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Abstract—Motivated by the engineering application of efficient
mobility management in ultra-dense wireless networks, we pro-
pose a novel cost-aware cascading bandit model with two-level
actions. Compared with the standard cascading bandit model
with a single-level action, this new model captures the real-
world action sequence in mobility management, where the base
station not only decides on an ordered neighbor cell list before
measurement, but also executes the final handover decision to
the target base station. We first analyze the optimal offline
policy when the arm statistics are known beforehand. An online
learning algorithm coined two-level Cost-aware Cascading UCB
(CC-UCB) is then proposed to exploit the structure of the
optimal offline policy with estimated arm statistics. Theoretical
analysis shows that the cumulative regret under two-level CC-
UCB scales logarithmically in time, which coincides with the
asymptotic lower bound, thus is order-optimal. Simulation results
corroborate the theoretical results and validate the effectiveness
of two-level CC-UCB for mobility management.

Index Terms—Cascading bandits, regret analysis, mobility
management.

I. INTRODUCTION

The learning goal of conventional cost-aware cascading

bandit (CCB) [1] is the optimal ordered list of arms with

unknown heterogeneous costs. This can be naturally applied

to a mobility management problem where a neighbor cell list

(NCL) is constructed by the serving base station (BS), and

sent to the user equipment (UE) when the handover procedure

is triggered [2], [3]. This design is particularly attractive in

ultra-dense networks (UDN), where the possible target BSs

are many while the construction of NCL is not delay-sensitive

and can afford to take some time to converge [2], [4], [5].

Despite its natural fit to NCL construction, CCB does not

take into account the handover decision and the corresponding

outcome, which is the ultimate goal of mobility management

in UDN. In this paper, we propose a new CCB model that

has a two-level action structure, and the corresponding reward

depends on the outcomes of the actions at both levels. This

two-level CCB model is a better match to the UDN mobility

management problem, where each time the UE is presented a

ranked list of candidate BSs (first action). The UE will exam-

ine BSs one by one until one of the BSs has its status (e.g.,

reference signal received power (RSRP)) above a predefined

threshold. The serving BS will send a handover request to this

target BS upon receiving measurements from the UE (second

action), and observe the handover outcome.

The first two authors contributed equally to this work. RH and JY were
supported in part by NSF under grants 1956276, 2003131, and 2030026. CS
was supported in part by NSF under grants 2002902 and 2029978.

Due to the two-level action structure, the optimal policy

depends the statistics of the status of each BSs and the

handover success rate. Correspondingly, the online learning

algorithm needs to estimate both of those statistics. Since a BS

may be examined multiple times before a handover request is

triggered, the uncertainty levels in those two types of estimates

are in general not balanced. How to take such unbalanced

uncertainty levels into account to design an efficient online

learning algorithm is a major challenge this work faces.

Our major contributions are summarized as follows. First,

we formulate a novel cost-aware cascading bandits model with

two-level actions. This model extends the classical cascading

bandits model [6], [7], and may have direct applications in

mobility managements in UDN and other areas. Second, we

characterize the optimal offline policy when all statistics are

known a priori. With the identified threshold structure of the

optimal offline policy, we then design a two-level Cost-aware

Cascading UCB (CC-UCB) algorithm to exploit this structure

with empirically estimated statistical information, to solve the

online learning problem when the statistics are unknown. We

prove that the cumulative regret of the two-level CC-UCB

algorithm scales in O(log T ). Finally, we derive a matching

asymptotic lower bound, proving that the two-level CC-UCB

is order-optimal. Numerical results are reported to corroborate

the theoretical analysis.

II. TWO-LEVEL CCB MODEL

We first describe the new two-level CCB model and high-

light its correspondence in UDN mobility management. We

consider a set of K arms (e.g., K BSs) denoted as [K] =
{1, 2, . . . ,K}. Assume the status of each arm i at time t
(e.g., RSRP of BS i), denoted by Xi,t, follows an unknown

distribution νi. Each time, the learning agent (e.g., the serving

BS) presents an ordered list of arms (e.g., NCL), denoted as

It := [It(1), . . . , It(|It|)], to a player (e.g., UE). The player

then starts examining the arms in It sequentially, until it finds

the first arm whose status is above a predefined threshold γ
(e.g., first BS that triggers the A4 event in 3GPP [8]). It would

then stop examining the remaining arms in the list and send

the obtained feedback to the agent. We define the probability

to have Xi,t ≥ γ as pi. Let Ĩt ⊆ It be the list of arms that

have been actually examined in step t, and |Ĩt| be its size.

The aforementioned model captures the first-level action in

cascading bandits. What is unique about the two-level CCB

problem is that we also have access to a follow-up action:

if XIt(|Ĩt|),t
≥ γ, the agent will take another action on arm
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It(|Ĩt|) (e.g., send a handover request to the candidate BS

It(|Ĩt|)) and observe its outcome (handover success Yi,t = 1
or failure Yi,t = 0 to the target BS i). In practice, even if the

measured RSRP of the target BS is above the threshold, han-

dover may still fail due to various reasons, e.g., measurement

error or delay, BS load, etc. This second-level action and its

corresponding feedback have not been utilized in prior designs

[1], [2], which is the focus of this work. Model-wise, we

assume whether the second action is successful is a conditional

Bernoulli random variable. Specifically, given Xi,t ≥ γ, the

success probability of the second action is qi. Otherwise, if

Xi,t < γ, the success probability will always be zero.

Besides, we assume there is a cost associated with each arm

pulling (e.g., energy consumption with each BS measurement).

Denote Ci,t as the cost of pulling arm i in step t. Without loss

of generality, we assume Ci,t is a bounded and non-negative

independent and identically distributed (i.i.d.) random variable

with E[Ci,t] = ci.
With a given ordered list It, Ĩt is random and its realization

depends on the observed Xi,t. Denote the net reward received

by the learning agent at step t as

rt := 1−

|Ĩt|
∏

i=1

(

1− YIt(i),t1(XIt(i),t ≥ γ)
)

−

|Ĩt|
∑

i=1

CIt(i),t.

Denote the observations up to step t − 1 as Ht−1. Then,

without a priori statistics about {Xi,t}, {Yi,t} and {Ci,t},

our goal is to design an online algorithm to decide It based

on observations obtained in previous steps Ht−1, so as to

minimize the cumulative regret R(T ) := Tr∗−E

[

∑T

t=1 rt

]

,

where r∗ is maximum expected net reward if the statistics of

{Xi,t}i, {Yi,t}i and {Ci,t}i were known beforehand. Besides,

we also denote the per-step regret as regt := r∗ − rt.

III. OPTIMAL OFFLINE POLICY

Before we proceed to design the online learning algorithm

and analyze its performance, we first identify the optimal

offline policy assuming the statistics of arms and measuring

costs are known a priori. For simplicity of the analysis, we

make the following technical assumption:

Assumption 1 ci
pi

�= qi, for all i ∈ [K].

Our main result for the offline policy is given in the

following theorem1.

Theorem 1 Arrange the arms in the decreasing order of qi−
ci
pi

and let L be the total number of arms with qi −
ci
pi

> 0,

i.e.,

q1∗ −
c1∗

p1∗
≥ . . . ≥ qL∗ −

cL∗

pL∗

> 0

> q(L+1)∗ −
c(L+1)∗

p(L+1)∗
≥ . . . ≥ qK∗ −

cK∗

pK∗

.

1Due to page limit, we omit the proof of Theorem 1 in this paper. All
missing proofs can be found in the supplementary material [9].

Algorithm 1 Two-level Cost-aware Cascading UCB

1: Input: α, γ.

2: Initialization: Examine all arms in [K] once, and observe

their states and costs.

3: while t ≤ T do

4: for i = 1 : K do

5: Ui,t = p̂i,t + ui,t;

6: Vi,t = q̂i,t + vi,t;
7: Li,t = max(ĉi,t − ui,t, 0);
8: if min(Vi,t, 1)− Li,t/Ui,t > 0 then i → It;
9: end if

10: end for

11: Rank arms in It in the descending order of Vi,t −
Li,t/Ui,t.

12: for i = 1 : |It| do

13: Examine BS It(i) and observe XIt(i),t, CIt(i),t;

14: Add i to Ĩt;
15: if XIt(i),t ≥ γ then

16: Take second action on It(i) and observe the

outcome YIt(i),t; break;

17: end if

18: end for

19: Update Ni,t, p̂i,t, ĉi,t for all i ∈ Ĩt;
20: Update MIt(|Ĩt|),t

and q̂It(|Ĩt|);
21: t = t+ 1;

22: end while

Then, I∗ consists of the top L arms, and the corresponding

optimal expected per-step net reward is r∗ =
∑L

i=1(pi∗qi∗ −

ci∗)
∏i−1

j=1(1− pj∗).

Compared with the optimal offline policy under the original

CCB model in [1], a major difference is that the policy now

depends on qi−
ci
pi

instead of 1− ci
pi

, which captures the impact

of two-level actions.

IV. ONLINE ALGORITHM

A. Online Algorithm

With the optimal offline policy explicitly described in

Theorem 1, in this section, we develop an online algorithm

to maximize the cumulative expected net rewards without a

priori knowledge. The two-level cost-aware cascading UCB

algorithm is described in Algorithm 1. We use Ni,t to track

the number of steps that arm i has been examined right before

step t, and p̂i,t to denote the sample average estimate of pi.

The UCB padding term at step t is ui,t :=
√

α log t
Ni,t

, where α

is a positive constant no less than 1.5. Besides, we use Mi,t

to track the number of steps that arm i has been chosen and

attempted for handover right before step t, and q̂i,t to denote

the sample average estimate of qi. We use vi,t :=
√

α log t
Mi,t

to

denote the UCB padding term for qi.
We point out that the main differences between the proposed

two-level CC-UCB algorithm and the original CC-UCB in [1]

include the estimation of the conditional success probability
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qi of the second action, the construction of its UCB, and the

condition under which an arm should be included in It and

subsequently undertake the second action. In particular, for the

condition under which an arm should be included in It, we

do not simply mimic the offline policy by checking whether

Vi,t−
Li,t

Ui,t
is greater than 0. Rather, we first take the minimum

between Vi,t and 1, and then compare it with
Li,t

Ui,t
. The reason

we design the algorithm in this way is as follows. If we do not

take the minimum between Vi,t and 1, one extreme case would

be that pi is very close to 0 and qi is very close to 1. Under

the optimal offline policy, such an arm should not be included

in I∗. Since pi is very small, arm i would be rarely selected as

a candidate arm. As a result, the corresponding padding term

vi,t would be very large. Thus, the term Vi,t −
Li,t

Ui,t
would

be very large as well, which implies that arm i would be a

highly ranked arm in It. Such a decision deviates from the

optimal offline policy, and incurs regret in almost every step.

The adoption of the minimum operation prevents the algorithm

from repetitively including such arms in It under the extreme

scenario and improves its regret performance. On the other

hand, we note that Vi,t serves as an upper bound with high

confidence on the true value of qi, as qi is a probability and

must be upper bounded by one. Therefore, taking the minimum

of Vi,t and 1 provides a more reasonable upper bound for qi.

B. Regret Upper Bound

We have the following main result for the cumulative regret

upper bound of Algorithm 1.

Theorem 2 The cumulative regret under Algorithm 1 is upper

bounded as follows:

R(T ) ≤
∑

i∈[K]\I∗

(ci + pi(1− qi))hi log T +O(1), (1)

where [K]\I∗ includes all arms in [K] except those in I∗, and

hi is a positive coefficient determined by pi, qi, ci.

The remainder of this subsection is devoted to the proof

sketch of Theorem 2. We present the three major steps (Parts

I, II and III) and introduce several lemmas along the way.

At a high level, the proof is based on analyzing two error

events: Et and Bt. The first happens when some parameter

estimations are not in the corresponding confidence intervals

at step t. The second event happens when the arms in I∗ are

not ordered correctly in It. We show that the probability of Et
and the probability of Bt ∩ Ēt are both negligible. The proof

of Theorem 2 then completes after we show that the regret

incurred under Ēt ∩ B̄t grows in log T .

Part I: Analyzing Et. Mathematically, we define Et :=
{∃i ∈ [K], |p̂i,t − pi| > ui,t or |ĉi,t − ci| > ui,t or |q̂i,t −
qi| > vi,t}, i.e. there exists at least an arm whose sample

average of status, second action success probability, or cost

lies outside the corresponding confidence interval. Denote Ēt
as the complement of Et. We first analyze the occurrence of

Et.

Lemma 1 Under Algorithm 1, we have
∑T

t=1 E[1(Et)] ≤
ψ := K

(

1 + 2π2
)

.

Since ψ is a constant, indicating that Ēt happens linearly

often, we can focus on the event Ēt in the remaining analysis.

We establish that when Ēt happens, the candidate arms It
defined in Algorithm 1 always contain I∗.

Lemma 2 If 1(Ēt) = 1, then, under Algorithm 1, all arms

in I∗ will be included in It.

A few technical lemmas are needed to prove Theorem 2.

The next lemma presents a lower bound of the probability pi.

Lemma 3 If 1(Ēt) = 1, we have pi > ci − 4ui,t, ∀i ∈ It.

To ease the exposition, we introduce the following defini-

tions:

∆j :=

(

q(j−1)∗ −
c(j−1)∗

p(j−1)∗

)

−
(

qj∗ −
cj∗

pj∗

)

1 +
cj∗+pj∗

p2
j∗

, ∀j ∈ [L]\{1},

b := min
j∈[L]\{1}

√

∆2
j∗

∆2
j∗ + cj∗

, (2)

d := min
j∈[L]\{1}

√

√

√

√

2pj∗
(

1
8pj∗

+ 1
∆2

j∗

)

mini∈[L]\{1}c
2
i∗

, (3)

β := min(b, d).

For ease of argument, we assume ∆j > 0. The next

lemma establishes a threshold for Nj,t such that, when Nj,t

is above this threshold and hence sufficiently large, we can

simultaneously guarantee (i) the probability that Mj,t is small

can be bounded using concentration inequalities; and (ii) the

total regret summed over t steps converges. Both guarantees

are critical in the proof of Lemma 7.

Lemma 4 With the parameters defined above, when Nj∗,t >
16α log t

β2 min
j

c2
j∗

and 1(Ēt) = 1, the following inequalities hold:

4α log t

Nj∗,t∆2
j∗

− pj∗ < 0, ∀j ∈ [L]\{1}, (4)

32p2j∗

β2 min
j

c2j∗
−

16pj∗

∆2
j∗

> 2, ∀j ∈ [L]\{1}. (5)

With the help of Lemma 4, we now present an upper bound

for Mj,t in Lemma 5.

Lemma 5 If n > 16α log t
β2minj∈[L]\{1}cj∗

, for j ∈ [L]\{1}, we have

P

[

Mj∗,t <
4α log t

∆2
j∗

, Nj∗,t = n
]

≤ exp
(

−2np2j∗ +
16pj∗α log t

∆2
j∗

)

.

The next lemma establishes a sublinear bound for the total

number of pulls of a suboptimal arm when estimations are

sufficiently accurate, which is useful in the regret analysis of

Part III.
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Lemma 6 If ci > piqi, then there exists a pos-

itive coefficient hi determined by pi, qi, ci such that

E

[

∑T

t=1 1(Ēt)1
(

i ∈ Ĩt

)]

≤ hi log T .

Part II: Analyzing Bt. Based on Lemma 2, when Ēt
happens, we define Bt := {∃i∗, j∗ ∈ I∗, i∗ < j∗, s.t. Vi∗,t −
Li∗,t

Ui∗,t
< Vj∗,t −

Li∗,t

Uj∗,t
}, which represents the event that arms

from I∗ are not ranked in the correct order. Since those arms

are pulled linearly often in order to achieve small regret,

Bt should intuitively happen with small probability. This is

characterized in Lemma 7.

Lemma 7 E

[

∑T

t=1 1(Ēt)1(Bt)
]

≤ ζ = O(1), where ζ is a

constant depending on the problem parameters.

The proof of Lemma 7 is based on the intuition that if Ēt
is true, the estimations are close to the real values, and thus

Bt should happen rarely. We note that Lemmas 3 to 5 are all

used in the detailed proof of Lemma 7.

Lemma 8 Consider an ordered list It that includes all arms

from I∗ with the same relative order as in I∗. Then, under

Algorithm 1, E[regt | Ĩt] ≤
∑

i∈Ĩt\I∗(ci + pi(1− qi)).

Part III: Putting Together. Thus,

E

[

T
∑

t=1

1(Ēt)1(B̄t)E
[

regt | Ĩt

]

]

≤ E

⎡

⎣

T
∑

t=1

1(Ēt)1(B̄t)
∑

i∈Ĩt\I∗

(ci + pi(1− qi))

⎤

⎦

= E

⎡

⎣

∑

i∈[K]\I∗

T
∑

t=1

1(Ēt)1(B̄t)1
(

i ∈ Ĩt

)

(ci + pi(1− qi))

⎤

⎦

≤
∑

i∈[K]\I∗

(ci + pi(1− qi))hi log T

where the last inequality comes from Lemma 6.

Denote δ∗ as the largest possible per-step regret, which

is bounded by
∑

i∈[K] ci and corresponds to the worst-case

scenario that all arms are examined but the final reward is

zero. Then, combining the results from Parts I and II, we have

R(T ) = E

[

T
∑

t=1

[1(Et) + 1(Ēt)]regt

]

≤ δ∗
T
∑

t=1

E
[

1(Et) + 1(Ēt)1(Bt)
]

+ E

[

T
∑

t=1

1(Ēt)1(B̄t)E[regt | Ĩt]

]

≤ δ∗(ζ + ψ) +
∑

i∈[K]\I∗

(ci + pi(1− qi))hi log T,

which completes the proof of Theorem 2.

C. Regret Lower Bound

Before presenting the lower bound, we first define α-

consistent policies.

Definition 1 Consider online policies that sequentially exam-

ine arms in It until one arm with state above γ is observed. If

E

[

∑T

t=1 1(It �= I∗)
]

= o(Tα) for any α ∈ (0, 1), the policy

is α-consistent.

Lemma 9 For any ordered list It, the per-step regret in step

t is lower bounded by E[regt] ≥ E

[

∑

i∈Ĩt\I∗(ci − piqi)
]

.

Theorem 3 Under any α-consistent policy,

lim inf
T→∞

R(T )

log T
≥

∑

i∈[K]\I∗

max
f ′
i

ci − piqi
D(fi ‖ f ′

i)
, (6)

where fi is the joint distribution of the state and success

probability (i.e., Xi and Yi) for arm i, and f ′
i is a perturbed

version of it such that p′iq
′
i > ci > piqi.

Remark: Consider a special case when qi = 1, ∀i (i.e., a

handover attempt is always successful). In this case, f ′ should

be designed such that pi < c < p′i. When Xi’s are Bernoulli

random variables at the same time, it degenerates to the case

discussed in [1]. Thus, the lower bound in (6) recovers the

lower bound in [1, Theorem 3].

Comparing Theorem 3 with Theorem 2, we conclude that

Algorithm 1 achieves order-optimal regret performance.

V. SIMULATION RESULTS

In this section we resort to numerical experiments to eval-

uate the performances of the proposed two-level CC-UCB

algorithm. Besides, we also introduce two variants of the two-

level CC-UCB algorithm in Algorithm 1 for comparison. First,

we replace the condition min(Vi,t, 1)− Li,t/Ui,t > 0 in Line

8 of Algorithm 1 with Vi,t − Li,t/Ui,t > 0. We denote this

algorithm as Algorithm 2. Additionally, we replace the metric

used to rank arms (i.e., Vi,t − Li,t/Ui,t > 0) in Line 11 of

Algorithm 1 with min(Vi,t, 1)−Li,t/Ui,t > 0, and denote the

algorithm as Algorithm 3.

We evaluate the performances of these three algo-

rithms in a 5-arm bandits setting with parameters p =
[0.875, 0.75, 0.1, 0.5, 0.25] and q = [0.75, 0.7, 0.9, 0.55, 0.45].
Besides, we assume the costs follow a uniform distribution

U(0.2, 0.4); hence c = 0.3 for all arms. These lead to L = 2
and I∗ = {1, 2} according to Theorem 1. Notice that the

design of the third arm exactly follows the extreme case

discussed in Section IV, with a low pi and a relatively high

qi. We set α = 1.5 and ε = 10−5, and run the algorithms for

T = 2× 105 steps. The average of the cumulative regret over

20 runs is plotted in Fig. 1, where the error bar corresponds

to one standard deviation of the regrets in 20 runs.

We have the following observations. First, all three algo-

rithms achieve sublinear regret in the given setting. Algorithm
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Fig. 1. Cumulative regret versus step

TABLE I
EXAMINATION DELAY VERSUS DIFFERENT c

Alg

c c = 0.25 c = 0.3 c = 0.35 c = 0.4
Mean Std Mean Std Mean Std Mean Std

Alg 1 1.1897 13 1.1830 13 1.1739 14 1.1666 36

Alg 2 1.1894 13 1.1825 21 1.1732 18 1.1667 24

Alg 3 1.1894 14 1.1825 23 1.1732 12 1.1662 24

1 achieves a significantly lower cumulative regret than Algo-

rithm 2, especially when t ≥ 1 × 105, which corroborates

our intuition that an extreme arm (e.g., the third arm) could

incur much higher regret under algorithm 2. This validates

the adoption of the min operator in Line 8 of Algorithm

1. Besides, we also note that the cumulative regrets under

Algorithm 1 and Algorithm 3 are close to each other when t is

sufficiently large. When t is small, the regret under Algorithm

3 is even lower than that under Algorithm 1. This indicates

that taking the minimum between Vi,t and 1 is also a good

modification of the metric to rank the arms in It. We keep

Algorithm 1 in its current form due to the simplicity of

analyzing its theoretical performance, but in practice we can

use a unified metric based on min(Vi,t, 1)− Li,t/Ui,t to add

and rank arms in the list.

We also study the influence of cost c on the average

examination delay, which is captured by |Ĩt|, e.g,, how many

BSs are examined during each handover process. The more

arms are examined, the higher examination delay the system

suffers from at this round. For that, we set the distribution of

the random costs as U(c− 0.1, c+ 0.1) with different values

of c shown in Table I. The rest of the setting stays the same.

From Table I, we note that as c increases, the examination

delay decreases slightly. This coincides with our intuition that

with a larger value of c, I∗ becomes shorter, leading to a lower

examination delay on average.

Lastly, we evaluate the average success rate for varying c
and report the results in Table II. We note that the success

rate decreases as c increases, manifesting the trade-off between

TABLE II
SECOND ACTION SUCCESS RATE VERSUS DIFFERENT c

Alg

c c = 0.25 c = 0.3 c = 0.35 c = 0.4
Mean Std Mean Std Mean Std Mean Std

Alg 1 0.7333 13 0.7324 13 0.7317 13 0.7314 13

Alg 2 0.7330 12 0.7314 10 0.7309 9.5 0.7306 7.5

Alg 3 0.7327 9.2 0.7315 6.7 0.7308 7.2 0.7307 5.8

examination delay and success rate in this setting. Note that

the standard deviation in Table I and Table II is in 10−4.

VI. CONCLUSION

Motivated by the mobility management problem in ultra-

dense networks, we have studied a new cost-aware cascad-

ing bandits problem with two-level actions. We explicitly

identified the optimal offline policy, based on which an

online learning algorithm termed two-level CC-UCB was

proposed. We analyzed the performance of two-level UCB

and showed that the cumulative regret scales in O(log T ).
A matching asymptotic lower bound was obtained as well,

indicating two-level CC-UCB achieves order-optimal regret

performance. Simulation results verified the sublinear regret

of the proposed two-level CC-UCB algorithm. Although this

work was motivated by the mobility management problem

in UDN, the proposed two-level CC-UCB algorithm and its

companion theoretical analyses are general and thus hold their

own intellectual merit from the perspective of multi-armed

bandits.
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