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It has been recently shown that a state generated by a one-dimensional noisy quantum computer is well ap-
proximated by a matrix product operator with a finite bond dimension independent of the number of qubits. We
show that full quantum state tomography can be performed for such a state with a minimal number of measure-
ment settings using a method known as tensor train cross approximation. The method works for reconstructing
full rank density matrices and only requires measuring local operators, which are routinely performed in state-
of-art experimental quantum platforms. Our method requires exponentially fewer state copies than the best
known tomography method for unstructured states and local measurements. The fidelity of our reconstructed
state can be further improved via supervised machine learning, without demanding more experimental data.
Scalable tomography is achieved if the full state can be reconstructed from local reductions.

With the rapid development of quantum computing and
quantum simulation, how to characterize and validate large
quantum many-body states generated by experimental quan-
tum devices becomes a major challenge. Among various
methods [1-5], quantum state tomography (QST) [6—12] re-
mains the gold standard, as it provides complete information
about the experimental state. However, for a generic mixed
state in a d-dimensional Hilbert space, QST requires a num-
ber of state copies at least proportional to d? to guarantee high
reconstruction fidelity [10], thus it is generally inefficient for a
quantum system of many particles. Fortunately, states gener-
ated by physical quantum systems are often structured, requir-
ing much fewer resources in order to gain complete informa-
tion about them. For example, if the quantum system is well
isolated from the environment, then the state of the system is
often close to a pure state and thus can be well approximated
by a low-rank density matrix. In this case, one simply needs
to prepare and measure the state ~ d times [8, 11, 13-18].

To make QST truly scalable, however, the number of state
copies needed should only scale polynomially with the num-
ber of particles V. This is only possible if the state has a com-
pact representation with only poly(N) independent parame-
ters. Examples of such states include matrix product states
(MPS) [19], matrix product operators (MPO) [20], tensor net-
work states [21], and quantum neural network states [22].
However, having an efficient representation of the quantum
state does not imply that an efficient QST method exists. For
a pure state represented by an MPS with a finite bond dimen-
sion, efficient QST methods have been found and tested for
various physical states [7, 23, 24], although a rigorous bound
on the number of state copies needed to guarantee high fi-
delity QST is yet to be found. States that can be efficiently
represented by artificial neural networks have also been tar-
geted for QST [22, 25-34], but it is not clear whether efficient
QST schemes exist in general for such states.

In this paper, we focus on QST for a mixed state repre-
sented by an MPO with a finite bond dimension independent
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of the system size. Such an MPO has recently been shown
to describe most states generated by a one-dimensional quan-
tum computer with a finite error rate for elementary quantum
gates [35]. Given the popularity of one-dimensional quantum
computers such as those based on trapped ions [36], efficient
QST methods for states generated by such devices are highly
desired. However, no guaranteed efficient method to perform
QST with bounded error on these states has been developed.
We also note that such states can have very high entropy,
making QST methods designed for low-rank density matrices
generally not applicable. The method currently demonstrat-
ing highest efficiency is developed in Ref. [9], which attempts
to reconstruct the MPO representing the target state from lo-
cal reduced density matrices each involving at most R parti-
cles. The method requires performing full tomography on the
reduced density matrices, which involves a number of state
copies exponential in R. If R is small, this method is efficient,
but R cannot be determined without knowing the state explic-
itly or even predicted from the bond dimension, and thus the
efficiency of the whole method is not guaranteed.

Here we take an important step towards addressing this
problem. Using a method in signal processing and com-
pressed sensing know as tensor train cross approximation [37—
40], we show that an N-particle state represented by an MPO
with a finite constant bond dimension can be reconstructed by
measuring the state in only O(N) different bases. To our best
knowledge, the application of cross approximation to QST has
not been studied in depth before [41]. Importantly, cross ap-
proximation only requires local measurements on individual
quantum particles, which are routinely performed in current
quantum experiments. For example, on qubit systems, we
need only measure one of the three Pauli operators o”-¥-* for
each qubit. As a result, our method is easily implementable
experimentally. For a generic mixed state made of N qubits,
one needs to measure all 3V different combinations of local
Pauli operators in order to gain complete information of the
state [11]. Therefore, our method requires only a small frac-
tion O(NN) /3" of measurement bases (as well as the number
of state copies) compared to such unstructured tomography.
We emphasize that our O(NV) scaling of the number of mea-
surement bases is optimal since the target MPO state contains
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O(N) independent parameters.

Nevertheless, our method does not guarantee that the num-
ber of total state copies is polynomial in /V. Due to the statis-
tical errors in quantum measurements, an exponentially large
number of copies of states per measurement basis needs to be
used to ensure a bounded error (in the Hilbert-Schmidt norm)
of the reconstructed state. Without additional assumptions on
the target MPO state, we expect this limitation to be funda-
mental, as it also applies to the best-known unstructured to-
mography method using local measurements [10]. We de-
velop a supervised machine learning method to alleviate the
effects of statistical errors and the requirement of a large num-
ber of measurements. Finally, we point out that we can com-
bine our method with the protocol in Ref. [9] to achieve effi-
cient QST if a local reduction exists for the target MPO state.
Our method can perform QST on the reduced states much
more efficiently than standard methods, thus improving the
protocol in Ref. [9] without affecting its scalability condition.

This paper is organized as follows: In Section I, we intro-
duce the method of cross approximation for both matrices and
tensors. Section II applies cross approximation to QST for
physical target states represented by MPOs. In Section III,
we analyze the effects of statistical errors in quantum mea-
surements. We then show that the detrimental effects of such
measurement errors can be further reduced via a supervised
machine learning method in Section IV. The paper ends with
a discussion and outlook section.

I. INTRODUCTION OF CROSS APPROXIMATION

The tensor train cross approximation we use for QST is a
generalization of the cross approximation for a matrix, which
is also known as skeleton decomposition or CUR decomposi-
tion [42—45]. The main idea of matrix cross approximation is
that given a low rank matrix, we can possibly approximate it
using a small number of its rows and columns. Formally, fol-
lowing the standard notation for the CUR decomposition, we
express the cross approximation for a general m X n complex
valued matrix A € C™*™ as

A ~ CU'R, D

where C = A(;,J), R = A(],:), and U = A(I,J) with
I and J respectively denoting some subsets of the indices of
A’s rows and columns. U™ denotes the pseudo inverse of the
matrix U (not to be confused with Hermitian conjugate).

An illustration of the matrix cross approximation is shown
in Fig. 1. One can mathematically prove that if rank(U) =
rank(A), then the cross approximation becomes exact, i.e.
A = CU™!'R. In this case, one can also perform a singu-
lar value decomposition (SVD) of A to obtain an exact de-
composition of A in a similar form. However, computing the
SVD requires full knowledge of the matrix A, while the cross
approximation only requires a small fraction of A’s rows and
columns be known for a low rank matrix. As we will show,
this advantage of cross approximation allows us to measure
only a small number of observables for a target quantum state
represented by a compact MPO.
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Figure 1. Illustration of matrix cross approximation. An m X n
matrix A is approximated by a product of three matrices C, U™,
and R, where C is formed by selecting |J| columns from A, R is
formed by selecting |I| rows from A, and U is formed by the union
of C and R.

If the rank of the matrix A is not known a priori, then cross
approximation is in general less accurate and robust than the
SVD, which provides the best approximation of A for a cho-
sen rank. For cross approximation to be optimal, one needs to
choose the rows and columns of A in a way that maximizes
the volume (i.e. determinant in modulus) of U in Eq. (1). The
search for the maximum volume submatrix U is in general
computationally expensive, but many efficient methods have
been developed to achieve quasi-optimal results [46-51].

We now generalize the matrix cross approximation to ten-
sor train cross approximation. We denote an order-/N ten-
sor A’s elements using A(v1,72, - ,7n), Where v, =
0,1,2,---d;—11is the index for the i dimension of the tensor.
We focus on the case where A has a tensor train decomposi-
tion of the form:

Ay, o) = GG+ G @

where each GZ is a matrix of dimension y;_1 X ); with
Xo = X~ = 1. We point out that the tensor train in Eq. (2) is
identical to an MPS or MPO when the tensor .4 represents a
wavefunction or density matrix of a quantum many-spin sys-
tem [19], with {x; } often referred to as the bond dimensions.

Given an arbitrary tensor .4, one can always find the matri-
ces {G]" } in the tensor train decomposition Eq. (2) via succes-
sive SVDs [19]. Such successive SVDs further allow one to
compress the dimension {x; } of the the matrices {G]"} [19].
However, the entire tensor .4, which contains exponentially
many elements in N, needs to be known in order to perform
the SVD, which is impractical for large V.

Similar to the matrix case, we can apply cross approxima-
tion instead of SVD for the tensor .A to improve the efficiency
of the tensor train decomposition. This consists of the fol-
lowing steps (illustrated in Fig.2). In the first step, we re-
shape the tensor .4 with dimensions d; X dy X - - - X dy into a
wide matrix A; of dimension d; X (dads - - - dy) and perform
cross approximation on this matrix by selecting ; rows and
columns of A, resulting in A; =~ ClUle. One can then
show that A has a rank of at most x1, and thus if r; > 1,
the matrix cross approximation of A; can be exact. The ma-
trix C; U7, which has a dimension of d; x 71, creates d; row
vectors {G7"} each of dimension 7.

In the second step, we reshape the previously obtained ma-
trix R into a matrix Ao of dimension (r1dz) X (dzdy - - - dn)
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Figure 2. [llustration of tensor train cross approximation. In step one,
we perform a matrix cross approximation of A, which is obtained
from reshaping the tensor A. In step two, we reshape the matrix
R obtained in step 1 into a matrix A and perform a matrix cross
approximation of A,. We iterate this step for a total of N — 1 steps.

and perform a cross approximation of A, ~ CyUJ Ry by
choosing r, rows and columns. Again, one can show that the
matrix A has a rank of at most 2, thus the cross approxima-
tion of A5 can be exact if 75 > xo. The matrix CQU;_, which
has a dimension of (r1ds) X 72, can be reshaped to create do
matrices {G3? } each of dimension 71 X 7.

We iterate the above step for a total of N — 1 steps. This
allows us to obtain a set of matrices {G]"} fori =1,2,--- N
and v; = 1,2,---d; — 1, where in the last step the matrix
Ry_1 is used to obtain {G\'}. As we mentioned, if we
choose r; > x; in the matrix cross approximation in step ¢,
we can exactly recover the original tensor as A(7y1, -+ Yn) =
GG - GT¥. Most importantly, this process is highly ef-
ficient, as in each step we only need to find the small matrices
C,; of dimension (r;_1d;) x r; and U; of dimension r; x r;,
and they can be constructed directly from the elements of the
tensor 4. Assuming that d = max; d; and r = max; r;, then
we only need to know approximately Ndr? elements of A
to fully reconstruct it. And in the case of r; = x;, this re-
construction method is optimal because .4 contains the same
number of independent parameters.

In reality, .A may not have an exact tensor train decompo-
sition as in Eq. (2), or we may not know the bond dimension
{x:} of the exact tensor train decomposition. In this case, we
can choose r; in the tensor train cross approximation heuristi-
cally, starting from a small initial guess. If r; < x;, then the
cross approximation is no longer exact but we can use max-
imum volume principle based algorithms, of which two have
been developed, to find the optimal entries of the tensor A
used to perform the tensor train decomposition. The first al-
gorithm is introduced in Ref. [38] and known as the “DMRG-
cross” algorithm, since it is similar to the density matrix renor-
malization group (DMRG) method used in variationally find-
ing the ground state of a 1D quantum many-body system [19].
Similar to DMRG, it can choose r; adaptively between 1 and
a preset maximum value based on a chosen local error thresh-
old. The second is introduced in Ref. [39] and is known as the
“greedy-cross” algorithm, which uses the method of greedy
approximation [52] and chooses an aggressively small ;. We
will mainly use the DMRG-cross algorithm for QST as it per-
forms more reliably in our calculations.

II. CROSS APPROXIMATION BASED QST

We now apply the above-mentioned tensor train cross ap-
proximation method to quantum state tomography. For sim-
plicity, we focus on a quantum state of N qubits, but it is
straightforward to generalize our method to a quantum sys-
tem of N qudits. A general mixed state of N qubits can be
described by a density operator p in the [N-qubit Pauli opera-
tor basis.

p= Y A,y w) (070 o) (3)
Y15 YN

where eachy; = 0,1, 2,3 and 0? 123 genotes respectively the
identity operator and Pauli operator o; *¥"* acting non-trivially
only on qubit z. As a result, the full state is described by the
order-N tensor A we discussed in Section I with d = d; =
ds--+ = dy = 4. Importantly, each element of A can be
measured experimentally since

Alyis-w) = {07 032 - a3 ) /28, “)

For state-of-art quantum computers and quantum simula-
tors, the expectation value of 07" 65> - - - o} can be measured
by locally measuring each qubit (spin-1/2) in the X, Y, or Z
direction in an arbitrary order. Note that if ; = 0, one can
measure the qubit ¢ in any direction (or not measure it) and
simply replace the operator ¢ by unity in evaluating the ex-
pectation value.

If A for our target state can be represented or well approx-
imated by a tensor train (or MPO) defined in Eq. (2) with a
maximum bond dimension Y = max; X;, then we can per-
form QST by reconstructing .4 (and hence the full state) using
tensor-train cross approximation. The main advantage of this
QST method is that only about 4N x? elements of A need to
be measured, which is also the number of different measure-
ment bases required. As we mentioned in Section I, this is the
minimal number of measurement bases required to gain full
information of the target state.

Another advantage of our QST protocol is that we obtain
an efficient representation of the target state in an MPO form
(consisting of the matrices {G]"}). The full density matrix
of the target state is never reconstructed or stored, explicitly.
However, the reconstructed MPO can be used to compute the
expectation values of most physically interesting observables
efficiently [53]. In particular, these observables include V-
body correlation functions, such as {03 ---o}" with no
v; = 0. The expectation value of such global observable is
hard to obtain using shadow tomography techniques [1, 4] and
full QST is usually needed.

We now benchmark the performance of cross approxima-
tion based QST using two different classes of physical tar-
get states represented by MPOs with a given bond dimension.
First, we consider thermal states of a 1D quantum Ising model,
described by the Hamiltonian

N-1 N
H:ZUfaf+1+gZUf. %)
i=1 i=1



We will set ¢ = 1, which makes the ground state of H at
its quantum critical point in the thermodynamic limit. Such
ground state requires the largest bond dimension among all
values of g for it to be approximated by an MPS or MPO. The

thermal state of H is defined by pr = and it can be

Tr(e—H/T)?
well approximated by an MPO with a sinall b())nd dimension
for tens or even hundreds of spins [53]. We will set 7" = 0.2
(corresponding to a low temperature state close to the ground
state) and T' = 2 (corresponding to a high temperature state)
in our following calculations. We generate pr in an MPO
form for up to N = 40 qubits using the Open Source Ma-
trix Product State (OSMPS) software package [54, 55], which
uses an imaginary time evolution of an MPO ansatz to approx-
imate pr with a maximum bond dimension of 32.

Our second class of target states are random locally puri-
fied tensor network (LPTN) states [56]. These states are rep-
resented by random MPOs that are guaranteed to be physical.
The density operator ppprN of such a random LPTN state is
represented by

(s1---snlpLprn]sh -+ sy) = M7V MY (6)
where |sq -+ sy) with s; = 0,1 denotes the computational
basis state for N qubits. To make sure that the above density
operator p is physical, it must be semi-positive definite. This

can be guaranteed if each matrix Mfsl takes the following
form [53]:

K;
M:i’si — Z Afi»ai ® (A:w(lz)* (7)
a;=1

where * denotes complex conjugate and K; is an arbitrary pos-
itive integer. For simplicity, we assume each matrix A" is
of dimension x X r, except that A7"** and A}Y"“" are of di-
mension 1 X k and x x 1 respectively. To make the state ppprN
sufficiently random, we set each matrix element of A;"'“* to
be a random complex number with both its real and imagi-
nary parts drawn uniformly from [—1, 1]. In addition, we set
K; = 10 to make sure the state is sufficiently mixed (K; = 1
will generate a pure state).

It is straightforward to see that ppprN is an MPO with bond
dimension Y = x? and is always Hermitian. However, to
make prpry physical, it still needs to be normalized. This is
done by calculating

Tr(p) = (MY° + M) - (MY’ +My') ()

and dividing each matrix M:"’; matrix above by [Tr(p)]*/N.

Finally, we need to convert the MPO {Mfs } representing
pLprN from the computational basis to the Pauli operator basis
to comply with our measurement scheme. This can be done
using the following linear transformation that preserves the
bond dimension of the MPO:

MO0 4 bt MOt 4 b0
GY=—"2 T Gl=" "7 9
] 2 1 2 ( )
MOt b0 MO0 _ ptt
G? — z% G? — % (10)

To quantify the performance of tensor train cross approxi-
mation, we also need to define a distance measure between the
reconstructed state and the original target state. Commonly
used distance measures for quantum states include trace dis-
tance and fidelity [57], but both of these measures cannot be
computed efficiently for a large number of qubits even if the
states have a compact MPO representation. Here we instead
use a normalized Frobenius norm (squared) difference as a
distance measure between two density matrices p; and po, de-
fined as [9]

Tr(p}p1 + phpz — plp2 — plpr)
Tr(p}p1)
(11

where T denotes Hermitian conjugate and || A||2 = /Tr(ATA)
denotes the Frobenius norm of any matrix A. Importantly,
D(p1, p2) can be computed efficiently if both p; and po are
represented by compact MPOs. For example, if

_ lpi = p2ll3
D(ﬁlaﬁ?) = le”% =

pL = Z (GI'GY -GN )o o> o)y (12)
Y1, YN

_ é"/lé'w.”é"/N Y1 ,.V2 ... ~IN 13

P2 = Z 1 Gg N )01 02 on, (13)
iy YN

then terms such as Tr(p! p,) in Eq. (11) can be computed effi-
ciently using contractions of the two MPOs:

Tr(p! . -
—“5#’” = (%:(G?)* ® G?l) = (%(G%N)* ® G%N> :
(14)

The distance measure D can only be calculated for a nu-
merical benchmark experiment. For an actual quantum exper-
iment, we do not have full knowledge of the state (or its MPO
representation) and therefore cannot calculate D. However,
we can guess if our QST protocol succeeded in well approxi-
mating the experimental target using a sampled version of D,
denoted by D, below, to quantify the quality of the QST:

2
Yy o1t o) = (010X )

DS (pl? p2) = / 2
Z'Yl""YN |<O.iyl e U?VN>)01‘
(15)
where Z;l__,m denotes the sum over only the indices

{71, -y~ } used by the cross approximation (and the corre-
sponding local bases in which measurements are performed).
Since we only need O(N) measurement bases, D, can be
computed easily from experimental measurement data.

The difference between the target state and the cross ap-
proximation reconstructed state comes primarily from two
sources: (1) Underestimation of the bond dimension of the
target MPO state leads the cross approximation to be inexact.
(2) Statistical error in quantum measurements leads the ele-
ments of the tensor A (and therefore the inputs to the cross
approximation) to be inexact. For the rest of this section, we
will focus on the first error source by assuming zero statistical
error in the measurement. This is of course an impractical as-
sumption as it will require an infinite number of state copies



per measurement basis. We will remove this assumption and
focus on the effects of the statistic error in Section III.

We have performed numerical experiments for synthetic
target states, those being the aforementioned thermal states of
Eq. (5) and the random LPTN states in Eq. (6). For both types
of target states we can efficiently calculate the expectation
values of a g 2 ... g7¥ [53] needed for the tensor train cross
approximatlon. We then apply the DMRG-cross algorithm to
reconstruct the target state for up to N = 40 qubits. With-
out fine tuning, we set the maximum bond dimension used in
DMRG-cross to 10, and the local truncation error to 10~3.

As expected, we find that the cross approximation works
very well (with D < 10~5) when the DMRG-cross algorithm
does not underestimate the bond dimension of the target state.
This is the case for the thermal states of Eq.(5) with 7' =
2 (see Fig.3a), which are well approximated by MPOs with
bond dimensions not exceeding 7 for NV < 40, and DMRG-
cross adaptively chooses bond dimensions between 6 and 8 for
these states. Ideally, we expect D to be zero (or at machine
error level) if we do not underestimate the bond dimension,
but numerical instabilities associated with the pseudo-inverse
could account for the nonzero D observed [40].

For most other target states, DMRG-cross underestimates
the bond dimensions. But remarkably, the cross approxima-
tion still works well in such scenarios, achieving D < 102
everywhere in Fig.3. This means that the tensor train cross
approximation can actually be used as a compression tech-
nique for MPOs. Unlike most other MPO compression tech-
niques, the cross approximation does not have any restrictions
on the locality of MPOs [20], and is particularly useful for
compressing quantum states represented by MPOs. Specif-
ically, the thermal states with T" = 0.2 are represented by
MPOs of increasing bond dimension in N, up to 32. And
we clearly see that D increases with N due to an increas-
ingly underestimated bond dimension. This is also the case
for the random LPTN states, whose bond dimensions are €i-
ther 16 or 36. Naively, one would expect the errors due to
the underestimated bond dimensions would proliferate expo-
nentially in NV due to the iterative process in tensor train cross
approximation (see Fig.2). However, we only see a polyno-
mial increase of the distance measure D as N increases. This
observation is consistent with recent mathematical results on
the error bounds of tensor train cross approximation showing
that the reconstruction error in general grows only polynomi-
ally in N [39, 40]. For all target states we studied, the sampled
distance Dy is generally well below the value of D.

Fig. 4 shows the number of measurement bases N, required
by the cross approximation based QST protocol. We obtain
Ny, in our numerical experiments by counting the number of
times a distinct Pauli expectation value (07" 03”--- o)) is
used in the DMRG-cross algorithm. As we expect, NV, indeed
scales linearly in NV (and quadratically in the bond dimension
used by DMRG-cross). In contrast, unstructured tomography
based on local measurements requires 3N measurement bases,
which far exceeds N, forall N > 8.
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Figure 3. Distance measures (D and D) between the target states
and the reconstructed states using tensor train cross approximation
without measurement errors as a function of the number of qubits V.
The target states are thermal states of a quantum Ising model with
T = 0.2 or 2 (a) and random LPTN states with xy = 16 or 36 (b).
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Figure 4. The number of measurement bases N, required by the
tensor train cross approximation as a function of N. We also plot the
number of measurement bases required by unstructured tomography
that is equal to 3. The target states are the same as those in Fig. 3.

III. EFFECTS OF STATISTICAL ERRORS

The benchmark results in Section II assumes that the ele-
ments of the tensor A are measured exactly In practice, how-

ever, we can only measure (07" 03” - - - o) up a standard de-

viation of 6 < 1/ VM ,where M is the number of repeated
quantum measurements or identical state copies. Note that
throughout this work we assume that the measurements are
performed on individual copies of the N -qubit state and do not
consider collective measurements [10] that involve measuring
multiple state copies simultaneously with possible entangling
operations. Collective measurements may require fewer state
copies to achieve the same precision in QST [58], but they are
very challenging to realize experimentally.

Let us first estimate the precision ¢ needed in measuring
(o7 03 -~ o}). The basic idea is that § should be much
smaller than the typical magnitude of (o] 03> --- o) to en-
sure a hlgh signal-to-noise ratio. The root mean square value
of (67'03* --- o) over all values of 71, -,y in a target
state p can be estimated using:

2 [T
4NZ oWl =\ o

(16)

(o" - '07vN>rms =




Therefore, for the statistical errors to be small, we require

2 N
") amr> L 2 g

o= 2N 62 e2Tr(p?)

where € is a small number that quantifies the average relative
error in measuring (07" ¢3% - - - o). Since 27V < Tr(p?) <
1, the number of state copies per measurement basis scales
as O(2V) to O(4"), which makes the protocol not scalable.
However, we emphasize that this appears to be a fundamen-
tal limitation also shared by other QST methods. For exam-
ple, for an unstructured state with a full rank density operator,
the best known protocol for QST using the same local Pauli
measurements as ours requires a total number of state copies
given by O(6" /(€2 Tr(p?))) [11] for D = €* between the
target state and the reconstructed state. Thus the number of
state copies per basis in such a protocol is the same as our
Eq. (17). Our cross approximation based protocol still has the
major advantage of using only O(N) instead of 3" measure-
ment bases, thus requiring a much smaller number of total
state copies.

We now show that the DMRG-cross algorithm can indeed
tolerate a small amount of measurement error quantified by
a small relative error threshold e. Since the number of mea-
surements per basis scales exponentially in N, for practical
reasons we limit our study to N < 12 and the maximum bond
dimension in DMRG-cross to 6. We choose the target states
to be either the thermal states of Eq. (5) with 7" = 0.2 or the
random LPTN states with bond dimension y = 16, which
have been studied in Section II. To simulate the statistical er-
rors on the quantum measurements, we add Gaussian random
noise with a standard deviation given by d defined in Eq. (17)
to each value of <o Yog? -+ o)) used in the cross approx-
imation, with ¢ = 0.01. Due to such randomness in each
numerical experiment, we average D and NV}, over 80 repeated
experiments. The results are shown in Fig. 5, where we clearly
see that the distance measure D is larger than that in Fig. 3
without measurement errors. However, the increase of D with
N is again slow. This is consistent with our recent work [40]
showing that the reconstruction error for tensor train approx-
imation scales at most polynomially in N for a finite relative
error € in the measurements.

IV. IMPROVEMENT USING MACHINE LEARNING

As we mentioned in Section II, each expectation value
<J¥1 oy? -0 ) used in the tensor train cross approximation
is obtained by measuring 0" in the target state for all qubits.
This means each state copy actually provides N bits of infor-
mation, as each qubit will yield a measurement outcome of
either 1 or —1 upon the measurement of ¢*'¥>*. However, we
only use one bit of information in evaluating (07" 03> - - - o)
from each state copy. This means the experimental measure-
ment data contains far more information than what we used in
the cross approximation. The full information of the experi-
mental data can instead by captured by the expectation values

of all measured operators o --- o}V with no v; = 0 plus
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Figure 5. (a) Distance measures (D and D) between the target states
and the reconstructed states using tensor train cross approximation
with measurement errors quantified by ¢ = 0.01 (see main text).
The target states are either thermal states of a quantum Ising model
with 7" = 0.2 or random LPTN states with y = 16. (b) The num-
ber of measurement bases [V, needed for the cross approximation to
reconstruct both target states, compared again with 3%
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Figure 6. Distance measure D and infidelity 1 — F' between the target
states and the reconstructed states obtained using tensor train cross
approximation and further trained via supervised machine learning.
Statistical errors are included by simulating M = 10° repeated mea-
surements per basis. The target state is either a thermal state of a
quantum Ising model with 7" = 1 (a) or a random LPTN state with
x = 16 (b), both with N = 8 qubits. The horizontal axes represent
the training process.

those with any one or more ~y; replaced by zero. Alternatively,
we can use the full counting statistics of o7, -- -, o}~ to cap-
ture the full information of measurement data, which is much
more efficient for a large V.

In this section, we show that such extra information con-
tained in the experimental data but unused by the cross ap-
proximation can be harnessed to improve the quality of the
QST via a supervised machine learning procedure. Our idea
is simple: We can use the MPO {G" } obtained using the ten-
sor train cross approximation as a good initial guess, and use
the extra entries of A calculated from the same experimental
data to refine {G]"} via supervised learning. The loss func-
tion during the training is defined as

"

L= Z ‘<U’1\/1 ’ U%N>Pl <U’1Yl ’ O—%N>P2‘2 (18)

Y15 YN
where E denotes the summation over all indices
Y15 YN
Y1, ,yn of which (6] 03 - - - oV} can be computed from

the experimental data, each subject to statistical errors quan-
tified in Section III. p; here denotes the experimental state
being measured and p, denotes the state represented by the



MPO being trained. Importantly, L can be calculated just
based on the experimental data, without knowing the full tar-
get state. We then perform a stochastic gradient descent on the
loss function L over the parameters in the MPO being trained
to minimize L using an adaptive moment estimation (Adam)
method [59].

To benchmark this supervised machine learning method,
we set N = 8 and use either a target state that is a thermal
state of Eq. (5) with T" = 1 or a random LPTN state with bond
dimension y = 16. We use M = 10° repeated measurements
per basis and a total number of roughly 1000 measurement
bases as required by the cross approximation. For both target
states, the tensor train cross approximation gives us a recon-
structed MPO with D =~ 0.1, which is reasonably good but
not ideal due to a finite statistic error. As shown in Fig. 6, su-
pervised machine learning is able to refine the MPO obtained
using cross approximation significantly. For the thermal state,
the distance measure D drops by a factor of about 20, while
for the random LPTN state D drops by a factor of almost 100.
Since the system size is small, here we can also compute the
infidelity 1 — F' between the target state p; and the recon-
structed state ps (obtained from their MPO representations),
with the fidelity defined as F' = Tr/,/p1p2+/p1. For the
thermal state, the infidelity is negative initially, showing that
the reconstructed density matrix is not strictly semi-positive
definite. But the supervised machine learning is able to cor-
rect this and produces a positive density matrix with a fidelity
of F =~ 99.6% at the end of the training. For the random
LPTN state, we were able to improve the fidelity from 99.7%
initially to 99.98%.

V. DISCUSSION AND OUTLOOK

The supervised machine learning introduced in the previous
section can noticeably reduce the number of repeated mea-
surements M per basis while maintaining the same level of re-
construction error. However, we do not expect it to overcome
the exponential scaling of M in the system size N. To make
the QST fully scalable, we can combine the tensor train cross
approximation method with the MPO concatenation method
in Refs. [9, 60]. First, we note that if an N-qubit mixed state
can be represented by an MPO with a maximum bond dimen-
sion ¥, then any R-qubit reduced state can also be represented
by an MPO with a bond dimension of at most x. As a result,
if the MPO for the full state satisfies the invertibility condi-
tion in Ref. [9] such that it can be reconstructed via the re-
duced states of R consecutive qubits, we can use the tensor
train cross approximation to perform QST on O(N) of such
R consecutive qubits, as long as R is not too large. This is
a significant improvement over tomography methods that do

not take advantage of the structure of the reduced states and
hence require exponentially more (in /V) measurements. Such
improvement can be seen for R as small as 7 based on the
examples we studied (see Fig. 5b).

We emphasize that to our best knowledge, no provably effi-
cient QST protocol has been found for generic physical states
with a compact MPO representation. Our work highlights
an important roadblock towards finding such efficient proto-
col. Although a compact MPO state has only O(/N) indepen-
dent parameters, the state in general contains an exponentially
large (in IV) number of nonzero parameters and thus each pa-
rameter has an exponentially small typical value. Measuring
even O(N) such parameters to a small relative error would
thus require an exponentially large number of measurements.
This fundamental limitation seems only avoidable if the full
state can be obtained by local reductions such that one just
need to perform QST on small subsystems instead. How-
ever, the existence of such local reductions cannot be guaran-
teed [9, 60]. A very useful future direction is to derive upper
bounds on the size R in the local reductions, provided that the
target state is represented by an MPO with a finite bond di-
mension. This may be possible especially if we can tolerate a
small amount of error in the reconstruction of the target state.

On the other hand, one can try QST protocols where no
single parameter of the density matrix is measured to a good
precision. For example, Ref. [23] shows that one can perform
just one measurement per basis and choose a large number
of random local bases to reconstruct an MPS target state very
efficiently. This is an orthogonal approach from ours that re-
quires a large number of measurements per basis but a min-
imal number of bases. However, how to generalize this ap-
proach to mixed states represented by MPOs is another in-
teresting open question. In addition, instead of choosing the
measurement bases randomly in such an approach, one can
adaptively choose new bases based on the previous measure-
ment outcomes. Such adaptive measurement protocols have
been shown to perform better in QST [10, 33] than those using
independent measurement bases. In fact, the maximum vol-
ume principle based tensor cross approximation used in this
work is already such an adaptive protocol. Whether adaptive
measurement protocols can eventually lead to efficient QST
for generic MPO target states remains to be seen.
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