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Abstract

We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biome-

chanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a

latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subse-

quently removes the latch, which releases the spring and causes movement of the load mass. We develop

freely available software to accompany the model, which provides an extensible framework for simulating

LaMSA systems. Output from the simulation includes information from the loading and release phases of

motion, which can be used to calculate kinematic performance metrics that are important for biomechanical

function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass

combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters

to the model, simulated kinematic performance differences between LaMSA and directly actuated systems

can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles

for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to

a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation

dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-

velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both

of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms

a directly actuated one.
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Introduction

A diverse array of organisms use stored elastic energy to drive

rapid movements. These organisms use motors, springs, and

latches to perform a latch mediated spring actuated (LaMSA)

motion, and remarkably, they can use this mechanism to

outperform current engineering design for repeatable motion

at small size-scales [Longo et al., 2019]. Models have been

developed to understand the extreme biomechanics of latch-

mediated spring actuated organisms. Organism-specific models,

including both continuum mechanics-based models [Liu et al.,

2017, Bolmin et al., 2019, Berg et al., 2019, Cooper et al., 2018,

Hamlet et al., 2020, Wan and Hao, 2020, Larabee et al., 2018,

Tadayon et al., 2018, Li et al., 2020] and physical modeling with

biomimetic devices [Cox et al., 2014, Liu et al., 2017, Li et al.,

2020, Singh et al., 2020, Büsse et al., 2021, Xu and Bhamla,

2019], have been used to test hypotheses about the movement

of specific organisms (Table 1 summarizes examples of recent

work).

In contrast to organism-specific models, ‘simple models’

with reduced complexity [Anderson et al., 2020] are prima-

rily used for making inter-species comparisons, and for testing
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2 Cook et al.

Modeling Approach Biomechanical System Reference

Continuum mechanics

beam bending model click beetle latch Bolmin et al. [2019]

fluid dynamics bladderwort trap suction feeding Berg et al. [2019]

Ruellia ciliatiflora seed aerodynamics Cooper et al. [2018]

nematocyst discharge Hamlet et al. [2020]

finite elements locust jump Wan and Hao [2020]

dracula ant mandible strike Larabee et al. [2018]

mantis shrimp strike Tadayon et al. [2018]

Oxalis sp. seed ejection Li et al. [2020]

Physical modeling

Oxalis sp. seed ejection Li et al. [2020]

bladderwort trap suction feeding Singh et al. [2020]

dragonfly larvae strike Büsse et al. [2021]

Spirostomum ambiguum contraction Xu and Bhamla [2019]

Table 1. Recent examples (since 2018) of modeling latch-mediated spring actuated organisms, which includes both mathematical and physical

approaches. For a review of earlier work see ref. [Ilton et al., 2018].

scaling relationships and the sensitivity of kinematic performa-

nce to different characteristics of the organism. These simple

models can also have broad applicability and enable the rapid

testing of ideas [Anderson et al., 2020], and typically include

muscle motors, springs, masses, and other mechanical lin-

kages. In recent work, these models have been applied to

jumping organisms [Olberding et al., 2019, Jarur et al., 2019,

Davranoglou et al., 2019, Zhang et al., 2020, Niechcia l et al.,

2019, Hong et al., 2020, Mo et al., 2020, Sutton et al., 2019]

and augmented human movements [Sutrisno and Braun, 2019,

2020]. General models have also been used to test hypoth-

eses about the scaling and effectiveness of biological spring

mechanisms [Galantis and Woledge, 2003, Ilton et al., 2018,

Abbott et al., 2019, Sutton et al., 2019, Divi et al., 2020]. These

types of models have similarities to template models – simple

biomechanical models that demonstrate a particular mechanical

behavior [Full and Koditschek, 1999].

Previous work used a simplified mathematical model to illu-

strate trade-offs between the components of a general LaMSA

system [Ilton et al., 2018]. The components of a LaMSA system

(the latch, spring, loading motor, and load mass) were modeled

as a simplified mechanical system and given material, geometric,

and dynamic properties; however, the properties of the system

components were limited to motors and springs with linear pro-

perties, specific latch shapes, frictionless interactions between

components, and a fixed unlatching velocity.

Here, we develop a LaMSA Template Model with accom-

panying software. Our model here includes a more general

framework for defining LaMSA components, such that pre-

vious LaMSA modeling efforts [Galantis and Woledge, 2003,

Ilton et al., 2018, Sutton et al., 2019, Divi et al., 2020] are all

particular cases of this new model. This broader approach

allows the model to be tuned to a specific organism, group of

organisms, or a biological scaling relationship to explore que-

stions in comparative biomechanics and LaMSA system design.

Our approach also includes non-linear and time-dependent pro-

perties of the spring material during unloading. Additionally,

we provide a generalized treatment of the latch that includes

friction, allows for different latch shapes, and includes an unla-

tching motor that drives the latch removal of the system, similar

to the one recently hypothesized to occur in some biological

systems [Büsse et al., 2021].

Finally, as an example of this LaMSA model’s utility, we

use the model to explore how dynamic muscle properties affect

the power output of both a LaMSA system and a system where

the muscle is used to directly actuate movement. Two impor-

tant dynamic aspects of muscle are a force-velocity trade-off

(the muscle exerts less force at higher velocities) and an acti-

vation rate (it takes some time for the muscle to reach its

maximum force) [Rosario et al., 2016]. Previous work has been

focused on how muscle force-velocity trade-offs limit power out-

put for a directly actuated system [Galantis and Woledge, 2003,

Ilton et al., 2018]. This force-velocity trade-off is a principal rea-

son LaMSA systems can outperform comparable muscle-driven

ones at small load mass; however, it is unclear how significant

this force-velocity effect is compared to the activation dynamics

of muscle. Here we directly compare the effect of the muscle

force-velocity trade-off to the effect of muscle activation. Using

the LaMSA Template Model with inputs guided by biologically-

relevant sizes and masses, we find that the muscle force-velocity

trade-off and activation dynamics cause a similar reduction in

directly actuated kinematics. Combining the two effects, the

mass range where a LaMSA system outperforms a directly actu-

ated one increases by a factor of ≈ 5 times compared to systems

where only one of the two time dependent motor properties is

included.

Methods

LaMSA Template Model

In our model, the motion of a LaMSA system is comprised of

three distinct phases: loading, unlatching, and spring actuation.

In the loading phase (Fig. 1A, first panel), a loading motor (e.g.

muscle) deforms a spring starting from the spring’s stress-free

equilibrium length. We make the simplifying assumption that

the loading occurs slowly enough to approximate it as a quasi-

static motor contraction – i.e. the loading follows the isometric

force-length curve in the case of a muscle motor. Loading is

complete when the loading motor force pulling down (in the −y

direction) matches the spring force pulling up. After the loading
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Template Model for Biological Spring Actuated Systems 3

Fig. 1: Schematic description of the LaMSA Template Model with a loading motor, spring, latch, unlatching motor, and load mass.

A The sequence of important events during the movement of a LaMSA system, which includes three delineated phases of motion

in the model: loading, unlatching, and spring actuation. B The properties of the components used in the LaMSA Template Model,

and an example of each component that is explored in this work (see Table A1 in Appendix A for the specific example functions

and parameters used in this manuscript).

phase, the loading motor remains at a fixed displacement and

the spring is held in place by a latch (Fig. 1A, second panel).

The second phase of motion, the unlatching phase (Fig. 1A,

third panel), begins with the activation of an unlatching motor

that pulls the latch out of the way. During the unlatching phase

the load mass and latch undergo a complex interaction. The

interaction between the load mass and latch is modeled as a

frictional contact between two rigid bodies, and the unlatching

phase ends when there is no longer any contact between the

load mass and latch. Once the contact breaks, the load mass is

actuated solely by the spring, which undergoes a rapid unloa-

ding (Fig. 1A, fourth panel). Spring actuation continues until

the spring returns to its equilibrium length where it no lon-

ger applies a force to the load mass, which corresponds to the

“take-off” of the load mass (Fig. 1A, fifth panel). In the model,

we assume that the latch shape is sufficiently smooth that after

the latch disengages, it does not re-engage at a later time. This

assumption enables the clear delineation of the unlatching and

spring actuation phases.

The dynamics of a LaMSA system depends on its compo-

nents and the interaction between them. In our model, these

components are classified into motors, springs, latches, and load

masses (Fig. 1B). Each motor is constrained to move along a

single coordinate axis in the model (the loading motor moves

along the y axis; the latch and unlatching motor move along

the x axis). We develop our model with the aim to give general

properties to each component. The motors and springs in the

LaMSA system are characterized by their force output. The loa-

ding motor force (Flm), the unlatching motor force (Fum), and

spring force (Fsp) are all assumed to be functions of time, displa-

cement, and velocity. Latches are given a shape function yL(x)

that describes the geometry of the latch. The shape function

relates horizontal motion of the latch (in the x direction) to ver-

tical displacements of the load (in the y direction). For example,

the rounded latch used in this work, which has circular edges

of radius R, has a shape function shown in Fig. 1B. The shape

function describes the shape of the latch where it contacts the

load mass. The derivatives of this shape function with respect

to x determine the latch slope function yL′(x) = dyL

dx
and latch

concavity yL′′(x) = d2yL

dx2 . The functions describing shapes and

forces are taken as inputs into the model to allow for hypothe-

sis testing of non-linear properties. In addition, the mass of the

system can be distributed in the spring mass, latch mass, and

load mass. With these definitions, we lay out the mathematical

description of the model according to its three phases of motion.

LaMSA Template Model: Loading Phase

In the loading phase, the loading motor slowly applies a force

causing a displacement of the spring. The final displacement of

the spring at the end of the loading phase, y0, is the displa-

cement in which the loading motor force and spring force are

equal and opposite, namely

Flm(t = ∞, y0, ẏ = 0) = −Fsp(t = ∞, y0, ẏ = 0), (1)

where ẏ is the velocity in the y direction. The condition that

t = ∞ and ẏ = 0 corresponds to a slow, quasi-static loading of

the spring. The loaded displacement, y0, depends on how the

force-displacement properties of the loading motor and spring

interact.

LaMSA Template Model: Unlatching Phase

The unlatching phase starts with the activation of the unla-

tching motor at time t = 0. The spring starts with an initial
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4 Cook et al.

displacement y0 and velocity ẏ = 0, while the latch has an ini-

tial horizontal position x = 0 and velocity ẋ = v0. By analyzing

the spring force acting on the load mass, the unlatching motor

force pulling on the latch, and the contact force between the

load mass and latch, we derive that the differential equation for

the acceleration of the latch, ẍ, during the unlatching phase of

motion

ẍ =
(Fum+Fspy

′

L
−meffy

′

L
y′′

L
ẋ2)+µk(Fumy′

L
−Fsp+meffy

′′

L
ẋ2)

(mL+meff(y′

L
)2)−µk(meffy′

L
−mLy′

L
)

, (2)

where µk is the coefficient of friction between the latch and

load, and mL is the mass of the latch. The term meff in Eq. (2)

is the overall effective mass for the mass-spring system, with

meff = mload + ms/3 [Ilton et al., 2018], where ms is the

spring mass and mload is the effective load mass that depends

on load mass and its effective mechanical advantage (EMA).

A full derivation of Eq. (2) is presented in Appendix B for a

system undergoing small angular displacements. For a LaMSA

system undergoing large angular displacements during rotati-

onal motion, the effective mass and mapping onto Eq. (2) is

provided in Appendix C. From the dynamics and shape of the

latch, the acceleration of the load mass during the unlatching

phase is given by the chain rule,

ÿ = y′′Lẋ2 + y′Lẍ. (3)

To determine the end of the unlatching phase, we solve for

the magnitude of the normal component of the contact force

between the load mass and latch,

FN =
−mLFsp+mLmeffy

′′

L
ẋ2+meffy

′

L
Fum

meffy′

L
µk−meff(y′

L
)2−mLµky′

L
−mL

√

1 + (y′L)2, (4)

and require that this magnitude be non-negative during the

unlatching phase to ensure there is still contact between the

load mass and latch. Therefore, we solve for when FN = 0 to

determine the unlatching duration tL, which marks the end of

the unlatching phase and the beginning of the spring actuation

phase of motion.

LaMSA Template Model: Spring Actuation Phase

After unlatching, the load mass undergoes a purely spring-

driven motion given by

ÿ =
Fsp

meff

, (5)

where the spring force can depend on position, velocity, and

time. The initial conditions for this phase are given by the

ending condition from the unlatching phase: for the spring actu-

ation phase, the initial position of the load mass is y(t = tL)

and its initial velocity is ẏ(t = tL). The spring actuation phase

ends when the spring stops pushing on the load mass, i.e. when

Fsp = 0.

Direct Actuation Model

The direct actuation model uses the loading motor of the

LaMSA system to directly drive the load mass. To ensure the

motor in the directly actuated model is being used in a com-

parable way to the LaMSA model, the mass is accelerated by

the motor using a motor contraction. Therefore, the equation of

motion for the load mass is given directly by the force applied

by the motor as it contacts,

ÿ =
Flm

meff

, (6)

where the loading motor force can depend on position, velocity

and time. The initial condition for the directly actuated system

is that the motor and load mass are initially at rest, with the

motor at its undisplaced initial length. Take-off occurs when the

load mass reaches its maximum velocity and Flm = 0.

LaMSA and Direct Actuation Software Implementation

The LaMSA and direct actuation models were implemented in

MATLAB. This software implementation is freely redistributa-

ble and available at https://posmlab.github.io [Didcock et al.,

2020]. The software allows a user to select a LaMSA system

from a library of components (motors, springs, latches, and

load masses), set parameters for each component, and run a

simulation to determine the dynamics of that system (as both a

LaMSA system and a directly actuated system). The software

can be used to iterate over the LaMSA system component para-

meters (e.g. spring stiffness) and rapidly generate the dynamics

for variety of LaMSA systems.

Model Input Parameters

The input parameters to the model were chosen based on the

accelerated mass, characteristic velocities, and typical accele-

rations of the larger biological LaMSA systems listed in the

supplementary materials of ref. [Ilton et al., 2018]. To explore

the role of the dynamic properties of muscle, we used a Hill-

type muscle motor based on ref. [Rosario et al., 2016], which is

one of the default components included in the LaMSA Template

Model software. A muscle activation rate of 200 s−1 was chosen

as a typical rate based on the force generation delay of small

animals reported in ref. [More and Donelan, 2018]. The full list

of parameters used in this work are reported in Table A1.

Results and Discussion

Using the components and parameters in Table A1, the output

from a single simulation generated using the software is shown

in Fig. 2. The software output includes information about the

loading phase, and the dynamics of the latch and load mass

during the unlatching and spring actuation phases. For the load

mass dynamics, the simulation generates the position y(t), velo-

city ẏ(t), and forces acting on the load mass. From the position

and velocity of the load mass, commonly used metrics for kine-

matic performance in biomechanics (e.g. maximum acceleration

and maximum power [Longo et al., 2019]) are calculated. The

maximum load mass acceleration (max |ÿ(t)|, calculated from

the numerical derivative of ẏ(t)) and maximum power delivered

to the load mass (Pmax = max |mÿ(t)ẏ(t)|) depend on the input

parameters to the model, and the freely redistributable software

enables a rapid iteration over a range of input parameters.

For a motor directly actuating a load mass, the maximum

power output depends on accelerated mass, with an upper

bound set by the dynamic properties of the motor (Fig. 3, red

curves). Driving the mass with a motor that has only a force-

velocity trade-off (setting ract = ∞ and vmax = 5m/s in the

model) has a similar effect to a motor that only has activation
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Template Model for Biological Spring Actuated Systems 5

Fig. 2: Example output from the model using the components and the biological LaMSA parameters listed in Table A1. A The

force-length curve for a Hill-type muscle motor loading a tendon-like exponential spring. The LaMSA system loads up to a spring

displacement ymax calculated by equating the loading motor and spring forces. B-C The dynamics during the unlatching and spring

actuation phases for the latch (panel B) and load mass (panel C). The end of the unlatching phase is marked by the pink vertical

dotted line showing the unlatching duration (tL ≈ 6ms), which occurs when the normal force N between the latch and load mass

goes to zero (dashed curves in B-C). After unlatching, the load mass is actuated solely by the spring up until take-off duration

(tto ≈ 7.5ms) when the spring force goes to zero, and the load mass reaches its take-off velocity (vto ≈ 0.4m/s).

dynamics (setting ract = 200 s−1 and vmax = ∞ in the model).

Both motors reach an upper bound on their maximum power

output when driving small masses (Fig. 3, dashed and dotted

red curves). Therefore, even in the absence of a force-velocity

trade-off, motors with slow activation rates still have performa-

nce limitations when driving small masses. Including both the

effects of force-velocity and activation in the motor, as proje-

ctile mass is decreased the maximum power output of a directly

actuated movement not only saturates to a maximum value,

but further decreases for the smallest masses (Fig. 3, solid red

curve).

In contrast to the directly actuated systems, the LaMSA

system is insensitive to the force-velocity trade-offs and activa-

tion dynamics of the loading motor. Varying the loading motor

in the LaMSA system using the same three conditions as the

directly actuated one (activation dynamics only, F-v trade-off

only, F-v trade-off and activation dynamics), the maximum

output for those three LaMSA systems is identical (Fig. 3,

solid blue curve). The independence of the LaMSA system on

the dynamic properties of the loading motor is a result of the

slow, quasi-static loading assumption made in the model. This

assumption is justified for biological LaMSA systems like man-

tis shrimp where typical loading rates are orders of magnitude

slower than the rate of elastic energy release [Patek, 2019], but

the loading motor dynamic properties can be important when

considering simultaneous loading and release of a series elastic

system [Galantis and Woledge, 2003].

The power output of comparable LaMSA and directly actu-

ated systems have a mass dependent transition that is affected

by the dynamic properties of the motor. Comparing the three

different motor conditions in Fig. 3, the crossovers between the

power output of the directly actuated and LaMSA systems is

shifted to a larger mass (by a factor of ≈ 5 times) when both the

force-velocity and activation dynamics of the motor are inclu-

ded in the simulation. This result suggests that in systems where

there is a development and transition of a LaMSA mechanism

(e.g. in some species of mantis shrimp [Harrison et al., 2021]),

care should be given to both muscle force-velocity and activa-

tion dynamics when modeling the transition from LaMSA to

directly actuated movement.

Although the results of Fig. 3 were generated using gene-

ral, biologically-relevant parameter values for LaMSA systems,

a more specific biological system could be used to guide

further inquiry into the relative importance of force-velocity

versus muscle activation dynamics. For example, although

here we assumed a fixed value of EMA = 1, the mechani-

cal advantage in both muscle-driven and spring-driven systems

can significantly alter dynamics [Richards and Clemente, 2012,

Olberding et al., 2019]. Decreasing the EMA in the current

model shifts the drop-off in muscle-driven performance to

smaller masses. In addition, for most biologically-relevant
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6 Cook et al.

Fig. 3: Both a motor’s activation rate and its force-velocity

trade-off affect its maximum power output when it directly actu-

ates a projectile. Compared to a using a motor in a LaMSA

system (blue solid curve), the maximum power output of a dire-

ctly actuated system (red curves) is worse for smaller masses.

A motor that has both a force-velocity and activation limita-

tion (solid red curve) has a significantly reduced performance at

low masses compared to one with only a force-velocity trade-off

(dashed red curve) or only an activation rate limitation (dotted

red curve). The intersection between the LaMSA and directly

actuated curve shifts to a higher mass when both dynamic

effects of the motor are included.

systems maximum muscle force typically increases as system

size increases. With a specific system in mind, appropriate

scaling [Rospars and Meyer-Vernet, 2016] and fair compari-

sons [Ilton et al., 2019] could be made across size-scales for both

motor-driven and elastically-driven systems.

Beyond this proof of principle example, the LaMSA Tem-

plate Model and freely redistributable software provides an

extensible platform for exploring biological LaMSA systems.

Although this model was formulated generally to encompass a

broad range of LaMSA systems, the model can be tuned to spe-

cific biological systems because of the flexibility in how system

components are defined. The relevant range of input parame-

ters and any interdependence between them can be informed by

observed biological data and scaling. For example, depending on

the system, the characteristic lengths of the system (i.e. muscle

lengths, latch radius, spring length) could be constrained in the

model to follow an isometric scaling. The software allows the

user to enforce mathematical couplings between the different

input parameters to the model, which can be used make inter-

species comparisons and to investigate to what extent kinematic

performance changes over the course of development for a given

species.

Flexible component definitions also enables new components

to be created that address specific biological questions. For

example, Deban et al. performed a comparative analysis of ton-

gue projection across salamander species which actuate their

tongue projection with a LaMSA mechanism or by direct muscle

actuation [Deban et al., 2020]. The LaMSA projection mecha-

nism can not only lead to higher kinematic performance, but

is also robust to temperature variations [Deban et al., 2020].

To explore this system with the LaMSA model presented here,

new components can be created in the software that intro-

duce a temperature-dependent motor and spring. Adding these

components would yield a theoretical prediction of the relative

sensitivity of the tongue projection performance to temperature

for the two groups of salamanders. Comparing this prediction to

the observed kinematics could be used to inform the modeling

of how biological motors and springs depend on temperature.

As an additional example, Acharya et al. built on the gene-

ral LamSA framework here to include non-linear soft frictional

latches to understand the ultrafast motion of human finger

snaps [Acharya et al., 2021].

Finally, the model and software presented here can offer

insights into how the interrelationships between input para-

meters and performance may influence the evolution of these

biological systems via the concept of mechanical sensitivity.

Mechanical sensitivity refers to the idea that variation betw-

een parts of a multi-part system are not necessarily equal in

relation to their influence on the output of the system [Koehl,

1996, Anderson and Patek, 2015]. Applied to a LaMSA system,

we might hypothesize that variation in the spring would

result in a larger variation in maximum power than vari-

ation in the latch mass. If so, that could mean that the

latch mass has more freedom to evolve without altering per-

formance. Such patterns have been identified in both mantis

shrimp and fish [Anderson and Patek, 2015, Hu et al., 2017]

and have been shown to influence rates of morphological evo-

lution [Muñoz et al., 2017, 2018, Muñoz, 2019]. The model

presented here offers an opportunity to quantitatively map

how shifts in input parameters affect multiple performance

metrics simultaneously, allowing for a comprehensive analysis

of mechanical sensitivity.

Conclusion

The LaMSA Template Model and software presented here

balances modeling principles of simplicity and extensibility.

Simplicity is provided by making explicit assumptions about

how the components are connected in the model, and exten-

sibility is achieved though flexibility of defining the individual

components. With these principles, the model enables the rapid

testing of ideas by simulating kinematic output across the var-

ying model parameters. This model also opens possible new

directions for future work by providing a framework for others

to build upon. Case studies using the model will inform best

practices for tuning the model to explore a specific biological

system. Exploring biological and bioinspired LaMSA systems

with this model will require input from members of compara-

tive biomechanics community through the use of the software

(available at https://posmlab.github.io [Didcock et al., 2020]),

requesting new features, and actively contributing to software

development.
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Appendices

Appendix A: Table of Parameters Used

Loading Motor

Force Function: (ref. [Rosario et al., 2016])

Flm(t, y, ẏ) = Fmax exp
(

−
∣

∣

∣((
Li−y
Lo

)b − 1)/s
∣

∣

∣

a) (

1−ẏ/vmax

1+4ẏ/vmax

)

min(ract t, 1)

Loading Motor parameters used in this work:

Fmax = 20N vmax = {5,∞} m/s Lo = Li = 10mm

a = 2.08 b = −2.89 s = −0.75 ract = {200,∞} s−1

Spring

Force Function: (ref. [Monroy et al., 2017])

Fsp(t, y, ẏ) =

{

lc k0e−y/lc − 1, for Fsp < Fs,max

Fs,max, otherwise

Spring parameters used in this work:

lc = 10mm k0 = 2 kN/m Fsp,max = 20N ms = 20mg

Latch

Shape Function: (ref. [Ilton et al., 2018])

yL(x) = R(1−
√

1− x2/R2)

Default Latch Parameters Used:

R = 0.2mm mL = 3 g µk = 0 v0 = 0

Unlatching Motor

Force Function: (ref. [Ilton et al., 2018])

Fum(t, x, ẋ) =

{

Fmax(1− ẋ
vmax

), for 0 ≤ x ≤ d

0, otherwise

Unlatching Motor parameters used in this work:

Fmax = 0.25N vmax = 1m/s d = 5mm

Load Mass

Load Mass parameters used in this work:

mload = 0.1 − 100 kg

EMA = 1

Table A1. Mathematical description of the LaMSA components and default parameter values used in this work. The parameters were selected based

on the range of characteristic forces, lengths, and velocities for biological LaMSA systems [Ilton et al., 2018, More and Donelan, 2018].

D
ow

nloaded from
 https://academ

ic.oup.com
/iob/advance-article/doi/10.1093/iob/obac032/6652213 by G

eorgia Institute of Technology user on 31 August 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

10 Cook et al.

Appendix B: Derivation of the Model

To simplify the model derivation, we will first reduce our general model that can include rotation down to a one-dimensional

representation. For an applied force F at one end of a rotating rod with a fixed pivot:

The dynamics of the system is given by relating the applied torque about the pivot to the angular acceleration of the rod,

FL1 = Iθ̈, (7)

where I is the moment of inertia of the load mass about the fixed pivot point, which for a uniform rod of mass m is given by

I =
1

12
m(L1 + L2)

2 +m

(

L2 − L1

2

)2

. (8)

If the angular displacement is small (see Appendix C: Model for Large Angular Displacements for a derivation of the reduced

model for large angular displacements), then the linear displacement of the point where force is applied y ≈ L1θ, can be substituted

into the equation of motion to give,

F =
I

L2
1

ÿ, (9)

which for a uniform load mass simplifies to

F = mloadÿ, (10)

with the effective load mass

mload = m

(

(1 + 1
EMA

)2

12
+

(1− 1
EMA

)2

4

)

. (11)

In other words, the rotational system reduces down to one-dimensional dynamics of the point of where force is applied, but with an

effective load mass that takes into account the effective mechanical advantage of the system.

With that simplification, we consider a reduced complexity one dimensional Latch Mediated Spring Actuated (LaMSA) system:

Our goal is to derive a single ordinary differential equation describing x(t) of the latch while it is in contact with the load mass.

Setting Up the Problem

Let us approximate the load mass and latch as point masses and draw isolation diagrams. In this model, we will consider the latch

to have some shape that governs the unlatching process. Therefore, we have some function yL(x) that determines the curve of the

latch.

Variables:

meff = mload +
mspring

3
: the effective mass of the load mass and spring mass combined

Fsp : force exerted by the spring on the load mass

µk : coefficient of friction between the load mass and the latch

FN : normal force

Ff : force of friction between latch and load mass
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Load Mass

θ : The angle between the normal force vector and the vertical

Among these variables, we’ll consider the following to be given:

Fsp, µk

With names for our variables, we can write Newton’s second law to get the following:

∑

Fy = meffÿ =Fsp − FNy
− Ffy

meffÿ =Fsp − FN cos θ − µkFN cos (90− θ)

meffÿ =Fsp − FN cos θ − µkFN sin θ
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Latch

Variables:

mL : mass of the latch

Fum : force of the unlatching motor pulling the latch away

FN : Normal force from load mass on latch

Ff : Friction force from load mass on latch

yL(x) : function describing the latch geometry

Known Values:

mL : mass of the latch

Fum : force of the unlatching motor pulling the latch away

yL(x) : function describing the latch geometry

We get the following equations from Newton’s 2nd Law:

∑

Fx = mL(ẍ) =Fum + FNx
− Ffx

mL(ẍ) =Fum + FN sin θ − µkFN sin (90− θ)

mL(ẍ) =Fum + FN sin θ − µkFN cos θ

Rewriting Unknowns in Terms of Other Variables

We will use these replacements later in the derivation.

Rewriting ÿ - Our goal is to get a differential equation for ẍ, but we will end up with ÿ in our equations. So, we can use the

following to rewrite ÿ in terms of ẍ and the latch curve:

ÿ =
d

dt
(
dy

dt
)

=
d

dt
(
dy

dx
·
dx

dt
)

=
d

dt
(y′L · ẋ)

=y′′L · ẋ2 + y′L · ẍ

Rewriting tan θ - We will need to replace tan θ later in the derivation.

Because the latch geometry is described by the function yL, the slope of the latch is described by the derivative y′L.

y′L =
rise

run

tan θ =
rise

run

tan θ = y′L
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Solving for ẍ

Solving for FN in each equation- Recall that we obtained the following two equations from applying Newton’s 2nd Law to

both :

meff(ÿ) =Fsp − FN cos θ − µkFN sin θ

mL(ẍ) =Fum + FN sin θ − µkFN cos θ

Let us replace ÿ with the expression we obtained in the previous section. Now we have:

meff(y
′′

L · ẋ2 + y′L · ẍ) =Fsp − FN cos θ − µkFN sin θ (12)

mL(ẍ) =Fum + FN sin θ − µkFN cos θ (13)

The only element that is not known is FN . Let us eliminate it by solving for FN in both equations. Solving for FN in Eq. (12) gives

us:

FN =
Fsp −meff(y′′L · ẋ2 + y′L · ẍ)

cos θ + µk sin θ

Solving for FN in Eq. (13) gives us:

FN =
mLẍ− Fum

sin θ − µk cos θ

Expressing FN without using ẍ - While it is our ultimate goal to solve for ẍ, a side goal that is useful for determining the

end of the unlatching phase is obtaining an expression for FN that does not include ẍ.

We can achieve this by taking Eqs. (12) and (13) from the previous section, isolating ẍ in each, and setting them equal to each

other.

Rearranging Eq. (12):

meff(y
′′

L · ẋ2 + y′L · ẍ) =Fsp − FN cos θ − µkFN sin θ

meffy
′

Lẍ =Fsp − FN cos θ − µkFN sin θ −meffy
′′

Lẋ2

ẍ =
Fsp − FN cos θ − µkFN sin θ −meffy′′Lẋ2

meffy′L

Rearranging Eq. (13):

mL(ẍ) =Fum + FN sin θ − µkFN cos θ

ẍ =
Fum + FN sin θ − µkFN cos θ

mL

Setting these equal to each other, isolating FN :

Fsp − FN cos θ − µkFN sin θ −meffy′′Lẋ2

meffy′L
=

Fum + FN sin θ − µkFN cos θ

mL

mL(Fsp − FN cos θ − µkFN sin θ −meffy
′′

Lẋ2) = meffy
′

L(Fum + FN sin θ − µkFN cos θ)

−FNmL cos θ − FNmLµk sin θ − FNmeffy
′

L sin θ + FNmeffy
′

Lµk cos θ =

mLmeffy
′′

Lẋ2 −mLFsp

+meffy
′

LFum

FN (meffy
′

Lµk cos θ −meffy
′

L sin θ −mLµk sin θ −mL cos θ) =

mLmeffy
′′

Lẋ2 −mLFsp

+meffy
′

LFum

FN =
mLmeffy′′Lẋ2 −mLFsp +meffy′LFum

meffy′Lµk cos θ −meffy′L sin θ −mLµk sin θ −mL cos θ

It’s somewhat inconvenient to have θ in this expression, so we can make the following substitutions based on the geometry of

our problem:
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14 Cook et al.

sin θ =
y′L

√

1 + (yL′)2
cos θ =

1
√

1 + (yL′)2

Plugging these in:

FN =
mLmeffy′′Lẋ2 −mLFsp +meffy′LFum

meffy′Lµk −meff(y′L)2 −mLµky′L −mL

√

1 + (y′L)2

Great! Now that we have this, we’ll resume with our other goal, of solving for ẍ.

Solving for ẍ - With two expressions for FN in Eqs. (12) and (13), we can set them equal to each other to solve for ẍ:

Fsp −meff(y′′L · ẋ2 + y′L · ẍ)

cos θ + µk sin θ
=

mLẍ− Fum

sin θ − µk cos θ

Cross-multiply to get:

(sin θ − µk cos θ)(Fsp −meff(y
′′

L · ẋ2 + y′L · ẍ) = (cos θ + µk sin θ)(mLẍ− Fum)

Expanding:

Fsp sin θ −meff sin θ(y′′L · ẋ2 + y′L · ẍ)− Fspµk cos θ +meffµk cos θ(y′′L · ẋ2 + y′L · ẍ) =

mLẍ cos θ − Fum cos θ +mLµkẍ sin θ − Fumµk sin θ

Divide both sides by cos θ:

Fsp✘
✘✘✿

tan θ
sin θ −meff✘

✘✘✿
tan θ

sin θ(y′′L · ẋ2 + y′L · ẍ)− Fspµk✘
✘cos θ +meffµk✘

✘cos θ(y′′L · ẋ2 + y′L · ẍ)

= mLẍ✘✘cos θ − Fum✘
✘cos θ +mLµkẍ✘✘✘✿

tan θ
sin θ − Fumµk✘

✘✘✿
tan θ

sin θ

Fsp tan θ −meff tan θ(y′′L · ẋ2 + y′L · ẍ)− Fspµk +meffµk(y
′′

L · ẋ2 + y′L · ẍ)

= mLẍ− Fum +mLµkẍ tan θ − Fumµk tan θ

We can replace tan θ with y′L:

Fspy
′

L −meffy
′

L(y′′L · ẋ2 + y′L · ẍ)− Fspµk +meffµk(y
′′

L · ẋ2 + y′L · ẍ)

= mLẍ− Fum +mLµkẍy
′

L − Fumµky
′

L

If we expand the equation, move all terms that contain ẍ and ẋ2 to one side, and factor out ẍ and ẋ2, we get:

ẍ(meffµky
′

L −meff(y
′

L)2 −mL −mLµky
′

L) + ẋ2(meffµky
′′

L −meffy
′

Ly′′L)

= −Fum − Fumµky
′

L − Fspy
′

L + Fspµk

Now, let us solve for ẍ and regroup some terms to arrive at the final result:

ẍ =
(Fum + Fspy′L) + µk(Fumy′L − Fsp)− ẋ2(meffy′Ly′′L −meffµky′′L)

(mL +meff(y′L)2)− µk(meffy′L −mLy′L)

And if there is no friction such that µk = 0:

ẍ =
(Fum + Fspy′L)− ẋ2(meffy′Ly′′L)

mL +meff(y′L)2
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Template Model for Biological Spring Actuated Systems 15

Appendix C: Model for Large Angular Displacements

To model large amplitude rotational motion, we can no longer assume Fspring = mproj · ÿ as we do for the case of linear (or small

amplitude rotational) motion. Instead, there is a changing mechanical advantage as a function of the angle between the spring and

the lever (pictured below) that complicates the dynamics of the system.

However, if we derive expressions for effective spring force and projectile mass Feff and meff as functions of the displacement of

the spring, we can use these expressions in our linear model to accurately describe rotational motion. In the following section, we

derive these expressions.

We begin by writing Newton’s second law for rotational motion:

F · sin(α) · L1 = Iθ̈. (14)

Our end goal is to write this as

Feff = meff · ÿ

where y is the displacement of the spring.

First, we will write θ̈ in terms of ÿ. There is a complex exact relationship between y and θ that an interested reader can calculate

using the law of cosines a few times, but it is very well approximated by y = L1 · sin(θ). Using this, we find

y = L1 · sin(θ)

ẏ = L1 · cos(θ) · θ̇

ÿ = −L1 · sin(θ) · θ̇2 + L1 · cos(θ) · θ̈

.

Rearranging these equations, we find

θ̈ =
1

L1 cos(θ)
ÿ +

sin(θ)

L2
1 cos3(θ)

ẏ2 (15)

Now, if we substitute equation 15 into equation 14, we have
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16 Cook et al.

F · sin(α) =
I

L2
1

(

1

cos(θ)
ÿ +

sin(θ)

L1 cos3(θ)
ẏ2

)

(16)

Next, we find I
L2

1

. Using the parallel axis theorem, we find the moment of inertia of the lever (a rod with uniformly distributed

mass m) and projectile (a point mass M) about the axis of rotation will be

I = M(L2)
2 +

1

12
m(L1 + L2)

2 +m

(

L2 − L1

2

)2

.

Dividing by L2
1 and substituting the effective mechanical advantage EMA = L1

L2
, we have found an intermediate mass quantity

mint such that

mint =
I

L2
1

=

(

M

EMA2
+

m

12

((

1 +
1

EMA

)2

+ 3

(

1

EMA
− 1

)2))

and we can rewrite equation 16 as

F · sin(α) = mint ·

(

1

cos(θ)
ÿ +

sin(θ)

L1 cos3(θ)
ẏ2

)

or

F sin(α)−mint
sin(θ)

L1 cos3(θ)
ẏ2 =

mint

cos(θ)
· ÿ (17)

Equation 17 is in the desired form, so we can now extract

Feff = F sin(α)−mint
sin(θ)

L1 cos3(θ)
ẏ2

and

meff =
mint

cos(θ)
.
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