexual signaling. For example, in an
analysis spanning over 90% of all avian species, (Gluckman and Car-
doso, 2010) find that barred plumage can function both as a quality
indicator and a camouflage structure. Darter visual patterns are likely
attractive to both sexes; both male and female darters have preferences
for particular phenotypes in the opposite sex (Mattson et al., 2020;
Roberts and Mendelson, 2021; Williams and Mendelson, 2011; Williams
and Mendelson, 2013), suggesting sexual selection drives signal design.
If pressure from both sexual selection and camouflage are driving visual
patterns to resemble their habitats, it may be difficult to disentangle
their effects. One possibility is that the sexes differ in conspicuousness,
independently of attractiveness. By this reasoning, our methods could be
detecting the conspicuousness aspect of male patterns (even without the
chromatic component, which would further increase the conspicuous-
ness of males), but might be missing components implicated in male
attractiveness.

To our knowledge, our study is the first to use the Gram matrix to
classify images. While this may not be the best method for accurately
categorizing images, the Gram matrix may have immense utility for
evolutionary biologists (Grammer et al., 2003; Grammer and Thornhill,
1994). Visual patterns are highly multidimensional; disentangling their
different components can allow for a better understanding of their
evolution. Neural network activations are generally thought of as
encoding the content of an image, for example, whereas the Gram matrix
encodes information about its texture. It makes sense that animals would
mimic the texture of their habitats more so than the larger objects,
except in cases of masquerade camouflage. Notably, we observed a
significant difference between males and females only in terms of the
Gram matrix, with female patterns being more similar to habitats than
were males. For animals to be well camouflaged, texture-related features
may be important to mimic. Our results show that the Gram matrix

Ecological Informatics 67 (2022) 101486

provides a valuable complement to other image analysis techniques for
studying camouflage. Unlike methods such as pattern energy analysis, it
can be conducted at different layers, allowing researchers to examine
spatial components at different spatial scales (Troscianko et al., 2017).

5. Conclusions

In sum, this work demonstrates the utility of convolutional neural
networks for generating biologically informed distance metrics for pat-
terns. While these methods are comparatively new in the field of ecology
and evolution of animal communication, the last decade has seen arti-
ficial neural networks revolutionize many fields. Owing to the similar-
ities between CNNs and vertebrate visual processing, neural network-
based approaches greatly expand our capability to understand how
sensory coding influences signal design. Similarity metrics, such as those
employed here, may be particularly useful for tracking evolutionary
changes such as pattern divergence. Although our results do not clearly
support the role of sensory drive in pattern evolution, neural network
analyses clearly offer a starting point for a line of inquiry that could
vastly expand our understanding of signal design.
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