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Recent progress in the application of color centers to nanoscale spin sensing makes the combined use of noise
spectroscopy and scanning probe imaging an attractive route for the characterization of arbitrary material systems.
Unfortunately, the traditional approach to characterizing the environmental magnetic field fluctuations from the
measured probe signal typically requires the experimenter’s input, thus complicating the implementation of automated
imaging protocols based on spectrally resolved noise. Here, we probe the response of color centers in diamond in the
presence of externally engineered random magnetic signals, and implement a deep neural network to methodically
extract information on their associated spectral densities. Building on a long sequence of successive measurements
under different types of stimuli, we show that our network manages to efficiently reconstruct the spectral density of
the underlying fluctuating magnetic field with good fidelity under a broad set of conditions and with only a minimal
measured data set, even in the presence of substantial experimental noise. These proof-of-principle results create
opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.

I. INTRODUCTION

The ability to controllably engineer, manipulate, and
probe near-surface color centers is driving a broad effort
aimed at developing alternative nanoscale sensing and
imaging platforms that leverage the color center
susceptibility to changes in the local environment'. A
paradigmatic example is the negatively-charged nitrogen-
vacancy (NV) center in diamond, a paramagnetic point
defect formed by a substitutional nitrogen impurity
adjacent to a vacant lattice site’. Shallow NVs produced
via low-energy ion implantation are now being routinely
exploited as local probes to monitor magnetic’, electric*”,
and strain fields®’, as well as pHg, temperature9, and
thermal conductivity'’. Particularly relevant herein are
applications to monitoring random magnetic or electric
signals produced, for example, by small ensembles of
fluctuating electron'' or nuclear spins'’, or by thermally
diffusing carriers’’. While these measurements typically
rely on the integrated color center response to the external
random field, critical information on the local sample
composition and dynamics can be derived from the noise
spectral density S(w) characterizing the environment'*"”.
Extracting S(w) from the measured signal, however, is not
straightforward as the process typically involves a delicate
numerical deconvolution prone to error. This complication
becomes a serious hurdle in situations where S(w) must be

repeatedly calculated, as in applications articulating noise
spectroscopy and scanning imaging microscopy.

Recent work suggests this problem can be largely
mitigated through the use of deep-learning algorithms
explicitly adapted from advances in natural language
processing, computer vision, and structured data analysis
for applications in quantum physics and engineering'®"’.
Relevant examples include the use of deep neural networks

(DNN) to improve quantum control operations'*>’,

facilitate the processing of magnetic resonance data® >,
and expose hidden patterns in scanning microscopy
images®. In particular, a recent theoretical study”’ shows
how DNNs can be trained to gather information on the
random environment affecting a spin qubit, although the
interplay between network performance, experimental
uncertainty, and practical constraints (such as accessible
noise bandwidth) remains unexplored.

Here, we monitor a diffraction-limited ensemble of
NV center spins in diamond subjected to a random, time-
dependent magnetic field purposely engineered to contain
a pre-designed spectral density. We use a deep, feed-
forward neural network previously trained to classify
and/or extract S(w) from the NV signal emerging upon
application of a simple, two-pulse control protocol.
Analyzing the response of the NV ensemble throughout a
sequence of time-fluctuating fields of wvarying
characteristics, we find the neural network can predict
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Fig. 1. Synthesizing and probing magnetic noise. (a) Schematics of the experimental setup. We use a [111] diamond with N
and NV concentrations of ~1 ppm and ~20 ppb, respectively. NV~ spin manipulation and detection are carried out via a home-
made confocal microscope. A thin Cu wire overlaid on the diamond surface (not shown) serves as the MW source; experiments
are carried out in the presence of a bias magnetic field B parallel to the [111] axis; we use a three-turn loop to produce a random
magnetic field AB(t) parallel to the bias field. (b) Example time trace of the generated random field AB(t); the upper insert is
a zoomed view of the section in the dashed square. (c) Example colored noise with variable width; the left and right panels

respectively reproduce the calculated and experimental spectral

densities as derived from the current flowing through the loop.

The light green curve corresponds to the conditions in (b). APD: Avalanche photo-detector; AOM: Acousto-optic modulator;

AWG: Arbitrary wave-function generator.

S(w) with high accuracy over a broad spectral window, an
ability we subsequently exploit to reconstruct the
equivalent of a spectrally-resolved spatial map.

II. RESULTS
Spin evolution in the presence of synthetic magnetic
noise

In our experiments, we use optically-detected
magnetic resonance (ODMR) to monitor the evolution of
NV centers within a diffraction-limited volume ina [111],
diamond with a 1 ppm nitrogen content (see Fig. 1a and
Materials and Methods). To controllably introduce
decoherence during coherent NV spin evolution, we first
build on a source auto-spectral density to numerically
synthesize a random time series™, which we subsequently
feed into an arbitrary wave-function generator and a home-
made low-frequency amplifier to drive a three-turn, 1 mm
diameter loop adjacent to the diamond crystal.

For illustration purposes, Fig. 1b shows an example
trace of the time-dependent field AB(t) — effectively
parallel to the bias field B in the region of interest — as
determined from the current circulating through the loop.
We engineer AB(t) so as to capture the spectral density of
choice: Fig. 1c displays representative examples for the
case of a colored noise of variable width as calculated
numerically from the input time series, or derived
experimentally from the current in the loop (respectively,
Sc(w) and Sy (w) shown in the left and right panels).

Applications of color centers to magnetometry
typically rely on protocols where the spin probe is

subjected to n repetitions of a cycle comprising an
inversion pulse sandwiched by free-evolution periods of
duration t/2. Using C(t) to denote the in-phase probe spin
coherence amplitude after a total time t = nt, the noise
spectrum relates to the “coherence functional” y(t) via the
integral equation®”*’
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In the above expression, F,(wt) is a filter function
intrinsic to the n-pulse protocol, namely,

Fy(wt) = |1+ (=1)"*+1eiet
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where tj, is the time of the k-th pulse in the train, and 7 is
the pulse duration. Importantly, the above formulas are
based on the assumption of a Gaussian, stationary noise
that leads to pure dephasing, all of which is consistent with
our (classical) approach to introducing noise in the spin
response.

Since numerically solving for S(w) in Eq. (1) is
notoriously difficult, alternative methods have been
developed. The simplest approach®®' describes F, (wt) as
a Dirac & function centered at a frequency w, = /7.
Valid only for n > 1, this approximation fails when the
inter-pulse separation and pulse duration become
comparable (a limit where the filter function suffers from
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Fig. 2. Deep neural network architecture and training procedure. The top row illustrates the steps involved in training data
generation. Simulated Hahn echo curves and the underlying noise spectra form the input-output pairs necessary for network
training, specifically (a) an example noise spectrum, with an underlying 1/w form and a Lorentzian peak, characteristic of
colored noise; (b) a filter function, determined by a Hahn echo pulse sequence with a given pulse spacing; (c) a decoherence
curve, given by convolving the filter function at each time value with the noise spectrum in (a); (d) measurement noise sampled
from a Gaussian distribution that mimics experimental error; (¢) DNN input obtained by applying the measurement noise to the
ideal decoherence curve. (f) A cartoon of the 1D convolutional auto-encoder architecture. Convolutions are filters applied to the
input data (a coherence decay curve), the result of which is then down-sampled using a max pooling layer to select the largest
of each neighboring pair of data points. The network down-samples the data to a bottleneck before up-sampling it back to meet
the target data (a noise spectrum) dimension. (g) Three representative input coherence decay curves along with the derived noise
spectra shown in (h); dashed lines show the network’s predictions whilst solid lines show the true noise spectra.

spectral delocalization and harmonic contributions
difficult to account for). The result is a distorted spectral
density that overemphasizes contributions at lower
frequencies’’. More accurate strategies have been
developed”, but they typically require collecting a much
larger data set that includes the system time response under
pulse trains with different number of pulses.

Interestingly, Eq. (1) is remarkably asymmetric in the
sense that although extracting S(w) from C (t) is involved,
the converse operation — i.e., deriving the coherent
response of the probe spin under the combined action of a
known fluctuating field and control protocol — is
straightforward. The latter suggests an artificial-
intelligence-based approach designed to exploit the
advantages of neural networks as universal function
approximators™-.

Artificial intelligence as a tool for noise spectroscopy

Here, we implement a convolutional auto-encoder
architecture (see Fig. 2 and Materials and Methods). We
have found this approach provides similar or better
performance than that observed previously’ with
significantly reduced parameter numbers and thus faster
training time, likely a consequence of the auto-encoder
capacity for greater parallelism®. The convolutional auto-
encoder is a natural choice for the problem of noise
spectrum  extraction from coherence decay: By
compressing the input data (in this case a coherence decay

curve), the network learns to mine the essential
information. The latter is, in turn, supplied to the decoder,
which learns how to create the target output (in this case,
the noise spectrum). We use the Adam optimizer to train
the network with a wvariable learning rate gradually
growing to reach a peak, before being reduced to zero as
training progresses’ . This approach was found to yield
consistent training results whilst considerably reducing
training time.

We implement our deep learning approach to noise
spectroscopy via an optically detected Hahn echo
sequence (i.e., the simplest magnetometry protocol in the
n-pulse family highlighted above, Fig. 3a). To rationalize
this choice, we first note that spin decoherence in color
centers is largely dominated by the surrounding nuclear
spin environment, which is uninteresting to most
magnetometry applications and hence typically removed
through echo formation. Improved suppression of the
intrinsic nuclear field environment can be attained with
longer pulse trains (i.e., n > 1), but multi-pulse protocols
inherently feature narrower filter functions, implying that
a more extensive data set — combining sequences with
different inter-pulse separations and number of pulses —
are needed to attain an accurate spectral density
reconstruction. Free from harmonics and featuring a
comparatively broader spectral filter function, the Hahn
echo sequence we use herein appears, therefore, as a
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Fig. 3. Artificial-intelligence-assisted noise spectroscopy. (a) Schematics of the pulse sequence. We implement an optically-
detected Hahn-echo protocol in the presence of a synthetic, random magnetic field. (b) Example NV spin echo curves in the
presence of different random magnetic fields. The right-hand insert panels show the accompanying noise spectral densities
Sc(w); the dashed, faint traces indicate the spectral densities as calculated by taking the §-function approximation for the Hahn-
echo filter function. Solid lines in the main plot indicate the system’s response as calculated from the Al-derived spectral
densities. All experiments are carried out in the presence of bias field B = 36 mT along the z-axis; the ‘reference’ trace in the
main plot indicates the NV response for AB(t) = 0. (c) Al-derived noise spectral densities S,;(w) for each of the Hahn-echo
traces in (b); the faint lines reproduce Sc(w) as presented in the right inserts of (b) for direct comparison.

reasonable tradeoff, allowing us to drastically reduce the
impact of the carbon bath on the NV response, while
keeping the measurement protocol at its simplest.

In our experiments, we measure the NV coherent
response as a function of the total Hahn-echo spin
evolution time 7. The dwell time between successive
points in the trace (5.16 ps) is chosen to match the inverse
of the bare C Larmor frequency in the bias magnetic
field. This choice ensures detection of the NV coherence
at the “revival” crests where the echo amplitude is
maximum®, and hence avoids modulations in the signal
envelope that can otherwise obscure the effect of the noise
field.

As an illustration, the main plot in Fig. 3b shows some
example NV Hahn-echo signals in the presence of a time-
dependent field AB(t) of variable root-mean-square
amplitude, correlation time, and dominant frequency (see
corresponding spectral densities on the side inserts); the
observed response in the absence of a noise field — the
‘reference’ signal — is also included for comparison.
Application of the time-dependent field shortens the NV
spin coherence lifetime, which confirms AB(t) as the
dominant source of NV spin dephasing.

Building on the results in Fig. 2, we now feed these
echo time traces to our trained neural network and extract
in each case the predicted noise spectral densities Sp;(w).
Fig. 3c displays the results: Comparison with the
calculated densities Sc(w) (side panels in Fig. 3b) shows

reasonable agreement, even in cases such as (i) and (iii),
where the NV response exhibits similar monotonic decay.
Further, we find a significant improvement relative to
reconstructions of the spectral densities based on a §-
function approximation of the Hahn-echo filter function
(faint dashed lines in the inserts of Fig. 3b). This advantage
is comparable to that attained via high-accuracy multi-
pulse-based protocols that take into account the presence
of higher harmonics in the corresponding filter functions'”,
though without the associated experimental overhead”’.

In a way, the accuracy of the Al-derived spectral
densities is surprising because both training and validation
of the network are based entirely on numerically computed
data, hence suggesting that the uncertainty stemming from
measurement error does not have an immediate impact on
the network’s ability to identify the correct answer. To
better understand this observation, we systematically
examine the effect of experimental noise in Fig. 4a, where
we record the NV coherence traces for a variable number
of times N under a colored noise of constant central
frequency (25 kHz), width (10 kHz), and root-mean-
square amplitude (0.2 uT). Fig. 4b shows the Al-derived
spectral densities, Sa;(w), along with the numerically
calculated density, Sc(w), included here for reference. We
find the network quickly captures the main spectral
features and converges to a shape that reasonably
reproduces that of the input magnetic noise. Further, as
Figs. 4c through 4f show, the network output is stable once
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Fig. 4. Dependence on experimental noise. (a) NV Hahn-echo traces in the presence of colored magnetic noise (centered at
2nx25 kHz, 2nx10 kHz linewidth) after a variable number of averages N (upper right corner). Solid lines indicate the Al-
calculated coherences after Al-derivation of the spectral densities. (b) Al-derived spectral density for the experimental data in
(a); the spectral density calculated from the input noise, Sc(w), is also included for comparison. In (a) and (b), all traces have
been displaced vertically for clarity. (c—e) Respectively, central frequency, amplitude, and linewidth of the Al-derived spectral
density as a function of the number of experimental averages. Note all parameters quickly converge to values very much on par
with those expected (dashed lines). (f) Percent error between the best experimental curve (124x10% averages), taken as the
reference, and the Al-predicted Hahn Echo curves using experimental curves with different number of averages. A single error
point measures how far is the predicted curve from the reference and it is calculated by analyzing the squared differences
between the two curves. The dashed lines in (c¢) through (e) indicate the expected values.

the experimental noise falls below a minimum threshold
(of order ~15% in the present case). We hypothesize this
‘robustness’ to experimental noise may be a consequence
of the decoupling between uncertainty in a given
measurement and the shape of the overall NV response. In
other words, the network continues to function correctly so
long as the experimental noise does not obscure key, non-
local features in the measured signal, a situation
reminiscent of that of an ‘expert’ extracting information
from a plot despite the dispersion in the data set.

We formalize this notion through a principal
component analysis®® (PCA) over a large group of input
coherence traces under the action of variable colored noise
and/or “pink” noise (inversely proportional to the
frequency). Rather than recording the output of the

(@) 25
Monotonic Noise

Colored Noise

Latent Dim 2 (arb. units)
o
o

=5 0 5 10 15 20 25
Latent Dim 1 (arb. units)

network, we instead examine the network’s ‘latent space’,
taking the output of the encoder before up-sampling.
Although reduced in dimension in comparison to the input
data, the latent space is still relatively high-dimensional.
To better interpret it, we project the data onto the two
dimensions along which it varies most, meaning that each
input curve can be characterized by 2 parameters. Fig. 5a
shows clustering of the data in two discernably distinct
groups associated with monotonic and colored noise.
Moreover, closer inspection of latent dimension 2
validates the network’s ability to accurately distinguish
between these types of noise, even in this reduced
parameter space (Fig. 5b).

Towards Al-assisted spectral imaging
Building on a better appreciation of the network
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Fig. 5. Principal component analysis of spin coherence traces. (a) The test dataset in the latent space, projected onto two
dimensions using PCA. The data points are colored according to their noise type, showing the clear distinction in the latent
space for a trained network. (b) Example curves at different points in the latent space, showing the transition from monotonic

to colored noise (points A, B, C in (a)).
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Fig. 6. Al-assisted spectroscopic imaging: A proof of principle. (a) (Top) We collect the NV Hahn-echo response €@ (z) for
fluctuating fields ABW(t) of variable characteristics to form a data set with i = 1 ... N2 components; in each case we resort to

our DNN to derive the corresponding spectral densities 51(;?

(w). (Bottom) We preordain the data series so as to introduce

correlations in relevant spectral properties when presented in 2D N XN graph; in this illustration, we ‘image’ the spectral density
Sai(wg) at a given frequency w, to uncover local structure. (b) Predicted and Al-derived spectral densities (respectively, top
and bottom panels) at two different frequencies w, = 2mx10 and 2mx25 kHz (respectively, left- and right-hand panels).

capabilities and limitations, we now turn our attention to
extracting S(w) in a large data set comprising multiple NV
Hahn-echo curves. Fig. 6a introduces our protocol: We
measure the NV response C @ (1) under a synthetic field
AB®(t), whose properties (i.e., root-mean-square
amplitude, correlation time, etc.) we subsequently change
from a starting set to the next one in a series i = 1 ... N2,
To more easily assess the network performance, we
deliberately program the series {AB(D} so as to yield a pre-
ordained “image” as we display the property of choice

in {S}(\?} through a two-dimensional (2D) NXN array.
Fig. 6b shows an example where we plot the Al-

derived spectral density amplitudes Slgll)(wo) at two select
frequencies wy = 2rx10 and 27x25 kHz. The network
manages to correctly reproduce the anticipated pattern in
both instances, indicating a faithful derivation of the
varying spectral densities throughout the data set. Note
that although the synthetic noise field is predominantly
colored within each diagonal block, the central frequencies
are different, hence making it possible to selectively
expose one or the other (a form of spectroscopic image
contrast). These noise spectroscopy patterns portend
experiments where a spin probe gathers compositional or
dynamical information at different sites as it spectrally
probes magnetic fluctuations across the sample. Even if a
proof of principle, the above example highlights the
potential of our approach, requiring only a comparatively
small data set and hence only a fraction of the experimental
time (consider implementing known high-accuracy
methods of spectral density reconstruction at each site in

the array).

I11. DISCUSSION

In summary, we leverage recent advances in machine
learning and optically detected magnetic resonance of NV
centers in diamond to introduce an Al-assisted approach to
noise spectroscopy. In the present implementation, the
sensing protocol takes the form of a Hahn-echo sequence,
which simultaneously mitigates the undesired influence
from nuclear spins in the host crystal while keeping NVs
sensitive to magnetic field fluctuations within a broad,
practically relevant frequency range. With the help of a
convolutional auto-encoder network architecture, we
derive spectral densities that reasonably approach those
imprinted in the magnetic noise we engineer. We also find
that the network performance is robust to the presence of
experimental noise in the input observations, a behavior
we associate with the network’s ability to identify non-
local features in the spin-probe response. Capitalizing on
these findings, we carried out a proof-of-principle
demonstration of spectroscopic imaging, a stepping stone
towards integrating noise spectroscopy and precision
imaging at the nanoscale. This approach to spectroscopic
sensing should allow alternative forms of imaging contrast
and thus images with different information content.

In this same vein, it is worth noting that the
experiments in Fig. 6 — successively exposing the same
group of N'Vs to traces of independently engineered noise
— ignore the cross-spectra that can result from spatial
correlations’ > (a situation akin to a scanning probe
measurement). More generally, however, one can envision
DNN-based strategies able to expose causal correlations



between environmental dynamics at distinct locations or
the occurrence of propagation of noisy signals. Such
strategies could leverage devices relying on multiple
probes that can be monitored in parallel, e.g., in the form
of multi-tip diamond cantilevers®®, or homogeneous
ensembles of shallow NVs illuminated by separate
lasers*'. Our work could also prove relevant to quantum
information processing in its ability to quickly identify
error models affecting the performance of spin qubits and,
correspondingly, inform the search for effective dynamical
decoupling protocols*™’.

Since noise contributions at lower frequencies are
typically dominant, we constrained our Al-assisted
protocol to reconstructing spectral densities solely with the
use of a Hahn-echo protocol (whose associated filter
function is singularly broad). In this sense, the high
predictive accuracy we attain is somewhat surprising as a
broad frequency range tends to increase the degeneracy of
the solutions for a given coherence decay. We hypothesize
that the training dataset plays a fundamental role here: The
network is trained to distinguish curves with 7, times
ranging from a 50 to 500 ps and engineered noises with
frequency components in the order of units to hundreds of
kHz. This combination of parameters spans a sufficiently
large space, allowing the network to distinguish between
nearly degenerate solutions and attain high precision.

While we limited our analysis to external noise
sources, the Al-derived spectral density of the native noise
— as obtained from the “Reference” NV response in Fig.
3b, not shown here for brevity — shows excellent
agreement with that expected for a central spin model in a
nuclear spin bath®®. We warn, however, that a
generalization to other, unknown environments is not
straightforward: Since the noise spectrum producing a
coherence decay for a given filter function is not uniquely
determined, the network could, in principle, produce a
noise spectrum that is significantly different from the
target spectrum but that still reproduces the input
coherence decay to a high degree of accuracy. Therefore,
whilst the reproduction of the coherence decay allows a
sense check of network performance, it does not absolutely
guarantee accuracy. Bayesian neural network methods
would prove a sensible extension to this work whereby a
network would output a probability distribution over noise
spectra rather than a single spectrum.

There is a natural limitation of the network when it
comes to predicting frequencies outside the range given by
the time vector of the coherence decay, which determines
the probing frequencies of the filter function. Whilst the
network has some ability to extrapolate outside these
frequency limits, accuracy can be expected to fall. In the
same vein, the network tends to predict results that match
its training history, so when exploring unknown noise
sources care must be taken to train the network on as
diverse a set as is reasonably possible. For practical

purposes, this initial work considered only a subset of all
conceivable spectral densities, though we see no
fundamental limitations to including more complex
functional forms (e.g., multi-color noise). Along related
lines, our work can be immediately extended to
accommodate multi-pulse trains (i.e., n > 1), more
suitable for probing higher-frequency components in
S(w), though at the expense of a narrower bandwidth.

An interesting extension would be the application of
Al-methods to reconstruct spectral densities derived from
spin-lattice relaxation measurements; note such work
would be complementary because 7 times are typically
sensitive to processes occurring at a considerably higher
frequency (roughly matching that defined by the spin
transition of interest). We warn, however, that this class of
experiments — even if adapted to the rotating frame via
spin-locking techniques’’ — require control over different
experimental parameters, and hence an alternative neural
network architecture and training protocol would be in
order.

Lastly, we mention that because spectral densities
capture the underlying physical processes driving the
fluctuations in the time-dependent noise field, a
classification of S(w) into different categories may suffice
to inform the experimenter about differences between
adjacent sections in a sample. This approach bodes well to
the most widespread network architectures, conceived and
optimized to separate diverse input data into different
categories.

IV. MATERIALS AND METHODS

Experimental details

Magnetometry experiments are carried out with a
small ensemble of NV centers in diamond. Formed by a
substitutional nitrogen and a vacancy, the NV features a
spin-1 ground-state triplet with a zero-field splitting A =
2.87 GHz between the mg = 0 and %1 states. Optical spin
initialization is possible at room temperature thanks to a
spin-dependent excitation cycle that preferentially moves
population from the mg = +1 to the mg = 0 state upon
intermediate shelving in a singlet manifold. The same
mechanism also allows for optical readout of the ground
spin state since shelving in the long-lived singlet reduces
the photon emission rate’.

The schematics in Fig. 1a lays out our experimental
platform. We use a custom-made optical microscope with
a green laser excitation (532 nm, 680 uW) to probe a
diffraction-limited ensemble of NVs in a [111] diamond
crystal with an estimated N (NV) concentration of 1 ppm
(20 ppb). Spin manipulation in the presence of a bias field
B = 36 mT normal to the sample — and thus parallel to
one of the NV directions — is carried out via microwave
(MW) pulses resonant with the mg =0 mg=—1



transition; we use a thin (25 pm diameter) copper wire in
contact with the diamond surface as the MW source.

Our experiments focused on bulk, not shallow, NVs
out of convenience: The longer spin coherence lifetimes of
bulk NVs allow us to make the effects of engineered noise
dominant without resorting to impractically large input
currents. Experimentally, this latter condition is not trivial
to attain because the number of turns in the source coil (and
hence its inductance) must be kept to a minimum so as to
ensure a linear system response over a broad bandwidth.

Noise Generation

Two types of noise were designed to evaluate the
artificial-intelligence-based approach: colored noise and
pink noise. The former one is built from an uncorrelated
noise with a Gaussian distribution which is transformed by
recursive methods™ into a correlated noise that encodes a
power spectrum o 1/ w * with a bandwidth Aw. Next, the
whole signal is multiplied by a cosine function with
periodicity vy, which leads to a colored noise o
1/(w — wg)? and bandwidth Aw. On the other hand, the
simpler pink noise (« 1/w) is generated with a built-in
MATLAB function.

In order to deliver the noise signal to the loop, we use
an AWG Tabor Electronics SE5082 with a sampling rate
ranging from 5x10” to 5x10° samples/s and a memory of
32x10° data points. Choosing a low sampling rate and
using the full memory, the noise length is bounded
between 0.5 and 1 s, which is shorter than the measurement
time. In our experiments, we accumulate the NV signal in
the presence of the same block of engineered noise until
reaching a desired signal-to-noise ratio (SNR). We
subsequently repeat the same protocol for several new
noise blocks; the number of blocks is chosen so that, when
analyzed as continuous time series, the spectral density
Sm(w) derived from the corresponding correlation
function reasonably converges to the engineered target
Sc(w). While this strategy introduces undesired low-
frequency components, it avoids the need to continuously
feed the AWG with new synthetic noise, a technically
demanding proposition. Note that these unwelcomed low-
frequency components do not overlap with the region of
interest (~1 kHz and up). As it can be seen in Fig. 1 (¢), the
resulting noise transmitted by the AWG (made out of one
single noise block) already reproduces the desired shape
and features of the designed power spectrum.

DNN architecture

To implement our machine learning technique, we
resort to the Keras application programming interface
within the deep learning framework (Tensorflow 2)
developed by Google. The networks used here build on
those developed in Ref. [27] and are trained in a similar
manner, namely, we use synthetic data, with coherence
decay-noise spectrum pairs respectively functioning as
input X and target Y data for the network. However, unlike

the prior work — relying on a recurrent neural network
(RNN) with a long-short term memory (LSTM) — here we
use a convolutional auto-encoder.

We identify in our network two sections, which we
refer to as the “encoder” and the “decoder”. The encoder
is formed by three convolutional layers based on rectified
linear unit (ReLu) activations, each followed by a max
pooling layer that reduces the dimensions of the input. The
decoder comprises three convolutional layers also
featuring ReLu activations followed by an up-sampling
layer to expand the encoded data to the dimensions of the
target. A final dense layer is used to match the output
dimensions exactly using either linear or exponential
activation. The former can assist in training time as the
target noise spectra have values that often exceed 10°,
greatly above the typical values between -5 and 5 that the
network is initialized to output.

The network takes in an input vector of coherence
values, with no explicit knowledge of their associated time
vector. This time vector is implicit during training and so
experimental data must use the same time vector. This
limitation is mitigated by the use of interpolation (used
extensively in this work) which can scale a coherence
decay to the required time vector, provided that the
experimental data has sufficient information in the
relevant time range.

For training purposes, we generate approximately
80,000 spectral density curves, which we distribute across
four different monotonic noise forms (1/f, Lorentzian,
double Lorentzian, and 1/f + Lorentzian). Additional
colored noise peaks are then added to these, with
approximately 20% left as purely monotonic. The
corresponding coherence decay curves are subsequently
derived analytically using Eq. (1). These coherence decay
curves then have Gaussian noise applied to them. This step
is repeated six times with different noise to give
approximately 500,000 total examples, 80% of which are
used for training and 20% of which are reserved as a test
set. The network is trained for 100 epochs, with each epoch
representing an iteration through all training data. The
training time is dependent on the hardware used, with an
Nvidia K80 system requiring approximately 6 hours and
an Nvidia V100 requiring < 1 hour. We use the one-cycle
learning technique, whereby the learning rate is increased
from a low initial value to a peak before being reduced
again.
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