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Falls are a complex problem and play a leading role in the development of disabilities in the older population.
While fall detection systems are important, it is also essential to work on fall preventive strategies, which will
have the most significant impact in reducing disability in the elderly. In this work, we explore a prospective
cohort study, specifically designed for examining novel risk factors for falls in community-living older adults.
Various types of data were acquired that are common for real-world applications. Learning from multiple data
sources often leads to more valuable findings than any of the data sources can provide alone. However, simply
merging features from disparate datasets usually will not produce a synergy effect. Hence, it becomes crucial to
properly manage the synergy, complementarity, and conflicts that arise in multi-source learning. In this work, we
propose a multi-source learning approach called the Synergy LSTM model, which exploits complementarity
among textual fall descriptions together with people's physical characteristics. We further use the learned
complementarities to evaluate fall risk factors present in the data. Experiment results show that our Synergy
LSTM model can significantly improve classification performance and capture meaningful relations between data
from multiple sources.

1. Introduction prevention strategies, which will have the most significant impact in

reducing disability in the older population [5-8].

Falls are the second leading cause of accidental or unintentional
injury deaths worldwide and the sixth leading cause of death in the older
population of the United States. According to the U.S. Center for Disease
Control and Prevention, 59,082 deaths from fall related injuries
occurred among people aged 70 and older in 2019. Due to the poten-
tially severe consequences, which include fractures and potential dis-
abilities, a growing number of older adults fear falling and, as a result,
limit their activities and social engagements. This can lead to further
physical decline, depression, social isolation, and feelings of helpless-
ness. Studies on this topic are of great importance and a lot of effort has
been put into automatic fall detection [1-4]. While a fall detection is
important, preventive strategies are also essential. A proper analysis of
existing and novel fall risk factors can lead to a proper design of fall

This work focuses on two major aspects: fall environment classifi-
cation and identification of novel risk factors that contribute to falls,
since they are also risk factors for several other adverse consequences in
older adults. Fall risk factors are often classified as person specific (or
intrinsic) and environmental (or extrinsic). Thus, it is also important to
take into consideration the physical characteristics of monitored people.
Due to the nature of the task, the quantity and availability of fall event
data is low compared to other applications.

In this work we explore a prospective cohort study, specifically
designed for examining novel risk factors for falls in community-living
older adults, Maintenance Of Balance, Independent Living, Intellect,
and Zest in the Elderly of Boston Study (MBS) [9]. Various types of data
were acquired that are common for real-world applications — including
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textual fall descriptions and numeric characteristics. Oftentimes, such
datasets consist of multiple modalities, each having its own feature set,
distribution, scale, and other characteristics. When these modalities
describe the same sample — e.g., any multimedia segment can be
simultaneously described by its video and audio signals — they are
called views and are actively used in a multi-view learning model. This
work focuses on a more general multi-source scenario, where distinct
data sources describe the same phenomenon/entity (i.e., a fall envi-
ronment), but were not necessarily collected at the same time. Many
multi-source and multi-view learning models show that the synergy of
all data from each source may yield a superior learning model — i.e.,
“the whole is greater than the sum of its parts”. Multiple data sources
that describe the same phenomenon/entity provide more comprehen-
sive information and may allow for better generalization capability.
Furthermore, they can provide complementary information, which is
unlearnable in each of the individual sources alone. How to properly
manage the synergies and complementarities across multiple — usually
disparate — data sources is currently an important research topic in the
Al community.

In many tasks, multi-source learning approaches exploit different
data modalities. These approaches are especially crucial in case the
collected textual data is sparse and does not contain sufficient knowl-
edge for a learning model. For instance, short texts, unlike any large
corpora, do not have enough contextual information, which poses a
great challenge for many natural language processing (NLP) tasks. In
many fields, data collection process is usually excessive. Researchers
often adopt different collection procedures or mechanisms, which can
result in data of a different form or modality. For example, during a
medical screening, a nurse measures a patient's temperature and asks
about the patient's well-being. Without any context, 90 °F and 99 °F do
not provide any substantial information for a machine learning model,
besides a 2° numeric difference. However, together with the patient's
textual description: “I feel great”, or “I have a fever” — 97 °F and 99 °F
acquire a meaningful difference, which becomes possible for a machine
learning model to learn or capture. How to take advantage of synergy
among different data views (e.g., texts and other sources of data) is still
an open question. In this work, we explore data synergy under a specific
task of multi-label fall environment classification based on short text
description and personal characteristics. We deal with a dynamic sce-
nario where two divergent data sources — short texts, accompanied by
numeric statistics — exist to describe an entity and its associated events.
We introduce the Synergy block and incorporate it into an LSTM model.
Together, they are capable of learning complementarities among mul-
tiple data sources. Experiment results show that our synergy LSTM
model can significantly improve performance in a supervised learning
setting.

This paper introduces three novel contributions to the task of fall
classification and fall risk identification:

e We introduce the Synergy block, which successfully learns comple-
mentarities among multiple data sources. Through the evaluation
process we show that an attention-based Synergy block helps to
identify dependencies between fall conditions, environments, and
physical characteristics of monitored adults.

e We build a multi-source LSTM model integrated with the Synergy
block, which takes advantage of synergy among multiple data forms.

e We use the learned synergy to identify possible novel fall risk factors
in the older population.

2. Related work

The idea to use data from multiple sources/views has been around
for a long time [10]. In multi-view learning scenario, the same object or
event is described from different perspectives or views, e.g., English and
Russian versions of the same text. Typically, each of these views is fed
into a model and learned embedding is jointly optimized to improve
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generalization performance. Several reviews exist for this matter
[11,12]. This work focuses on a more general multi-source scenario,
where distinct data sources describe the same phenomenon/entity but
were not necessarily collected at the same time. While most works focus
on image/video with text or audio with text scenarios [13], in this paper
we explore a challenging real-world problem, where numeric statistics
and short texts work in tandem to provide insight on fall risk factors in
the elderly population. In NLP tasks, multi-source learning approaches
often use different data modalities, e.g., audio, video, and text. Several
reviews exist regarding this subject [14-16]. Multi-modal strategies
have been extensively explored by the audio-video-speech recognition
community [17]. Multi-modal fusion has a very broad range of appli-
cations, including multi-modal emotion recognition [ 18], medical image
analysis [19], cancer prediction [20], multimedia event detection [21],
and multi-modal natural language models [22]. Strategies exploiting
attention mechanism [23] were applied to video captioning [24] and
video description generation tasks [25]. In [26] authors used attention-
based multi-view representations of graph nodes for node classification
and link prediction tasks. In [27] authors addressed the task of entity
typing for multi-view entity representations by incorporating attention
into the fusion process. All these approaches target specific tasks,
different in each case. For the fair comparison, we did not include these
approaches as our baselines.

3. Methodology

In this section, we describe how to exploit synergy that exists in
multiple data views through Synergy block. We hypothesize that our
Synergy block is capable of learning complementarities in multiple
sources to successfully classify falls described by short texts. Then, we
will use the learned complementarities to identify fall risk factors pre-
sent in the data.

3.1. Dataset description

A diverse group of seniors, aged 70 years and older, were included in
the MBS study, where a fall is defined as unintentionally coming to rest
on the ground or other lower level not because of a major intrinsic event
(e.g., myocardial infarction or stroke) or an overwhelming external
hazard (e.g., hit by a vehicle) [28]. We use two types of data collected:
health interviews (including information on age, gender, race, educa-
tion, and pain) and post-fall descriptions that describe circumstances
and consequences of each fall during the 18-month follow-up. Analysis
of such data is very challenging. First, this dataset is sparse due to having
a small number of participants and falls (from the point of view of ma-
chine learning research. However, in medical community this study is
one of the largest efforts in collecting older adult fall data). Secondly,
this dataset is noisy due to variability in fall descriptions, and a fall can
be described differently even by the same person. These two types of
data provide two sources describing latent features that characterize
participants' falls.

3.1.1. Health interview data
During health interviews the following information was collected:
participant's age, gender, educational group, race group, and measures

Table 1

Health interview data characteristics.
Variable Values
gender 0[1
age 70-97
education group 0[1|2
race group 0[1]2
pain count 0[1|2
BPIsev 0-8.7
BPIinterf 0-10
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of chronic pain as shown in Table 1. Three different pain scales were
used to assess chronic pains: two Brief Pain Inventory (BPI) subscales
and a 3-level pain count measure.

BPI subscales — BPI severity (BPIsev) and BPI interference (BPIin-
terf) — measure global pain severity and pain interference [29,30]. For
the severity subscale, older adults rated their pain, which is described as
pain “you have today that you have experienced for more than just a
week or two,” using a 4-item severity scale. Participants rate their pain
in the previous week on a numeric rating scale from 0 to 10, where
0 reflects ‘no pain’ and 10 reflects ‘severe or excruciating pain, as bad as
you can imagine.” The 4 separate items include pain at its worst, least
pain, pain on average, and pain now. The BPI severity value is scored as
the average of the 4 ratings.

The BPI interference subscale was used to rate level of pain inter-
ference with general activity, mood, walking, normal work including
housework, relations with other people, sleep, and enjoyment of life.
Rating for each item was on a 0-10 numeric rating scale, with 0 indi-
cating no interference and 10 indicating complete interference. The
BPlinterf score was calculated as the average of the 7 aforementioned
ratings.

The pain count variable is a 3-level measure of chronic musculo-
skeletal pain representing no pain (0), single-site pain (1), or multi-site
pain (2). The measure is derived from the MBS joint pain questionnaire,
measuring pain present in the past month and lasting 3 or more months
in the previous year, at 6 musculoskeletal sites: shoulder, hand/wrists,
back, hips, knees, feet [31].

Health interview data includes statistics for 314 participants who
had at least 1 fall during the follow-up period.

3.1.2. Post-fall description data

Participants were given a set of monthly fall calendars and instructed
to mark an “F” on the days that a fall occurred and an “N” for each day
that no fall occurred. At the end of each month during a follow-up
period, participants mailed their calendar postcards to the study cen-
ter. Whenever a fall was reported, study staff conducted a structured
telephone interview to determine the circumstances and location of the
fall, injuries sustained, and the presence of external and internal factors
that may have contributed to the fall. All of this comprehensive infor-
mation was saved in phone logs. Participants whose calendar was
missing were contacted by telephone to determine whether a fall
occurred in the previous month.

Post-fall description data used in our experiment includes only a
short textual description of a fall given directly by a participant, which
may not contain all necessary information to characterize a fall as the
comprehensive phone interview logs. The reasons we chose these
incomplete descriptions instead of comprehensive phone logs are
twofold. Firstly, incomplete or missing data is very common in real-
world applications, and we want to assess the performance of our
model in a more realistic setting. Secondly, such a setting may reveal the
true capability of our synergy model in multi-source data learning sce-
narios. In total the dataset contains 1721 fall descriptions, where max
description length is 58 words, mean length is 21.6, and dataset's vo-
cabulary consists of 2238 words.

3.1.3. Annotation and pre-processing

To evaluate our Synergy LSTM model, post-fall description data
needs to be annotated. Two annotators characterized each fall descrip-
tion with the most appropriate labels in six categories shown in Table 2.
Altogether, these six categories describe circumstances in which a fall
occurs.

A couple of sources were important for this annotation process. First,
the scripted fall descriptions themselves. Each sentence contains infor-
mation that describes a scenario in which a fall occurred. When the
annotator had difficulty in making a label assignment, they referred to
the second source — the phone interview logs. These logs provide all
necessary fall details, not reflected in the fall description. Annotators
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Table 2

An overview of the labels set for the MBS study. First column indicates the
category. Second column shows the total amount of labels in each category.
Third column lists all possible labels in each category.

Category # Labels

1: Did it happen outside/ 2 Inside, outside
inside?

2: What was the person 10  Getting in/out of a chair/sofa, getting in/out of a
doing? vehicle, going downstairs, going upstairs, lying,

sitting, standing, stepping on/off a curb, walking,
other activity

Basement or cellar, bathroom, bedroom, curb,
dining room, escalator, garden/yard, hallway,
kitchen, living room, moving walkways, parking
lot, sidewalk, stairs, street, train/bus, other
location

3: Where was the person 17
when falling?

4: Was the person hurt? 2 Hurt, no hurt

5: Did the person trip or 2 Tripped/slipped, did not trip/slip
slip?

6: What were surface 4 Dry, icy, wet, other surface conditions
conditions?

were constrained to selecting only one label for each category, and in
case of ambiguity, they resolved it with the domain expert.

Here is the annotation process: First, annotators read a sentence and
determine a label for each category according to Table 2. Annotators
were constrained to selecting only one label for each category. In case of
ambiguity or if a description is not complete, i.e., some labels cannot be
determined from a fall description, annotators referred to phone inter-
view logs. For instance, “I was walking on the street in front of my house,
lost my balance and fell on the ground.” From this description an annotator
can determine that the fall happened outside on the street, and that
participant was walking. To determine the other labels, annotators need
to look at the logs, which record that the participant did hurt himself, he
had not tripped or slipped, and the surface condition was dry. As a result,
the final label for this fall description is [outside, walking, street, hurt, no
tripped/slipped, dry]. As was mentioned earlier, we do not use phone logs
during the training, thus, to determine the label not presented in texts (e.
g., hurt in this case), our model would have to exploit learned synergy
from other sources.

3.2. Data pre-processing

Data pre-processing was divided into three parts: post-fall phone
interviews pre-processing, pre-processing of health interviews, labels'
pre-processing. All fall scenarios were collected during post-fall phone
interviews, where each response was typed into a computer by a staff
member. Thus, collected fall descriptions contain misspellings, abbre-
viations, and acronyms. To address these problems and improve the
quality of our data, we manually checked each description and corrected
all misspellings, and substituted abbreviations and acronyms with cor-
responding full words. This dataset has no technical or ambiguous ab-
breviations, but rather everyday ones; for instance, ASAP standing for
“as soon as possible”. There was no additional pre-processing done for
the health interviews. Finally, we combined the post-fall descriptions
and health interviews together based on a participant ID.

In data pre-processing each label (refer to Table 2) was assigned a
unique value — 37 values in total. We used a 5-fold-cross-validation
approach for evaluation, where for every fold the multi-modal dataset
was divided into training and test sets. For every fold we converted
training sentences into sequences of word ids using the vocabulary of the
training dataset. After that, we padded each sequence to reach the
maximum sequence length in every fold.

3.3. A synergy LSTM model

The motivation for the Synergy model comes from a simple, but
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compelling idea. An entity or event is characterized by its features, and
these features are often latent or hidden and cannot be measured
directly. One measuring or collecting method may only be able to ac-
quire certain features that provide a partial description of an entity.
Thus, it is typical to describe such entity with multiple forms, views, or
modalities. Existing machine learning methods can capture valuable
information from these disparate sources, i.e., create a partial perception
model (ppm) for each view. Each partial perception model describes
hidden latent features for a certain data view or source. Because all of
these partial perception models represent a partial set of the same latent
features, we can integrate these partial representations into a more
comprehensive perception model (cpm) to better characterize an entity.
In this way we can successfully exploit synergy existing among different
data sources.

3.4. Synergy block

We propose an approach that utilizes attention mechanism [23] to
exploit synergy existing between different data forms. We call this ar-
chitecture the Synergy block. Fig. 1 illustrates the Synergy block ar-
chitecture, and we will discuss how to incorporate the Synergy block
into a complete LSTM model (Fig. 2) in Section 3.5.

Synergy block is an intermediate attention-based mechanism that
receives N sets of inputs from N sources: {a; <j>, j=1...]a1|} —is a by-
product of source 1, ..., {ay¥”,j = 1...|an|} — is a by-product of
source N. At a time-step <t> our Synergy block encodes synergy be-
tween different data sources, represented by ppm;=*, into a compre-
hensive perception model cpm~". To be precise, the Synergy block
learns cpm™~"” according to Eq. (1).

cpm™” = A([ppm;™; ...;ppmy~]) @

Here ppm;~" represents a partial perception model, computed for the
data from a source i, and cpm~" represents a comprehensive perception
model. Depending on the nature of your data, A can be represented as an
RNN-based network, if your ppm;~" is sequential, or CNN-based, if your
ppm;~" has spatial correlation.

Each ppm,~<‘> follows from Egs. (2), (3), (4). Similar to attention
mechanism, for each set of inputs — {ay, ay, ..., an}, where a; = {al-<j Zj=
1...| @ } - we first compute a set of energies {e;**/>,j = 1...| aj| } ac-
cording to Eq. (2).
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e = vz (Wily,(s¥") ;ai<j>] ) (2

Here y;i(-) is a transformation function (linear or non-linear), 7;(-) is a
non-linear transformation function, v; is a vector, Wj is a matrix and ¢;*
> is a scalar. s<*"1* is a hidden state from the previous time step <t — 1>
(see Section 3.5).

<tj>

; exp(e;

8_<1J> _ ‘ ‘P( i ) (3)

l i exp (e,-< ryk>)
{&;7>,j = 1...|@j| } is a set of attention weights, which are used to
compute partial perception model ppm;~* according to Eq. (4).

||

<> <tj> <j>
ppm;"” = E e a; 4
=

The aforementioned process is illustrated in Fig. 1. The Synergy
block uses by-products of each view and 1) learns which parts of these
inputs are currently more important than the others - this would be
encoded in partial perception models; 2) what is the best way to
combine those important features from multiple views — encoded in the
comprehensive perception model.

3.5. LSTM-based synergy model

In this paper we hypothesize that our Synergy block is capable of
learning complementarities existing among multiple data views. Our
Synergy block architecture described above can be integrated into
various deep learning architectures. To make our idea more concrete, in
this section we look into a specific task of multi-label short text classi-
fication with two views: textual and numerical. For this task, we will
build a multi-view model with the Synergy block — the Synergy LSTM
model. The process is described as follows. Each view's input sequence —
GloVe embeddings for textual input and numeric statistics described in
Table 1 - is fed to a corresponding learning model to extract informative
features. For our task, we use bidirectional LSTM as the learning model.
A resulted output can be treated as informational embeddings {a;, az},
where aj = {aj<i>,i =1...|ay,j = 1,2}. Next, we feed these embeddings
into the Synergy block.

The task requires our model to classify an input into K = 6 not
mutually exclusive categories, i.e. multi-label classification. Table 2
provides a comprehensive break down of each category's class labels. We

comprehensive peception model<t>

partial perception model > —>
) A ,

«— partial perception model§*

4

<t1> | <251
£ g4

y :

<t1> | <t2>]
£y £y

Fig. 1. Synergy block utilizes attention mechanism to learn 1) multiple partial perception models and 2) a comprehensive perception model.



O. Andreeva et al.

<t—1>
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<t>

y

e e

LSTM t R s
—————— e —— ———————— 3 ® S S
1 <t—1> 1 cpm=*>
cpm=<t- >T s <t— Tcpm<t+1>
<t> s<t> <t+1>
<t-1> Synergy block
S rieroviioik ynergy Synergy block
4‘\
{asi=1..|a,1} {as7 i = 1..|az|} {ag”]i=1..lanl}
Learning model, Learning model, | © © © | Learning modely
{W<i>| i=1.. |W|} {n<i>| i=1.. |n|} {v<i'>| i=1.. Ivl}

Fig. 2. Synergy model with incorporated synergy block. Here {w~"|i = 1...|w|}, {n<|i = 1...|n|} and {v**>|i = 1...|v|} represent different data from different

sources; cpm~" is a comprehensive learned model at time step t.

follow a common approach used for such tasks — a transformation into a
multi-class problem. After this transformation a ground truth class is a
combination of every label in the training set, e.g., for labels A, B and C
[1,1,0] denotes a situation, when A and B are present, and C is absent.

Our final layer is an LSTM layer on top of the Synergy block. The
necessity of this layer is twofold: 1) for a time step <t> LSTM's output is
used to make a prediction for the category t, where t = 1...K; 2) this
LSTM passes the previous hidden state s<*1* to the Synergy block on the
time step <t>. Based on inputs from different views and the hidden state
s> our Synergy block computes the comprehensive perception
model cpm=*” for the time step <t>, which is used by LSTM to make a
prediction y<* for the category t.

In our task we use the BiLSTM network due to its important property:
each BiLSTM's output encodes information from the past and the future.
However, depending on the input's modality, extraction of informative
features can be performed by any other network, e.g. CNN for images.
The general case of the Synergy model for N sources is illustrated in
Fig. 2. Here the set {w<"|i=1...|w| } represents the input from the first
data source, {n"|i=1...|n| } represents the input from the second data
source, and {v<*>|i =1...|v|} - from the source N.

4. Results

To demonstrate the effectiveness of the proposed technique for our
problem, it was compared with several baselines as follows. At first, we
explored if existing short fall descriptions contained enough information
to successfully perform multi-label classification. For this task we used a
simple LSTM-based model (Uni-modal LSTM). The second group of
baselines includes a typical multi-modal fusion approach, when learned
embeddings are simply concatenated with each other and fed into the
next stage of a model. We compared the proposed Synergy Block with
two different fusion techniques including early fusion (similar to [32])
and late fusion (similar to [33]). In early fusion, the input features are
concatenated and then we apply BiLSTM to generate features followed
by LSTM to produce the final classification. On the other hand, the late
fusion concatenates the learned embeddings (outputs of learning models
— refer to Fig. 2) from each modality and apply the LSTM for classifi-
cation. Finally, we considered a tensor fusion that explicitly models n-
modal inter-modal interactions using a Cartesian product from modality
embeddings [34].

We performed a 5-fold cross-validation and for each model we re-
ported an average among 5 folds. We evaluated performance of each
method according to 2 metrics Hamming Loss (HL) and weighted F;
score (F1,), which considers class imbalance, existing in non-binary
categories. With Fy,, (Eq. (6)) we can estimate how well each classifier
generalizes in each of our 6 categories and HL is used to evaluate a multi-
label performance, since it represents the proportion of the misclassified
labels to the total number of labels.

1 Ly ap

HL = —

N& K

()

Here N represents the total number of samples; K — the total amount
of categories (6 in our case); Y; and P; — the ground truth and predicted
labels respectively.

1 ~
Fio = =——>_ilFi(5,,) ©®

Der }yl‘ =

Here y and y represent sets of true and predicted labels respectively;
y1 - is the subset of y with label [, and similarly, y, — the subset of ¥ with
label L

Table 3 shows model performance evaluated by HL and F;,,. Average
score is the average performance calculated based on 5 folds. It becomes
clear that our Synergy model outperforms all baselines according to both
metrics and provides a significant improvement not only in categories
1-6 separately, but also produces less mistakes in a final complex label
(has the lowest HL). Low performance of a uni-modal LSTM (low Fiw
and high HL) supports the fact that there is not enough information in
short fall descriptions to successfully perform multi-label classification
(i.e., infer environment in which fall occurred). Additional numerical
statistics seem to add meaningful relationships, which improve situation
for all categories as shown in Table 3. However, models with a simple
fusion (early and late) or a more complex Cartesian fusion are still
having a hard time with the most challenging categories 2 and 3. Thus,
simply merging two data modalities does not produce a desirable syn-
ergy effect. On the other hand, the Synergy model shows the best per-
formance among all evaluated models and effectively uses diverse
characteristics within the data to differentiate between multiple classes
in categories 2, 3, 5, 6.

As to the time it takes to converge during training, a Cartesian fusion
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Table 3
Classification performance: weighted F; (the higher the better) and Hamming Loss (HL) (the lower the better).
Model HL Weighted F;
Category 1 Category 2 Category 3 Category 4 Category 5 Category 6
Uni-modal LSTM 0.4627 0.384 0.366 (+0.0343) 0.086 (+0.0121) 0.414 0.386 0.718
(£+0.0066) (£0.0055) (£0.0351) (£+0.0182) (£0.0342)
Multi-modal LSTM (early fusion) [32] 0.3457 0.876 0.396 (+0.0532) 0.2314 0.566 0.714 0.82 (£0.0552)
(£0.0174) (+0.0195) (+0.1248) (+0.0773) (£0.0932)
Multi-modal LSTM (late fusion) [33] 0.3625 0.878 0.382 (+0.0549) 0.264 (+0.0695) 0.574 (+0.041) 0.616 (+0.068) 0.796
(£0.0292) (£0.0179) (+0.0841)
Multi-modal LSTM (Cartesian fusion) 0.6055 0.806 0.3044 0.2576 0.261 0.248 0.664
[34] (+0.1727) (£0.1496) (£+0.2047) (£0.1696) (£0.2379) (£+0.0536) (+£0.1683)
Synergy model 0.2729 0.89 (+0.018) 0.542 (+0.053) 0.51 (+£0.0515) 0.598 (+0.045) 0.82 (+£0.0291) 0.852 (+0.037)
(£0.0117)

multi-view model takes twice as many epochs comparing to our Synergy
model. Additionally, construction of a Cartesian fusion takes at least
@(n?) (in the case of 2 views) and extra space to store this product,
which significantly slows down its training.

So far, we have shown how complementary information learned
from short texts and numeric values help our Synergy model to achieve
the best performance in multi-label classification. In the following
example we illustrate an achieved consensus in the data, i.e., the manner
how different data modalities embed a compatible (or correlated) latent
structure within the data. Fig. 3 illustrates the distribution of attention
weights our Synergy model computed during the prediction phase for
one test sample: the fall description is: ‘I was maybe in my yard, lost my
balance and fell.’, and corresponding numeric values are: [2, 75, 2, 5.25,
4.57, 3, 2]. In Fig. 3, the horizontal axis represents textual and numeric
values of this sample, and the vertical axis shows the predicted labels (in
the middle): [outside, walking, other, no hurt, no tripped/slipped, dry].
For each category, Fig. 3 shows the distribution of attention among
words in the sentence and among numeric variables. Darker colors
represent higher concentration of attention. For instance, to predict that
the fall happened outside, the model concentrates more on the “yard”; at
the same time, 2 BPI pain ratings seem to also contribute towards this
decision. On the other hand, an activity (category 2) is not clearly stated
in the fall description. In this case, it seems like the Synergy model
makes a decision based on a consensus between 2 sources: “yard” and 2
BPI pain ratings. Other categories seem to be more complex. For
example, the “hurt/no hurt” decision was made based on the texts “in
my yard” and “my balance”, and an equal contribution from all numeric
statistics. This shows an ability of our model to successfully use the
latent structure of our data to determine information missing from the

texts. We can further evaluate which numeric statistics are used more
often to classify the fall.

Fig. 4 shows a combined attention matrix among 5 folds. To build
this matrix, we combined attention matrices computed by a trained
model for each test case in every fold. It seems to be a general trend that
BPIsev plays the key role during the prediction of the first 4 categories.
Similar results were found during the previous analyses of the MBS study
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tripped/no tripped

surface conditions

< O & LS
O o M et N0 e
N ) O N N 9
e© 2 O oY N (P @
o & 9 K

QQ

Fig. 4. Combined attention matrix among 5 folds. The darker the color is the
more attention model puts towards the metric.
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Fig. 3. Attention distribution for each of input views for the test case sample: ‘I was maybe in my yard, lost my balance and fell.” - [2, 75, 2, 5.25, 4.57, 3, 2]. The
horizontal axis represents an input, and vertical axis — predicted label: [inside, walking, living room, no hurt, no tripped/slipped, dry]. Green color represents the
correctly predicted label. Best in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



O. Andreeva et al.

[31]. In that study, results showed that chronic pain, whether measured
by pain count, pain severity or pain interference, was associated with an
increased rate of falls in older adults. It is also clear that to predict an
activity and location, in addition to pain measurements (except BPIin-
terf), the Synergy model concentrates heavily on education group and
age. Moreover, gender and race do not play a major role in predictions.
As for the last two categories, the Synergy model was not able to find any
distinct numeric statistic that may play a major role in the prediction.
This may be due to the fact that there are no strong correlations between
these categories and numeric inputs, and more statistics need to be used.
While some of these findings are supported by existing research, it may
be worth looking further into correlation between education and fall
environment as an additional direction for evaluating fall risk factors.

5. Conclusion

In this paper, we presented the Synergy block - an intermediate
attention-based mechanism, which can successfully learn complemen-
tarities among multiple data sources. We also show how to incorporate
the Synergy block into a multi-source Synergy LSTM architecture and
capture more comprehensive information that each data source cannot
provide individually. We applied the Synergy model to a challenging
task of fall classification and fall risk factors identification. Falls are
classified based on short-text descriptions of the fall and physical char-
acteristics of the person. Results show high levels of performance in
classifying falls, even when several details are not present in the
description (e.g., activity is not explicitly stated). The results demon-
strate the capability of using learned complementarities to successfully
identify fall risk factors for future investigation in a medical study.
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