

1 **WRKY transcription factors and ethylene signaling modify root growth during the**
2 **shade avoidance response**

3
4 Daniele Rosado¹, Amanda Ackermann¹, Olya Spassibojko¹, Magdalena Rossi², and
5 Ullas V. Pedmale^{1,3}

6
7 **Affiliations:**

8 ¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States.

9 ²Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090,
10 São Paulo, SP, Brazil.

11 ³Corresponding author:

12 1 Bungtown Road
13 Cold Spring Harbor
14 New York, 11724.
15 USA

16 tel: +1-516-367-5991

17 e-mail: pedmale@cshl.edu

18
19
20 **ORCID ID:** (D.R.) 0000-0002-9319-9041; (A.A.) 0000-0003-1746-7427; (O.S.) 0000-0003-0115-
21 4864; (M.R.) 0000-0003-3650-772X; (U.V.P.) 0000-0002-3941-4468.

22
23
24 **Short title:** Shade controls root growth via WRKYs and ethylene

25
26 **One sentence summary:**

27 Low red:far-red light in shade induces genes in roots regulated by WRKY transcription factors
28 and ethylene, restricting primary and lateral root growth.

29
30 **List of author contributions:**

31 U.V.P. conceived the study. D.R., M.R., and U.V.P. designed experiments. D.R. performed most
32 of the experiments and analyzed the data; A.A. and O.S. performed genotyping, generation of
33 transgenic plants, and immunoblots, D.R. and U.V.P. wrote the paper and collected
34 contributions of all authors.

35
36
37 The author responsible for distribution of materials integral to the findings presented in this article in
38 accordance with the policy described in the Instructions for Authors
39 (<https://academic.oup.com/plphys/pages/General-Instructions>) is Ullas V. Pedmale.

40
41 **Abstract**

42
43 Shade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with
44 neighboring vegetation, maximizing sunlight capture for photosynthesis. This rapid growth
45 adaptation, known as the shade avoidance response (SAR), comes at a cost: reduced biomass,

47 crop yield, and root growth. Significant progress has been made on the mechanistic
48 understanding of hypocotyl elongation during SAR; however, the molecular interpretation of root
49 growth repression is not well understood. Here, we explore the mechanisms by which SAR
50 induced by low red:far-red light restricts primary and lateral root (LR) growth. By analyzing the
51 whole-genome transcriptome, we identified a core set of shade-induced genes in roots of
52 *Arabidopsis* (*Arabidopsis thaliana*) and tomato (*Solanum lycopersicum*) seedlings grown in the
53 shade. Abiotic and biotic stressors also induce many of these shade-induced genes and are
54 predominantly regulated by WRKY transcription factors. Correspondingly, a majority of WRKY
55 genes were among the shade-induced genes. Functional analysis using transgenics of these
56 shade-induced WRKYS revealed that their role is essentially to restrict primary root and LR
57 growth in the shade; captivatingly, they did not affect hypocotyl elongation. Similarly, we also
58 found that ethylene hormone signaling is necessary for limiting root growth in the shade. We
59 propose that during SAR, shade-induced WRKY26, 45, and 75, and ethylene reprogram gene
60 expression in the root to restrict its growth and development.

61

62

63 **Introduction**

64 Plants are exposed to various environmental challenges throughout their life cycles,
65 such as suboptimal access to sunlight, low water, nutrient availability, extreme temperatures,
66 presence of competitors, herbivores, and pathogens (Casal, 2012). Plants exhibit incredible
67 plasticity to withstand these adverse conditions and respond by locally modifying growth
68 rhythms, metabolism, and reproduction to best adapt to their environment (Chory, 2010; Kohnen
69 et al., 2016). An excellent example of adaptive phenotypic plasticity is the shade-avoidance
70 response (SAR). In shade-intolerant plants, SAR is triggered when they are in close proximity to
71 other plant competitors or under a canopy by activating a series of morphological changes to
72 maximize sunlight capture and ensure reproductive fitness (Smith, 1982). The characteristic
73 phenotypes of SAR include rapid stem and petiole elongation, leaf hyponasty, accelerated
74 reproduction, apical dominance, and reduced root growth and development (Salisbury et al.,
75 2007; Casal, 2012). The molecular mechanisms controlling gene expression changes leading to
76 the phenotypic alterations in the shoot organs during SAR are well understood in the model
77 plant *Arabidopsis* (*Arabidopsis thaliana*) (Casal, 2012; Li et al., 2012; Galvão and Fankhauser,
78 2015; Pedmale et al., 2016). But the impact of shade on the growth of underground root
79 systems and the molecular account leading to this phenomenon are poorly understood.

80 Under a dense canopy, plants sense vegetational shading by detecting either a
81 reduction in the ratio of red to far-red (R:FR) light, blue light, or photosynthetically active
82 radiation (PAR) (Keller et al., 2011; Keuskamp et al., 2011; Hornitschek et al., 2012). Any
83 changes in the red/far-red light (R: FR) and blue light in the environment are largely perceived
84 by the R/FR light-sensing phytochrome B (PHYB) and UV-A/blue light-sensing cryptochrome
85 (CRY) 1 and 2 photoreceptors, respectively. In seedlings, CRY- and PHY-mediated shade
86 perception induces the expression of growth-promoting genes in the hypocotyl, such as those
87 involved in hormone biosynthesis and cell-wall remodeling proteins and enzymes, which are
88 both required for the rapid stem elongation (Kohnen et al., 2016; Pedmale et al., 2016; Wit et
89 al., 2016; Paik et al., 2017).

90 A handful of studies have linked root growth and development with the SAR, and those
91 have mainly focused on the lateral root (LR) emergence and development (Salisbury et al.,
92 2007; Chen et al., 2016; Gelderen et al., 2018; Gelderen et al., 2021). Salisbury et al. (2007)
93 showed that mainly PHYB induces LR formation via auxin signaling and suggested that the
94 inhibition of LR number under low R:FR might be caused by decreased auxin transport or
95 responsiveness in the roots. Findings from Chen et al. (2016) demonstrated that LR
96 development is induced by shoot illumination regardless of the light conditions in which the roots

97 are cultivated, suggesting that a long-distance signal produced in the shoots causes LR
98 formation. It was suggested that ELONGATED HYPOCOTYL 5 (HY5) transcription factor (TF),
99 which is stabilized in the shoots under shade (Pacín et al., 2016), is transported to the roots,
100 where it induces its own expression and regulates LR formation. Based on this observation, van
101 Gelderen et al. (2018) demonstrated that HY5 locally represses LR development in the shade
102 by controlling auxin-dependent pathways at the LR primordia. In a recent study, it was reported
103 that the expression of hypocotyl-localized HY5 was insufficient to complement the LR growth
104 defects seen in *hy5* mutant *Arabidopsis* plants (Burko et al., 2020).

105 SAR imparts an important adaptative function to a plant under suboptimal conditions by
106 allowing plants to compete for light. However, such adaptation comes at a cost. For instance,
107 plants prioritize rapid stem and petiole elongation over immunity defense response to herbivores
108 in the shoot, and thus shaded plants are more susceptible to microbial diseases and herbivory
109 (Ballaré, 2014). This prioritization of growth responses over defense is likely to make use of the
110 limited resources efficiently. The presence of pathogens or herbivores activate pattern-
111 recognition receptors present on the cell surface to activate pattern-trigger immunity (PTI),
112 which leads to the induction of salicylic acid (SA) and jasmonic acid (JA)-mediated pathways as
113 a defense response (Ballaré et al., 2012). It has been demonstrated that defense responses
114 including JA signaling are lowered in *phyB* mutant and WT plants exposed to low R:FR shade
115 (Leone et al., 2014; Ortigosa et al., 2020).

116 Plant disease resistance or biotic stress and abiotic stress responses are primarily
117 mediated by WRKY TFs (Pandey and Somssich, 2009). They constitute the largest family of
118 plant-specific transcriptional regulators, acting as either repressors or activators (Bakshi and
119 Oelmüller, 2014). Accumulating evidence shows that a large number of WRKY genes take
120 center stage to regulate various aspects of plant innate immunity by responding to herbivores,
121 PTI elicitors, regulation of defense-related SA and JA hormones, synthesis of defense-related
122 compounds, and phytoalexins (Chi et al., 2013). Apart from their role in stress responses,
123 WRKYs also have diverse biological functions in many plant processes not limited to nutrient
124 homeostasis, seed and trichome development, embryogenesis, seed dormancy, senescence,
125 etc. (Eulgem et al., 2000; Skibbe et al., 2008; Mao et al., 2011; Birkenbihl et al., 2018; Karkute
126 et al., 2018; Viana et al., 2018; Chen et al., 2019). WRKY proteins are largely defined by the
127 presence of a conserved WRKY DNA-binding domain defined by the WRKYGQK amino acid
128 sequence. Apart from the WRKY domain, these transcription factors contain an atypical zinc-
129 finger domain in their carboxyl-terminal (Rushton et al., 2010; Chen et al., 2019). WRKY TFs
130 primarily bind to the W-box cis-elements in the promoter of their target genes (Ciolkowski et al.,

131 2008; Rushton et al., 2010) Thus, WRKYs are essential regulators in responding to internal and
132 external developmental signals as well as stresses.

133 To understand the molecular account of how low R:FR shade leads to the inhibition of
134 primary root growth, we analyzed the whole genome transcriptome of the roots of Arabidopsis
135 and tomato (*Solanum lycopersicum*) seedlings grown in the shade. We identified a core set of
136 shade-induced genes in the roots of shaded plants, and most of them were also induced by
137 abiotic and biotic stressors. The majority of the shade-induced genes contain W-box promoter
138 elements and are considered the targets of WRKYs. Many *WRKY* family members were also
139 significantly upregulated in the roots of shaded plants. To decipher the contribution of individual
140 WRKYs in controlling root growth during the SAR, we overexpressed in Arabidopsis a large
141 number of shade-induced WRKYs. We identified that *WRKY26* and *WRKY45* overexpression
142 led to a constitutive-shaded, short primary root phenotype even in the absence of shade. In
143 contrast, overexpression of *WRKY75* lead to a decrease in the LR number in the shade but did
144 not affect the primary root growth. Interestingly, the overexpression of these WRKYs affected
145 only the roots, and it did not lead to any hypocotyl elongation defects seen during the SAR.
146 Similarly, like WRKYs, our study implicates ethylene hormone to be necessary to limit root
147 growth but was insignificant for hypocotyl growth in the shade. In summary, we found that low
148 R:FR shade induces a large number of WRKYs, particularly to restrict root growth and
149 development. We hypothesize that the reduced growth of root organs helps the plant divert its
150 critical resources to the elongating organs in the shoot to ensure competitiveness under limiting
151 photosynthetic radiation.

152

153 **RESULTS**

154

155 **Shade-induced genes in the roots resemble biotic and abiotic stress-induced 156 transcriptome**

157 To determine how the low R:FR of vegetational shade affects root growth and
158 development, we had performed a whole-genome transcriptomic analysis using RNA-seq as a
159 time course on the roots excised from Arabidopsis seedlings grown in white light (unshaded;
160 high R:FR) and white light supplemented with FR (shade; low R:FR) conditions (Fig. 1A and
161 Supplemental Fig. S1A). 5-day-old WL grown Arabidopsis seedlings were transferred to shade
162 or mock-treated, then their roots were harvested after 30 min, 3h, 7h, 1d, 3d, and 5d of
163 treatment duration. Similarly, we performed a comparable experiment in 7d tomato seedlings,

164 and the root tissue was harvested from them after 3h, 6h, 12h and 24h. Total RNA was isolated
165 from these root tissues and the whole genome transcriptome analysis (RNA-seq) was
166 performed using short-read sequencing. Gene expression matrices and statistically significant
167 (false discovery rate; FDR <0.05) differentially expressed genes (DEG) were determined by
168 comparing the shade and unshaded samples to its own developmental time point
169 (Supplemental Table S1). Pearson's correlation coefficient calculated from the FPKM
170 (fragments per kilobase of exon per million reads) values for each biological replicate indicated
171 a very high correlation ($R>0.9$) between them (Supplemental Fig. S1B). We identified a total of
172 4,835 DEGs that were induced along the time-course in Arabidopsis, and 2,523 in tomato in all
173 the time points combined (Supplemental Fig. S1C; Supplemental Table S1). Henceforth, we will
174 refer these upregulated DEG as shade-induced genes. Next, we subjected the shade-induced
175 genes up to 24h time point for Gene Ontology (GO) analysis to assign them a biological
176 function. Our GO analysis on the shade-induced genes in the roots was largely enriched and
177 overrepresented with GO terms related to stress responses, defense against pathogens, and
178 innate immune responses in both Arabidopsis and tomato (Fig. 1C; Supplemental Table S2).

179 As our GO analysis revealed that the shade-induced genes were also induced during
180 biotic and abiotic stress, and plant's defense against pathogens, therefore, we compared our
181 dataset with the publicly available published RNA-seq datasets, especially related to immunity
182 and defense responses. In one of the comparisons, we chose a study in Arabidopsis that
183 identified 776 common genes that are induced when treated with seven separate elicitors (3-
184 OH-FA, flg22, elf18, nlp20, CO8, OGs and Pep1) of pattern triggered immunity (PTI) (Bjornson
185 et al., 2021). More than half (51%) or 396 of the 776 elicitor-induced genes overlapped with our
186 shade-induced genes (Fig. 1C), representing an enrichment of 3.5-fold over the number of
187 genes that would be expected by random chance (p -value < 10^{-129}). These 396 genes,
188 commonly induced by shade and elicitors of PTI displayed an increased temporal expression in
189 roots of Arabidopsis seedlings exposed to shade (Fig. 1D), suggesting that prolonged exposure
190 to shade activates defense-like responses in the roots in absence of pathogens.

191

192 **Promoters of the shade-induced genes contain W-box elements**

193 To obtain further insights on the nature of the genes that are universally responding to
194 shade stimuli in the roots, we sought to identify the conserved cis-elements in the promoters of
195 shade-induced genes. We performed *de novo cis*-motif analysis on the promoter sequences
196 (500 bp upstream and 50 bp downstream) of the transcription start site of the shade-induced
197 genes in Arabidopsis (Supplemental Fig. S1C; Supplemental Table S1) as well as those

198 overlapping with the PTI elicitor-induced genes (Fig. 1C). We identified W-box motif
199 [TTGACC/T] as one of the top enriched *cis*-element among the promoters of the shade-induced
200 genes (*p*-value 10^{-17} ; Supplemental Fig. S2A), as well among the shade and PTI elicitor-induced
201 genes (*p*-value 10^{-27} ; Fig. 1E). Approximately 33% of the promoters of the shade-induced genes
202 in *Arabidopsis* roots contained W-box motifs. Interestingly, we did not identify the W-box motif in
203 the promoters of the downregulated genes (Supplemental Fig. S2B). Similarly, W-box is among
204 the top enriched motifs in the promoters of tomato shade-induced genes (Supplemental Fig.
205 S2C). Therefore, considering that WRKYs are central to both biotic and abiotic stresses, we
206 hypothesized that they are likely responsible for the induction of stress and defense-related
207 gene expression program that we observed in the roots of shaded plants (Fig. 1B). Consistently,
208 48% of the genes known to be directly regulated by WRKY18, WRKY33, and WRKY40 TFs,
209 were also induced by shade (Fig. 1F-G) (Birkenbihl et al., 2017). Among them, well
210 characterized defense marker genes, *CYP71A12*, *MYB51*, and *PIP1* (Lakshmanan et al., 2012;
211 Hou et al., 2014; Birkenbihl et al., 2017), were found to be substantially induced in the roots of
212 *Arabidopsis* under shade (Supplemental Fig. S2D). Combined, these results suggest that the
213 shade induces genes in the roots that are also upregulated when a plant encounters abiotic and
214 biotic stress, and a large proportion of these genes contain W-box promoter elements, which
215 are binding sites for WRKY TFs.
216

217 **Large number of WRKY transcription factors are induced in response to shade**

218 The RNA-seq and GO analysis on the shade-induced genes, and the discovery of W-
219 box promoter elements in them, indicated the involvement of WRKY TFs in mediating root
220 responses to shade. To test this hypothesis, first we surveyed the expression of all the *WRKY*
221 genes in *Arabidopsis* and tomato in our transcriptomic data. We found a large number of
222 *WRKYs* were induced along the time-course in response to shade. 33 out of 74 *WRKYs* in
223 *Arabidopsis* were significantly expressed (FDR <0.05) in one or more time points, similarly, 21
224 out of 83 *WRKYs* were upregulated in tomato (Fig. 2A-B; Supplemental Fig. S3A).

225 Next, to perform in-depth functional analysis of the shade-induced *WRKYs* in
226 *Arabidopsis*, we sought to narrow down the candidates as large number of them were induced
227 (Fig. 2B). In order to do this, we selected *WRKYs* with a minimum threshold of $0.5 \log_2$ fold-
228 change induction relative to the unshaded control along the time-course. Using this parameter,
229 we identified 12 *WRKYs* that were consistently up-regulated in the shade (Fig. 2C). We further
230 classified these 12 genes into three groups, namely, “early”, “middle”, and “late”, based on the
231 time they were upregulated post shade treatment. *WRKY8*, *WRKY70*, and *WRKY75* were

232 upregulated within the first 30 min of the shade treatment, there we classified them as
233 immediate early-induced genes. Next, *WRKY25*, *WRKY26*, *WRKY33*, *WRKY45*, and *WRKY51*
234 were classified as intermediate middle, as their expression was seen between 3-7 hours of
235 shading. Lastly, *WRKY13*, *WRKY29*, *WRKY31*, and *WRKY58* were classified as late-induced
236 genes as they were expressed only after 24h of shading (Fig. 2C). We also compared the
237 Arabidopsis *WRKY* expression profile to its putative orthologs in tomato (Supplemental Fig.
238 S3B-C). There were some similarities between tomato and Arabidopsis *WRKY* temporal
239 expression patterns; however, several *WRKYs* showed statistically significant induction at 24h
240 time point in the shade. It is possible that temporal expression of *WRKY* genes could be
241 delayed in tomato when compared to Arabidopsis and, thus, a longer time-course experiment in
242 tomato could be more suitable to address ortholog-specific similarities. Nevertheless, it is clear
243 that shade activates similar pathways in these two distantly-related species.

244 Focusing on Arabidopsis, we investigated whether the early, middle, and late shade-
245 induced *WRKY* genes were closely related phylogenetically. For this, we constructed a
246 Maximum Likelihood phylogenetic tree based on their polypeptide sequences of the 12 *WRKY*
247 that was classified above and induced by shade. We observed that the pattern of *WRKY*
248 expression did not reflect the phylogenetic relationship between them. For instance, *WRKY75*
249 and *WRKY45* that are closely related to each other (Fig. 2D), were induced in the middle and at
250 earlier time points (Fig. 2C). An exception to this was the branch comprising *WRKY25*,
251 *WRKY26* and *WRKY33*, which are phylogenetically close and were induced in the middle of the
252 time course (Fig. 2C). This was consistent with previous studies, which indicated that these
253 *WRKYs* (25, 26, and 33) act redundantly in Arabidopsis' response to high temperature,
254 gibberellin (GA), and abscisic acid (Li et al., 2011; Zhang et al., 2015). It is not surprising,
255 however, that closely-related genes, such as *WRKY45* and *WRKY75*, have different expression
256 profiles. It is very common that paralogous genes initially diverge by changes in the promoter
257 region, which leads to sub- or neo-functionalization of duplicated genes (Rosado et al., 2016;
258 Teufel et al., 2016). Collectively, our results suggest that a large number of *WRKY* TFs are
259 specifically induced in both Arabidopsis and tomato roots in response to the shade stimuli.
260

261 **Shade-induced *WRKY* proteins accumulate in the roots and largely absent in the shoot**

262 As known with the large gene families, various members of the *WRKY* genes are
263 paralogous, and are documented for functional redundancy due to gene duplications, which
264 complicates genetic analysis to determine the role of individual *WRKY* TF (Eulgem et al., 2000;
265 Zhang et al., 2015). In this scenario, we decided that the best strategy for studying the role of

266 the shade-induced WRKYs (Fig. 2C) in root growth during the SAR is by overexpressing them.
267 It is documented that overexpression of WT genes can also cause mutant phenotypes; be used
268 to assess the impact of genetic alterations and gene activity in generating phenotypes and is
269 comparable to traditional loss-of-function methods (Palatnik et al., 2003; Chua et al., 2006;
270 Prelich, 2012; Kaiserli et al., 2015). Therefore, we generated transgenic *Arabidopsis* lines
271 overexpressing the selected shade-induced 12 WRKYs as a mCitrine fluorescent protein fusion
272 (*WRKYox*) under the control of the constitutive *Arabidopsis UBIQUITIN 10 (UBQ10)* promoter.
273 We identified multiple independent transgenic lines with a single insertion of the transgene and
274 we selected a minimum of three lines for further analysis, except for *WRKY8ox* and *WRKY33ox*,
275 as we could not recover stable transgenic lines for them.

276 First, we performed immunoblot analysis to ensure that the transgenic lines for rest of
277 the 10 shade-induced WRKYs were expressing full-length mCitrine fusion proteins, and not
278 partial fusions or free mCitrine alone. Using total protein lysates obtained from the whole 5-day
279 old transgenic seedling grown in unshaded or exposed to the shade for 3-24 hours, we
280 performed immunoblot analysis using an anti-GFP antibody. Immunoblot analysis could detect
281 the presence of full-length mCitrine fusion with WRKY 25, 26, 31, 45, 51, and 75 among the
282 independent transgenic lines (Supplemental Fig. S4). Differential protein accumulation was not
283 observed in the shade and unshaded growth conditions in these transgenes. However, the
284 specific protein for WRKY 13, 29, 58, and 70 and some indicated independent lines could not be
285 detected in the immunoblot. This could be due to one or more reasons; transgenic protein
286 expression was below the detection limit of the antibody used in the immunoblot assay, low
287 expression of the transgene, dilution of the specific signal due to the use of the whole seedling
288 lysates, or instability of the protein.

289 Nevertheless, we performed confocal microscopy to visualize WRKY-mCitrine fusion
290 proteins in three independent transgenic lines for each of the ten *WRKYox* that were exposed to
291 a minimum of 24 h of shade. For all of the ten WRKYs, we observed them to be present in the
292 nucleus of the root epidermal cells within the maturation zone in shade (Fig. 3A), consistent with
293 their role as a nuclear-localized TF (Eulgem et al., 2000). As we had used a constitutive *UBQ10*
294 promoter to express these WRKYs, however, their protein expression and distribution varied
295 considerably within the cell-types of the roots (Fig. 3A; upper panel). For example, in the
296 elongation and meristematic zones of the root (Fig. 3A; lower panel), WRKY25, WRKY45, and
297 WRKY51 were detected in both the epidermis and cortex. In the meristematic zone, WRKY26
298 was detected only in the columella cells and WRKY58 was observed in the LR cap. In the
299 shoots (Fig. 3B), we detected fluorescence signal for WRKY26 and WRKY45, whereas,

300 WRKY31 signal was observed only in the trichomes. Remarkably, we did not detect any signals
301 for rest of the WRKY proteins in the shoot. This varied expression profile might be due to
302 regulation of these WRKYs post-transcriptionally or post-translationally. However, it is also likely
303 that technical limitations of confocal microscopy or poor expression levels impede us from
304 detecting WRKY-mCitrine fusions in all cell types.

305

306 **Shade-induced WRKYs affect primary root and lateral root growth in shaded and**
307 **unshaded conditions**

308 Since many WRKYs are upregulated in the roots of *Arabidopsis* and tomato seedlings in
309 the shade, we sought to assess their functional contribution in regulating root growth. We chose
310 to determine the effect of their overexpression in the low R:FR mediated SAR, specifically on
311 hypocotyl elongation and root growth inhibition. For each of the shade-induced selected WRKY
312 overexpressors, we used three independent *Arabidopsis* transgenic lines (described in Fig. 3)
313 for phenotyping, except for *WRKY51*, for which we recovered only two separate lines
314 (Supplemental Fig. S5). We analyzed four phenotypic traits under unshaded and shade light
315 conditions: length of the primary root, LR number, LR density, and hypocotyl length. We report
316 the average phenotypic values in Fig. 4, by combining the measurements from all the
317 independent transgenic lines employed for each of the WRKYs.

318 5-day old seedlings grown in unshaded condition were transferred to the shade or mock-
319 treated for 4-days and then their primary root length, LR number, and LR density was
320 measured. Most of the WRKY overexpressing seedlings produced primary roots whose length
321 was comparable to the WT (Fig. 4A-B). However, *WRKY26* and *WRKY45* overexpressors
322 displayed a constitutive primary root growth and LR branching inhibition even in the absence of
323 the shade stimuli (Fig. 4A-B). The primary root length of *WRKY26* and *WRKY45* did undergo a
324 modest decrease in size in the shade compared to other WRKY overexpressors and the WT
325 (Fig. 4B, Supplemental Fig. S5A). However, the root and hypocotyl growth of mutants that
326 harbor T-DNA insertion in the protein coding region of *WRKY26* and *WRKY45* were
327 indistinguishable from WT in the shade and unshaded light (Supplemental Fig. S6A-C).
328 Consistently, transgene expression levels in the *WRKY26ox* and *WRKY45ox* did not vary with
329 the light conditions as determined by reverse-transcription quantitative PCR (RT-qPCR)
330 analysis using transgene specific oligos that hybridizes to the mCitrine tag. We observed an
331 overall increase in *WRKY26* and *WRKY45* expression levels in the root as opposed to the
332 whole seedling in response to shade by RT-qPCR analysis using oligos that recognizes both the
333 transgene and the WT gene (Supplemental Fig. S6D).

334 Surprisingly, all the *WRKY* overexpressing transgenic seedlings did not have any
335 measurable defects in their hypocotyl length and were comparable to the WT (Fig. 4C;
336 Supplemental Fig. S5B) in the shade and non-shading control conditions. *WRKY26ox* and
337 *WRKY45ox*, which displayed hypersensitive shorter roots in non-shading conditions, did not
338 have any obvious hypocotyl growth defects in the shade. However, the expression of *WRKY26*
339 and *WRKY45* protein was detected in the hypocotyl (Fig. 3B; Supplemental Fig. S6E). So, the
340 lack of hypocotyl defects in *WRKY26ox* and *WRKY45ox* likely reflects their specialized role in
341 the avoidance response, which is restricted in limiting root growth.

342 In all the ten *WRKY* overexpressing seedlings, we observed reduced LR number in the
343 shaded seedling compared to their unshaded counterparts, similar to WT (Fig. 4D;
344 Supplemental Fig. S5C). In *WRKY26ox* and *WRKY45ox* seedlings, significantly reduced to
345 nearly absent LRs were noted (Fig. 4A, D), in the shade and non-shading conditions, similar to
346 its constitutive primary root growth inhibition in these conditions (Fig. 4A, B). During the duration
347 of our assay (9 days) in the shade, the LRs were not detected for *WRKY26ox* and *WRKY45ox*
348 seedlings; in contrast, up to 6 LR could be seen in each WT seedlings (Fig. 4D, Supplemental
349 Fig. S5C). Although *WRKY51ox* and *WRKY75ox* did not influence the inhibition of the primary
350 root growth, we observed a marked decrease in their number of LR in the shade (Fig. 4D,
351 Supplemental Fig. S5C).

352 Of note, we could only detect a few statistically significant differences in the number of
353 LRs in our transgenic lines. This is likely due to variation in LR produced by individual seedlings
354 and accounted for by *WRKY*'s expression levels in the cells. Significant differences were not
355 observed in the LR density, measured as a number of LR per 1 centimeter (cm) of the primary
356 root (Fig. 4E; Supplemental Fig. S5D). This result was not particularly unexpected, considering
357 that most *WRKYox* seedlings did not have much of an impact on the primary root growth and
358 LR number, except for *WRKY26*, *WRKY45*, and *WRKY75*. *WRKY51ox* seedlings also displayed
359 a slight shortening of the primary root and the hypocotyl, but these transgenic lines also showed
360 variable and delayed seed germination, and other pleiotropic defects. Therefore, other
361 confounding factors could be influencing the resulting phenotype of *WRKY51ox* in the shade
362 (Fig. 4A-C).

363 Overexpression of *WRKY13*, *WRKY29*, and *WRKY58* showed a slight increase in their
364 root length, LR production, and LR density compared to the WT in the shade and non-shading
365 conditions (Supplemental Fig. S7A-C). However, these observations were reinforced only in the
366 *WRKY13ox* independent lines, but not on *WRKY29ox* and *WRKY58ox* individual seedlings
367 (Supplemental Fig. S7D-F). Considering that these three *WRKYs* are shade-induced in the

368 “late” stages of our time-course analysis (Fig. 2C), it is plausible that they could have a
369 secondary role or oppose the shade-mediated repression of root growth.

370 Together, our results here indicate the significance of WRKYs, especially the
371 upregulation of *WRKY26* and *WRKY45* in the roots of shaded plants to limit their growth and not
372 that of the hypocotyl. Overexpression of *WRKY26* and *WRKY45* resulted in reduced primary
373 root growth and LR number under the control unshaded condition, as to resemble the
374 phenotype of WT roots in the shade. Overexpression of *WRKY75* had no substantial role in
375 repressing the primary root growth, but had an effect by repressing LR emergence in the shade
376 and not in unshaded growth.

377

378 **Ethylene is required for root growth inhibition in the shade**

379 ‘Response to ethylene’ was one of the top enriched GO terms among the shade-induced
380 genes in both *Arabidopsis* and tomato (Fig. 1B). WRKY TFs integrate ethylene hormone
381 responses along with environmental and developmental signals (Koyama, 2014). Furthermore,
382 ethylene and components of the ethylene signaling pathway are required for efficient resistance
383 towards certain plant pathogens. For example, ethylene-insensitive *Arabidopsis* mutant *ein2*
384 was more susceptible than WT plants to infection by *Botrytis cinerea*, a fungal pathogen
385 (Thomma et al., 1999). Involvement of ethylene signaling and multiple WRKYs in response to
386 senescence and high temperature have been documented (Li et al., 2011; Koyama et al., 2013;
387 Koyama, 2014). Ethylene also regulates root growth by mostly restricting cell elongation
388 (Růžička et al., 2007). Previous studies have determined the importance of ethylene in petiole
389 elongation but not for hypocotyl elongation during SAR (Pierik et al., 2009; Das et al., 2016),
390 although ethylene biosynthetic pathway was particularly upregulated in the hypocotyl in
391 response to shade (Kohnen et al., 2016). Therefore, in light of this knowledge and observation,
392 we tested the effect of ethylene and the components of ethylene signaling on root growth during
393 shade avoidance.

394 We grew WT seedlings in unshaded and shaded conditions on a growth media
395 supplemented with different concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC), a
396 routinely used biosynthetic precursor of ethylene (Růžička et al., 2007). In the shade, a lower
397 dose of 0.2 μ M ACC had a stimulatory effect on the hypocotyl elongation. In contrast, higher
398 doses of 2 and 10 μ M had a moderate impact on the hypocotyl elongation (Fig. 5A), confirming
399 previous results (Das et al., 2016). But ACC treatment profoundly affected the primary root
400 growth in the seedlings grown in both shade and unshaded conditions (Fig. 5B). At 0.2 μ M ACC,
401 the primary root growth of unshaded seedlings was indistinguishable from that of shaded

402 seedlings, having a shorter root length which was comparable to untreated roots in the shade.
403 Increasing concentrations of ACC led to further attenuation of the root growth in both unshaded
404 and shade conditions with similar root length, especially at 10 μ M of ACC. ACC treatment,
405 notably at 10 μ M, led to a modest reduction in LR number in unshaded seedlings (Fig. 5C).
406 However, ACC had the opposite effect on shaded seedlings, as we observed increased LR
407 density at 10 μ M ACC (Fig. 5D). At 2 and 10 μ M ACC, the LR density in shaded and unshaded
408 seedlings was similar (Fig. 5D). Therefore, these results indicate that ethylene is required for
409 root growth inhibition in the shade.

410 Next, to further explore the importance of ethylene in regulating root growth in the shade,
411 we analyzed mutants defective in ethylene signaling, namely, *ein2* and *ein3eil1* double mutant,
412 respectively. EIN2 (ETHYLENE INSENSITIVE 2) is a crucial signaling transducer, and EIN3
413 (ETHYLENE INSENSITIVE 3) and EIL1 (EIN3-LIKE 1) are critical downstream TFs in the
414 ethylene response (Dolgikh et al., 2019). Hypocotyl growth defect was not observed in *ein2* and
415 *ein3eil1* seedlings in the shade (Fig. 5E), agreeing with a previous study (Das et al., 2016).
416 Interestingly, the primary roots of both *ein2* and *ein3eil1* mutants did not respond to shade-
417 induced growth inhibition, regardless of the shade or unshaded growth conditions (Fig. 5F). The
418 root phenotypes of *ein2* and *ein3eil1* further resembled *WRKY26ox* and *WRKY45ox* seedlings
419 (Fig. 4B-E). Accordingly, *ein2* and *ein3eil1* mutants presented much fewer LRs and LR density
420 compared to the WT, both in the shade and non-shading conditions (Fig. 5G-H). Together, the
421 data presented in Fig. 5 indicates that ethylene and its associated signaling are required to
422 restrict root growth in the shade. Also, the data supports the requirement of ethylene signaling
423 along with WRKYs, analogous with the plant defense responses.

424

425 Roots of *WRKY26ox* and *WRKY45ox* are sensitive to ACC

426 To further dissect the nexus between WRKYs and ethylene, we tested whether ethylene
427 can trigger the expression of *WRKY45* and *WRKY26*, whose overexpression resulted in root-
428 specific phenotypes in the shade and unshaded light (Fig. 4B). WT Arabidopsis seedlings were
429 treated with 2 μ M ACC in the shade or unshaded light and RNA was extracted from the whole
430 seedlings or from dissected roots. RT-qPCR was performed to measure the expression levels of
431 *WRKY26* and *WRKY45* along with the ethylene responsive *ERF1B* marker gene. *ERF1B*
432 displayed increased expression in the root after ACC treatment when compared to the mock
433 control and unshaded condition (Fig. 6A). Likewise, we observed an increased expression of
434 *WRKY45* in the unshaded and shaded WT seedlings treated with ACC (Fig. 6A). However, the
435 increased expression of *WRKY26* was not statistically supported in our RT-qPCR assay on the

436 RNA from the roots. In whole seedlings, ACC triggered the expression of *ERF1B* in WT
437 seedlings, but not in *WRKY26ox* and *WRKY45ox*. But we did not observe increased expression
438 of *WRKY26* and *WRKY45* in whole seedlings (Fig 6B). Next, we measured the primary root
439 length of *WRKY26ox* and *WRKY45ox* supplemented with different amounts of ACC. The roots
440 of *WRKY26ox* and *WRKY45ox* showed increased sensitivity towards ACC in both shaded and
441 unshaded light when compared to the WT (Fig. 6C). ACC treatment also affected lateral root
442 number and density in *WRKY26ox* and *WRKY45ox* (Supplemental Fig. S8A-B). These results
443 indicate that ACC, precursor of ethylene has the ability to induce *WRKY45* in the root in the
444 shade as well as in unshaded light. In addition, the ACC further reduced the root length of
445 *WRKY26ox* and *WRKY45ox* transgenic lines indicating that ethylene and WRKYs likely work
446 together or in parallel to inhibit root growth.

447 **DISCUSSION**

448 Mechanisms underlying stem and petiole elongation under shade have been widely
449 studied for several decades (Hornitschek et al., 2009; Pierik et al., 2009; Li et al., 2012;
450 Pedmale et al., 2016). However, our understanding of how shade perceived by the above-
451 ground shoots leads to the reduced growth of the belowground primary root and LR has been
452 limited. This study presents evidence that many *WRKY* genes are transcriptionally upregulated
453 in the roots of shaded *Arabidopsis* and tomato plants. We further demonstrate that several
454 WRKYs (26, 45, 75) and ethylene function in restricting root and LR growth but did not affect
455 hypocotyl elongation in the shade.

456 We discovered genes induced by biotic and abiotic stressors overlapped with a large
457 proportion of the shade-induced genes in the roots of *Arabidopsis* and tomato seedlings grown
458 in the shade (Fig. 1B). PTI-induced genes also coincided with a significant portion of the shade-
459 induced genes in the roots, which are known to be regulated by WRKY TFs (Fig. 1C-G).
460 Importantly we found W-box promoter elements in a large number of shade-induced genes in
461 the roots (Fig. 1E, Supplemental Fig. S2A), suggesting the involvement of WRKYs in the
462 reprogramming of the gene expression to restrict root growth, typically observed during SAR.
463 Furthermore, a large number of *WRKY* genes were significantly (FDR <0.05) upregulated in the
464 roots of both shaded *Arabidopsis* and tomato, progressively increasing through the time course
465 in the shade (Fig. 2; Supplemental Fig. S2). To identify the contribution of shade-induced
466 WRKYs in regulating root growth in the shade, we performed functional analysis on a select ten
467 WRKY members by overexpressing them. We chose overexpression as an alternate yet
468 powerful tool to generate mutant phenotypes (Chua et al., 2006; Prelich, 2012) and also to

469 overcome known functional and genetic redundancy among the WRKY gene family members
470 and potential gene-compensation (Rushton et al., 2010; Zhang et al., 2015). Overexpression of
471 *WRKY26* and *WRKY45* led to a retarded root growth and LR emergence, irrespective of shade
472 or unshaded light. *WRKY26ox* and *WRKY45ox* seedlings had a constitutive shade avoiding
473 shorter primary root and reduced LR in unshaded light, mimicking a WT seedling in the shade.
474 Importantly, in *WRKY75ox* seedlings, there was no effect on the primary root length, but a
475 marked reduction in LR number was seen, similar to *WRKY26* and *WRKY45* overexpressors.
476 But, none of the ten shade-induced WRKYS that we characterized affected hypocotyl
477 elongation, indicating that the roles of these WRKYS are primarily limited to regulate root growth
478 during the SAR.

479 Our results here demonstrate that phenotypic activation of WRKY TFs is feasible as a
480 general approach to identify their functional roles in plant growth and development (Fig. 4).
481 Previous studies have shown enhanced tolerance towards pathogens, salt, and drought by
482 overexpressing WRKYS that was under investigation in *Oryza sativa* (rice), *Glycine max*
483 (soybean), and Arabidopsis (Rushton et al., 2010). However, apart from this study, only a few
484 prior reports have associated WRKYS with light signaling and adaptation. For instance,
485 Arabidopsis WRKY18 and WRKY40 have been shown to co-localize with PHYB and
486 PHYTOCHROME-INTERACTING FACTORS (PIFs) in the nuclear speckles or photobodies, but
487 their role in red/far-red light signaling is unknown (Geilen and Böhmer, 2015). WRKY40 is
488 required for adaptation towards high light stress in Arabidopsis (Aken et al., 2013), and
489 WRKY22 is involved in dark-induced senescence (Zhou et al., 2011).

490 We characterized root-specific and shade-induced WRKYS by overexpressing them in
491 Arabidopsis. We reasoned that overexpression of a WT protein can also cause mutant
492 phenotypes, which is an alternative yet powerful tool to traditional loss-of-function analysis to
493 infer gene function, especially when loss-of-function opportunities are not available (Palatnik et
494 al., 2003; Prelich, 2012; Kaiserli et al., 2015). However, overexpression of several shade-
495 induced WRKYS produced no observable mutant primary root and LR growth phenotypes. Out
496 of the ten WRKYox lines that we characterized, we observed primary root-specific phenotypes
497 only in two of them, for *WRKY26* and *WRKY45* respectively. Importantly, hypocotyl growth was
498 not affected in *WRKY26ox* and *WRKY45ox* in the shade indicating their specificity in regulating
499 root growth in spite of overexpression. Among the independent transgenic plants for a given
500 WRKY, we observed variation in their protein expression. For example, among the three
501 independent lines we characterized for *WRKY26ox*, line #2 had the strongest root phenotype
502 (Supplemental Fig. S5A) and protein levels in whole seedlings (Supplemental Fig. S4). The

503 variation in protein expression in these transgenic lines could be due to the positional effect of
504 the transgene in the genome. *WRKY51ox* seedlings had detectable protein levels by
505 immunoblot analysis, but they exhibited poor seed germination and we were unable to
506 phenotype them adequately due eliminate confounding interpretation. Our microscopic analysis
507 revealed that *WRKY26* and *WRKY45* were expressed in most of the cell-types in the shoot.
508 However, even with the use of constitutive expression, transgenic protein in several *WRKYox*
509 lines were not detected or they were below the detection limit in our immunoblot assay and
510 confocal microscopy. This lack of protein detection could be attributed due to post-translational
511 degradation or post-transcriptional regulation in some of the *WRKYox* lines. Therefore, we
512 cannot completely rule out the lack of phenotypes in many *WRKY* overexpressing lines (for
513 example, in *WRKY13ox*, *WRKY29 ox*, *WRKY58 ox*, and *WRKY70 ox*) could be attributed to lack
514 of optimal protein expression or accumulation. The lack of phenotypes in some *WRKYs* (for
515 example, *WRKY31* and *WRKY75*), could be due to the absence of required activating factor,
516 which had to be overexpressed along with the *WRKYs*. Several *WRKYs* are also known to be
517 regulated by Ca^{2+} and bind to 14-3-3 proteins (Rushton et al., 2010). Another aspect could be
518 the feedback loops, which could interfere with *WRKYs* as several reports point that *WRKYs* are
519 capable binding to their own promoters or of other *WRKY* genes in response to stress (Skibbe
520 et al., 2008; Rushton et al., 2010; Li et al., 2011; Li et al., 2015; Birkenbihl et al., 2018).
521 Expression and post-translational modification could further limit the function of the shade-
522 induced *WRKYs* when overexpressed. Epitope tags are routinely fused with TFs, and they
523 rarely interfere with the function of the TFs as determined by various *in vitro* and *in vivo*
524 experiments such as ChIP-seq (chromatin immunoprecipitation-sequencing), etc. However, we
525 cannot rule out completely whether the fusion of the *WRKYs* with mCitrine could be interfering
526 with their activity. However, in future studies, tissue or organ-specific expression of *WRKYs*,
527 analysis of multi-genic or higher order mutants of *WRKYs* will help decipher the exact
528 contribution of shade-induced *WRKYs* in the shade avoidance response.

529 Previously, *WRKY26* was identified as a positive regulator of thermotolerance in
530 *Arabidopsis* plants, working synergistically with *WRKY25*, *WRKY33*, and ethylene signaling (Li
531 et al., 2011). In this literature, overexpression of *WRKY26* led to the reduction of fresh weight in
532 adult *Arabidopsis* plants, mirroring our results, where its overexpression led to shorter roots in
533 the shade and unshaded light (Fig. 4). *Arabidopsis* *WRKY45* is a positive regulator of GA-
534 mediated age-induced leaf senescence (Chen et al., 2017), and has been implicated in the
535 activation of *PHOSPHATE TRANSPORTER1;1 (PHT1;1)* in the roots of plants undergoing
536 phosphate deficiency (Wang et al., 2014). Wang et al. (2014) further showed that *WRKY45ox*

537 lines had shorter primary roots in the presence of arsenate. This result is similar to our study,
538 where *WRKY45ox* led to constitutive primary root length shortening in the shade and unshaded
539 light. Furthermore, we report that *WRKY75* overexpression had no effect on the primary root
540 length but caused a reduction in lateral root frequency in seedlings grown only in the shade but
541 not in unshaded conditions (Fig. 4E; Supplemental Fig. S5D). Silencing of *WRKY75* by RNAi
542 resulted in more LR than WT *Arabidopsis* but no differences in the primary root length (Devaiah
543 et al., 2007). Also, *WRKY75*, like *WRKY45*, can promote leaf senescence, participating in a
544 positive feedback loop with hydrogen peroxide and SA to accelerate leaf senescence (Guo et
545 al., 2017). *WRKY75* is also a positive regulator of GA-mediated control of flowering time (Zhang
546 et al., 2018). Surprisingly, although *WRKY45* and *WRKY75* have overlapping roles in phosphate
547 acquisition, leaf senescence, and GA-mediated signaling, yet, only *WRKY45ox* seedlings
548 displayed inhibitor of root length, indicating that many *WRKYs* share many overlying as well as
549 divergent functional roles.

550 Ethylene is necessary for petiole elongation during the SAR but had a limited effect on
551 hypocotyl elongation (Pierik et al., 2009; Das et al., 2016). Our results (Fig. 5) show that
552 ethylene and its associated signaling are required to restrict root growth in the shade, suggesting
553 an organ-specific role of ethylene signaling in the shade. Ethylene signaling is
554 critical for a plants' defense responses and molecular links between this hormone and *WRKY*
555 activity have been proposed (Bakshi and Oelmüller, 2014). Ethylene induces the expression of
556 several *WRKYs*, and *WRKY25*, 26 and 33, induce the expression of *EIN2*, forming a positive
557 feedback loop (Li et al., 2011; Li et al., 2013). Here, ACC, precursor of ethylene was capable to
558 induce the expression of *WRKY45* in absence of the shade in the root. Expression of *EIN3* is
559 induced by ethylene via *EIN2*, and also by the defense-hormone JA, and by light via PIF4 and
560 PIF5 bHLH transcription factors (Li et al., 2013; Sakuraba et al., 2014). Our data showed that
561 ethylene-treated WT seedlings and *ein2* and *ein3eil1* had similar root phenotypes to *WRKY26ox*
562 and *WRKY45ox* lines in the shade (Fig. 4; Supplemental Fig. S5; Fig. 5). In addition,
563 *WRKY26ox* and *WRKY45ox* were more sensitive to ACC compared to the WT. *WRKYs* can
564 function up, and downstream of the many phytohormone pathways (Antoni et al., 2011).
565 Therefore, it is conceivable that ethylene and the shade-induced *WRKYs* act in concert to
566 antagonize root growth and development, and signaling dependent upon auxin, brassinosteroid,
567 and cytokinin hormones in the shade.

568 *WRKYs* are plant-specific TFs and are central components of the plant's resistance to
569 pathogens and responses to abiotic and biotic stresses (Bakshi and Oelmüller, 2014).
570 *Arabidopsis* and tomato genomes have 74 and 83 *WRKY* genes, respectively, and a great

571 diversity of WRKYs allows plants to cope with various adverse conditions (Bakshi and
572 Oelmüller, 2014). WRKYs have been well studied in their involvement with biotic stress
573 compared to abiotic responses (Bakshi and Oelmüller, 2014). SAR is also stressful for the plant,
574 as it leads to photosynthetic impairment and reduced carbon acquisition, reducing the overall
575 fitness of the plant (Smith, 1982; Smith, 2000). In addition, low R:FR SAR downgrades plant
576 defense against pathogens and herbivorous insects in the shoots (Moreno et al., 2009; Ballaré
577 et al., 2012; Courbier and Pierik, 2019). Likewise, other studies have shown that many *WRKY*
578 genes are rapidly induced in response to wounding, drought, salinity, osmotic, cold, carbon
579 starvation, and heat stress (Pandey and Somssich, 2009; Bakshi and Oelmüller, 2014; Rinerson
580 et al., 2015; Viana et al., 2018). Aptly, our finding on the speedy upregulation of *WRKY* gene
581 expression in the roots of shaded plants is conceivable. During SAR, stress-like responses likely
582 help the plant to relocate critical resources from the root to the growing shoot organs in order to
583 maintain competitiveness. Future studies will be required to determine the nature of the signal
584 downstream of the photoreceptors that leads to the induction of many *WRKY* genes in the
585 shade. Also, which are the specific gene targets of the shade-induced *WRKYs* required to
586 repress root growth and development in the shade?

587

588 **Conclusions**

589 Low R:FR shade represses root growth and development by triggering gene expression
590 changes in tomato and *Arabidopsis*, mainly resembling the transcriptional changes caused by
591 biotic and abiotic stressors. These shade-induced genes in the roots are known to be regulated
592 by WRKY transcription factors, and many *WRKYs* were significantly upregulated in the shade.
593 Here, we report the involvement of crucial WRKY TFs, namely WRKY26, WRKY45, and
594 WRKY75, along with ethylene in the SAR to inhibit primary root and LR growth. These factors
595 had no involvement in regulating hypocotyl elongation.

596 **MATERIALS AND METHODS**

597

598 **Plant Material, growth conditions and light treatments**

599 Arabidopsis (*Arabidopsis thaliana*) genotypes used in this work are in Columbia WT (Col-0)
600 ecotype background. Seeds of *ein2-5* and *ein3-1 eil1-1* double mutant were obtained from Dr.
601 Hong Qiao (University of Texas, Austin). T-DNA insertional mutant for *wrky26*
602 (SAIL_121_C01C1) and *wrky45* (CS333963/GK-684G12) were obtained from Arabidopsis
603 Biological Resource Center (ABRC; Ohio). For phenotyping of Arabidopsis seedlings, seeds
604 were surface sterilized with 70% (v/v) ethanol and 0.1% triton X-100 (v/v) and rinsed several
605 times with sterile water. Seeds were plated on 0.5× Linsmaier and Skoog (LS) medium (HiMedia
606 Laboratories) pH 5.8 containing 0.8% phyto agar (w/v). Shaded and unshaded light conditions
607 were used as described previously (Tao et al., 2008). Briefly, Petri plates containing growth
608 medium with the seeds were then stratified at 4°C for 4-5 d before being placing them vertically
609 in the growth chamber (Percival) with constant white growth light from a LED source (unshaded;
610 PAR ~120 $\mu\text{mol m}^{-2} \text{s}^{-1}$) at 22°C. After 4 d, seedlings were either kept under unshaded control
611 light or transferred to constant stimulated low R:FR shade where growth light was supplemented
612 with FR (R:FR ratio of 0.35) for 1d (microscopy and immunoblot analysis) or 3-5 d (phenotypic
613 measurements). Light measurements were obtained using a full quantum sensor (Apogee
614 Instruments). For phenotypic measurements, Petri plates with 7-9 d-old seedlings were scanned
615 using a flatbed scanner (Epson V600), primary root length and later root (LR) numbers (counted
616 as emerged LR) were obtained with SmartRoot (Lobet et al., 2011) and hypocotyl length was
617 measured using NIH ImageJ software.

618

619 **Cloning and generation of transgenic lines in Arabidopsis**

620 Arabidopsis root tissue cDNA library was used as a template to amplify and clone the coding
621 sequence of *WRKY13*, *WRKY25*, *WRKY26*, *WRKY29*, *WRKY31*, *WRKY45*, *WRKY51*, *WRKY70*
622 and *WRKY75*; while Arabidopsis genomic DNA was used as a template to amplify *WRKY58*.
623 PCR was performed using KOD polymerase (Toyobo) with the primers listed in Supplemental
624 Table S3 and introduced in to the Gateway donor vectors, either pDONR207 or pDONR221
625 (Thermo Fisher Scientific) using BP clonase II enzyme (Thermo Fisher Scientific). Multisite
626 Gateway reaction using LR clonase II mix (Thermo Fisher Scientific) was performed to combine
627 the donor constructs with either pB7m34GW or pK7m34GW binary vector (Karimi et al., 2007)
628 along with the *UBQ10* promoter in pDONR P4-P1R donor vector and Citrine in pDONR P3-P1R
629 vector (destination vectors used for each *WRKY* gene are listed in Supplemental Table 2).

630 Destination constructs were introduced in *Agrobacterium tumefaciens* to transform Arabidopsis
631 using the floral dip method (Clough and Bent, 1998). T1 transgenic Arabidopsis plants were
632 selected on 0.5× LS medium supplemented with either kanamycin or basta according to the
633 vector used for transformation (Supplemental Table S3). Segregation analysis was performed
634 on T2 plants grown on the selective agar media and lines carrying a single copy of the
635 transgene were propagated further and the T3 seeds were used for experiments and other
636 analysis.

637

638 **Immunoblot analysis of transgenic lines**

639 Arabidopsis seedlings were grown under constant white light for 4d and either kept in unshaded
640 conditions or shade for additional 24h. 20 excised roots or whole-seedlings were harvested from
641 5-day old plants and immediately frozen in liquid nitrogen. Samples were ground to a fine
642 powder, resuspended in 2× LDS sample buffer (53mM Tris-HCl, 70.5 mM Tris base, 1% (v/v)
643 LDS, 5% (v/v), glycerol, 0.255mM EDTA, 0.11mM Serva Blue G250, 0.0875 mM phenol red, pH
644 8.5) with 50 mM TCEP and heated to 90°C for 10 min, cooled to room temperature and then
645 centrifuged for 5 minutes to obtain the total protein lysate. For electrophoretic separation of
646 proteins, equal amount of total protein was loaded on 10% (v/v) Bis-Tris polyacrylamide gel and
647 electrophoretically separated using MOPS-SDS buffer (2.5mM MOPS, 2.5mM Tris base,
648 0.005% (w/v) SDS, 0.05mM EDTA). Separated proteins were then transferred
649 electrophoretically to a nitrocellulose membrane (GE Lifesciences) using transfer buffer (10%
650 (v/v) methanol, 1.25mM bicine, 1.25mM Bis-Tris base, 0.05 mM EDTA). After transfer, the
651 membrane was stained with ponceau red, imaged, and blocked with 5% (w/v) non-fat dry milk
652 prepared in Tris-buffered saline with 0.05% (v/v) Tween-20 (TBST) for 30 min. Next,
653 membranes were incubated for 1h in 1% (w/v) milk prepared in TBST with anti-GFP antibody
654 (Roche). The blot was washed 3 times with TBST and incubated for 30 min in 1% (w/v) milk
655 prepared in TBST with anti-mouse HRP conjugate (Bio-Rad). Chemiluminescent detection was
656 performed using SuperSignal West Dura Extended Duration (Thermo) HRP substrate to detect
657 the WRKY-mCitrine fusion protein.

658

659 **Confocal microscopy**

660 Stable transgenic Arabidopsis seedlings expressing *UBQ10::WRKY-Citrine* in their T3
661 generation were grown in unshaded light for 4-5 days and transferred to shade for 24 h.
662 Seedlings were stained with 5 µg/mL propidium iodide and then mCitrine and propidium iodide

663 fluorescence were detected in a high-resolution laser scanning confocal microscope (LSM900
664 with Airyscan2, Zeiss) using 488 and 561 nm lasers along with BP 620/60 emission filter.

665

666 **Phylogenetic analysis**

667 Protein sequences of the 12 candidate *Arabidopsis* WRKYs were retrieved from The
668 *Arabidopsis* Information Resource (TAIR) database (Garcia-Hernandez et al., 2002).
669 Sequences were aligned with Clustal-W algorithm, and the phylogenetic tree was inferred by
670 using the Maximum Likelihood method and JTT matrix-based model in Mega X software (Kumar
671 et al., 2018).

672

673 **Short-read mRNA-sequencing (RNA-seq) and analysis**

674 The raw short-read sequencing data and expression files are available in the NCBI Gene
675 Expression Omnibus (GEO) database with accession number GSE175963. In *Arabidopsis*, as
676 described earlier, 5-day-old seedlings grown in continuous unshaded light was mock-treated or
677 exposed to simulated shade (R:FR ~0.6) at the indicated time-points and the roots were
678 harvested using a razor blade and flash frozen in liquid nitrogen. For tomato (*Solanum*
679 *lycopersicum*, M82 cultivar), seedlings were grown in the dark for 3 days followed by 4 days in
680 constant unshaded light at 25°C before mock-treatment or shade treatment (R:FR ~0.3) and
681 then roots were collected at the indicated time points and flash frozen in liquid nitrogen. Total
682 RNA from *Arabidopsis* roots was extracted using RNeasy Micro kit (Qiagen). Total RNA from
683 tomato roots were extracted using ReliaPrep RNA kit (Promega). We prepared short-read
684 sequencing libraries from two biological replicates for each time-point and treatment with either
685 Ultra II DNA Library Prep Kit for Illumina (New England Biolabs) or TruSeq RNA-seq library kit
686 (Illumina) according to manufacturer's instruction. All sequencing libraries for each species were
687 pooled together and sequenced using 1 x 76 bp in NextSeq 500. Single short reads were
688 mapped against *Arabidopsis* (TAIR 10) or tomato (TAG 4.0) reference genomes using STAR
689 v2.7.2 (Dobin et al., 2013). Assembly and quantification of transcripts was done with Cufflinks
690 v2.1.1 (Trapnell et al., 2012). Pearson's correlation (Supplemental Fig. S1B) was used with the
691 FPKM values to evaluate reproducibility of biological replicates, which displayed very high
692 correlation ($R < 0.98$ in most cases, with lowest $R < 0.94$) which exceeds the ENCODE
693 standard of 0.90 (Dunham et al., 2012). Relative gene expression was calculated as \log_2 fold-
694 change in shade relative to unshaded control for each time-point using Cuffdiff (part of Cufflinks
695 v2.1.1). Genes were considered differentially expressed if FDR-adjusted p-value was below
696 0.05.

697

698 **De novo identification of cis-motifs**

699 De novo *cis*-motifs in the promoters of differentially expressed genes were identified with
700 HOMER (Heinz et al., 2010) by analyzing the 500 bp upstream and 50 bp downstream of the
701 transcriptional start site.

702

703 **Computational analysis and graphics generation**

704 Gene Ontology (GO) term enrichment was performed on Panther Classification System (Mi et
705 al., 2020) using Fisher's Exact test and Bonferroni correction to obtain Biological Processes
706 enriched relative to Arabidopsis reference genome. Since tomato GO annotation is
707 comparatively poorer, we generated a list of Arabidopsis and tomato orthologs (Supplemental
708 Table S2). We then used the Arabidopsis accessions corresponding to tomato genes up-
709 regulated by shade for the GO analysis. We then compared the list of significantly (Bonferroni
710 correction; $p < 0.05$) enriched GO terms between the species and manually filtered based on
711 hierarchy to remove term redundancy. All GO terms retrieved are reported in Supplemental
712 Table S2. R environment (R Foundation) and its packages (ggplot2, pheatmap,
713 ComplexHeatmap, dendsort, rstatix, ggpubr, dplyr, reshape2, tidyverse, RColorBrewer, circlize,
714 ggfortify, gridExtra) were used for statistical analysis and to visualize results.

715

716 **ACC treatment**

717 For ACC treatments, WT, *WRKY26ox* or *WRKY45ox* seedlings were grown for 4 days as
718 previously described in unshaded conditions, then transferred to media containing 0, 0.2, 2 or
719 10 μ M of ACC (Sigma). Then, they were either kept in unshaded or shaded conditions for 3-4
720 days, as indicated. Seedlings on the Petri plates were then scanned for phenotypic analyses.

721

722 **RT-qPCR analysis**

723 Whole seedlings or roots of Arabidopsis WT, *WRKY26ox* or *WRKY45ox* were used for RT-
724 qPCR analysis. RNA was extracted using Trizol (Thermo) and DNasel (New England Biolabs)
725 was used to eliminate genomic DNA contamination. cDNA was synthesized using iScript cDNA
726 Synthesis Kit (BioRad) according to manufacturer instructions. qPCR was carried out in the
727 QuantStudio 6 Pro PCR system (Thermo) using Power SYBR Green Master Mix (Thermo) in a
728 10- μ L reaction volume. Expression values were normalized with *ACTIN7* and *PP2A* reference
729 genes using the $2^{-\Delta\Delta Ct}$ method. All primers and accession numbers can be found in
730 Supplemental Table S3.

731

732 **Statistical Analysis**

733 Most statistical analyses were performed in RStudio. Analysis of variance (two-way ANOVA)
734 and pairwise *post-hoc* Tukey analysis were performed in InfoStat statistical software (InfoStat).
735 Phenotypic data was analyzed by comparing the means between treatments or genotypes
736 according to the test specified at the figures.

737

738 **Accession Numbers**

739 Sequence data from this article can be found in the GenBank/EMBL data libraries under
740 accession numbers WRKY13 (AT4G39410), WRKY25 (AT2G30250), WRKY26 (AT5G07100),
741 WRKY29 (AT4G23550), WRKY31 (AT4G22070), WRKY45 (AT3G01970), WRKY51
742 (AT5G64810), WRKY58 (AT3G01080), WRKY70 (AT3G56400), WRKY75 (AT5G13080), EIN2
743 (AT5G03280), EIN3(AT3G20770), EIL1(AT2G27050), Actin7 (AT5G09810), PP2A
744 (AT1G13320), ERF1B (AT3G23240), SIWRKY04 (Solyc05g012770), SIWRKY05
745 (Solyc03g104810), SIWRKY06 (Solyc02g080890), SIWRKY13 (Solyc04g051540), SIWRKY16
746 (Solyc02g032950), SIWRKY29 (Solyc08g081610), SIWRKY31 (Solyc06g066370), SIWRKY33
747 (Solyc09g014990), SIWRKY38 (Solyc02g094270), SIWRKY51 (Solyc04g051690), SIWRKY71
748 (Solyc02g071130), SIWRKY75 (Solyc05g015850), SIWRKY80 (Solyc03g095770), SIWRKY81
749 (Solyc09g015770).

750

751 **SUPPLEMENTAL DATA**

752 **Supplemental Figure S1. Transcriptional changes induced by shade in the roots.**

753

754 **Supplemental Figure S2. Shade induces transcriptional changes via similar transcription**
755 **factors in Arabidopsis and tomato.**

756

757 **Supplemental Figure S3. Shade induces the expression of a large group of WRKYs in**
758 **tomato.**

759

760 **Supplemental Figure S4. WRKYox-Citrine protein levels are unaffected by shade.**

761

762 **Supplemental Figure S5. Phenotype of independent Arabidopsis WRKYox transgenic**
763 **lines in the shade.**

764

765 **Supplemental Figure S6. Expression dynamics of *WRKY26ox* and *WRKY45ox*.**
766
767 **Supplemental Figure S7. Overexpression of *WRKY13*, *29* and *58* does not affect root**
768 **growth.**
769
770 **Supplemental Figure S8. Ethylene further represses root growth in *WRKY26ox* and**
771 ***WRKY45ox* lines.**
772
773 **Supplemental Table S1.** Differential expression in *Arabidopsis* and *tomato* roots in response to
774 shade.
775 **Supplemental Table S2.** Gene ontology (GO) terms enriched among the shade-induced genes
776 in roots of *Arabidopsis* and *tomato*.
777 **Supplemental Table S3.** Oligonucleotide sequences and plasmids used in this work.
778
779 **Funding:** This work was funded by National Science Foundation (NSF) Division of Integrative
780 Organismal Systems grant IOS-1755355 to U.V.P. National Institutes of Health (NIH) grants
781 R35GM125003, GM12500303S1, and GM12500304S1 to U.V.P. São Paulo Research
782 Foundation (FAPESP) grant no. 2016/01128-9 and the Brazilian National Council of Scientific
783 and Technological Development (CNPq) funded M.R. O.S. was supported by David and Fanny
784 Luke Fellowship.
785 **ACKNOWLEDGEMENTS**
786 We thank Jillian Arber and Jaynee Hart for the technical assistance, cloning, and plant care. We
787 thank Hong Qiao for *ein2* and *ein3eil1* seeds.

788 **FIGURE LEGENDS**

789

790 **Figure 1. Shade-induced genes in the roots resemble biotic and abiotic stress-induced**
791 **transcriptome.**

792 A) Phenotypic representation of a 9-day-old *Arabidopsis* seedling grown under constant white
793 light (unshaded) and shade (low R:FR); and the time-points used for RNA-seq analysis. Dashed
794 lines indicate the region where the root tissue was excised from the shoot for RNA-seq analysis.
795 B) Gene Ontology (GO) terms of biological processes, commonly enriched among the genes
796 upregulated in *Arabidopsis* and tomato roots during the first 24h (30m, 3h, 7h, 1d; and 3h 6h,
797 12h, 24h, respectively) under shade. C) *Arabidopsis* genes induced by the shade in the roots
798 along the time-course (up to 5d) and by various PTI-elicitors from a prior study (Bjornson et al.
799 2021). Over-representation and *p*-value were calculated based on hypergeometric distribution
800 and Fisher's exact test. D) Expression profile of common *Arabidopsis* shade-induced and
801 elicitor-induced genes along the time-course. Values represent \log_2 fold change in the shade
802 relative to unshaded control. E) *de novo* enriched cis-motif element found in the promoters of
803 the 396 genes induced by both shade and elicitors as determined in a previous study (Bjornson
804 et al. 2021). F) *Arabidopsis* genes induced by the shade in the roots along the time-course (up
805 to 5d) and by WRKY18, WRKY33 and WRKY40 in response to immune response flg22 elicitor
806 from a prior study (Birkenbihl et al. 2017). Over-representation and *p*-value were calculated
807 based on hypergeometric distribution and Fisher's exact test. G) Expression profile of common
808 *Arabidopsis* shade-induced and WRKY-induced genes along the time-course. Values represent
809 \log_2 fold change in the shade relative to the unshaded control. D and G) Boxplot components
810 correspond to: box limits, first and third quartile; central line, median; whiskers, upper and lower
811 1.5x interquartile range; pink dots, individual genes; black dots, outliers.

812

813 **Figure 2. Large number of WRKY transcription factors are induced in response to shade**

814 A) Global transcriptional profile of *WRKY* gene family members in *Arabidopsis* and tomato roots
815 in the shade. Values represent \log_2 fold expression of *WRKY* genes in the shade compared to
816 its unshaded developmental control. B) *WRKY* genes that are significantly up-regulated in the
817 *Arabidopsis* roots relative to its unshaded control (FDR ≤ 0.05). C) Transcriptional profile of the
818 selected *WRKYs* consistently induced by shade, *i.e.*, those up-regulated above the threshold of
819 0.5 \log_2 fold relative to the unshaded control. Expression groups are color coded and
820 characterized by the timing of their significant induction in the shade during the time course. D)
821 Dendrogram of selected *Arabidopsis* WRKY proteins, classified as early, middle, and late as in

822 panel B. The phylogenetic tree was inferred by Maximum Likelihood and JTT model. Branch
823 lengths are scaled according to number of substitutions per site. Numbers represent the
824 percentage of trees in which the associated proteins clustered together considering 500
825 bootstrap replicates.

826

827 **Figure 3. Shade-induced WRKY proteins accumulate in the roots.**

828 A,B) Confocal microscopy images of the indicated 5-day-old *Arabidopsis* shaded *WRKYox*
829 (fused with mCitrine protein) transgenic seedlings. Prior to the shade treatment, the seedlings
830 were grown in unshaded light for 4 days. A) *Arabidopsis* roots, and B) *Arabidopsis* shoots
831 largely encompassing the hypocotyl, petiole, and the first true leaves. Magenta color indicates
832 the propidium iodide (PI) counterstaining of the cell wall and the green signal indicates mCitrine
833 signal.

834

835 **Figure 4. Shade-induced WRKYs primarily affect root growth in the shaded and has no
836 effect on the hypocotyl growth during the SAR.**

837 A) Phenotype of representative 9-day-old WT and *WRKYox* seedlings under unshaded light and
838 shade (low R:FR). B) Primary root length of the indicated genotypes in cm, C) Hypocotyl length
839 of the indicated genotypes in cm, D) Frequency of seedlings with 0-10, or more lateral roots
840 (LR) under unshaded or shade conditions in 9-day-old seedlings, E) LR density as the number
841 of LR per 1 cm of the primary root. B-E represent means \pm SE of combined independent
842 transgenic lines (*UBQ10::WRKYox*) for each candidate gene; dots represent individual data
843 points; 26-72 individual seedlings were used per genotype. Asterisks represent significant
844 difference ($p<0.05$) with WT for each light condition (black for unshaded and red for shade) in
845 two-tailed *t*-test with Benjamini-Hochberg correction for multiple testing. Green shading
846 highlights root length reduction in *WRKY26ox* and *WRKY45ox*.

847

848 **Figure 5. Ethylene hormone signaling is required for the repression of root growth and
849 development in the shade.**

850 A-D) Phenotype of unshaded and shaded WT seedlings treated with the indicated
851 concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC). E-H) Seedlings of WT and
852 ethylene signaling mutants grown in shaded and unshaded light. The phenotypic measurement
853 represents 4-day-old seedlings grown in unshaded light and then transferred to the shade or
854 mock-treated for 4 days. A, E) Hypocotyl length in cm, B, F), Primary root length in cm, C,G)
855 Frequency of seedlings with 0 – 10, or more lateral roots, D,H) Lateral root density is the

856 number of lateral roots per cm of the primary root. Values represent means \pm SE of 8-15
857 seedlings; dots represent individual data points. Different letters denote significant differences in
858 *post-hoc* Tukey test (ANOVA $p<0.05$).

859

860 **Figure 6. Ethylene further represses root growth in WRKY26ox and WRKY45ox lines.**

861 A,B) RT-qPCR analysis in 4-day-old seedlings grown in unshaded light and then treated with
862 shade and/or 1-aminocyclopropane-1-carboxylic acid (ACC) (2 μ M) as indicated; C) Primary
863 root length in cm of unshaded and shaded seedlings treated with the indicated concentrations of
864 ACC. The phenotypic measurement represents 4-day-old seedlings grown in unshaded light
865 and then transferred to the shade or mock-treated for 3 days. Values represent means \pm SE of 3
866 biological replicates (composed of 10-20 seedlings each) for A and B, and 9-15 seedlings for C.
867 Dots represent individual data points. Different letters denote significant differences in *post-hoc*
868 Tukey test (ANOVA $p<0.05$).

869

870

871 **REFERENCES**

872

873

874 **Aken OV, Zhang B, Law S, Narsai R, Whelan J** (2013) AtWRKY40 and AtWRKY63 Modulate the
875 Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins.
876 *Plant Physiol* **162**: 254–271

877 **Antoni R, Rodriguez L, Gonzalez-Guzman M, Pizzio GA, Rodriguez PL** (2011) News on ABA
878 transport, protein degradation, and ABFs/WRKYS in ABA signaling. *Curr Opin Plant Biol* **14**: 547–
879 553

880 **Bakshi M, Oelmüller R** (2014) WRKY transcription factors. *Plant Signal Behav* **9**: e27700

881 **Ballaré CL** (2014) Light Regulation of Plant Defense. *Annu Rev Plant Biol* **65**: 335–363

882 **Ballaré CL, Mazza CA, Austin AT, Pierik R** (2012) Canopy Light and Plant Health. *Plant Physiol* **160**:
883 145–155

884 **Birkenbihl RP, Kracher B, Roccaro M, Somssich IE** (2017) Induced Genome-Wide Binding of Three
885 *Arabidopsis* WRKY Transcription Factors during Early MAMP-Triggered Immunity. *Plant Cell* **29**:
886 20–38

887 **Birkenbihl RP, Kracher B, Ross A, Kramer K, Finkemeier I, Somssich IE** (2018) Principles and
888 characteristics of the *Arabidopsis* WRKY regulatory network during early MAMP-triggered
889 immunity. *Plant J* **96**: 487–502

890 **Bjornson M, Pimprikar P, Nürnberg T, Zipfel C** (2021) The transcriptional landscape of
891 *Arabidopsis thaliana* pattern-triggered immunity. *Nat Plants* **7**: 579–586

892 **Burko Y, Gaillochet C, Seluzicki A, Chory J, Busch W** (2020) Local HY5 Activity Mediates
893 Hypocotyl Growth and Shoot-to-Root Communication. *Plant Commun* **1**: 100078

894 **Casal JJ** (2012) Shade Avoidance. *Arabidopsis Book* **2012**: e0157

895 **Chen L, Xiang S, Chen Y, Li D, Yu D** (2017) *Arabidopsis WRKY45* Interacts with the DELLA Protein
896 RGL1 to Positively Regulate Age-Triggered Leaf Senescence. *Mol Plant* **10**: 1174–1189

897 **Chen X, Li C, Wang H, Guo Z** (2019) WRKY transcription factors: evolution, binding, and action.
898 *Phytopathology Res* **1**: 13

899 **Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X** (2016) Shoot-to-Root Mobile Transcription Factor
900 HY5 Coordinates Plant Carbon and Nitrogen Acquisition. *Curr Biol* **26**: 640–646

901 **Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu J-Q, Chen Z** (2013) Protein–Protein Interactions in the
902 Regulation of WRKY Transcription Factors. *Mol Plant* **6**: 287–300

903 **Chory J** (2010) Light signal transduction: an infinite spectrum of possibilities. *Plant J* **61**: 982–991

904 **Chua G, Morris QD, Sopko R, Robinson MD, Ryan O, Chan ET, Frey BJ, Andrews BJ, Boone C,
905 Hughes TR** (2006) Identifying transcription factor functions and targets by phenotypic activation.
906 *Proc National Acad Sci* **103**: 12045–12050

907 **Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE** (2008) Studies on DNA-binding selectivity of
908 WRKY transcription factors lend structural clues into WRKY-domain function. *Plant Mol Biol* **68**:
909 81–92

910 **Clough SJ, Bent AF** (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation
911 of *Arabidopsis thaliana*. *Plant J* **16**: 735–743

912 **Courbier S, Pierik R** (2019) Canopy light quality modulates stress responses in plants. *Iscience* **22**: 441–
913 452

914 **Das D, Onge KRSt, Voesenek LACJ, Pierik R, Sasidharan R** (2016) Ethylene- and Shade-Induced
915 Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators. *Plant Physiol* **172**:
916 718–733

917 **Devaiah BN, Karthikeyan AS, Raghothama KG** (2007) WRKY75 Transcription Factor Is a Modulator
918 of Phosphate Acquisition and Root Development in *Arabidopsis*. *Plant Physiol* **143**: 1789–1801

919 **Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR**
920 (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**: 15–21

921 **Dolgikh VA, Pukhovaya EM, Zemlyanskaya EV** (2019) Shaping Ethylene Response: The Role of
922 EIN3/EIL1 Transcription Factors. *Front Plant Sci* **10**: 1030

923 **Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J,**
924 **Kaul R, et al** (2012) An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**:
925 57–74

926 **Eulgem T, Rushton PJ, Robatzek S, Somssich IE** (2000) The WRKY superfamily of plant transcription
927 factors. *Trends Plant Sci* **5**: 199–206

928 **Galvão VC, Fankhauser C** (2015) Sensing the light environment in plants: photoreceptors and early
929 signaling steps. *Curr Opin Neurobiol* **34**: 46–53

930 **Garcia-Hernandez M, Berardini T, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M,**
931 **Miller N, Mueller LA, et al** (2002) TAIR: a resource for integrated *Arabidopsis* data. *Funct Integr*
932 *Genomic* **2**: 239–253

933 **Geilen K, Böhmer M** (2015) Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic
934 acid in *Arabidopsis thaliana*. *Sci Rep-uk* **5**: 13369

935 **Gelderken K van, Kang C, Li P, Pierik R** (2021) Regulation of Lateral Root Development by Shoot-
936 Sensed Far-Red Light via HY5 Is Nitrate-Dependent and Involves the NRT2.1 Nitrate Transporter.
937 *Front Plant Sci* **12**: 660870

938 **Gelderken K van, Kang C, Paalman R, Keuskamp DH, Hayes S, Pierik R** (2018) Far-red Light
939 Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor.
940 *Plant Cell* **30**: tpc.00771.2017

941 **Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H** (2017) A Tripartite Amplification Loop Involving
942 the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf
943 Senescence. *Plant Cell* **29**: 2854–2870

944 **Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK**
945 (2010) Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory
946 Elements Required for Macrophage and B Cell Identities. *Mol Cell* **38**: 576–589

947 **Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla**
948 **JM, Solano R, Trevisan M, Pradervand S, et al** (2012) Phytochrome interacting factors 4 and 5
949 control seedling growth in changing light conditions by directly controlling auxin signaling. *Plant J*
950 **71**: 699–711

951 **Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C** (2009) Inhibition of the shade
952 avoidance response by formation of non-DNA binding bHLH heterodimers. *Embo J* **28**: 3893–3902

953 **Hou S, Wang X, Chen D, Yang X, Wang M, Turrà D, Pietro AD, Zhang W** (2014) The Secreted
954 Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. *Plos Pathog* **10**: e1004331

955 **Kaiserli E, Páldi K, O'Donnell L, Batalov O, Pedmale UV, Nusinow DA, Kay SA, Chory J** (2015)
956 Integration of Light and Photoperiodic Signaling in Transcriptional Nuclear Foci. *Dev Cell* **35**: 311–
957 321

958 **Karimi M, Bleys A, Vanderhaeghen R, Hilson P** (2007) Building Blocks for Plant Gene Assembly.
959 *Plant Physiol* **145**: 1183–1191

960 **Karkute SG, Gujjar RS, Rai A, Akhtar M, Singh M, Singh B** (2018) Genome wide expression
961 analysis of WRKY genes in tomato (*Solanum lycopersicum*) under drought stress. *Plant Gene* **13**: 8–
962 17

963 **Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL** (2011) Cryptochrome 1 and
964 phytochrome B control shade-avoidance responses in *Arabidopsis* via partially independent
965 hormonal cascades. *Plant J* **67**: 195–207

966 **Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R** (2011) Blue-light-
967 mediated shade avoidance requires combined auxin and brassinosteroid action in *Arabidopsis*
968 seedlings. *Plant J* **67**: 208–217

969 **Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I, Fankhauser C** (2016) Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth. *Plant Cell* **28**: 2889–2904

972 **Koyama T** (2014) The roles of ethylene and transcription factors in the regulation of onset of leaf
973 senescence. *Front Plant Sci* **5**: 650

974 **Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F** (2013) A Regulatory
975 Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates
976 in the Progression of Leaf Senescence. *Plant Physiol* **162**: 991–1005

977 **Kumar S, Stecher G, Li M, Knyaz C, Tamura K** (2018) MEGA X: Molecular Evolutionary Genetics
978 Analysis across Computing Platforms. *Mol Biol Evol* **35**: 1547–1549

979 **Lakshmanan V, Kitto SL, Caplan JL, Hsueh Y-H, Kearns DB, Wu Y-S, Bais HP** (2012) Microbe-
980 Associated Molecular Patterns-Triggered Root Responses Mediate Beneficial Rhizobacterial
981 Recruitment in *Arabidopsis*. *Plant Physiol* **160**: 1642–1661

982 **Leone M, Keller MM, Cerrudo I, Ballaré CL** (2014) To grow or defend? Low red : far-red ratios
983 reduce jasmonate sensitivity in *Arabidopsis* seedlings by promoting DELLA degradation and
984 increasing JAZ10 stability. *New Phytol* **204**: 355–367

985 **Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung H-S, et al** (2012) Linking photoreceptor excitation to changes in plant
986 architecture. *Gene Dev* **26**: 785–790

988 **Li R, Zhang J, Li J, Zhou G, Wang Q, Bian W, Erb M, Lou Y** (2015) Prioritizing plant defence over
989 growth through WRKY regulation facilitates infestation by non-target herbivores. *Elife* **4**: e04805

990 **Li S, Fu Q, Chen L, Huang W, Yu D** (2011) *Arabidopsis thaliana* WRKY25, WRKY26, and WRKY33
991 coordinate induction of plant thermotolerance. *Planta* **233**: 1237–1252

992 **Li Z, Peng J, Wen X, Guo H** (2013) ETHYLENE-INSENSITIVE3 Is a Senescence-Associated Gene
993 That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in
994 Arabidopsis. *Plant Cell* **25**: 3311–3328

995 **Lobet G, Pages L, Draye X** (2011) A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of
996 Root System Architecture. *Plant Physiol* **157**: 29–39

997 **Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S** (2011) Phosphorylation of a WRKY Transcription
998 Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. *Plant
999 Cell Online* **23**: 1639–1653

1000 **Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD** (2020)
1001 PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions
1002 and extensive API. *Nucleic Acids Res* **49**: gkaa1106

1003 **Moreno JE, Tao Y, Chory J, Ballaré CL** (2009) Ecological modulation of plant defense via
1004 phytochrome control of jasmonate sensitivity. *Proc National Acad Sci* **106**: 4935–4940

1005 **Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, Lewsey MG, García-
1006 Casado G, Fernández-Barbero G, Ecker JR, Solano R** (2020) The JA-pathway MYC transcription
1007 factors regulate photomorphogenic responses by targeting HY5 gene expression. *Plant J* **102**: 138–152

1008 **Pacín M, Semmoloni M, Legris M, Finlayson SA, Casal JJ** (2016) Convergence of CONSTITUTIVE
1009 PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during
1010 shade avoidance. *New Phytol* **211**: 967–979

1011 **Paik I, Kathare PK, Kim J-I, Huq E** (2017) Expanding Roles of PIFs in Signal Integration from
1012 Multiple Processes. *Mol Plant* **10**: 1035–1046

1013 **Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D** (2003) Control of
1014 leaf morphogenesis by microRNAs. *Nature* **425**: 257–263

1015 **Pandey SP, Somssich IE** (2009) The Role of WRKY Transcription Factors in Plant Immunity. *Plant
1016 Physiol* **150**: 1648–1655

1017 **Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridevi P, Nito K, Nery
1018 JR, et al** (2016) Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue
1019 Light. *Cell* **164**: 233–245

1020 **Pierik R, Djakovic-Petrovic T, Keuskamp DH, Wit M de, Voesenek LACJ** (2009) Auxin and
1021 Ethylene Regulate Elongation Responses to Neighbor Proximity Signals Independent of Gibberellin
1022 and DELLA Proteins in Arabidopsis. *Plant Physiol* **149**: 1701–1712

1023 **Prelich G** (2012) Gene Overexpression: Uses, Mechanisms, and Interpretation. *Genetics* **190**: 841–854

1024 **Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ** (2015) The evolution of WRKY
1025 transcription factors. *Bmc Plant Biol* **15**: 66

1026 **Rosado D, Gramegna G, Cruz A, Lira BS, Freschi L, Setta N de, Rossi M** (2016) Phytochrome
1027 Interacting Factors (PIFs) in *Solanum lycopersicum*: Diversity, Evolutionary History and Expression
1028 Profiling during Different Developmental Processes. *Plos One* **11**: e0165929

1029 **Rushton PJ, Somssich IE, Ringler P, Shen QJ** (2010) WRKY transcription factors. *Trends Plant Sci*
1030 **15**: 247–258

1031 **Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E** (2007) Ethylene
1032 Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin
1033 Distribution. *Plant Cell* **19**: 2197–2212

1034 **Sakuraba Y, Jeong J, Kang M-Y, Kim J, Paek N-C, Choi G** (2014) Phytochrome-interacting
1035 transcription factors PIF4 and PIF5 induce leaf senescence in *Arabidopsis*. *Nat Commun* **5**: 4636

1036 **Salisbury FJ, Hall A, Grierson CS, Halliday KJ** (2007) Phytochrome coordinates *Arabidopsis* shoot
1037 and root development. *Plant J* **50**: 429–438

1038 **Skibbe M, Qu N, Galis I, Baldwin IT** (2008) Induced Plant Defenses in the Natural Environment:
1039 *Nicotiana attenuata* WRKY3 and WRKY6 Coordinate Responses to Herbivory. *Plant Cell* **20**: 1984–
1040 2000

1041 **Smith H** (1982) Light Quality, Photoperception, and Plant Strategy. *Ann Rev Plant Physio* **33**: 481–518

1042 **Smith H** (2000) Phytochromes and light signal perception by plants—an emerging synthesis. *Nature* **407**:
1043 585–591

1044 **Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ,
1045 et al** (2008) Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for
1046 Shade Avoidance in Plants. *Cell* **133**: 164–176

1047 **Teufel AI, Liu L, Liberles DA** (2016) Models for gene duplication when dosage balance works as a
1048 transition state to subsequent neo- or sub-functionalization. *Bmc Evol Biol* **16**: 45

1049 **Thomma BPHJ, Eggermont K, Tierens KFM-J, Broekaert WF** (1999) Requirement of Functional
1050 Ethylene-Insensitive 2Gene for Efficient Resistance of *Arabidopsis* to Infection by *Botrytis cinerea*.
1051 *Plant Physiol* **121**: 1093–1101

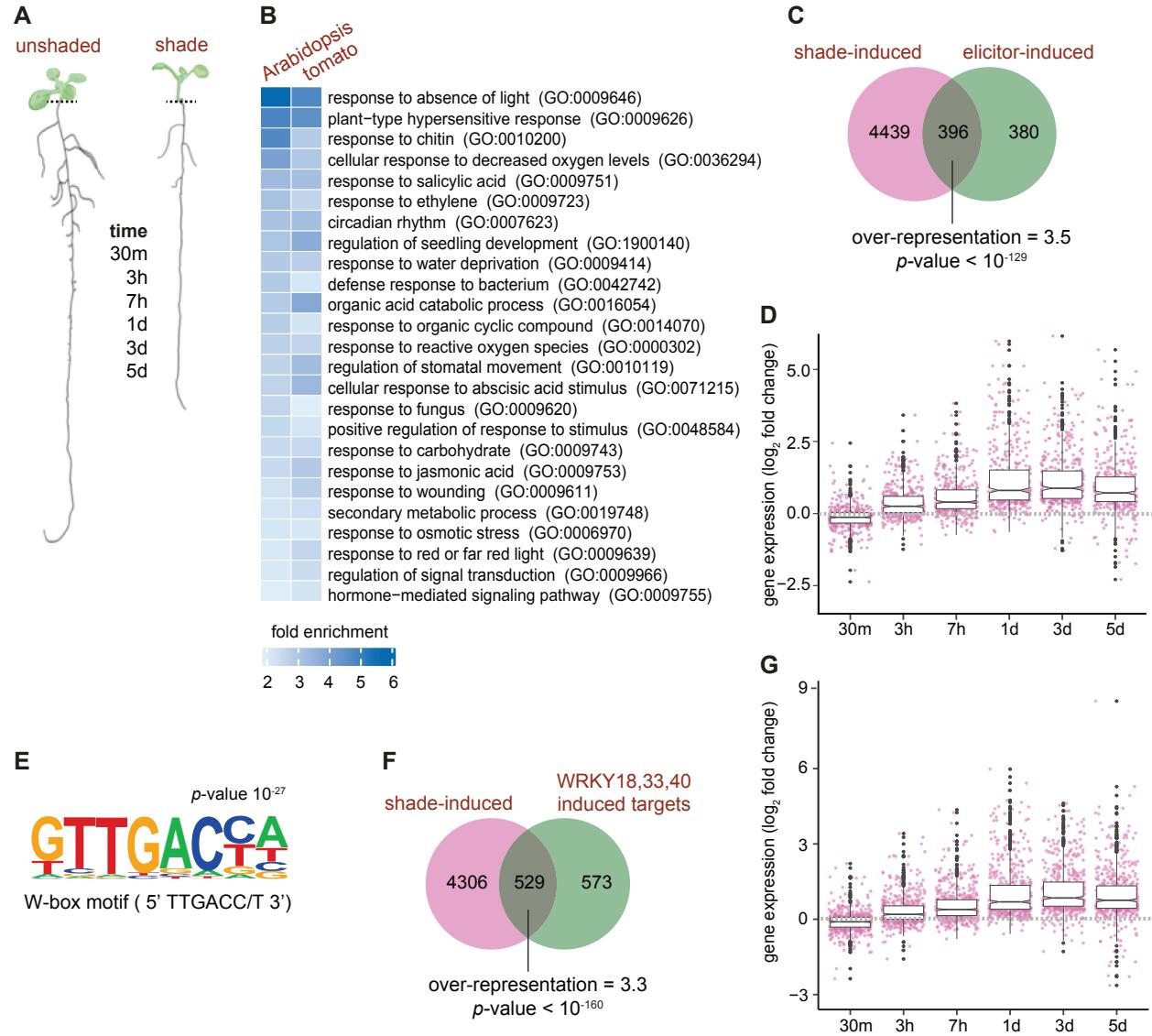
1052 **Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL,
1053 Pachter L** (2012) Differential gene and transcript expression analysis of RNA-seq experiments with
1054 TopHat and Cufflinks. *Nat Protoc* **7**: 562–578

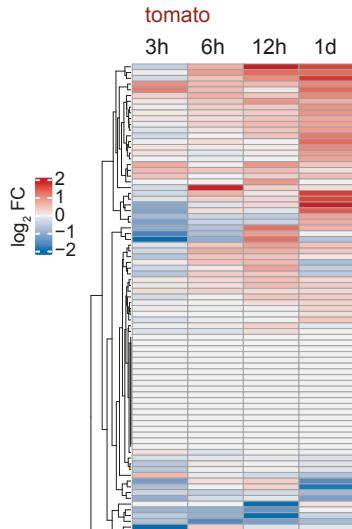
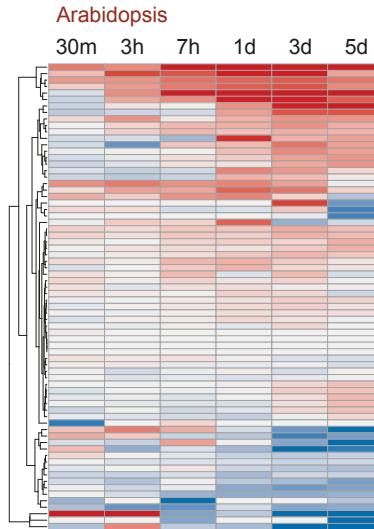
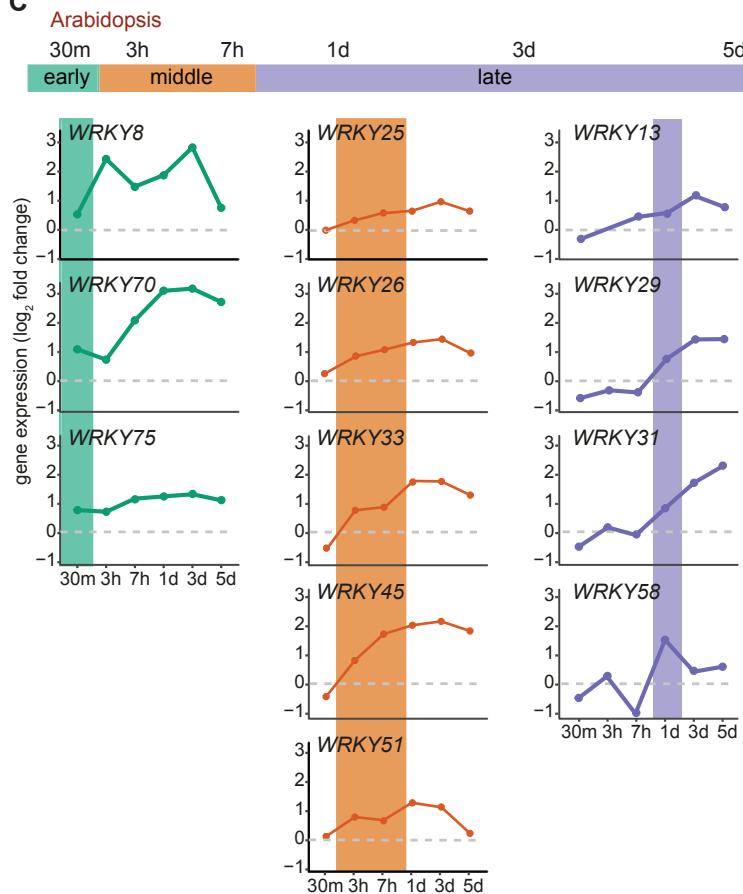
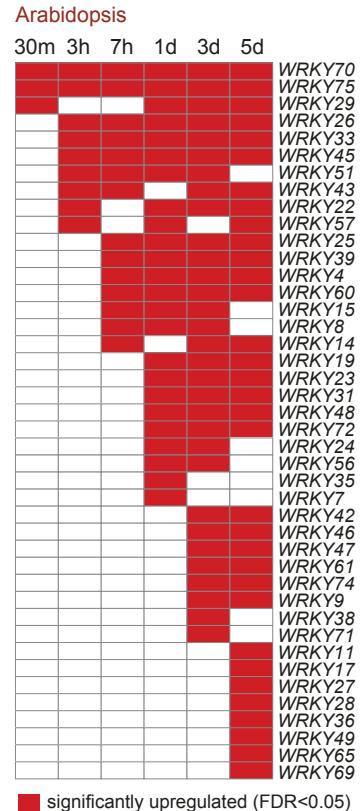
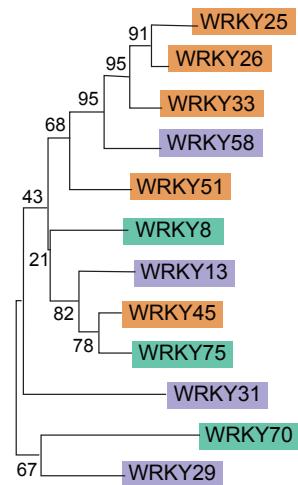
1055 **Viana VE, Busanello C, Maia LC da, Pegoraro C, Oliveira AC de** (2018) Activation of rice WRKY
1056 transcription factors: an army of stress fighting soldiers? *Curr Opin Plant Biol* **45**: 268–275

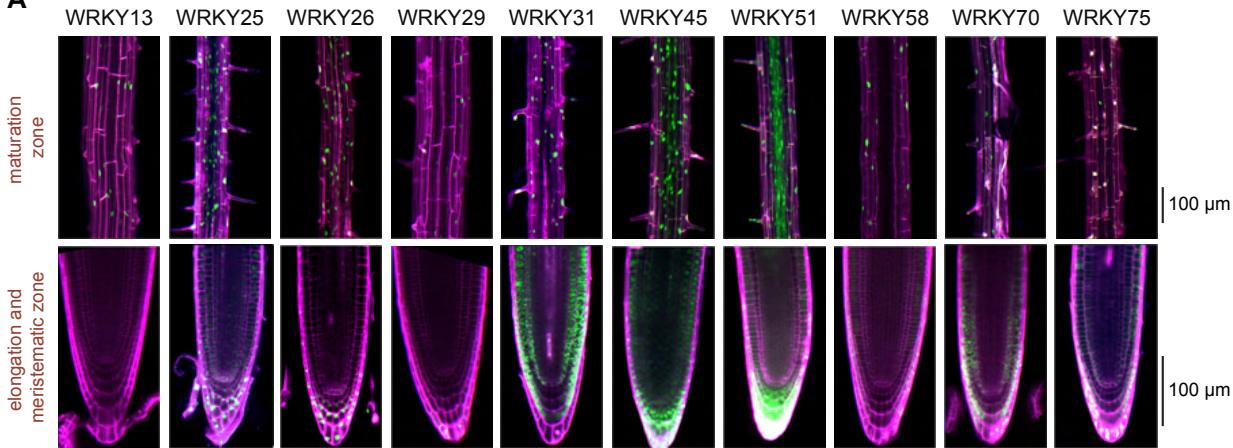
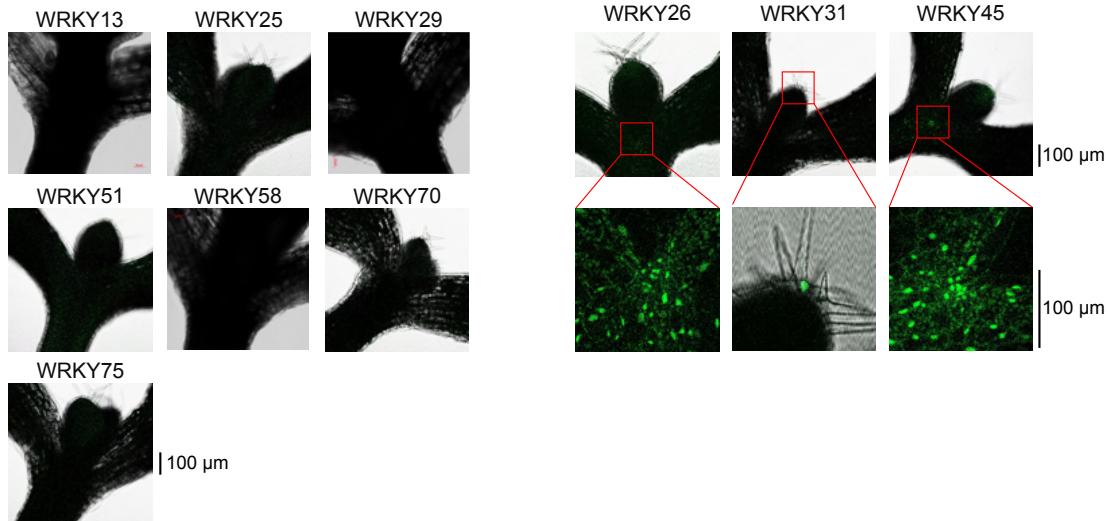
1057 **Wang H, Xu Q, Kong Y-H, Chen Y, Duan J-Y, Wu W-H, Chen Y-F** (2014) *Arabidopsis* WRKY45
1058 Transcription Factor Activates PHOSPHATE TRANSPORTER1;1 Expression in Response to
1059 Phosphate Starvation. *Plant Physiol* **164**: 2020–2029

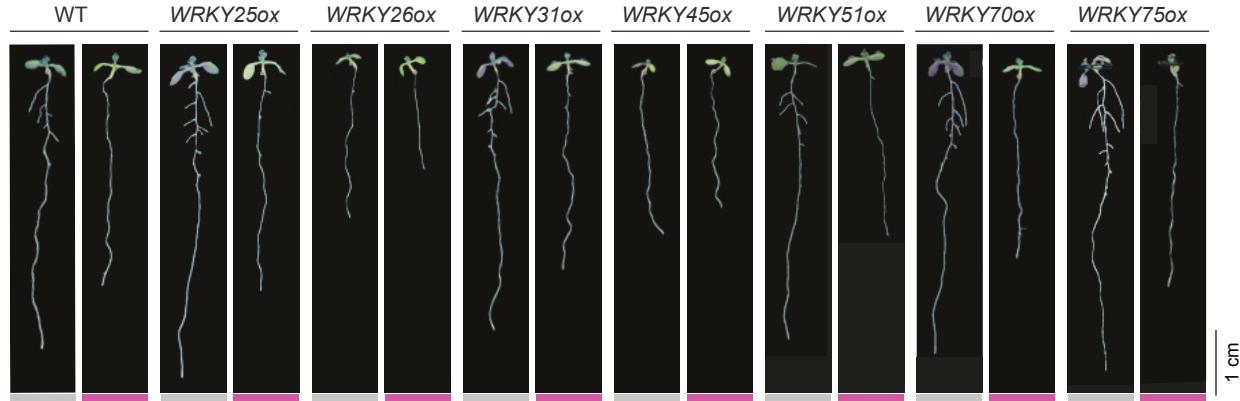
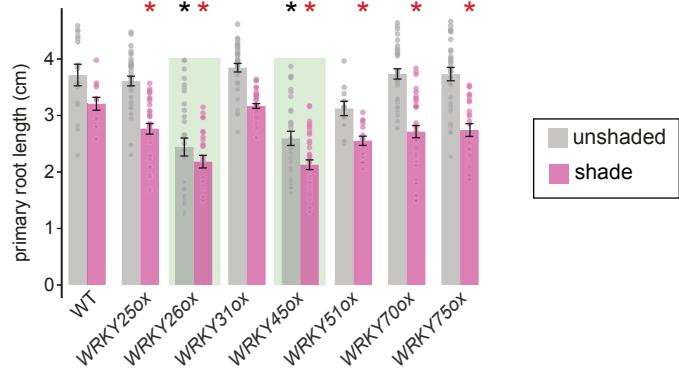
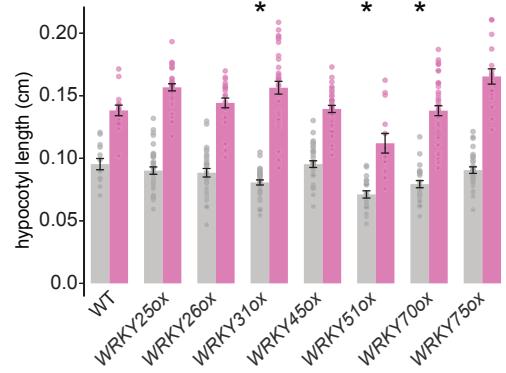
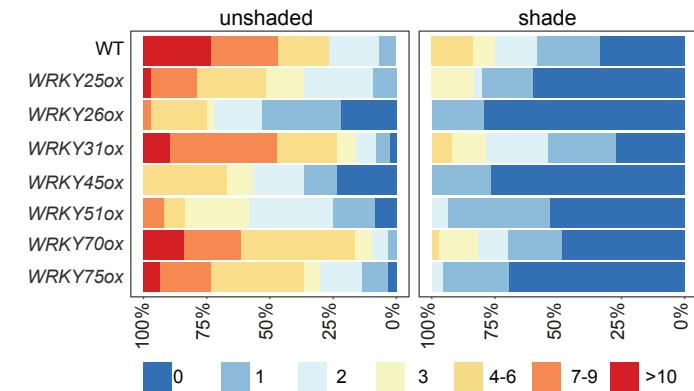
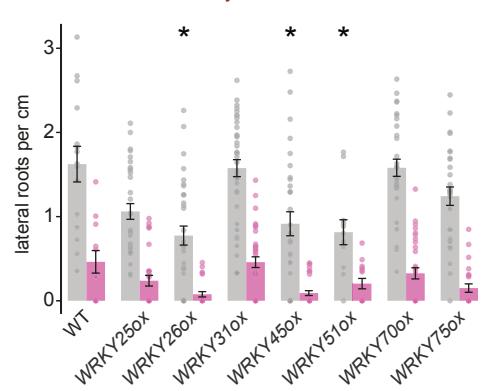
1060 **Wit M de, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM, Reinen E, Martínez-Cerón**
1061 **C, Fankhauser C, Pierik R** (2016) Integration of Phytochrome and Cryptochrome Signals
1062 Determines Plant Growth during Competition for Light. *Curr Biol* **26**: 3320–3326

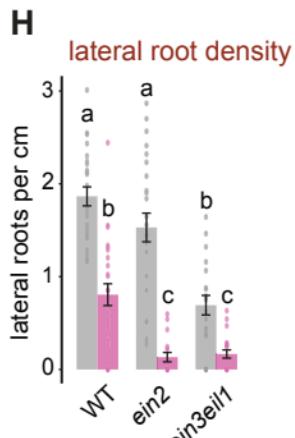
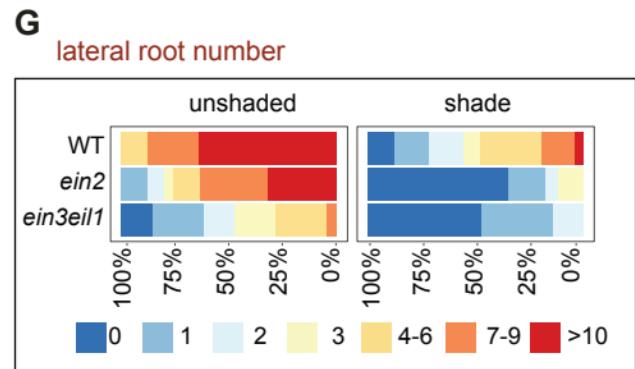
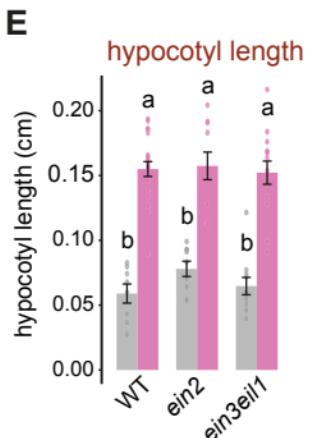
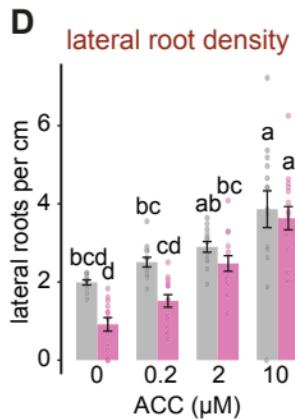
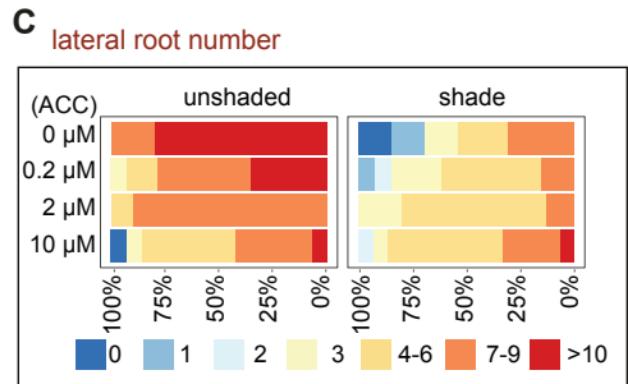
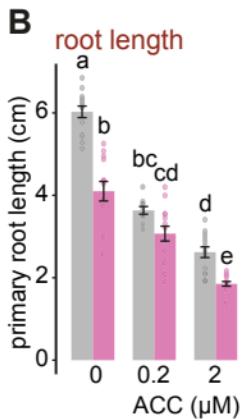
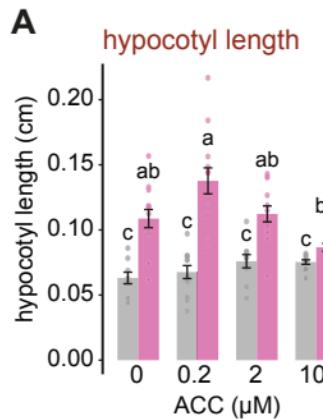
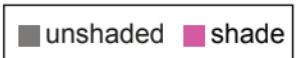
1063 **Zhang L, Chen L, Yu D** (2018) Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect
1064 Flowering. *Plant Physiol* **176**: 790–803


1065 **Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, Shen QJ** (2015) Three WRKY transcription factors
1066 additively repress abscisic acid and gibberellin signaling in aleurone cells. *Plant Sci* **236**: 214–222

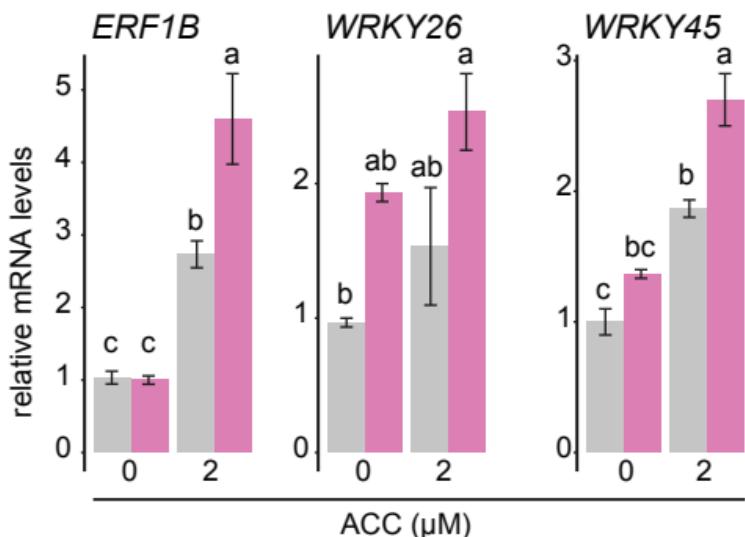





1067 **Zhou X, Jiang Y, Yu D** (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in
1068 *Arabidopsis*. *Mol Cells* **31**: 303–313



1069

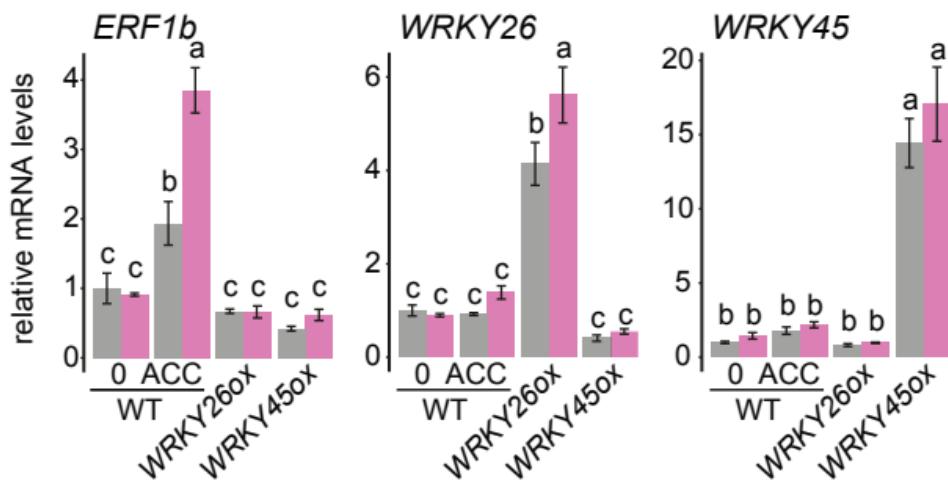





1070









1071

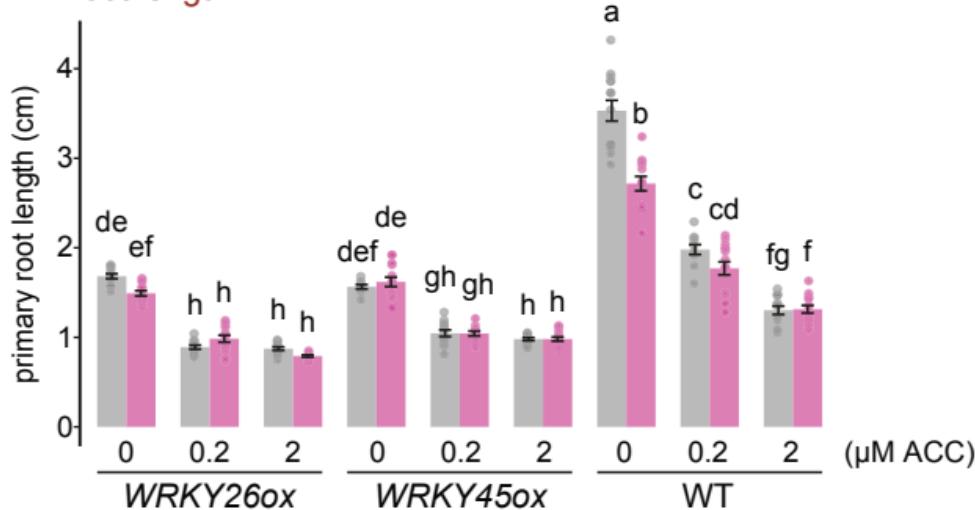
A**C****B****D** **Arabidopsis**


A**B**

A**B root length****C hypocotyl length****D lateral root number****E lateral root density**



unshaded shade


A roots

B whole seedlings

C root length

Parsed Citations

Aken OV, Zhang B, Law S, Narsai R, Whelan J (2013) AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins. *Plant Physiol* 162: 254–271
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Antoni R, Rodriguez L, Gonzalez-Guzman M, Pizzio GA, Rodriguez PL (2011) News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling. *Curr Opin Plant Biol* 14: 547–553
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bakshi M, Oelmüller R (2014) WRKY transcription factors. *Plant Signal Behav* 9: e27700
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ballaré CL (2014) Light Regulation of Plant Defense. *Annu Rev Plant Biol* 65: 335–363
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ballaré CL, Mazza CA, Austin AT, Pierik R (2012) Canopy Light and Plant Health. *Plant Physiol* 160: 145–155
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Birkenbihl RP, Kracher B, Roccaro M, Somssich IE (2017) Induced Genome-Wide Binding of Three *Arabidopsis* WRKY Transcription Factors during Early MAMP-Triggered Immunity. *Plant Cell* 29: 20–38
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Birkenbihl RP, Kracher B, Ross A, Kramer K, Finkemeier I, Somssich IE (2018) Principles and characteristics of the *Arabidopsis* WRKY regulatory network during early MAMP-triggered immunity. *Plant J* 96: 487–502
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bjornson M, Pimprikar P, Nürnberg T, Zipfel C (2021) The transcriptional landscape of *Arabidopsis thaliana* pattern-triggered immunity. *Nat Plants* 7: 579–586
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Burko Y, Gaillochet C, Seluzicki A, Chory J, Busch W (2020) Local HY5 Activity Mediates Hypocotyl Growth and Shoot-to-Root Communication. *Plant Commun* 1: 100078
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Casal JJ (2012) Shade Avoidance. *Arabidopsis Book* 2012: e0157
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen L, Xiang S, Chen Y, Li D, Yu D (2017) *Arabidopsis* WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence. *Mol Plant* 10: 1174–1189
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen X, Li C, Wang H, Guo Z (2019) WRKY transcription factors: evolution, binding, and action. *Phytopathology Res* 1: 13
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition. *Curr Biol* 26: 640–646
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu J-Q, Chen Z (2013) Protein–Protein Interactions in the Regulation of WRKY Transcription Factors. *Mol Plant* 6: 287–300
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chory J (2010) Light signal transduction: an infinite spectrum of possibilities. *Plant J* 61: 982–991
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chua G, Morris QD, Sopko R, Robinson MD, Ryan O, Chan ET, Frey BJ, Andrews BJ, Boone C, Hughes TR (2006) Identifying transcription factor functions and targets by phenotypic activation. *Proc National Acad Sci* 103: 12045–12050
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. *Plant Mol Biol* 68: 81–92
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Clough SJ, Bent AF (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *Plant J* 16: 735–743
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Courbier S, Pierik R (2019) Canopy light quality modulates stress responses in plants. *Iscience* 22: 441–452
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Das D, Onge KRSt, Voesenek LACJ, Pierik R, Sasidharan R (2016) Ethylene- and Shade-Induced Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators. *Plant Physiol* 172: 718–733

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 Transcription Factor Is a Modulator of Phosphate Acquisition and Root Development in *Arabidopsis*. *Plant Physiol* 143: 1789–1801

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29: 15–21

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dolgikh VA, Pukhovaya EM, Zemlyanskaya EV (2019) Shaping Ethylene Response: The Role of EIN3/EIL1 Transcription Factors. *Front Plant Sci* 10: 1030

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Fritze S, Harrow J, Kaul R, et al (2012) An integrated encyclopedia of DNA elements in the human genome. *Nature* 489: 57–74

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. *Trends Plant Sci* 5: 199–206

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Galvão VC, Fankhauser C (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. *Curr Opin Neurobiol* 34: 46–53

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Garcia-Hernandez M, Berardini T, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, et al (2002) TAIR: a resource for integrated *Arabidopsis* data. *Funct Integr Genomic* 2: 239–253

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Geilen K, Böhmer M (2015) Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in *Arabidopsis thaliana*. *Sci Rep-uk* 5: 13369

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gelderken K van, Kang C, Li P, Pierik R (2021) Regulation of Lateral Root Development by Shoot-Sensed Far-Red Light via HY5 Is Nitrate-Dependent and Involves the NRT2.1 Nitrate Transporter. *Front Plant Sci* 12: 660870

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gelderken K van, Kang C, Paalman R, Keuskamp DH, Hayes S, Pierik R (2018) Far-red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. *Plant Cell* 30: tpc.00771.2017

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H (2017) A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence. *Plant Cell* 29: 2854–2870

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Mol Cell* 38: 576–589

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, et al (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. *Plant J* 71: 699–711

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hornitschek P, Lorrain S, Zoete V, Michelin O, Fankhauser C (2009) Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. *Embo J* 28: 3893–3902

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hou S, Wang X, Chen D, Yang X, Wang M, Turrà D, Pietro AD, Zhang W (2014) The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. *Plos Pathog* 10: e1004331

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kaiserli E, Pálvi K, O'Donnell L, Batalov O, Pedmale UV, Nusinow DA, Kay SA, Chory J (2015) Integration of Light and Photoperiodic Signaling in Transcriptional Nuclear Foci. *Dev Cell* 35: 311–321

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building Blocks for Plant Gene Assembly. *Plant Physiol* 145: 1183–1191

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karkute SG, Gujjar RS, Rai A, Akhtar M, Singh M, Singh B (2018) Genome wide expression analysis of WRKY genes in tomato (*Solanum lycopersicum*) under drought stress. *Plant Gene* 13: 8–17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in *Arabidopsis* via partially independent hormonal cascades. *Plant J* 67: 195–207

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R (2011) Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in *Arabidopsis* seedlings. *Plant J* 67: 208–217

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I, Fankhauser C (2016) Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth. *Plant Cell* 28: 2889–2904

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Koyama T (2014) The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. *Front Plant Sci* 5: 650

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F (2013) A Regulatory Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates in the Progression of Leaf Senescence. *Plant Physiol* 162: 991–1005

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGAX: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol Biol Evol* 35: 1547–1549

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lakshmanan V, Kitto SL, Caplan JL, Hsueh Y-H, Kearns DB, Wu Y-S, Bais HP (2012) Microbe-Associated Molecular Patterns-Triggered Root Responses Mediate Beneficial Rhizobacterial Recruitment in *Arabidopsis*. *Plant Physiol* 160: 1642–1661

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Leone M, Keller MM, Cerrudo I, Ballaré CL (2014) To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in *Arabidopsis* seedlings by promoting DELLA degradation and increasing JAZ10 stability. *New Phytol* 204: 355–367

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung H-S, et al (2012) Linking photoreceptor excitation to changes in plant architecture. *Gene Dev* 26: 785–790

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li R, Zhang J, Li J, Zhou G, Wang Q, Bian W, Erb M, Lou Y (2015) Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. *Elife* 4: e04805

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li S, Fu Q, Chen L, Huang W, Yu D (2011) *Arabidopsis thaliana* WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. *Planta* 233: 1237–1252

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li Z, Peng J, Wen X, Guo H (2013) ETHYLENE-INSENSITIVE3 Is a Senescence-Associated Gene That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in *Arabidopsis*. *Plant Cell* 25: 3311–3328

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lobet G, Pagès L, Draye X (2011) A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture. *Plant Physiol* 157: 29–39

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in *Arabidopsis*. *Plant Cell Online* 23: 1639–1653

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD (2020) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. *Nucleic Acids Res* 49: gkaa1106-

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. *Proc National Acad Sci* 106: 4935–4940

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, Lewsey MG, García-Casado G, Fernández-Barbero G, Ecker JR, Solano R (2020) The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. *Plant J* 102: 138–152

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pacín M, Semmoloni M, Legris M, Finlayson SA, Casal JJ (2016) Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. *New Phytol* 211: 967–979

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Paik I, Kathare PK, Kim J-I, Huq E (2017) Expanding Roles of PIFs in Signal Integration from Multiple Processes. *Mol Plant* 10: 1035–1046

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. *Nature* 425: 257–263

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pandey SP, Somssich IE (2009) The Role of WRKY Transcription Factors in Plant Immunity. *Plant Physiol* 150: 1648–1655

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridevi P, Nito K, Nery JR, et al (2016) Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. *Cell* 164: 233–245

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pierik R, Djakovic-Petrovic T, Keuskamp DH, Wit M de, Voesenek LACJ (2009) Auxin and Ethylene Regulate Elongation Responses to Neighbor Proximity Signals Independent of Gibberellin and DELLA Proteins in *Arabidopsis*. *Plant Physiol* 149: 1701–1712

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Prelich G (2012) Gene Overexpression: Uses, Mechanisms, and Interpretation. *Genetics* 190: 841–854

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ (2015) The evolution of WRKY transcription factors. *Bmc Plant Biol* 15: 66

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rosado D, Gramegna G, Cruz A, Lira BS, Freschi L, Setta N de, Rossi M (2016) Phytochrome Interacting Factors (PIFs) in *Solanum lycopersicum*: Diversity, Evolutionary History and Expression Profiling during Different Developmental Processes. *Plos One* 11: e0165929

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. *Trends Plant Sci* 15: 247–258

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin Distribution. *Plant Cell* 19: 2197–2212

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sakuraba Y, Jeong J, Kang M-Y, Kim J, Paek N-C, Choi G (2014) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in *Arabidopsis*. *Nat Commun* 5: 4636

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salisbury FJ, Hall A, Grierson CS, Halliday KJ (2007) Phytochrome coordinates *Arabidopsis* shoot and root development. *Plant J* 50: 429–438

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced Plant Defenses in the Natural Environment: *Nicotiana attenuata* WRKY3 and WRKY6 Coordinate Responses to Herbivory. *Plant Cell* 20: 1984–2000

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith H (1982) Light Quality, Photoperception, and Plant Strategy. *Ann Rev Plant Physio* 33: 481–518

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. *Nature* 407: 585–591

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, et al (2008) Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. *Cell* 133: 164–176

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Teufel AI, Liu L, Liberles DA (2016) Models for gene duplication when dosage balance works as a transition state to subsequent neo- or sub-functionalization. *Bmc Evol Biol* 16: 45

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thomma BPHJ, Eggermont K, Tierens KFM-J, Broekaert WF (1999) Requirement of Functional Ethylene-Insensitive 2Gene for Efficient Resistance of *Arabidopsis* to Infection by *Botrytis cinerea*. *Plant Physiol* 121: 1093–1101

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat Protoc* 7: 562–578

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Viana VE, Busanello C, Maia LC da, Pegoraro C, Oliveira AC de (2018) Activation of rice WRKY transcription factors: an army of stress fighting soldiers? *Curr Opin Plant Biol* 45: 268–275

Wang H, Xu Q, Kong Y-H, Chen Y, Duan J-Y, Wu W-H, Chen Y-F (2014) *Arabidopsis WRKY45 Transcription Factor Activates PHOSPHATE TRANSPORTER1;1 Expression in Response to Phosphate Starvation*. *Plant Physiol* 164: 2020–2029

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wit M de, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM, Reinen E, Martínez-Cerón C, Fankhauser C, Pierik R (2016) *Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light*. *Curr Biol* 26: 3320–3326

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang L, Chen L, Yu D (2018) *Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering*. *Plant Physiol* 176: 790–803

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, Shen QJ (2015) *Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells*. *Plant Sci* 236: 214–222

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhou X, Jiang Y, Yu D (2011) *WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis*. *Mol Cells* 31: 303–313

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)