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Abstract

We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biome-
chanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a
latch, and a load mass. One motor loads the spring to store elastic energy and the\seécond motor subse-
quently removes the latch, which releases the spring and causes movement of the load mass. We develop
freely available software to accompany the model, which provides an extensible framework for simulating
LaMSA systems. Output from the simulation includes information from the loading and release phases of
motion, which can be used to calculate kinematic performance metricsthatiare important for biomechanical
function. In parallel, we simulate a comparable, directly actuated system, that uses the same motor and mass
combinations as the LaMSA simulations. By rapidly iterating through-biologically relevant input parameters
to the model, simulated kinematic performance differences bétween,LaMSA and directly actuated systems
can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles
for bioinspired LaMSA systems. As proof of principle of.this,concept, we compare a LaMSA simulation to
a directly actuated simulation that includes either .a Hill-type force-velocity trade-off or muscle activation
dynamics, or both. For the biologically-relevant range of,parameters explored, we find that the muscle force-
velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both
of these dynamic muscle properties increases the‘accelerated mass range where a LaMSA system outperforms
a directly actuated one.
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Introduction

A diverse array of organisms/use stored elastic energy to drive
rapid movements. These organisms use motors, springs, and
latches to performia latch mediated spring actuated (LaMSA)
motion, and remarkably, they can use this mechanism to
outperform current engineering design for repeatable motion
at small size-scales [Longo et al., 2019]. Models have been
developed. to understand the extreme biomechanics of latch-
mediated spring actuated organisms. Organism-specific models,
including both continuum mechanics-based models [Liu et al.,

2017, Bolmin et al., 2019, Berg et al., 2019, Cooper et al., 2018,
Hamlet et al., 2020, Wan and Hao, 2020, Larabee et al., 2018,
Tadayon et al., 2018, Li et al., 2020] and physical modeling with
biomimetic devices [Cox et al., 2014, Liu et al., 2017, Li et al.,
2020, Singh et al., 2020, Biisse et al., 2021, Xu and Bhamla,
2019], have been used to test hypotheses about the movement
of specific organisms (Table 1 summarizes examples of recent
work).

In contrast to organism-specific models, ‘simple models’
with reduced complexity [Anderson et al., 2020] are prima-
rily used for making inter-species comparisons, and for testing
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Modeling Approach

Biomechanical System

Reference

Continuum mechanics
beam bending model

click beetle latch

Bolmin et al. [2019]

fluid dynamics

Ruellia ciliatiflora seed aerodynamics
nematocyst discharge

bladderwort trap suction feeding

Berg et al. [2019]
Cooper et al. [2018]
Hamlet et al. [2020]

finite elements locust jump

dracula ant mandible strike

Wan and Hao [2020]
Larabee et al. [2018]

mantis shrimp strike Tadayon et al. [2018]

Ozalis sp. seed ejection Li et al. [2020]
Physical modeling

Ozalis sp. seed ejection Li et al. [2020]

bladderwort trap suction feeding Singh et al. [2020]

dragonfly larvae strike Biisse et al. [2021]

Spirostomum ambiguum contraction

Xu and Bhamla [2019]

Table 1. Recent examples (since 2018) of modeling latch-mediated spring actuated organisms, which includes both mathematical and“physical

approaches. For a review of earlier work see ref. [llton et al., 2018].

scaling relationships and the sensitivity of kinematic performa-
nce to different characteristics of the organism. These simple
models can also have broad applicability and enable the rapid
testing of ideas [Anderson et al., 2020], and typically include
muscle motors, springs, masses, and other mechanical lin-
kages. In recent work, these models have been applied to
jumping organisms [Olberding et al., 2019, Jarur et al., 2019,
Davranoglou et al., 2019, Zhang et al., 2020, Niechcial et al.,
2019, Hong et al., 2020, Mo et al., 2020, Sutton et al., 2019]
and augmented human movements [Sutrisno and Braun, 2019,
2020]. General models have also been used to test hypoth-
eses about the scaling and effectiveness of biological spring
mechanisms [Galantis and Woledge, 2003, Ilton et al., 2018,
Abbott et al., 2019, Sutton et al., 2019, Divi et al., 2020]. These
types of models have similarities to template models — simple
biomechanical models that demonstrate a particular mechanical
behavior [Full and Koditschek, 1999].

Previous work used a simplified mathematical model to illu=
strate trade-offs between the components of a general LaMSA,
system [Ilton et al., 2018]. The components of a LaMSA system
(the latch, spring, loading motor, and load mass) were modeled
as a simplified mechanical system and given material, geometric,
and dynamic properties; however, the propertiesiof the/system
components were limited to motors and springsswith linear pro-
perties, specific latch shapes, frictionless interactions between
components, and a fixed unlatching velocity.

Here, we develop a LaMSA Template.Model with accom-
panying software. Our modeldhere includes a more general
framework for defining LaMSA “components, such that pre-
vious LaMSA modeling efforts, [Galantis and Woledge, 2003,
Ilton et al., 2018, Sutton et al., 2019, Divi et al., 2020] are all
particular cases ofwthis new model. This broader approach
allows the model, to be tuned to a specific organism, group of
organisms, or a biological scaling relationship to explore que-
stions in comparative biomechanics and LaMSA system design.
Our appreach,alse includes non-linear and time-dependent pro-
perti€s of the spring material during unloading. Additionally,
we providera generalized treatment of the latch that includes
friction,rallows for different latch shapes, and includes an unla-
tching motor that drives the latch removal of the system, similar

to the one recently hypothesized to occur in seme biological
systems [Biisse et al., 2021].

Finally, as an example of this LaMSAuwmedel’s utility, we
use the model to explore how dynamié muscle properties affect
the power output of both a LaMSA system and a system where
the muscle is used to directly actuate movement. T'wo impor-
tant dynamic aspects of muscle are a force-velocity trade-off
(the muscle exerts less force at higher velocities) and an acti-
vation rate (it takes“seme time for the muscle to reach its
maximum force){[Rosario et al., 2016]. Previous work has been
focused on how muscle/force-velocity trade-offs limit power out-
put for a directly,actuated system [Galantis and Woledge, 2003,
Ilton et.al., 2018]. This force-velocity trade-off is a principal rea-
son Y.aMSA systems can outperform comparable muscle-driven
ones at, small load mass; however, it is unclear how significant
this force-velocity effect is compared to the activation dynamics
of ‘muscle. Here we directly compare the effect of the muscle
force-velocity trade-off to the effect of muscle activation. Using
the LaMSA Template Model with inputs guided by biologically-
relevant sizes and masses, we find that the muscle force-velocity
trade-off and activation dynamics cause a similar reduction in
directly actuated kinematics. Combining the two effects, the
mass range where a LaMSA system outperforms a directly actu-
ated one increases by a factor of & 5 times compared to systems
where only one of the two time dependent motor properties is
included.

Methods
LaMSA Template Model

In our model, the motion of a LaMSA system is comprised of
three distinct phases: loading, unlatching, and spring actuation.
In the loading phase (Fig. 1A, first panel), a loading motor (e.g.
muscle) deforms a spring starting from the spring’s stress-free
equilibrium length. We make the simplifying assumption that
the loading occurs slowly enough to approximate it as a quasi-
static motor contraction — i.e. the loading follows the isometric
force-length curve in the case of a muscle motor. Loading is
complete when the loading motor force pulling down (in the —y
direction) matches the spring force pulling up. After the loading
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Template Model for Biological Spring Actuated Systems
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Fig. 1: Schematic description of the LaMSA Template Model with a loading motor, spring, latch, unlatching motor, and load mass.

A The sequence of important events during the movement of a LaMSA system, which includes three delineated phases of motion

in the model: loading, unlatching, and spring actuation. B The properties of the components used in the,LaMSA Template Model,

and an example of each component that is explored in this work (see Table Al in Appendix A for the\specific example functions

and parameters used in this manuscript).

phase, the loading motor remains at a fixed displacement and
the spring is held in place by a latch (Fig. 1A, second panel).
The second phase of motion, the unlatching phase (Fig. 1A,
third panel), begins with the activation of an unlatching motor
that pulls the latch out of the way. During the unlatching phase
the load mass and latch undergo a complex interaction. The
interaction between the load mass and latch is modeled as a
frictional contact between two rigid bodies, and the unlatching
phase ends when there is no longer any contact between the
load mass and latch. Once the contact breaks, the load mass is
actuated solely by the spring, which undergoes a rapid unloa-
ding (Fig. 1A, fourth panel). Spring actuation continués until
the spring returns to its equilibrium length whereait no lon-
ger applies a force to the load mass, which corresponds to’the
“take-off” of the load mass (Fig. 1A, fifth panel)s In the/inodel,
we assume that the latch shape is sufficientlyssmooth that after
the latch disengages, it does not re-engage, at ‘a later time. This
assumption enables the clear delineation of the/unlatching and
spring actuation phases.

The dynamics of a LaMSAsystem depends on its compo-
nents and the interaction between them. In our model, these
components are classified intémmotors, springs, latches, and load
masses (Fig. 1B). Each moter is constrained to move along a
single coordinate axis in the/model (the loading motor moves
along the y axisy the latch and unlatching motor move along
the z axis). We.developrour model with the aim to give general
properties to each, component. The motors and springs in the
LaMSA.gystem are characterized by their force output. The loa-
dingmotoriforce (Fim), the unlatching motor force (Fum), and
spring force (Fsp) are all assumed to be functions of time, displa-
cementyand velocity. Latches are given a shape function yr, ()
that |describes the geometry of the latch. The shape function

relates horizontal mdtion of the latch (in the z direction) to ver-
tical displacements of the load (in the y direction). For example,
the rounded latchiused~in this work, which has circular edges
of radius R ‘has a shape function shown in Fig. 1B. The shape
function describes the shape of the latch where it contacts the
load smass.) The derivatives of this shape function with respect
towz determine the latch slope function yr./(z) = % and latch
coneavity yp/(z) = d;j,}. The functions describing shapes and
forees’are taken as inputs into the model to allow for hypothe-

sis testing of non-linear properties. In addition, the mass of the
system can be distributed in the spring mass, latch mass, and
load mass. With these definitions, we lay out the mathematical
description of the model according to its three phases of motion.

LaMSA Template Model: Loading Phase

In the loading phase, the loading motor slowly applies a force
causing a displacement of the spring. The final displacement of
the spring at the end of the loading phase, yo, is the displa-
cement in which the loading motor force and spring force are
equal and opposite, namely

Flm(t:oo’y()?yzo):_Fsp(t:oory()v'y:o)a (1)

where ¢ is the velocity in the y direction. The condition that
t = oo and y = 0 corresponds to a slow, quasi-static loading of
the spring. The loaded displacement, yo, depends on how the
force-displacement properties of the loading motor and spring
interact.

LaMSA Template Model: Unlatching Phase
The unlatching phase starts with the activation of the unla-
tching motor at time t = 0. The spring starts with an initial
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displacement yo and velocity ¥ = 0, while the latch has an ini-
tial horizontal position x = 0 and velocity & = vg. By analyzing
the spring force acting on the load mass, the unlatching motor
force pulling on the latch, and the contact force between the
load mass and latch, we derive that the differential equation for
the acceleration of the latch, &, during the unlatching phase of

motion

v (FumtFopy) —menypy) @)+ ok (Fum ¥}, — Faptmery) @°) 9
r= (m LT e (U )2 — i (Maryl, —m Ly} » (2
e (Y, s (MegrYy —MLyy

where py is the coefficient of friction between the latch and
load, and m, is the mass of the latch. The term mesr in Eq. (2)
is the overall effective mass for the mass-spring system, with
Meff = Miocad + Ms/3 [Ilton et al., 2018, where m is the
spring mass and Mmjoaq is the effective load mass that depends
on load mass and its effective mechanical advantage (EMA).
A full derivation of Eq. (2) is presented in Appendix B for a
system undergoing small angular displacements. For a LaMSA
system undergoing large angular displacements during rotati-
onal motion, the effective mass and mapping onto Eq. (2) is
provided in Appendix C. From the dynamics and shape of the
latch, the acceleration of the load mass during the unlatching
phase is given by the chain rule,

i = yEa® + )
To determine the end of the unlatching phase, we solve for

the magnitude of the normal component of the contact force
between the load mass and latch,

_ F. "2 B
Fy = mp Fsp+mpmeyp @ +mMepr Y Fum 1+ (ylL)27 (4)

Mepr Yy ok —Mest (Y], )2 —mppry) —my

and require that this magnitude be non-negative during the
unlatching phase to ensure there is still contact between the
load mass and latch. Therefore, we solve for when Fy = 0 to
determine the unlatching duration ¢y, which marks the end of
the unlatching phase and the beginning of the spring actuation
phase of motion.

LaMSA Template Model: Spring Actuation Phase
After unlatching, the load mass undergoes a purely. spring-
driven motion given by

= (%)
Meff

where the spring force can depend on pesition, velocity, and
time. The initial conditions for, this,phase are given by the
ending condition from the unlatchingphase: for the spring actu-
ation phase, the initial positionwef the load mass is y(t = tr)
and its initial velocity is\y(¢ = tr). The spring actuation phase
ends when the sprifigrstops:pushing on the load mass, i.e. when
Fsp =0.

Direct Actuation Model

The _direct) actuation model uses the loading motor of the
LaMSA. system to directly drive the load mass. To ensure the
motor in the directly actuated model is being used in a com-
parable way to the LaMSA model, the mass is accelerated by
thesmotor using a motor contraction. Therefore, the equation of

motion for the load mass is given directly by the force applied
by the motor as it contacts,

j= 1o (©)

K
Meff

where the loading motor force can depend on position, velocity
and time. The initial condition for the directly actuated system
is that the motor and load mass are initially at rest, with the
motor at its undisplaced initial length. Take-off occurs when the
load mass reaches its maximum velocity and Fi, = 0.

LaMSA and Direct Actuation Software Implementation

The LaMSA and direct actuation models were implemented in
MATLAB. This software implementation is freely redistributa-
ble and available at https://posmlab.github.io [Didcock etl:,
2020]. The software allows a user to select a LaMSA system
from a library of components (motors, springs, latches, and
load masses), set parameters for each component, andyrun a
simulation to determine the dynamics of that system (as both a
LaMSA system and a directly actuated systém)./The software
can be used to iterate over the LaMSA system component para-
meters (e.g. spring stiffness) and rapidly generaté the dynamics
for variety of LaMSA systems.

Model Input Parameters

The input parameters to the model were chosen based on the
accelerated mass, characteristic velocities, and typical accele-
rations of the largetwbiological LaMSA systems listed in the
supplementary materials of ref. [Ilton et al., 2018]. To explore
the role of the dymamie properties of muscle, we used a Hill-
type muscléimotor based on ref. [Rosario et al., 2016], which is
one of the default components included in the LaMSA Template
Model software. A muscle activation rate of 200s~! was chosen
as,a typical rate based on the force generation delay of small
animals réported in ref. [More and Donelan, 2018]. The full list
of parameters used in this work are reported in Table Al.

Results and Discussion

Using the components and parameters in Table A1, the output
from a single simulation generated using the software is shown
in Fig. 2. The software output includes information about the
loading phase, and the dynamics of the latch and load mass
during the unlatching and spring actuation phases. For the load
mass dynamics, the simulation generates the position y(¢), velo-
city y(t), and forces acting on the load mass. From the position
and velocity of the load mass, commonly used metrics for kine-
matic performance in biomechanics (e.g. maximum acceleration
and maximum power [Longo et al., 2019]) are calculated. The
maximum load mass acceleration (max |§j(t)|, calculated from
the numerical derivative of y(¢)) and maximum power delivered
to the load mass (Pmax = max |mg(t)y(t)|) depend on the input
parameters to the model, and the freely redistributable software
enables a rapid iteration over a range of input parameters.

For a motor directly actuating a load mass, the maximum
power output depends on accelerated mass, with an upper
bound set by the dynamic properties of the motor (Fig. 3, red
curves). Driving the mass with a motor that has only a force-
velocity trade-off (setting ract = o0 and vmax = 5m/s in the
model) has a similar effect to a motor that only has activation
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Fig. 2: Example output from the model using the components and the biological LaMSA parameters listed in Table Al. A The

force-length curve for a Hill-type muscle motor loading a tendon-like exponential spring. The LaMSAtsystem loads up to a spring

displacement ymax calculated by equating the loading motor and spring forces. B-C The dynamiessduring the unlatching and spring

actuation phases for the latch (panel B) and load mass (panel C). The end of the unlatching phase is marked by the pink vertical
dotted line showing the unlatching duration ({1, &~ 6 ms), which occurs when the normal\forceyN between the latch and load mass
goes to zero (dashed curves in B-C). After unlatching, the load mass is actuated selely by the spring up until take-off duration

(tto ~ 7.5 ms) when the spring force goes to zero, and the load mass reaches itsstake-offiwelocity (vio & 0.4m/s).

dynamics (setting ract = 200571

and vmax = 00 in the model).
Both motors reach an upper bound on their maximum power
output when driving small masses (Fig. 3, dashed and dotted
red curves). Therefore, even in the absence of a force-velocity
trade-off, motors with slow activation rates still have performa-
nce limitations when driving small masses. Including both the
effects of force-velocity and activation in the motor, as,proje-
ctile mass is decreased the maximum power output. of a directly
actuated movement not only saturates to a maximum/ value,
but further decreases for the smallest masses, (Figh3,/solid red
curve).

In contrast to the directly actuatéd systems, the LaMSA
system is insensitive to the force-velocity, trade-offs and activa-
tion dynamics of the loading metor. Varying the loading motor
in the LaMSA system using theisame three conditions as the
directly actuated one (activation dynamics only, F-v trade-off
only, F-v trade-off and activation dynamics), the maximum
output for those three LaMSA systems is identical (Fig. 3,
solid blue curve)¢ The independence of the LaMSA system on
the dynamic propertiesyof the loading motor is a result of the
slow, quasi-Staticdoading assumption made in the model. This
assumption'is justified for biological LaMSA systems like man-
tis shrimp ‘where typical loading rates are orders of magnitude
slower than the rate of elastic energy release [Patek, 2019], but
theyloading motor dynamic properties can be important when

considering simultaneous loading and release of a series elastic
System [Galantis and Woledge, 2003].

The power output of comparable LaMSA and directly actu-
ated systems have a mass dependent transition that is affected
by the dynamic properties of the motor. Comparing the three
different motor conditions in Fig. 3, the crossovers between the
power output of the directly actuated and LaMSA systems is
shifted to a larger mass (by a factor of &~ 5 times) when both the
force-velocity and activation dynamics of the motor are inclu-
ded in the simulation. This result suggests that in systems where
there is a development and transition of a LaMSA mechanism
(e.g. in some species of mantis shrimp [Harrison et al., 2021]),
care should be given to both muscle force-velocity and activa-
tion dynamics when modeling the transition from LaMSA to
directly actuated movement.

Although the results of Fig. 3 were generated using gene-
ral, biologically-relevant parameter values for LaMSA systems,
a more specific biological system could be used to guide
further inquiry into the relative importance of force-velocity
versus muscle activation dynamics. For example, although
here we assumed a fixed value of EMA = 1, the mechani-
cal advantage in both muscle-driven and spring-driven systems
can significantly alter dynamics [Richards and Clemente, 2012,
Olberding et al., 2019]. Decreasing the EMA in the current
model shifts the drop-off in muscle-driven performance to
smaller masses. In addition, for most biologically-relevant
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Fig. 3: Both a motor’s activation rate and its force-velocity
trade-off affect its maximum power output when it directly actu-
ates a projectile. Compared to a using a motor in a LaMSA
system (blue solid curve), the maximum power output of a dire-
ctly actuated system (red curves) is worse for smaller masses.
A motor that has both a force-velocity and activation limita-
tion (solid red curve) has a significantly reduced performance at
low masses compared to one with only a force-velocity trade-off
(dashed red curve) or only an activation rate limitation (dotted
red curve). The intersection between the LaMSA and directly
actuated curve shifts to a higher mass when both dynamic
effects of the motor are included.

systems maximum muscle force typically increases as system
size increases. With a specific system in mind, appropriate
scaling [Rospars and Meyer-Vernet, 2016] and fair compari-
sons [Ilton et al., 2019] could be made across size-scales for both
motor-driven and elastically-driven systems.

Beyond this proof of principle example, the LaMSA Tem-
plate Model and freely redistributable software provides am
extensible platform for exploring biological LaMSA systems.
Although this model was formulated generally to encompass a
broad range of LaMSA systems, the model can beduned tojspe-
cific biological systems because of the flexibilitynin how system
components are defined. The relevant range of input’ parame-
ters and any interdependence between them can be informed by
observed biological data and scaling. Eor example, depending on
the system, the characteristic lengths ofithe system (i.e. muscle
lengths, latch radius, spring length) could be constrained in the
model to follow an isometric scaling. /The software allows the
user to enforce mathematical, couplings between the different
input parameters to thé model, which can be used make inter-
species comparisons and te inyvéstigate to what extent kinematic
performance changes,over the course of development for a given
species.

Flexible/compenent definitions also enables new components
to be created that address specific biological questions. For
example, Deban et al. performed a comparative analysis of ton-
gué projection across salamander species which actuate their
tongueiprojection with a LaMSA mechanism or by direct muscle
actuation [Deban et al., 2020]. The LaMSA projection mecha-
nism can not only lead to higher kinematic performance, but

is also robust to temperature variations [Deban et al., 2020].
To explore this system with the LaMSA model presented here,
new components can be created in the software that intro-
duce a temperature-dependent motor and spring. Adding these
components would yield a theoretical prediction of the relative
sensitivity of the tongue projection performance to temperature
for the two groups of salamanders. Comparing this prediction to
the observed kinematics could be used to inform the modeling
of how biological motors and springs depend on temperature.
As an additional example, Acharya et al. built on the gene-
ral LamSA framework here to include non-linear soft frictional
latches to understand the ultrafast motion of human finger
snaps [Acharya et al., 2021].

Finally, the model and software presented here can offer
insights into how the interrelationships between input para-
meters and performance may influence the evolution of these
biological systems via the concept of mechanical sensitivity:
Mechanical sensitivity refers to the idea that variation . betw-
een parts of a multi-part system are not necessarily equal in
relation to their influence on the output of the systemy[Koehl,
1996, Anderson and Patek, 2015]. Applied to.a LaMSA system,
we might hypothesize that variation in the spring would
result in a larger variation in maximum power than vari-
ation in the latch mass. If so, «that“could mean that the
latch mass has more freedom to evelve_without altering per-
formance. Such patterns have been identified in both mantis
shrimp and fish [Anderson and Patek, 2015, Hu et al., 2017]
and have been shown totinfluence rates of morphological evo-
lution [Mufioz et al$,2017,%2018, Munoz, 2019]. The model
presented here offers, an J6pportunity to quantitatively map
how shifts in input parameters affect multiple performance
metrics simultaneously, allowing for a comprehensive analysis
of mechanical sensitivity.

Conclusion

The/LaMSA Template Model and software presented here
balances modeling principles of simplicity and extensibility.
Simplicity is provided by making explicit assumptions about
how the components are connected in the model, and exten-
sibility is achieved though flexibility of defining the individual
components. With these principles, the model enables the rapid
testing of ideas by simulating kinematic output across the var-
ying model parameters. This model also opens possible new
directions for future work by providing a framework for others
to build upon. Case studies using the model will inform best
practices for tuning the model to explore a specific biological
system. Exploring biological and bioinspired LaMSA systems
with this model will require input from members of compara-
tive biomechanics community through the use of the software
(available at https://posmlab.github.io [Didcock et al., 2020]),
requesting new features, and actively contributing to software
development.
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Appendices
Appendix A: Table of Parameters Used

Loading Motor

Force Function: (ref. [Rosario et al., 2016])

Fim(t,y,9) = Fmax €xp (— |((Li7_oy)b — 1)/3‘{1) ( ) min(ract t, 1)

Loading Motor parameters used in this work:
Fax = 20N VUmax = {57 OO} m/s Lo =L; =10mm
a = 2.08 b= —2.89 s = —0.75 Tact = {200, 00} s71

Spring

Force Function: (ref. [Monroy et al., 2017])
le koe=¥/te — 1, for Fop < Fi max
Fap(t,,5) = { o P s fe

Fs max, otherwise

Spring parameters used in this work:

lc = 10 mm ko = 2kN/m Fsp,max = 20N ms = 20mg

Latch

Shape Function: (ref. [Ilton et al., 2018])

yr(z) = R(1 — /1 — 22/R?)

Default Latch Parameters Used:
R=02mm mL:3g Mk:O vo =0

Unlatching Motor

Force Function: (ref. [Ilton et al., 2018])

Fxlxlf & 7f 0< <d
Fum(t,fl‘,j?):{ 'a( vmax) or <z<

0, otherwise

Unlatching Motor. parameters used in this work:

Fax = 0.25N Umax = 1m/s d = 5mm

Load Mass

Load Mass parameters used in this work:
Mioad= 0.1 — 100 kg
EMA =1

Table Al. Mathematical description of the LaMSA components and default parameter values used in this work. The parameters were selected based
on the range of characteristic forces, lengths, and velocities for biological LaMSA systems [llton et al., 2018, More and Donelan, 2018].
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Appendix B: Derivation of the Model

To simplify the model derivation, we will first reduce our general model that can include rotation down to a one-dimensional
representation. For an applied force F' at one end of a rotating rod with a fixed pivot:

L, L,

]

F

The dynamics of the system is given by relating the applied torque about the pivot to the angular acceleration of the rod,
FLy = I8, (7)

where I is the moment of inertia of the load mass about the fixed pivot point, which for a uniform rod of mass m is given by

(®)

1 Lo —L1\?
I:ﬁm(LlJrLz)erm(g) .

2

If the angular displacement is small (see Appendix C: Model for Large Angular Displacements for a derivation of the reduced
model for large angular displacements), then the linear displacement of the point where force is applied y =~ Lj 0, can be substituted

into the equation of motion to give,
I

F= L—%?L 9)
which for a uniform load mass simplifies to
F = mioaad, (10)
with the effective load mass ) L
mload=m<(1+f§M)2 L - iMA) ) (1)

In other words, the rotational system reduces down to one-dimensional dynamics of the point of where force is applied, but with an
effective load mass that takes into account the effective mechanical advantage, of the'system.
With that simplification, we consider a reduced complexity one dimensional Latch Mediated Spring Actuated (LaMSA) system:

uplatching
‘motor

latch

load mass

spring
loading
fgtor

Our goal is to derive a single ordinary differential equation describing x(t) of the latch while it is in contact with the load mass.

Setting Up the Problem
Let us approximate the load mass and latch as point masses and draw isolation diagrams. In this model, we will consider the latch
to have some shape that governs the unlatching process. Therefore, we have some function yy, (z) that determines the curve of the
latch.
Variables:
Metf, = Mload + % the effective mass of the load mass and spring mass combined
Fu force exerted by the spring on the load mass
ks coefficient of friction between the load mass and the latch
Fn : normal force
[y force of friction between latch and load mass
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Load Mass

Fyp

FN Ff FN Ff

0 : The angle between the normal force vector and the vertical

Among these variables, we’ll consider the following to be given:
Fop, pr

With names for our variables, we can write Newton’s second law to get the following:
> Fy =mesij =Fsp — Fn, — Fy,

Mesrl =Fsp — FN cos 0 — g Fn cos (90 — 0)

Mot =Fsp — Fiv cos 0 — pup Fy sin @
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Latch

Variables:
my, : mass of the latch
Fum : force of the unlatching motor pulling the latch away
Fn : Normal force from load mass on latch
Fy : Friction force from load mass on latch
yr(z) : function describing the latch geometry

Known Values:

my, : mass of the latch
Fum : force of the unlatching motor pulling the latch away
yr(z) : function describing the latch geometry

We get the following equations from Newton’s 2nd Law:

> Fo=mp(i) =Fum + Fn, — Fy,
mpr () =Fum + Fnsin® — i Fv sin (90 — 0)

mp(Z) =Fum + Fn sin@ — pi Fn cos 0

Rewriting Unknowns in Terms of Other Variables
‘We will use these replacements later in the derivation.

Rewriting §j - Our goal is to get a differential equation for Z, but we will end up with ¥ in our equations. So, we can use the

following to rewrite § in terms of & and the latch curve:

_d ,dy
y*dt(dt)
_dy doy
Tt dz \dt
=$(y§:'i")

=gy -2 4L - @

Rewriting tanf - We will need to replace tanf later in the derivation.

slope of

load mas:

M
Fy Fy

Because the/latch geometry is described by the function yr, the slope of the latch is described by the derivative y/ .

, rise
Yo = ——
TUN

rise

tanf = —
TUN

tand =y},
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Solving for &
Solving for F in each equation- Recall that we obtained the following two equations from applying Newton’s 2nd Law to
both :

Mete(Y) =Fsp — Fn cos 0 — pup Fn sin @
mp () =Fum + Fnsinf — pi Fn cos 0
Let us replace § with the expression we obtained in the previous section. Now we have:
Merr(yy - @2 + 1y} - &) =Fsp — Fn cos@ — g Fiy sin @ (12)
mp(Z) =Fum + Fnsin@ — pi Fn cos 0 (13)

The only element that is not known is Fy. Let us eliminate it by solving for Fiy in both equations. Solving for Fiy in Eq. (12) gives
us:
Fop — mesr(yy, - @2 +y, - &)

Fny =
N cos O + py, sin @

Solving for F in Eq. (13) gives us:

Fry = mr& — Fum
sin @ — pg cos O

Expressing Fy without using & - While it is our ultimate goal to solve for &, a side goal that is useful for.determining the
end of the unlatching phase is obtaining an expression for Fy that does not include Z.

We can achieve this by taking Egs. (12) and (13) from the previous section, isolating & in each, and setting them equal to each
other.

Rearranging Eq. (12):

Mot (y) - &2 + oy, - &) =Fsp — Fv cos — pp F sin 0

Mesty & =Fsp — Fnv cos 0 — pp Fiy sin @ — megrya?
_ Fop — Fycos 0 — g Fiy sin,— me py i z?

Mef Yy,

Rearranging Eq. (13):

mp (%) =Fum + FnSIn0~ p, Fn cos 6

. Fum HFnsin® = p Fy cos 6
T =
mr,

Setting these equal to each other, isolating Fn:

Fsp — Fn, €080~ i Fn sin97meffy’[f:i:2 _ Fum + Fnsin6 — pp Fy cos 0

Mef YT, mr

mr, (Fspl— Fiy cos — pp Fn sinf — meffygi"z) Mef Y (Fum + Fn sin@ — pp Fy cos 0)

—Fnmpcos@ — Fnmppgsind — Fnmeypyr sin + Fnme g py7 pr cos 0 =
mrmeys syl d® —mp Fep
+ mes sy Fum
En(mersyr pk cos0 — mesryr sin® — mppg sin® — my, cos 0) =
mLmeffy'IdeQ —mrFsp
+ mes sy Fum

"nLT’FLeffylLi11'32 —mrFsp + meffy/LFum

MeffYs ik COSO — meyry) sin@ — mp g sinf — my, cos 6

Fy =

It’sisomewhat inconvenient to have € in this expression, so we can make the following substitutions based on the geometry of
our problem:
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14 Cook et al.

/
1
YL cosf =

V1+(yo)? 1+ (yr/)?

Plugging these in:

sinf =

mrmessyy @ — mpFsp + Mes syt Fum

Meffyr e — Merr(Yr)? — mopeyy, —mer

Fn =

Great! Now that we have this, we’ll resume with our other goal, of solving for Z.
Solving for & - With two expressions for Fiy in Egs. (12) and (13), we can set them equal to each other to solve for :

Fsp_meff(yg'm.Z‘f'y/L'i') o mpE — Fum

cos 6 + pg sinf sin @ — pg cos 6

Cross-multiply to get:

(sin @ — py cos 0) (Fsp — megr(y) - 22 + oy, - &) = (cos @ + pg sin @) (Mm% — Fum)
Expanding:
Fipsing — megesin 0(yy - &2 + v, - &) — Fappir cos 0 + megepuy cos 0(yy - &2 + v - &) =

mrEcosf — Fum cos + mpurZsing — Fum g sin 6

Divide both sides by cos 6:

. tanf . tan 6 . . .
Fypsirt™ mefgsm’ﬁ(yf “2% 4yl - &) — Fspuncest + mestpreost(yy a2 + y) - %)

tan 0 tan O
:mLM—FumM+mLukM—%,mukM an

Fsptan @ — megrtan 0(yy - 22 4y}, - &) — Fep et motein(yy - 22 + v}, - &)

=mrE — Fum+ mrppgdtan @ — Fuym g tan 0

We can replace tan 6 with y/ :

Fapyh, — meteyr (Y7 - % +yg &) — Foppn + mesepn (v - 2 + 7, - &)

=mri — Fum + mopeZyr, — Fumpry?

If we expand the equation, move all termsthat contain & and 2 to one side, and factor out & and %2, we get:

F(mettin¥y, — Mett(yr)? — mr — mrpryh) + 22 (Mettpryl — Moty yy

= —Fum — Fumﬂky,[, - Fspy,L + Fspﬂk

Now, let us solve for & and regreup some terms to arrive at the final result:

P (Fum + Fspy}) + pr(Fumyy, — Fip) — 22 (Mesty Y7 — Motttk YY)
(mr + mesr(y7)?) — i (Metry, — mLyrL)

And if there isno friction such that pp = 0:

= (Fum + Fspy’L) — 3.32 (meffy,LyZ)
mr + mees(y],)?
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Appendix C: Model for Large Angular Displacements

To model large amplitude rotational motion, we can no longer assume Fspring = Mproj - J as we do for the case of linear (or small
amplitude rotational) motion. Instead, there is a changing mechanical advantage as a function of the angle between the spring and
the lever (pictured below) that complicates the dynamics of the system.

However, if we derive expressions for effective spring force and projectile, mass Fegr and megr as functions of the displacement of
the spring, we can use these expressions in our linear model to accurately)describe rotational motion. In the following section, we
derive these expressions.

We begin by writing Newton’s second law for rotationalmotion:

F - sin(a) - L1 = I4. (14)
Our end goal is to write this as
Fets = Mest - §

where y is the displacement of the spring.
First, we will write 6 in terms of ¢j. There is a complex exact relationship between y and 6 that an interested reader can calculate
using the law of cosines a few times, but itis very well approximated by y = L1 - sin(@). Using this, we find

y = L1 -sin(0)
¢ =Ly -cos(8) - 6
§j=—Li -sin(0) - 62 + Ly - cos(0) - 6

Rearrangingthese equations, we find

.. 1 . sin(9) .,
0= 15
L1 cos(9) vt L2 cos3(6) Y (15)

Now, if we substitute equation 15 into equation 14, we have
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16 Cook et al.

A Ny 1 . sin(0) .,
F -sin(a) = E (cos(@)y + I cos3(9)y ) (16)

Next, we find # Using the parallel axis theorem, we find the moment of inertia of the lever (a rod with uniformly distributed
1

mass m) and projectile (a point mass M) about the axis of rotation will be

LQ—Ll)2

1
I=M(L2)?*+ Bm(L1 +L2)2 +m ( 5

Dividing by L? and substituting the effective mechanical advantage EM A = i—;, we have found an intermediate mass quantity

i~ (o 5 ((rmm) +2 (@)
Mint = —5 — A e -
tT L2 EMA? ' 12 EMA EMA

and we can rewrite equation 16 as

Mmint such that

. o 1 . sin(9) .
F - sin(@) = mint (cos(@) v L1 cos3(0) y2)

or
sin(0) ., Mint

Fsi — Min )” = 17
sin(a) —m tLlcos3(6)y cos(0) v an

Equation 17 is in the desired form, so we can now extract

. sin(0) .,
Fegr = F — Min
£f sin(a) — m o7 c0s? (0)
and
Mint
Me
ff cos(0)
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