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Abstract—Motivated by the engineering application of efficient
mobility management in ultra-dense wireless networks, we pro-
pose a novel cost-aware cascading bandit model with two-level
actions. Compared with the standard cascading bandit model
with a single-level action, this new model captures the real-
world action sequence in mobility management, where the base
station not only decides on an ordered neighbor cell list before
measurement, but also executes the final handover decision to
the target base station. We first analyze the optimal offline
policy when the arm statistics are known beforehand. An online
learning algorithm coined two-level Cost-aware Cascading UCB
(CC-UCB) is then proposed to exploit the structure of the
optimal offline policy with estimated arm statistics. Theoretical
analysis shows that the cumulative regret under two-level CC-
UCB scales logarithmically in time, which coincides with the
asymptotic lower bound, thus is order-optimal. Simulation results
corroborate the theoretical results and validate the effectiveness
of two-level CC-UCB for mobility management.

Index Terms—Cascading bandits, regret analysis, mobility
management.

I. INTRODUCTION

The learning goal of conventional cost-aware cascading
bandit (CCB) is the optimal ordered list of arms with
unknown heterogeneous costs. This can be naturally applied
to a mobility management problem where a neighbor cell list
(NCL) is constructed by the serving base station (BS), and
sent to the user equipment (UE) when the handover procedure
is triggered [2]I, [3]l. This design is particularly attractive in
ultra-dense networks (UDN), where the possible target BSs
are many while the construction of NCL is not delay-sensitive
and can afford to take some time to converge [2], [4], [3].

Despite its natural fit to NCL construction, CCB does not
take into account the handover decision and the corresponding
outcome, which is the ultimate goal of mobility management
in UDN. In this paper, we propose a new CCB model that
has a two-level action structure, and the corresponding reward
depends on the outcomes of the actions at both levels. This
two-level CCB model is a better match to the UDN mobility
management problem, where each time the UE is presented a
ranked list of candidate BSs (first action). The UE will exam-
ine BSs one by one until one of the BSs has its status (e.g.,
reference signal received power (RSRP)) above a predefined
threshold. The serving BS will send a handover request to this
target BS upon receiving measurements from the UE (second
action), and observe the handover outcome.
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Due to the two-level action structure, the optimal policy
depends the statistics of the status of each BSs and the
handover success rate. Correspondingly, the online learning
algorithm needs to estimate both of those statistics. Since a BS
may be examined multiple times before a handover request is
triggered, the uncertainty levels in those two types of estimates
are in general not balanced. How to take such unbalanced
uncertainty levels into account to design an efficient online
learning algorithm is a major challenge this work faces.

Our major contributions are summarized as follows. First,
we formulate a novel cost-aware cascading bandits model with
two-level actions. This model extends the classical cascading
bandits model [6], [7], and may have direct applications in
mobility managements in UDN and other areas. Second, we
characterize the optimal offline policy when all statistics are
known a priori. With the identified threshold structure of the
optimal offline policy, we then design a two-level Cost-aware
Cascading UCB (CC-UCB) algorithm to exploit this structure
with empirically estimated statistical information, to solve the
online learning problem when the statistics are unknown. We
prove that the cumulative regret of the two-level CC-UCB
algorithm scales in O(logT'). Finally, we derive a matching
asymptotic lower bound, proving that the two-level CC-UCB
is order-optimal. Numerical results are reported to corroborate
the theoretical analysis.

II. TwWo-LEVEL CCB MODEL

We first describe the new two-level CCB model and high-
light its correspondence in UDN mobility management. We
consider a set of K arms (e.g., K BSs) denoted as [K] =
{1,2,...,K}. Assume the status of each arm ¢ at time ¢
(e.g., RSRP of BS i), denoted by X;;, follows an unknown
distribution ;. Each time, the learning agent (e.g., the serving
BS) presents an ordered list of arms (e.g., NCL), denoted as
I := [I,(1),..., :(|I}])], to a player (e.g., UE). The player
then starts examining the arms in I; sequentially, until it finds
the first arm whose status is above a predefined threshold ~
(e.g., first BS that triggers the A4 event in 3GPP [8]]). It would
then stop examining the remaining arms in the list and send
the obtained feedback to the agent. We define the probability
to have X;; > « as p;. Let ft C I, be the list of arms that
have been actually examined in step ¢, and |1:t| be its size.

The aforementioned model captures the first-level action in
cascading bandits. What is unique about the two-level CCB
problem is that we also have access to a follow-up action:
if X/ it = 7 the agent will take another action on arm
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I(|I;]) (e.g., send a handover request to the candidate BS
It(|ft|)) and observe its outcome (handover success Y;; = 1
or failure Y; ; = O to the target BS ¢). In practice, even if the
measured RSRP of the target BS is above the threshold, han-
dover may still fail due to various reasons, e.g., measurement
error or delay, BS load, etc. This second-level action and its
corresponding feedback have not been utilized in prior designs
(]I, [2], which is the focus of this work. Model-wise, we
assume whether the second action is successful is a conditional
Bernoulli random variable. Specifically, given X;: > -, the
success probability of the second action is g;. Otherwise, if
X+ <y, the success probability will always be zero.

Besides, we assume there is a cost associated with each arm
pulling (e.g., energy consumption with each BS measurement).
Denote C; ; as the cost of pulling arm ¢ in step ¢. Without loss
of generality, we assume C;; is a bounded and non-negative
independent and identically distributed (i.i.d.) random variable
with E[Cz,t] = C;.

With a given ordered list I, ft is random and its realization
depends on the observed X; ;. Denote the net reward received
by the learning agent at step ¢ as

|T¢| |I]
1= Yy, 60,6 1(X1,(5),6 2 7)) Zczfm t-

Denote the observations up to step ¢t — 1 as H!~!. Then,
without a priori statistics about {X;,}, {Y;.} and {C;.,},
our goal is to design an online algorithm to decide I; based
on observations obtained in previous steps H'~!, so as to
B[S
where r* is maximum expected net reward if the statistics of
{Xi1}ir {Yii}i and {C; , }; were known beforehand. Besides,
we also denote the per-step regret as reg, := r* — ry.

minimize the cumulative regret R(T) :=Tr

III. OPTIMAL OFFLINE POLICY

Before we proceed to design the online learning algorithm
and analyze its performance, we first identify the optimal
offline policy assuming the statistics of arms and measuring
costs are known a priori. For simplicity of the analysis, we
make the following technical assumption:

Assumption 1 7t £ q;, for all i € [K].

Our main result for the offline policy is given in the
following theore

Theorem 1 Arrange the arms in the decreasing order of q; —
;— and let L be the total number of arms with q; — ;—1 > 0,
Le.,

C1* Cr*

q1- — Z .2 qLe — >0
P1+ Pr~
C L+1)* CK *
>Q(L+1)**¥Z~-ZQK** .
P(L+1)* PK~

'Due to page limit, we omit the proof of Theorem I in this paper. All
missing proofs can be found in the supplementary material [|§|]

Algorithm 1 Two-level Cost-aware Cascading UCB
1: Input: o, .
2: Initialization: Examine all arms in [K] once, and observe
their states and costs.

3: while ¢t < 7T do

4 fori=1: K do

5 Uit = Pit + Uits

6: Vie = it +vigs

7 Li,t = max(é,;,t — Uj ¢, O),

8 if min(Vi’t, 1) — Li,t/Ui,t > ( then 7 — It;

9: end if

10: end for

11: Rank arms in [; in the descending order of V;, —
Li/Uiy.

12: for i =1:|I;| do

13: Examine BS /;(i) and observe X7, ()¢, Cr,(i,¢5

14: Add i to I;;

15: if XIt(i),t > ~ then

16: Take second action on [;(i) and observe the
outcome Y7, ;) +; break;

17: end if

18: end for

19:  Update Ny, pis, ¢ forall i € Ip;
20: Update My 7, and G, (7, ))3

21: t=1t+1;

22: end while

Then, I* consists of the top L arms, and the corresponding
. . L
optimal expected per-step net reward is r* =Y . | (i~ ¢i» —
i—1
civ) H}:1(1 _pj*)-

Compared with the optimal offline policy under the original
CCB model in , a major difference is that the policy now
depends on ¢; — 1nstead of 17 = which captures the impact
of two-level actlons

IV. ONLINE ALGORITHM
A. Online Algorithm

With the optimal offline policy explicitly described in
Theorem [I] in this section, we develop an online algorithm
to maximize the cumulative expected net rewards without a
priori knowledge. The two-level cost-aware cascading UCB
algorithm is described in Algorithm 1. We use N;; to track
the number of steps that arm ¢ has been examined right before

step ¢, and p; + to denote the sample average estimate of p;.
alogt

The UCB padding term at step t is u; ¢ 1= 4/ N,

is a positive constant no less than 1.5. Besides, we use M, ;
to track the number of steps that arm 7 has been chosen and
attempted for handover right before step ¢, and ¢; ; to denote

, where «

the sample average estimate of g;. We use v;; := %ﬁt to
denote the UCB padding term for g;. 1

We point out that the main differences between the proposed
two-level CC-UCB algorithm and the original CC-UCB in

include the estimation of the conditional success probability
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q; of the second action, the construction of its UCB, and the
condition under which an arm should be included in I; and
subsequently undertake the second action. In particular, for the
condition under which an arm should be included in I;, we
do not simply mimic the offline policy by checking whether
"/; U’i,t
between V; ; and 1, and then compare it with U7 . The reason
we design the algorithm in this way is as follows. If we do not
take the minimum between V; ; and 1, one extreme case would
be that p; is very close to 0 and ¢; is very close to 1. Under
the optimal offline policy, such an arm should not be included
in I*. Since p; is very small, arm 7 would be rarely selected as
a candidate arm. As a result, the corresponding padding term
v;; would be very large. Thus, the term V;; — 5' would
be very large as well, which implies that arm ¢ would be a
highly ranked arm in [;. Such a decision deviates from the
optimal offline policy, and incurs regret in almost every step.
The adoption of the minimum operation prevents the algorithm
from repetitively including such arms in ; under the extreme
scenario and improves its regret performance. On the other
hand, we note that V;, serves as an upper bound with high
confidence on the true value of g;, as ¢; is a probability and
must be upper bounded by one. Therefore, taking the minimum
of V; and 1 provides a more reasonable upper bound for g;.

B. Regret Upper Bound

We have the following main result for the cumulative regret
upper bound of Algorithm [T}

Theorem 2 The cumulative regret under Algorithm(l|is upper
bounded as follows:

RT)< Y (etpl

€[ K\ I*

¢i)) hilogT +0O(1), (1)

where [K)\I* includes all arms in [K| except those in I'*, and
h; is a positive coefficient determined by p;, q;, ;.

The remainder of this subsection is devoted to the proof
sketch of Theorem [2] We present the three major steps (Parts
I, IT and III) and introduce several lemmas along the way.

At a high level, the proof is based on analyzing two error
events: & and B;. The first happens when some parameter
estimations are not in the corresponding confidence intervals
at step t. The second event happens when the arms in [* are
not ordered correctly in I;. We show that the probability of &,
and the probability of B; N & are both negligible. The proof
of Theorem [2] then completes after we show that the regret
incurred under & N B; grows in log 7.

Part I: Analyzing &;. Mathematically, we define & :=
{3i € [K], |Pie — pil > wiyor |y — ci| > iy or |Gy —
qi| > vi.}, i.e. there exists at least an arm whose sample
average of status, second action success probability, or cost
lies outside the corresponding confidence interval. Denote &
as the complement of &. We first analyze the occurrence of
Er.

Lemma 1 Under Algorithm l we have Zt LE[L(&)] <
V=K (1+27?).

Since ¢ is a constant, indicating that & happens linearly
often, we can focus on the event & in the remaining analysis.
We establish that when & happens, the candidate arms I;
defined in Algorithm |1| always contain I*.

Lemma 2 If 1(&;) = 1, then, under Algorithm |1} all arms
in I* will be included in 1.

A few technical lemmas are needed to prove Theorem [2]
The next lemma presents a lower bound of the probability p;.

Lemma 3 If 1(&;) =1, we have p; > ¢; — du; ¢, Vi € 1.

To ease the exposition, we introduce the following defini-
tions:

PRk DSl N (VR
A= (q(]_l) PG— 1)*) (qJ Pj*>7

Vi € [LI\{1},
T LI\1}
A2
b:= min A2 L @
elL\1} || AL+
d:= . min 2pj* ) (3)
JELN{1} (Sp% + =5 )minie[L]\{l}sz*
B := min(b, d).

For ease of argument, we assume A; > 0. The next
lemma establishes a threshold for IV;; such that, when N; ;
is above this threshold and hence sufficiently large, we can
simultaneously guarantee (i) the probability that M) ; is small
can be bounded using concentration inequalities; and (ii) the
total regret summed over ¢ steps converges. Both guarantees
are critical in the proof of Lemma

Lemma 4 With the parameters defined above, when N ;-
Abalogt g 1(&) = 1, the following inequalities hold:

32 min c2,
G

dalogt .

— 5 — Dj* L\{1 4

N, AT~ P <0 W € (LML) )
32p3.  16p;- .

P~ A% > 2, Vj e [L)\{1}. (5)

J
With the help of Lemma ] we now present an upper bound
for M, ; in Lemma

16 logt
BPminje L\ (1y¢;+’

Lemma 5 Ifn > for j € [L)\{1}, we have

P ]\/I*t<4()¢10gf

Ny = n} <exp (—an?* + M) .

AZ,

J

The next lemma establishes a sublinear bound for the total
number of pulls of a suboptimal arm when estimations are

sufficiently accurate, which is useful in the regret analysis of
Part III.
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Lemma 6 If ¢; > pq, then there exists
itive coefficient h; determined by p;,q;,c;

E[ST 1)1 (z c it)} < hilogT.

a pos-
such that

Part II: Analyzing B5;.
happens, we define B; := {3i*, j

Based on Lemma 2l when &

e It < gt st Ve —
[L] o < Vi — L‘ L }, which represents the event that arms
from I* are not ranked in the correct order. Since those arms
are pulled linearly often in order to achieve small regret,
B, should intuitively happen with small probability. This is
characterized in Lemma [7]

Lemma 7 E [Zt L L(ENL (Bt)J < ¢ = O(1), where C is a
constant depending on the problem parameters.

The proof of Lemma [7|is based on the intuition that if &
is true, the estimations are close to the real values, and thus
B; should happen rarely. We note that Lemmas [3] to [3] are all
used in the detailed proof of Lemma

Lemma 8 Consider an ordered list I; that includes all arms
from I* with the same relative order as in I*. Then, under

Algorlthml [reg, | I}] < ZZGL\I* (ci +pi(1 = q)).

Part III: Putting Together.

Bz oo, 1]

Thus,

T

<E|> 1 > (ei+pil—aq))
| t=1 i€l \I*
[ T

=E| Y Y 1EB (i€ k) (e +pill - )
Li€[KI\I* t=1

< Z (ci +pi(1—q;)) hylogT

i€ [KI\I*

where the last inequality comes from Lemma [6]

Denote §* as the largest possible per-step regret, which
is bounded by Zie[ K] Ci and corresponds to the worst-case
scenario that all arms are examined but the final reward is
zero. Then, combining the results from Parts I and II, we have

T
R(T)=E [Z[ﬂ(&) + ]l(gt)]regt‘|

1(B;)E[reg, | I}]]

<ECHY)+ Y (ei+pill =) hilogT,
ie[K\I*

which completes the proof of Theorem [2]

C. Regret Lower Bound

Before presenting the lower bound, we first define a-
consistent policies.

Definition 1 Consider online policies that sequentially exam-
ine arms in I until one arm with state above vy is observed. If
E {Zthl 1(I; # I*)] = o(T?%) for any « € (0, 1), the policy
is a-consistent.

Lemma 9 For any ordered list I;, the per-step regret in step
t is lower bounded by E[reg,] > E {Zieft\l* (¢; — piqi)]

Theorem 3 Under any a-consistent policy,

ma — Piq% ©6)

(fL £

where f; is the joint distribution of the state and success
probability (i.e., X; and Y)for arm i, and f! is a perturbed
version of it such that plq; > ¢; > p;qi.

- ie[K\I*

Remark: Consider a special case when ¢; = 1,V7 (i.e., a
handover attempt is always successful). In this case, f’ should
be designed such that p; < ¢ < p,. When X;’s are Bernoulli
random variables at the same time, it degenerates to the case
discussed in [1]. Thus, the lower bound in (6) recovers the
lower bound in [[1, Theorem 3].

Comparing Theorem [3] with Theorem [2] we conclude that
Algorithm [I| achieves order-optimal regret performance.

V. SIMULATION RESULTS

In this section we resort to numerical experiments to eval-
uate the performances of the proposed two-level CC-UCB
algorithm. Besides, we also introduce two variants of the two-
level CC-UCB algorithm in Algorithm [T for comparison. First,
we replace the condition min(V; 4, 1) — L; ,/U; ; > 0 in Line
8 of Algorithm [1] with V;; — L; ;/U; s > 0. We denote this
algorithm as Algorithm 2. Additionally, we replace the metric
used to rank arms (ie., V;; — L;;/U;; > 0) in Line 11 of
Algorithm with min(V; ;,1) — L; +/U; + > 0, and denote the
algorithm as Algorithm 3.

We evaluate the performances of these three algo-
rithms in a S5-arm bandits setting with parameters p =
[0.875,0.75,0.1,0.5,0.25] and q = [0.75,0.7,0.9,0.55, 0.45].
Besides, we assume the costs follow a uniform distribution
U(0.2,0.4); hence ¢ = 0.3 for all arms. These lead to L = 2
and I* = {1,2} according to Theorem [T} Notice that the
design of the third arm exactly follows the extreme case
discussed in Section [[V| with a low p; and a relatively high
gi- We set & = 1.5 and € = 10~°, and run the algorithms for
T = 2 x 10° steps. The average of the cumulative regret over
20 runs is plotted in Fig. [T} where the error bar corresponds
to one standard deviation of the regrets in 20 runs.

We have the following observations. First, all three algo-
rithms achieve sublinear regret in the given setting. Algorithm
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Fig. 1. Cumulative regret versus step
TABLE 1
EXAMINATION DELAY VERSUS DIFFERENT ¢
c| ¢=0.25 c=0.3 c=0.35 c=04
Alg Mean | Std | Mean | Std | Mean | Std | Mean | Std
Alg 1 [1.1897] 13 |1.1830| 13 | 1.1739| 14 | 1.1666 | 36
Alg 2 | 1.1894 | 13 |1.1825| 21 [1.1732| 18 | 1.1667 | 24
Alg 3 |1.1894 | 14 | 1.1825| 23 [1.1732] 12 | 1.1662 | 24

[T] achieves a significantly lower cumulative regret than Algo-
rithm 2, especially when ¢t > 1 X 10%, which corroborates
our intuition that an extreme arm (e.g., the third arm) could
incur much higher regret under algorithm 2. This validates
the adoption of the min operator in Line 8 of Algorithm
[[} Besides, we also note that the cumulative regrets under
Algorithm T]and Algorithm 3 are close to each other when ¢ is
sufficiently large. When ¢ is small, the regret under Algorithm
3 is even lower than that under Algorithm |1} This indicates
that taking the minimum between V;; and 1 is also a good
modification of the metric to rank the arms in I;. We keep
Algorithm [I] in its current form due to the simplicity of
analyzing its theoretical performance, but in practice we can
use a unified metric based on min(V;,1) — L; /U, ¢+ to add
and rank arms in the list.

We also study the influence of cost ¢ on the average
examination delay, which is captured by |ft , €.g,, how many
BSs are examined during each handover process. The more
arms are examined, the higher examination delay the system
suffers from at this round. For that, we set the distribution of
the random costs as U(c — 0.1, ¢ + 0.1) with different values
of ¢ shown in Table [[ The rest of the setting stays the same.
From Table |I| we note that as ¢ increases, the examination
delay decreases slightly. This coincides with our intuition that
with a larger value of ¢, I* becomes shorter, leading to a lower
examination delay on average.

Lastly, we evaluate the average success rate for varying c
and report the results in Table [} We note that the success
rate decreases as c increases, manifesting the trade-off between

TABLE II
SECOND ACTION SUCCESS RATE VERSUS DIFFERENT ¢
c| ¢=0.25 c=0.3 c=0.35 c=04
Alg Mean | Std | Mean | Std | Mean |Std | Mean | Std
Alg 1 ]0.7333| 13 |10.7324| 13 |0.7317| 13 |0.7314] 13
Alg 2 10.7330| 12 |0.7314| 10 |0.7309| 9.5 [0.7306| 7.5
Alg 3 10.7327]9.210.7315| 6.7 0.7308 | 7.2 0.7307 | 5.8

examination delay and success rate in this setting. Note that
the standard deviation in Table [l and Table [l is in 104,

VI. CONCLUSION

Motivated by the mobility management problem in ultra-
dense networks, we have studied a new cost-aware cascad-
ing bandits problem with two-level actions. We explicitly
identified the optimal offline policy, based on which an
online learning algorithm termed two-level CC-UCB was
proposed. We analyzed the performance of two-level UCB
and showed that the cumulative regret scales in O(logT).
A matching asymptotic lower bound was obtained as well,
indicating two-level CC-UCB achieves order-optimal regret
performance. Simulation results verified the sublinear regret
of the proposed two-level CC-UCB algorithm. Although this
work was motivated by the mobility management problem
in UDN, the proposed two-level CC-UCB algorithm and its
companion theoretical analyses are general and thus hold their
own intellectual merit from the perspective of multi-armed
bandits.
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