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A B S T R A C T   

Falls are a complex problem and play a leading role in the development of disabilities in the older population. 
While fall detection systems are important, it is also essential to work on fall preventive strategies, which will 
have the most significant impact in reducing disability in the elderly. In this work, we explore a prospective 
cohort study, specifically designed for examining novel risk factors for falls in community-living older adults. 
Various types of data were acquired that are common for real-world applications. Learning from multiple data 
sources often leads to more valuable findings than any of the data sources can provide alone. However, simply 
merging features from disparate datasets usually will not produce a synergy effect. Hence, it becomes crucial to 
properly manage the synergy, complementarity, and conflicts that arise in multi-source learning. In this work, we 
propose a multi-source learning approach called the Synergy LSTM model, which exploits complementarity 
among textual fall descriptions together with people's physical characteristics. We further use the learned 
complementarities to evaluate fall risk factors present in the data. Experiment results show that our Synergy 
LSTM model can significantly improve classification performance and capture meaningful relations between data 
from multiple sources.   

1. Introduction 

Falls are the second leading cause of accidental or unintentional 
injury deaths worldwide and the sixth leading cause of death in the older 
population of the United States. According to the U.S. Center for Disease 
Control and Prevention, 59,082 deaths from fall related injuries 
occurred among people aged 70 and older in 2019. Due to the poten
tially severe consequences, which include fractures and potential dis
abilities, a growing number of older adults fear falling and, as a result, 
limit their activities and social engagements. This can lead to further 
physical decline, depression, social isolation, and feelings of helpless
ness. Studies on this topic are of great importance and a lot of effort has 
been put into automatic fall detection [1–4]. While a fall detection is 
important, preventive strategies are also essential. A proper analysis of 
existing and novel fall risk factors can lead to a proper design of fall 

prevention strategies, which will have the most significant impact in 
reducing disability in the older population [5–8]. 

This work focuses on two major aspects: fall environment classifi
cation and identification of novel risk factors that contribute to falls, 
since they are also risk factors for several other adverse consequences in 
older adults. Fall risk factors are often classified as person specific (or 
intrinsic) and environmental (or extrinsic). Thus, it is also important to 
take into consideration the physical characteristics of monitored people. 
Due to the nature of the task, the quantity and availability of fall event 
data is low compared to other applications. 

In this work we explore a prospective cohort study, specifically 
designed for examining novel risk factors for falls in community-living 
older adults, Maintenance Of Balance, Independent Living, Intellect, 
and Zest in the Elderly of Boston Study (MBS) [9]. Various types of data 
were acquired that are common for real-world applications — including 
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textual fall descriptions and numeric characteristics. Oftentimes, such 
datasets consist of multiple modalities, each having its own feature set, 
distribution, scale, and other characteristics. When these modalities 
describe the same sample — e.g., any multimedia segment can be 
simultaneously described by its video and audio signals — they are 
called views and are actively used in a multi-view learning model. This 
work focuses on a more general multi-source scenario, where distinct 
data sources describe the same phenomenon/entity (i.e., a fall envi
ronment), but were not necessarily collected at the same time. Many 
multi-source and multi-view learning models show that the synergy of 
all data from each source may yield a superior learning model — i.e., 
“the whole is greater than the sum of its parts”. Multiple data sources 
that describe the same phenomenon/entity provide more comprehen
sive information and may allow for better generalization capability. 
Furthermore, they can provide complementary information, which is 
unlearnable in each of the individual sources alone. How to properly 
manage the synergies and complementarities across multiple — usually 
disparate — data sources is currently an important research topic in the 
AI community. 

In many tasks, multi-source learning approaches exploit different 
data modalities. These approaches are especially crucial in case the 
collected textual data is sparse and does not contain sufficient knowl
edge for a learning model. For instance, short texts, unlike any large 
corpora, do not have enough contextual information, which poses a 
great challenge for many natural language processing (NLP) tasks. In 
many fields, data collection process is usually excessive. Researchers 
often adopt different collection procedures or mechanisms, which can 
result in data of a different form or modality. For example, during a 
medical screening, a nurse measures a patient's temperature and asks 
about the patient's well-being. Without any context, 90 ◦F and 99 ◦F do 
not provide any substantial information for a machine learning model, 
besides a 2◦ numeric difference. However, together with the patient's 
textual description: “I feel great”, or “I have a fever” – 97 ◦F and 99 ◦F 
acquire a meaningful difference, which becomes possible for a machine 
learning model to learn or capture. How to take advantage of synergy 
among different data views (e.g., texts and other sources of data) is still 
an open question. In this work, we explore data synergy under a specific 
task of multi-label fall environment classification based on short text 
description and personal characteristics. We deal with a dynamic sce
nario where two divergent data sources — short texts, accompanied by 
numeric statistics — exist to describe an entity and its associated events. 
We introduce the Synergy block and incorporate it into an LSTM model. 
Together, they are capable of learning complementarities among mul
tiple data sources. Experiment results show that our synergy LSTM 
model can significantly improve performance in a supervised learning 
setting. 

This paper introduces three novel contributions to the task of fall 
classification and fall risk identification: 

• We introduce the Synergy block, which successfully learns comple
mentarities among multiple data sources. Through the evaluation 
process we show that an attention-based Synergy block helps to 
identify dependencies between fall conditions, environments, and 
physical characteristics of monitored adults.  

• We build a multi-source LSTM model integrated with the Synergy 
block, which takes advantage of synergy among multiple data forms.  

• We use the learned synergy to identify possible novel fall risk factors 
in the older population. 

2. Related work 

The idea to use data from multiple sources/views has been around 
for a long time [10]. In multi-view learning scenario, the same object or 
event is described from different perspectives or views, e.g., English and 
Russian versions of the same text. Typically, each of these views is fed 
into a model and learned embedding is jointly optimized to improve 

generalization performance. Several reviews exist for this matter 
[11,12]. This work focuses on a more general multi-source scenario, 
where distinct data sources describe the same phenomenon/entity but 
were not necessarily collected at the same time. While most works focus 
on image/video with text or audio with text scenarios [13], in this paper 
we explore a challenging real-world problem, where numeric statistics 
and short texts work in tandem to provide insight on fall risk factors in 
the elderly population. In NLP tasks, multi-source learning approaches 
often use different data modalities, e.g., audio, video, and text. Several 
reviews exist regarding this subject [14–16]. Multi-modal strategies 
have been extensively explored by the audio-video-speech recognition 
community [17]. Multi-modal fusion has a very broad range of appli
cations, including multi-modal emotion recognition [18], medical image 
analysis [19], cancer prediction [20], multimedia event detection [21], 
and multi-modal natural language models [22]. Strategies exploiting 
attention mechanism [23] were applied to video captioning [24] and 
video description generation tasks [25]. In [26] authors used attention- 
based multi-view representations of graph nodes for node classification 
and link prediction tasks. In [27] authors addressed the task of entity 
typing for multi-view entity representations by incorporating attention 
into the fusion process. All these approaches target specific tasks, 
different in each case. For the fair comparison, we did not include these 
approaches as our baselines. 

3. Methodology 

In this section, we describe how to exploit synergy that exists in 
multiple data views through Synergy block. We hypothesize that our 
Synergy block is capable of learning complementarities in multiple 
sources to successfully classify falls described by short texts. Then, we 
will use the learned complementarities to identify fall risk factors pre
sent in the data. 

3.1. Dataset description 

A diverse group of seniors, aged 70 years and older, were included in 
the MBS study, where a fall is defined as unintentionally coming to rest 
on the ground or other lower level not because of a major intrinsic event 
(e.g., myocardial infarction or stroke) or an overwhelming external 
hazard (e.g., hit by a vehicle) [28]. We use two types of data collected: 
health interviews (including information on age, gender, race, educa
tion, and pain) and post-fall descriptions that describe circumstances 
and consequences of each fall during the 18-month follow-up. Analysis 
of such data is very challenging. First, this dataset is sparse due to having 
a small number of participants and falls (from the point of view of ma
chine learning research. However, in medical community this study is 
one of the largest efforts in collecting older adult fall data). Secondly, 
this dataset is noisy due to variability in fall descriptions, and a fall can 
be described differently even by the same person. These two types of 
data provide two sources describing latent features that characterize 
participants' falls. 

3.1.1. Health interview data 
During health interviews the following information was collected: 

participant's age, gender, educational group, race group, and measures 

Table 1 
Health interview data characteristics.  

Variable Values 

gender 0|1 
age 70–97 
education group 0|1|2 
race group 0|1|2 
pain count 0|1|2 
BPIsev 0–8.7 
BPIinterf 0–10  
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of chronic pain as shown in Table 1. Three different pain scales were 
used to assess chronic pains: two Brief Pain Inventory (BPI) subscales 
and a 3-level pain count measure. 

BPI subscales — BPI severity (BPIsev) and BPI interference (BPIin
terf) — measure global pain severity and pain interference [29,30]. For 
the severity subscale, older adults rated their pain, which is described as 
pain “you have today that you have experienced for more than just a 
week or two,” using a 4-item severity scale. Participants rate their pain 
in the previous week on a numeric rating scale from 0 to 10, where 
0 reflects ‘no pain’ and 10 reflects ‘severe or excruciating pain, as bad as 
you can imagine.’ The 4 separate items include pain at its worst, least 
pain, pain on average, and pain now. The BPI severity value is scored as 
the average of the 4 ratings. 

The BPI interference subscale was used to rate level of pain inter
ference with general activity, mood, walking, normal work including 
housework, relations with other people, sleep, and enjoyment of life. 
Rating for each item was on a 0–10 numeric rating scale, with 0 indi
cating no interference and 10 indicating complete interference. The 
BPIinterf score was calculated as the average of the 7 aforementioned 
ratings. 

The pain count variable is a 3-level measure of chronic musculo
skeletal pain representing no pain (0), single-site pain (1), or multi-site 
pain (2). The measure is derived from the MBS joint pain questionnaire, 
measuring pain present in the past month and lasting 3 or more months 
in the previous year, at 6 musculoskeletal sites: shoulder, hand/wrists, 
back, hips, knees, feet [31]. 

Health interview data includes statistics for 314 participants who 
had at least 1 fall during the follow-up period. 

3.1.2. Post-fall description data 
Participants were given a set of monthly fall calendars and instructed 

to mark an “F” on the days that a fall occurred and an “N” for each day 
that no fall occurred. At the end of each month during a follow-up 
period, participants mailed their calendar postcards to the study cen
ter. Whenever a fall was reported, study staff conducted a structured 
telephone interview to determine the circumstances and location of the 
fall, injuries sustained, and the presence of external and internal factors 
that may have contributed to the fall. All of this comprehensive infor
mation was saved in phone logs. Participants whose calendar was 
missing were contacted by telephone to determine whether a fall 
occurred in the previous month. 

Post-fall description data used in our experiment includes only a 
short textual description of a fall given directly by a participant, which 
may not contain all necessary information to characterize a fall as the 
comprehensive phone interview logs. The reasons we chose these 
incomplete descriptions instead of comprehensive phone logs are 
twofold. Firstly, incomplete or missing data is very common in real- 
world applications, and we want to assess the performance of our 
model in a more realistic setting. Secondly, such a setting may reveal the 
true capability of our synergy model in multi-source data learning sce
narios. In total the dataset contains 1721 fall descriptions, where max 
description length is 58 words, mean length is 21.6, and dataset's vo
cabulary consists of 2238 words. 

3.1.3. Annotation and pre-processing 
To evaluate our Synergy LSTM model, post-fall description data 

needs to be annotated. Two annotators characterized each fall descrip
tion with the most appropriate labels in six categories shown in Table 2. 
Altogether, these six categories describe circumstances in which a fall 
occurs. 

A couple of sources were important for this annotation process. First, 
the scripted fall descriptions themselves. Each sentence contains infor
mation that describes a scenario in which a fall occurred. When the 
annotator had difficulty in making a label assignment, they referred to 
the second source – the phone interview logs. These logs provide all 
necessary fall details, not reflected in the fall description. Annotators 

were constrained to selecting only one label for each category, and in 
case of ambiguity, they resolved it with the domain expert. 

Here is the annotation process: First, annotators read a sentence and 
determine a label for each category according to Table 2. Annotators 
were constrained to selecting only one label for each category. In case of 
ambiguity or if a description is not complete, i.e., some labels cannot be 
determined from a fall description, annotators referred to phone inter
view logs. For instance, “I was walking on the street in front of my house, 
lost my balance and fell on the ground.” From this description an annotator 
can determine that the fall happened outside on the street, and that 
participant was walking. To determine the other labels, annotators need 
to look at the logs, which record that the participant did hurt himself, he 
had not tripped or slipped, and the surface condition was dry. As a result, 
the final label for this fall description is [outside, walking, street, hurt, no 
tripped/slipped, dry]. As was mentioned earlier, we do not use phone logs 
during the training, thus, to determine the label not presented in texts (e. 
g., hurt in this case), our model would have to exploit learned synergy 
from other sources. 

3.2. Data pre-processing 

Data pre-processing was divided into three parts: post-fall phone 
interviews pre-processing, pre-processing of health interviews, labels' 
pre-processing. All fall scenarios were collected during post-fall phone 
interviews, where each response was typed into a computer by a staff 
member. Thus, collected fall descriptions contain misspellings, abbre
viations, and acronyms. To address these problems and improve the 
quality of our data, we manually checked each description and corrected 
all misspellings, and substituted abbreviations and acronyms with cor
responding full words. This dataset has no technical or ambiguous ab
breviations, but rather everyday ones; for instance, ASAP standing for 
“as soon as possible”. There was no additional pre-processing done for 
the health interviews. Finally, we combined the post-fall descriptions 
and health interviews together based on a participant ID. 

In data pre-processing each label (refer to Table 2) was assigned a 
unique value — 37 values in total. We used a 5-fold-cross-validation 
approach for evaluation, where for every fold the multi-modal dataset 
was divided into training and test sets. For every fold we converted 
training sentences into sequences of word ids using the vocabulary of the 
training dataset. After that, we padded each sequence to reach the 
maximum sequence length in every fold. 

3.3. A synergy LSTM model 

The motivation for the Synergy model comes from a simple, but 

Table 2 
An overview of the labels set for the MBS study. First column indicates the 
category. Second column shows the total amount of labels in each category. 
Third column lists all possible labels in each category.  

Category # Labels 

1: Did it happen outside/ 
inside?  

2 Inside, outside 

2: What was the person 
doing?  

10 Getting in/out of a chair/sofa, getting in/out of a 
vehicle, going downstairs, going upstairs, lying, 
sitting, standing, stepping on/off a curb, walking, 
other activity 

3: Where was the person 
when falling?  

17 Basement or cellar, bathroom, bedroom, curb, 
dining room, escalator, garden/yard, hallway, 
kitchen, living room, moving walkways, parking 
lot, sidewalk, stairs, street, train/bus, other 
location 

4: Was the person hurt?  2 Hurt, no hurt 
5: Did the person trip or 

slip?  
2 Tripped/slipped, did not trip/slip 

6: What were surface 
conditions?  

4 Dry, icy, wet, other surface conditions  
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compelling idea. An entity or event is characterized by its features, and 
these features are often latent or hidden and cannot be measured 
directly. One measuring or collecting method may only be able to ac
quire certain features that provide a partial description of an entity. 
Thus, it is typical to describe such entity with multiple forms, views, or 
modalities. Existing machine learning methods can capture valuable 
information from these disparate sources, i.e., create a partial perception 
model (ppm) for each view. Each partial perception model describes 
hidden latent features for a certain data view or source. Because all of 
these partial perception models represent a partial set of the same latent 
features, we can integrate these partial representations into a more 
comprehensive perception model (cpm) to better characterize an entity. 
In this way we can successfully exploit synergy existing among different 
data sources. 

3.4. Synergy block 

We propose an approach that utilizes attention mechanism [23] to 
exploit synergy existing between different data forms. We call this ar
chitecture the Synergy block. Fig. 1 illustrates the Synergy block ar
chitecture, and we will discuss how to incorporate the Synergy block 
into a complete LSTM model (Fig. 2) in Section 3.5. 

Synergy block is an intermediate attention-based mechanism that 
receives N sets of inputs from N sources: {a1

<j>, j = 1…|a1|} – is a by- 
product of source 1, …, {aN

<j>, j = 1…|aN|} – is a by-product of 
source N. At a time-step <t> our Synergy block encodes synergy be
tween different data sources, represented by ppmi

<t>, into a compre
hensive perception model cpm<t>. To be precise, the Synergy block 
learns cpm<t> according to Eq. (1). 

cpm<t> = Δ
([

ppm<t>
1 ; …; ppm<t>

N

])
(1) 

Here ppmi
<t> represents a partial perception model, computed for the 

data from a source i, and cpm<t> represents a comprehensive perception 
model. Depending on the nature of your data, Δ can be represented as an 
RNN-based network, if your ppmi

<t> is sequential, or CNN-based, if your 
ppmi

<t> has spatial correlation. 
Each ppmi

<t> follows from Eqs. (2), (3), (4). Similar to attention 
mechanism, for each set of inputs – {a1,a2,…,aN}, where ai = {ai

<j>, j =
1…|ai|} – we first compute a set of energies {ei

<t, j>, j = 1…|ai|} ac
cording to Eq. (2). 

e<t,j>
i = vΤ

i τi
(
Wi

[
γi

(
s<t−1>

)
; a<j>

i
] )

(2) 

Here γi(⋅) is a transformation function (linear or non-linear), τi(⋅) is a 
non-linear transformation function, vi is a vector, Wi is a matrix and ei

<t, 

j> is a scalar. s<t−1> is a hidden state from the previous time step <t − 1>

(see Section 3.5). 

ε<t,j>
i =

exp
(
e<t,j>

i
)

∑|ai |
k=1exp

(
e<t,k>

i
) (3) 

{εi
<t, j>, j = 1…|ai|} is a set of attention weights, which are used to 

compute partial perception model ppmi
<t> according to Eq. (4). 

ppm<t>
i =

∑|ai |

j=1
ε<t,j>

i a<j>
i (4) 

The aforementioned process is illustrated in Fig. 1. The Synergy 
block uses by-products of each view and 1) learns which parts of these 
inputs are currently more important than the others - this would be 
encoded in partial perception models; 2) what is the best way to 
combine those important features from multiple views – encoded in the 
comprehensive perception model. 

3.5. LSTM-based synergy model 

In this paper we hypothesize that our Synergy block is capable of 
learning complementarities existing among multiple data views. Our 
Synergy block architecture described above can be integrated into 
various deep learning architectures. To make our idea more concrete, in 
this section we look into a specific task of multi-label short text classi
fication with two views: textual and numerical. For this task, we will 
build a multi-view model with the Synergy block – the Synergy LSTM 
model. The process is described as follows. Each view's input sequence – 
GloVe embeddings for textual input and numeric statistics described in 
Table 1 – is fed to a corresponding learning model to extract informative 
features. For our task, we use bidirectional LSTM as the learning model. 
A resulted output can be treated as informational embeddings {a1,a2}, 
where aj = {aj

<i>, i = 1…|ai| , j = 1,2}. Next, we feed these embeddings 
into the Synergy block. 

The task requires our model to classify an input into K = 6 not 
mutually exclusive categories, i.e. multi-label classification. Table 2 
provides a comprehensive break down of each category's class labels. We 

Fig. 1. Synergy block utilizes attention mechanism to learn 1) multiple partial perception models and 2) a comprehensive perception model.  
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follow a common approach used for such tasks – a transformation into a 
multi-class problem. After this transformation a ground truth class is a 
combination of every label in the training set, e.g., for labels A, B and C 
[1,1,0] denotes a situation, when A and B are present, and C is absent. 

Our final layer is an LSTM layer on top of the Synergy block. The 
necessity of this layer is twofold: 1) for a time step <t> LSTM's output is 
used to make a prediction for the category t, where t = 1…K; 2) this 
LSTM passes the previous hidden state s<t−1> to the Synergy block on the 
time step <t>. Based on inputs from different views and the hidden state 
s<t−1>, our Synergy block computes the comprehensive perception 
model cpm<t> for the time step <t>, which is used by LSTM to make a 
prediction y<t> for the category t. 

In our task we use the BiLSTM network due to its important property: 
each BiLSTM's output encodes information from the past and the future. 
However, depending on the input's modality, extraction of informative 
features can be performed by any other network, e.g. CNN for images. 
The general case of the Synergy model for N sources is illustrated in 
Fig. 2. Here the set {w<i>| i = 1…|w|} represents the input from the first 
data source, {n<i>| i = 1…|n|} represents the input from the second data 
source, and {v<k>| i = 1…|v|} - from the source N. 

4. Results 

To demonstrate the effectiveness of the proposed technique for our 
problem, it was compared with several baselines as follows. At first, we 
explored if existing short fall descriptions contained enough information 
to successfully perform multi-label classification. For this task we used a 
simple LSTM-based model (Uni-modal LSTM). The second group of 
baselines includes a typical multi-modal fusion approach, when learned 
embeddings are simply concatenated with each other and fed into the 
next stage of a model. We compared the proposed Synergy Block with 
two different fusion techniques including early fusion (similar to [32]) 
and late fusion (similar to [33]). In early fusion, the input features are 
concatenated and then we apply BiLSTM to generate features followed 
by LSTM to produce the final classification. On the other hand, the late 
fusion concatenates the learned embeddings (outputs of learning models 
– refer to Fig. 2) from each modality and apply the LSTM for classifi
cation. Finally, we considered a tensor fusion that explicitly models n- 
modal inter-modal interactions using a Cartesian product from modality 
embeddings [34]. 

We performed a 5-fold cross-validation and for each model we re
ported an average among 5 folds. We evaluated performance of each 
method according to 2 metrics Hamming Loss (HL) and weighted F1 
score (F1w), which considers class imbalance, existing in non-binary 
categories. With F1w (Eq. (6)) we can estimate how well each classifier 
generalizes in each of our 6 categories and HL is used to evaluate a multi- 
label performance, since it represents the proportion of the misclassified 
labels to the total number of labels. 

HL =
1
N

∑N

i=1

Yi ⊕ Pi

K
(5) 

Here N represents the total number of samples; K – the total amount 
of categories (6 in our case); Yi and Pi – the ground truth and predicted 
labels respectively. 

F1w =
1

∑
l∈L

⃒
⃒yl

⃒
⃒

∑

l∈L
∣yl∣F1(ŷl, yl) (6) 

Here y and ŷ represent sets of true and predicted labels respectively; 
yl – is the subset of y with label l, and similarly, ŷl – the subset of ŷ with 
label l. 

Table 3 shows model performance evaluated by HL and F1w. Average 
score is the average performance calculated based on 5 folds. It becomes 
clear that our Synergy model outperforms all baselines according to both 
metrics and provides a significant improvement not only in categories 
1–6 separately, but also produces less mistakes in a final complex label 
(has the lowest HL). Low performance of a uni-modal LSTM (low F1w 
and high HL) supports the fact that there is not enough information in 
short fall descriptions to successfully perform multi-label classification 
(i.e., infer environment in which fall occurred). Additional numerical 
statistics seem to add meaningful relationships, which improve situation 
for all categories as shown in Table 3. However, models with a simple 
fusion (early and late) or a more complex Cartesian fusion are still 
having a hard time with the most challenging categories 2 and 3. Thus, 
simply merging two data modalities does not produce a desirable syn
ergy effect. On the other hand, the Synergy model shows the best per
formance among all evaluated models and effectively uses diverse 
characteristics within the data to differentiate between multiple classes 
in categories 2, 3, 5, 6. 

As to the time it takes to converge during training, a Cartesian fusion 

Fig. 2. Synergy model with incorporated synergy block. Here {w<i>| i = 1…|w|}, {n<i>| i = 1…|n|} and {v<k>| i = 1…|v|} represent different data from different 
sources; cpm<t> is a comprehensive learned model at time step t. 
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multi-view model takes twice as many epochs comparing to our Synergy 
model. Additionally, construction of a Cartesian fusion takes at least 
O

(
n2)

(in the case of 2 views) and extra space to store this product, 
which significantly slows down its training. 

So far, we have shown how complementary information learned 
from short texts and numeric values help our Synergy model to achieve 
the best performance in multi-label classification. In the following 
example we illustrate an achieved consensus in the data, i.e., the manner 
how different data modalities embed a compatible (or correlated) latent 
structure within the data. Fig. 3 illustrates the distribution of attention 
weights our Synergy model computed during the prediction phase for 
one test sample: the fall description is: ‘I was maybe in my yard, lost my 
balance and fell.’, and corresponding numeric values are: [2, 75, 2, 5.25, 
4.57, 3, 2]. In Fig. 3, the horizontal axis represents textual and numeric 
values of this sample, and the vertical axis shows the predicted labels (in 
the middle): [outside, walking, other, no hurt, no tripped/slipped, dry]. 
For each category, Fig. 3 shows the distribution of attention among 
words in the sentence and among numeric variables. Darker colors 
represent higher concentration of attention. For instance, to predict that 
the fall happened outside, the model concentrates more on the “yard”; at 
the same time, 2 BPI pain ratings seem to also contribute towards this 
decision. On the other hand, an activity (category 2) is not clearly stated 
in the fall description. In this case, it seems like the Synergy model 
makes a decision based on a consensus between 2 sources: “yard” and 2 
BPI pain ratings. Other categories seem to be more complex. For 
example, the “hurt/no hurt” decision was made based on the texts “in 
my yard” and “my balance”, and an equal contribution from all numeric 
statistics. This shows an ability of our model to successfully use the 
latent structure of our data to determine information missing from the 

texts. We can further evaluate which numeric statistics are used more 
often to classify the fall. 

Fig. 4 shows a combined attention matrix among 5 folds. To build 
this matrix, we combined attention matrices computed by a trained 
model for each test case in every fold. It seems to be a general trend that 
BPIsev plays the key role during the prediction of the first 4 categories. 
Similar results were found during the previous analyses of the MBS study 

Table 3 
Classification performance: weighted F1 (the higher the better) and Hamming Loss (HL) (the lower the better).  

Model HL Weighted F1 

Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 

Uni-modal LSTM 0.4627 
(±0.0066) 

0.384 
(±0.0055) 

0.366 (±0.0343) 0.086 (±0.0121) 0.414 
(±0.0351) 

0.386 
(±0.0182) 

0.718 
(±0.0342) 

Multi-modal LSTM (early fusion) [32] 0.3457 
(±0.0174) 

0.876 
(±0.0195) 

0.396 (±0.0532) 0.2314 
(±0.1248) 

0.566 
(±0.0773) 

0.714 
(±0.0932) 

0.82 (±0.0552) 

Multi-modal LSTM (late fusion) [33] 0.3625 
(±0.0292) 

0.878 
(±0.0179) 

0.382 (±0.0549) 0.264 (±0.0695) 0.574 (±0.041) 0.616 (±0.068) 0.796 
(±0.0841) 

Multi-modal LSTM (Cartesian fusion)  
[34] 

0.6055 
(±0.1727) 

0.806 
(±0.1496) 

0.3044 
(±0.2047) 

0.2576 
(±0.1696) 

0.261 
(±0.2379) 

0.248 
(±0.0536) 

0.664 
(±0.1683) 

Synergy model 0.2729 
(±0.0117) 

0.89 (±0.018) 0.542 (±0.053) 0.51 (±0.0515) 0.598 (±0.045) 0.82 (±0.0291) 0.852 (±0.037)  

Fig. 3. Attention distribution for each of input views for the test case sample: ‘I was maybe in my yard, lost my balance and fell.’ – [2, 75, 2, 5.25, 4.57, 3, 2]. The 
horizontal axis represents an input, and vertical axis – predicted label: [inside, walking, living room, no hurt, no tripped/slipped, dry]. Green color represents the 
correctly predicted label. Best in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Combined attention matrix among 5 folds. The darker the color is the 
more attention model puts towards the metric. 
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[31]. In that study, results showed that chronic pain, whether measured 
by pain count, pain severity or pain interference, was associated with an 
increased rate of falls in older adults. It is also clear that to predict an 
activity and location, in addition to pain measurements (except BPIin
terf), the Synergy model concentrates heavily on education group and 
age. Moreover, gender and race do not play a major role in predictions. 
As for the last two categories, the Synergy model was not able to find any 
distinct numeric statistic that may play a major role in the prediction. 
This may be due to the fact that there are no strong correlations between 
these categories and numeric inputs, and more statistics need to be used. 
While some of these findings are supported by existing research, it may 
be worth looking further into correlation between education and fall 
environment as an additional direction for evaluating fall risk factors. 

5. Conclusion 

In this paper, we presented the Synergy block - an intermediate 
attention-based mechanism, which can successfully learn complemen
tarities among multiple data sources. We also show how to incorporate 
the Synergy block into a multi-source Synergy LSTM architecture and 
capture more comprehensive information that each data source cannot 
provide individually. We applied the Synergy model to a challenging 
task of fall classification and fall risk factors identification. Falls are 
classified based on short-text descriptions of the fall and physical char
acteristics of the person. Results show high levels of performance in 
classifying falls, even when several details are not present in the 
description (e.g., activity is not explicitly stated). The results demon
strate the capability of using learned complementarities to successfully 
identify fall risk factors for future investigation in a medical study. 
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