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Abstract— This paper presents four data-driven system mod-
els for a magnetically controlled swimmer. The models were
derived directly from experimental data, and the accuracy of
the models was experimentally demonstrated. Our previous
study successfully implemented two non-model-based control
algorithms for 3D path-following using PID and model reference
adaptive controller (MRAC). This paper focuses on system
identification using only experimental data and a model-based
control strategy. Four system models were derived: (1) a phys-
ical estimation model, (2, 3) Sparse Identification of Nonlinear
Dynamics (SINDY), linear system and nonlinear system, and
(4) multilayer perceptron (MLP). All four system models were
implemented as an estimator of a multi-step Kalman filter. The
maximum required sensing interval was increased from 180 ms
to 420ms and the respective tracking error decreased from
9mm to 4.6 mm. Finally, a Model Predictive Controller (MPC)
implementing the linear SINDY model was tested for 3D path-
following and shown to be computationally efficient and offers
performances comparable to other control methods.

I. INTRODUCTION

Magnetic robots have attracted significant attention in
recent years due to their size and functionality. The size
of the robots vary from millimeter scale [1]-[4] to mi-
crometer scale [5] and nanometer scale [6]. The fluidic
environments vary from water [1]-[3], [7] to a low-Reynolds-
number regime [8]. The driven mechanisms range from
gradient force [9] to torque produced by magnetic field [1]-
[5]. These magnetic machines show great potentials, es-
pecially for clinical and medical applications, such as di-
agnosis [10]-[12], drug delivery [10], [13], and minimally
invasive surgery [14]-[19]. Because these magnetic robots
can be navigated through bodily fluids to perform their tasks,
precise position control is often essential. The magnetic
robots are actuated by an external magnetic field, so the
motion mode, speed, and orientation of the robots depend
heavily on properties of the external magnetic field, such
as flux density, frequency, and direction of the field. Precise
positioning control can be achieved by tuning the parameters
of the external field and by advanced controller design.

In 1976, Purcell presented a flagellar propulsion mech-
anism for low Reynolds number (Re) environments [20],
then in 1977, Purcell proposed a general model for this
mechanism [21]. Since then, there have been many magnetic
machines designed with spherical or helical heads and helical
tails [22]. Moreover, many researchers have advanced the
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Fig. 1. Photo of magnetic manipulator. (Inset) A magnetic swimmer.

modeling and analysis of such systems. The force, torque,
translation, and rotation of helical robots are often linked
by a propulsion matrix, which is a function of geometric
parameters [23] and fluid viscosity [24]. Abbott et al. [25]
explained that as microrobot size decreases or as the distance
increases from the magnetic field sources, helical rotation
becomes more efficient than oscillations for propulsion force.
Modeling these was simplified when Wang et al. [26] ex-
perimentally and analytically demonstrated that the robot’s
forward and rotational velocity ratio is independent of their
surface coatings if the swimmers are operated below their
step-out frequency. However, interfacial slippage was ob-
served during their experiments. This slippage is nontrivial,
and should be considered into a helical swimmer model.
Wang et al. [23] established a comprehensive dynamic model
to analyze the swimming properties that influence velocity,
step-out frequency, and maximum velocity. They provided
guidance for helical microrobot design. Additional magnetic
control system theory and system analyses were developed
and presented in [27]-[29].

Our work focuses on spiral-type magnetic swimmers.
A spiral type has a screw-like shape [30] rather than a
magnetic head connected to a tail shaped like an compression
spring. Our magnet is inserted into a central cavity along
the central axis. Although the swimming properties of a
spiral-type magnetic swimmer were theoretically analyzed
using the 3D finite volume method in [31], [32], the design
of our swimmer was refined by redesigning the tip shape
and experimentally optimizing dimensions in our previous
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work [1]. Our system is a highly non-linear system that does
not satisfy the superposition principle. The system is unstable
without a closed-loop controller. Thus, conventional system
identification algorithms such as the eigensystem realization
algorithm (ERA) [33] cannot be employed because the swim-
mer’s position is unstable under open loop control. However,
in our previous work [1]-[4] we successfully navigated our
swimmer in a 3D environment with a non-model-based
controller, which provided a large amount of experimental
data.

In this paper, instead of using conventional methods or
finite element analysis software, we demonstrate the feasi-
bility of using completely data-driven methods to estimate
a system model for the swimmer state prediction. We also
show methods to develop controllers using these models. The
inverse magnetics calculations for controlling the magnetic
swimmer with the external magnetic field are presented in
Section II-A (using our method from [1]-[4], [34]). The
pure data-driven algorithms used for estimating the system
model are illustrated in Section II. Section III presents the
experimental study and main results of this paper. Finally,
the conclusion and discussion are in Section IV.

II. METHODOLOGY

This section illustrates the algorithms employed for the
data-driven system identification and model-based controller,
MPC.

A. Physical estimation model

A physical estimation model is developed to predict the
swimmer’s velocity and position as a function of the control
input. The model first acquires the swimmer’s initial position
Py, and assumes the initial velocity Vj of point Py is
zero. The velocity V; of P; can be calculated as V; =
(P; — P,_1)/At. Figure [g] shows the free-body diagram for
the model.

The propulsion force F, produced by the rotating mag-
netic swimmer was assumed to be aligned with its rotational
axis. It can be represented as F;. = k-w, where k is the thrust
coefficient to be tuned. The drag force F,; was computed
using a simplified fluid mechanics model:

Fy=-Cyq-V; (1)
Cd = Cd() . sin(a) + th (2)

where Cy is the drag coefficient and Cyy and Cy; are
parameters to be tuned. The angle of attack « is determined
by the angle between the rotational vector w and the velocity
vector V;. The lift force F} can be calculated by

Fo=Co-|Vi|- oL 3)
Og = Ogo . Sin(20¢), (4)

where Cy is the lift coefficient and Cyq is the parameter to
be tuned. ¥, is the unit vector perpendicular to the velocity
vector V; and in the plane of w and V;. The vertical static
force Fy represents the sum of the weight and buoyancy
force of the swimmer, where Fs = Fis - [0,0, 1], and the
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Fig. 2. Free-body diagram for the Physical model. The grey circle indicates
the XY plane.

magnitude of the force F,s can be tuned. To calculate the
centripetal force F,, we determine the direction of the force
by
P;

1P|
where the position of the center of the manipulator is defined
as the origin. The F, is approximately equal to zero when
the swimmer is at the center of the manipulator or near the
workspace boundary, so the F} is calculated as

: IPz-||> R
F.=Fpa-sin (7w - G, (6)
- ( (| Pl

where the maximum value Fj,,x can be tuned, and P, is the
position vector when the swimmer is near the manipulator
boundary. Because the length of the water tank we used in
this study is 150 mm, the maximum range from the center
of the manipulator to the boundary is 75 mm. We assume
P, =[70, 70, 70]. The acceleration a is computed as

a’:(1/m)'(Fr+Fd+F€+Fvs+Fc)7 (7)

where the mass of the swimmer m used in this study is 12.4
mg. The estimated velocity V; and estimated position P; can
be computed by

Vi=Vi+a-At (8)

é:

(&)

R 1
H=H+W-At+§-a~At2. 9)

B. Sparse Identification of Nonlinear Dynamics (SINDY)

The sparse identification of nonlinear dynamics (SINDY)
was first introduced in [35], and demonstrated with the
chaotic Lorenz system. Then, the extension of the SINDY al-
gorithm, including external inputs and control, was proposed
in [36] and illustrated the relationship of SINDY with and
without control. The SINDY algorithm is a fully nonlinear
dynamic system from measured data. It exploits the fact
that many dynamic systems have relatively few terms that
dominate the system characteristics in the right-hand side of
the governing equations.

X = (x)

dt (19)



By defining a library of candidate nonlinear functions,
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where X is the states of the system, and the nonlinear
candidates are the combinations of the states from order 0
to user defined highest order. Then the dynamic system can
be written as:

0(X) = [1XX2 X3 ... sin(X) sin(2X) ..

X =07 (X), (12)

where T' is the transpose. The coefficient ¢ in the above
library are sparse for most cases. Therefore, a sparse regres-
sion was implemented to identify the corresponding sparse &
with the fewest nonlinearities that can still estimate system.
Then the SINDY method is extended with inputs and control
u, and is rewritten as:
%X = f(X,u)
This extension is readily generalized to include control,
which requires building a larger library 6(X, ). Moreover,
these functions can include nonlinear cross-terms of X and
u. Then we can solve for the sparse coefficients ¢ with the
following:

13)

X =607 (X, u). (14)

The SINDY algorithm was programmed in MATLAB. The
nonlinear SINDY model was trained with the highest order of
2 without sinusoidal functions, and the linear SINDY model
was trained with the highest order of 1 without sinusoidal
functions.

C. Multi-layer perceptron (MLP)

Multi-layer perceptron (MLP) is a class of feedforward su-
pervised artificial neural networks. Chen et, al. [37] demon-
strated that feedforward multi-layered neural networks offer
a competitive alternative for modeling complex nonlinear
systems. Other multi-layer perceptron system identification
studies are presented in [38]-[40]. An MLP consists of at
least one input layer, one hidden layer, and one output layer,
and each layer consists of many perceptrons. Except for the
input layer, each layer can be followed by a nonlinear acti-
vation function, and the MLP utilizes a supervised learning
technique for training which is called back propagation [41],
[42]. In this paper, the MLP neural network structure was
built using Keras [43] and programmed in Jupyter. The
structure of the MLP is shown in Table[[. The input features
are current position P, Py, P,, current velocity V., V,, V.,
and next recorded control input w,,wy,w,, a total of nine
input features.

TABLE I
MLP SUMMARY
Layer | dimension | Activation | Param #
1 10 ReLU 100
2 10 ReLU 110
3 6 Linear 66

Total parameters: 276

D. Model predictive control (MPC)

Model predictive control is a widely used control algo-
rithm in robotics that incorporates state and control con-
straints [44]. The MPC solves an optimal control problem
over a horizon time subject to constraints, and the first
control action will be implemented as the following control
input. For a linear system, the optimization can be solved
efficiently with convex optimization. However, for nonlinear
systems, often parameters require manual tuning. Although
the MPC has achieved the desired performance in simulation,
it can cause suboptimal performance and even instability if
the system model is inaccurate. In this study, the optimal
solution subjected to system constraints is solved by the
MATLAB function fmincon. The optimization objective
function is defined as:

mp

min J(z;) =min » [(Xpsr — X0)Q(Xepr — X,) T+
k=1

(Ut+k - Ut+k—1)R(ut+k - Ut+k—1)T]7
(15)

where m,, is the receding window size, Xt+k is the predicted
state at time step ¢ + k, and X, is the corresponding
reference. This objective function is defined with positive
definite matrices () to minimize the tracking error and R to
minimize control effort.

III. EXPERIMENTAL SETUP AND RESULTS

The experimental study presented in this paper include
three parts: (1) data-driven control model training, (2) model
accuracy comparison, and (3) model predictive control im-
plementation.

A. Hardware description

The hardware main design and control of the magnetic
manipulator in this study are described in detail in our
previous study [1]-[4]. However, the power supply mode
was switched from current mode to voltage mode by adding
a series of capacitors to improve the power factor and
resonating frequency for blood clot removal as demonstrated
in [45]. The magnetic manipulator has six electromagnet
coils arranged on the faces of a cube with a 300 mm edge
length. Each EM coil has 795 turns, an internal radius of
180mm and an external radius of 215mm. Each EM is
powered by a set of two Kepco BOP 20-50MG power
supplies connected in series. Each power supply can provide
up to 2000 W with a maximum of 100 V. They can either
work in voltage or current mode. An industrial controller
National Instrument IC3173 was used to control the power
supplies with an external analog signal. Two Basler acA800
cameras set on the right and top sides of the manipulator
are used to measure the swimmer’s position during 3D path-
following. The industrial controller performs computations
for image processing and real-time control. The diameter of
the swimmer we used in this study is 2.5 mm, and the length
is 6 mm, which was experimentally optimized in [1]. The
controllers used for 3D path-following were implemented in
LabVIEW.
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Fig. 3.  Plot of experimental result of following a racetrack path using
camera feedback at 20 ms (without using an estimator). The racetrack path
has 30 mm straightaways and 40 mm radius curves. The average tracking
error for the training set was 2.68+£1.98 mm and for the MPC was 2.7+2.2
mm.

B. Model training
TABLE II

TRAINING TIME AND NUMBER OF PARAMETERS

Model Name Physical | SINDYNon | SINDYpinear | MLP
Time[s] 1696 20.64 2.10 2760
Number of Params. 6 330 60 276

To train the model, we recorded experimental results while
following a racetrack path and a circular path that is rotated
about the y-axis at six angles (0°, -30°, 30°, -45°, 45°, 90°)
as the training set, which are shown as the small plots in
the Fig[3] As the validation set a circular path that rotated
continuously at 0.5 Hz, which is shown as the schematic on
the right side of Table The radius of all circular path is
35mm. The recorded experimental data included the time
of measurements t[ms], the rotational vector w[rad/s| that
defines the swimmer’s rotational speed and orientation, and
the swimmer’s position P[m] measured from the camera. For
the training data, the unit of time is converted from [ms] to
[s], the unit of rotation vector is converted from [rad/s] to
[H z], and the unit of position is converted from [m] to [mm].
In addition, we set the period to 20 ms for both camera and
controller and recorded 14,500 experimental data points for
each case.

1) Physical  estimation model: =~ We used the
fminsearch function from MATLAB’s optimization
toolbox to find parameters (k, Cg9, Cq1, Cro, Fys, and
Fiax).- The objective function Eq. QE]) is defined as the
average error between estimated position and the measured
position.

N
Iphysical = 1/N Z(Pz - Py,

i=1

(16)

where ]5i is estimated position, P, is measured position,
and N is the total number of data points. Finally the

fminsearch function returns the optimized parameters
that minimizes average error of the function. The parameters
found are £ = 0.00209 N-s/rad, Cy = 0.00021 N-s/mm, Cy;
= 0.00127 N-s/mm, Cyy = -0.00017 N-s/mm, Fs = -0.01519
N, and Fj.x = -0.00013 N.

2) SINDY: The state X is a vector containing position
and velocity. According to to [35], [36], the recorded exper-
imental data can be rearranged as:

X =[X1, Xo, X3, ..., X, amn

and

X' =[Xa, X3, X4, ..., Xl (18)

Then the dynamic system can be expressed with (14), where
X can be replaced by X’.

3) MLP: The MLP neural network is programmed with
Keras API. The loss of the neural network is defined as the
mean squared error (MSE), and the optimizer is adam [46].
The training dataset was split with 80% as the training set
and 20% as the test set, and the dataset was normalized using
Min Max Scaler. An external Python script communicates
with the LabVIEW controller using TCP/IP to implement
the MLP model. Because the Keras predict function requires
more time to check parameters than 20 ms, the weights of
the MLP model were attracted from the trained model and
the activation functions were implemented in a customized
neural network that performs the computation between each
layer.

All models are trained using the same amount of data
which is a total of 174,000 data points from 12 cases (6 circle
trajectories and 6 racetrack trajectories). The time consumed
for training is shown in Table [lI} The SINDY linear model
only took about 2.1s because The SINDY solver converged
faster than fminsearch or MLP backpropagation. The
time required by the SINDY solver is a function of the
number of parameters, so the linear model converged the
fastest. The MLP model spent the most of time which is
2.760s and performed 300 training epochs with a batch
size of 10. The difference between experimental data and
predictions gained from models are presented in Table
The error norm of training and test results from highest
to lowest is SINDY Linear, Physical, MLP, and SINDY
Nonlinear. Due to the simplicity of the path, we further
verified the model accuracy using a rotating circular path.
Compared to the rotating circle and racetrack paths, the
swimmer must deal with a continuously changing reference
frame. The result is shown in the Validation Results in
Table

C. Model accuracy comparison

Next, the real-time prediction studies were performed.
There were two studies conducted to verify the accuracy
of the models. The first is to predict the position of the
swimmer with different feedback rates. Because the model
is trained with experimental data recorded every 20ms,
the model iteratively performed prediction of the swimmer
states until there was a position measurement captured from



TABLE III
TRAINING SUMMARY (MINIMUM ERROR VALUE IN PINK)

Model Name X’I‘raini;l{g Results [mggrm < TestYResultsZ [mmkorm XValidaii;)n Res;lts [nl'nvrglm P\;;I]ig]ation path
Physical 0.30 | 030 | 0.17 0.54 040 | 0.40 | 0.17 0.68 0.21 | 0.23 | 0.19 0.45
SINDY Non 0.20 | 0.25 | 0.18 0.45 0.20 | 0.25 | 0.18 0.45 034 | 035 | 0.33 0.70
SINDY inear 046 | 046 | 0.29 0.83 047 | 048 | 0.29 0.86 0.57 | 0.65 | 0.34 1.03
MLP 032 | 036 | 0.19 | 052 | 035 | 039 | 0.19 | 056 | 034 | 046 | 025 | 0.63
. TABLE IV
the camera. We recorded the data with measurement rates REAL-TIME PREDICTION OF ROTATING CIRCLE
ranging from 20 ms to 100 ms at a 20 ms interval. Figure ?? AT 20 ms FEEDBACK RATE. ALL ERRORS ARE IN MM.
shows the experimental result of the swimmer following a 0° Model Name | Errorx | Error, | Error, | RMSE
racetrack path without models. The results shown in Fig. ] Physical 024 034 031 0.62
are the error between prediction and measured position at SINDY 0.42 0.46 0.52 0.94
the time of update, and the physical model has the lowest SINDY ., 0.43 0.54 0.40 0.95
error. The second study was to predict the position of the MLP 0.69 0.55 0.42 1.02
swimmer tracking a continuously rotating circle rotating
about the y-axis. The results are shown in Table and the
tracking trajectories of the physical model is plotted in Fig.[5] o oy
The plots of the other models are similar, so they are not — _* e | e
presented. As the result shows, all four models can predict E= E”®
the motion of the swimmer. The green curve in the right % 1 § jz
bottom plot is the result after removing outliers. Outliers are g ° 2,
caused by image processing errors due to the reflection of the :_%"" g-wo
water and acrylic tank or lost detections, which are the spikes ~ §* 52
in the blue plot. For the rotating circle the error without & g
outliers of physical, SINDY nonlinear, SINDY linear, and “ 50 1000 1500 2000 2500 0 500 1000 1500 2000 2500

MLP models are 0.5+0.65 mm, 0.88+0.56 mm, 0.894+0.53
mm, and 1.02 £+ 0.7 mm.
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Fig. 4. 0° racetrack path tracking results with 4 models.

D. Kalman filter with different feedback rates

As demonstrated in the previous section, the models can
predict the swimmer’s position even with gaps between
sensor measurements. This section demonstrates that the

Number of data points
P;

z
Estimated position
— — Measured position 12

Number of data points
4Experimental i
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Position error
Position error cleaned

The Error is 0.5+£0.65 [mn]

Position Error [mm]
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o

o e
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2000
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Fig. 5. Rotating circular path tracking results using the Physical model.

model can be implemented using a multi-step Kalman filter,
which can significantly improve the control performance.
The procedure is the same as in the previous section. Suppose
there is a new measurement from the camera. In that case,
we use the new measured swimmer’s position and current
control input as the input to the model, then predict the
estimated velocity and position for the following position.
If no measurements is received, the state of the swimmer
is iteratively computed until there is an update. As shown
in Fig. [6] using the same PI controller, the swimmer can
be controlled with a maximum of 180 ms between measure-
ments, and the tracking error is about 9 mm. However, after
the multi-step Kalman filter was employed, the maximum
time between measurements was increased to 420 ms, and
the maximum tracking error is below 4.6 mm for all four
models.
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TABLE V
MPC PARAMETERS
Variable Definition Value
N Time window horizon 5

Q State weights [3 3 3]

R A Input weight [111]

Ru Input weight [111]
LB Low bound of control [-1-1-1]

UB Upper bound of control [111]
LBdu Low bound of A control [-1-1-1]

UBdu Upper bound of A control [111]

k Look forward velocity gain 0.001

Lfd Look forward distance 0.009

E. Model predictive control results

In this study, we implemented the estimated model dis-
cussed in the previous section into the MPC controller. The
MPC was programmed in MATLAB and communicated with
LabVIEW using TCP/IP. The objective function was defined
as , and the parameters of the MPC controller are listed
in Table [V

Due to the 20 ms control rate, the SINDY linear model
was used for MPC computation, and the time window
prediction horizon was limited to 5 steps. The fmincon
optimizer function was set as Sequential Quadratic Pro-
gramming (SQP), and all other settings to expedite the
computation process are shown in Table VI, We validated the
estimated model and MPC performance on a fixed racetrack
path. The pure-pursuit [47] algorithm was also employed to
smooth the tracking performance. The tracking results are

TABLE VI
FMINCON SETTING
Algorithm SQP
MaxIterations 10
StepTolerance 1.0e-015
MaxFunctionEvaluations 30

Centerline
Experiment result

60 .

40 .

20 .

Pz [mm]

. " 50

Py [mm] Px [mm]

Fig. 7. Experimental result of using MPC following a helix and racetrack
combined path with camera feedback at 20 Hz. The average tracking error
is 3.3 & 1.9 mm. Four cycles are shown.

plotted as Fig. 3] and the average tracking error is 2.7 + 2.2
mm. The path-following results on a helix and racetrack
combined path are shown as Fig. []] where the average
tracking error was 3.3 £ 1.9 mm. Each MPC computation
took 10.7 £ 5.3 ms.

IV. CONCLUSION

This paper presents data-driven models and control of a
milli-scale spiral-type magnetic swimmer using MPC. Four
models were developed using only experimental data. The
accuracy of the models was experimentally demonstrated.
Furthermore, the control performance with large time be-
tween sensor measurements was significantly improved by
using the model for state estimation and control using
a multi-step Kalman filter. With this control the system
maintained a tracking error smaller than the swimmer’s
length. Although the performance of the four models is
similar to each other in multi-step Kalman filter studies,
this also demonstrated that the physical estimation, SINDY,
and MLP could efficiently estimate the system purely using
the experimental data. The time consumed by the training
process is mainly affected by the algorithm and the amount
of data processed, both of which the user and applications
can determine. Finally, the path following experiments were
conducted with the estimated model and MPC controller,
and the tracking error of racetrack is 2.7 & 2.2 mm, which
is about the same as the training data. Together, this paper
demonstrates approaches for model building and for deploy-
ing controllers that do not rely on hand-tuned parameters.
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