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Abstract 

Research focusing on the integration of computational thinking (CT) into science, 

technology, engineering, and mathematics (STEM) education started to emerge. We 

conducted a semi-systematic literature review on 55 empirical studies on this topic. Our 

findings include: (a) the majority of the studies adopted domain-general definitions of CT and 

a few proposed domain-specific CT definitions in STEM education; (b) the most popular 

instructional model was problem-based instruction and the most popular topic contexts 

included game design, robotics, and computational modelling; (c) while the assessments of 

student learning in integrated CT and STEM education targeted different objectives with 

different formats,  about a third of them assessed integrated CT and STEM; (d) about a 

quarter of the studies reported differential learning processes and outcomes between groups, 

but very few of them investigated how pedagogical design could improve equity. Based on 

the findings, suggestions for future research and practice in this field are discussed in terms 

of operationalizing and assessing CT in STEM contexts, instructional strategies for 

integrating CT in STEM, and research for broadening participation in integrated CT and 

STEM education. 

Keywords: Computational Thinking, STEM Education, Instructional Strategies, 

Assessment, Equity 

 

 

 

 



CT IN STEM   3 

 

 

Introduction 

Computational thinking (CT) is considered necessary for everyone and everyday life 

in the new century (Wing, 2006, 2008). It is the practice or thought process of applying 

fundamental computer science concepts to solve problems (Aho, 2012; Wing, 2006, 2008). 

More specifically, it includes extracting key information from the concrete details of a 

problem (abstraction), reformulating a larger problem into a set of smaller ones 

(decomposition), detecting the patterns embedded in data, developing and applying 

algorithms, and so forth (College Board, 2020; Wing, 2006, 2008). 

In recent years, there is an emerging trend of integrating computing (hence CT) into 

disciplinary education, especially in the Science, Technology, Engineering, and Mathematics 

(STEM) fields (Lee et al., 2020; Li et al., 2020). Research has shown that the STEM contents 

and contexts can benefit CT learning (Weintrop et al., 2014; Orton et al., 2016). Likewise, 

incorporating CT into STEM education will also enhance students’ learning of STEM 

contents (Repenning, Webb, & Ioannidou, 2010; Sengupta, Kinnebrew, Basu, Biswas, & 

Clark, 2013; Wilensky & Reisman, 2006; Lewis & Shah, 2012), because of the integral role 

of computation in modern STEM disciplines (Martin, 2018). For instance, the Next 

Generation Science Standards (NGSS) framework (National Research Council [NRC], 2012) 

lists “using mathematics and computational thinking” as one of the eight core practices in K–

12 science classrooms. 

More importantly, integrating CT into STEM education has the potential of reducing 

inequity in terms of CT learning (Weintrop et al., 2014). Traditional CT education (i.e., when 

not embedded in STEM education) is often based on computers and programming courses 

(Grover & Pea, 2013). However, computer science or programming courses are still limited, 
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especially in lower grades in K–12 settings; even if the courses are accessible to all students, 

many will not take them because of lacking interest or performing badly in programming, 

since computer science courses are usually not mandatory (Code.org, CSTA, & ECEP 

Alliance, 2020). More students would have the opportunity to learn CT when it is taught in 

STEM classrooms, as STEM courses are more widely offered and are more likely to be 

compulsory than computer science courses (Weintrop et al., 2014). 

 

With the ongoing discussions about what CT means, there has been little consensus 

on how it should be operationalized in education (Barr & Stephenson, 2011; Grover & Pea, 

2013; Román-González, Pérez-González, & Jiménez-Fernández, 2017). For example, the 

International Society for Technology in Education (ISTE) and Computer Science Teachers 

Association (CSTA) in 2011 defined CT in K–12 education as a problem-solving process that 

includes formulating problems, using a computer or other tools, logically organizing, 

analyzing, and representing data, automating solutions through algorithmic thinking, 

achieving efficient and effective solutions, and generalizing and transferring to other 

problems. Brennan and Resnick (2012) developed a CT framework specifically for learning 

in the programming environment. Thus, they identified seven programming concepts—

sequences, loops, parallelism, events, conditionals, operators, and data—as CT concepts.   

Crosscutting with other disciplinary fields further contributes to the wide diversity of 

CT definitions. For example, Weintrop et al. (2016) framed CT in math and science 

education as four categories of practices, including data practices, modeling and simulation 

practices, computational problem-solving practices, and systems thinking practices. This is in 

accordance with the rise of the focus on practices in STEM education (NRC, 2012). More 

recently, based on their analyses of the activities collected from researchers and practitioners 

that integrated CT into K–12 STEM classrooms, Lee and Malyn-Smith (2020) defined CT 
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from a disciplinary perspective that included five CT integration elements—understanding 

complex systems, innovating with computational representations, designing solutions that 

leverage computational power and resources, engaging in collective sense-making around 

data, and understanding potential consequences of actions.  

Besides its diverse theoretical interpretations, integrating CT in STEM education 

remains challenging as many practical issues are still under exploration, such as what 

activities and approaches are effective for integrating CT in various STEM contexts, and how 

CT should be assessed in the new context (Grover & Pea, 2013; Li et al., 2020; Shute, Sun, & 

Asbell-Clarke, 2017; Tang et al., 2020). These aspects need to be sorted out so that educators 

could deliver effective integrated CT and STEM instruction. 

For further contributing to the research and practice of this important field, it is 

necessary to probe the current state of how these issues have been addressed. Therefore, we 

conducted a literature review of empirical studies on this topic with the following guiding 

questions: (to address the diverse theoretical interpretations) (1) How is CT defined in STEM 

education? (to address the practical concerns of integrating CT in STEM education) (2) What 

instructional strategies are used to incorporate CT into STEM education? (3) How are CT and 

STEM contents assessed in integrated CT and STEM education? (to see if sufficient work has 

been done as one of the major reasons of integrating CT into STEM education is to improve 

equity) (4) What aspects of equity-related issues are investigated and reported in the literature 

on integrating CT in STEM? 

Method 

The current study is a semi-systematic literature review (Snyder, 2019) as we 

conducted content analysis on both qualitative and quantitative studies to identify general 

trends in the field (Çalık & Sözbilir, 2014). A semi-systematic approach is appropriate for 

topics that are “conceptualized differently and studied by various groups of researchers 
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within diverse disciplines and that hinder a full systematic review process” (Snyder, 2019, p. 

335). Many relevant studies termed CT differently and focused a wide range of integration 

disciplines, making an exhaustive literature search impossible. Yet, we followed a rigorous 

process (see below) to collect and analyze the literature.  

Literature Search and Selection 

We first determined a set of inclusion/exclusion criteria: (a) The paper to be included 

covers both CT and STEM education and stresses integrating CT in STEM subjects. STEM 

refers to one or more (sub)disciplinary contexts—being isolated (e.g., physics) or integrated 

(e.g., biomechanical engineering) in nature—within the broadly defined STEM field where 

CT is applied. (b) The paper to be included reports at least one empirical research study that 

engages participants in CT activities. We excluded studies that mainly focused on describing 

a curriculum that integrated CT with STEM but did not report research or assessment data on 

participants’ learning. (c) We only included literature published in English. (d) We excluded 

works published in book chapters or conference proceedings of the same study that was 

published in a journal. 

We collected literature through three means: searching databases and popular search 

engines, examining citations in collected articles, and including articles to the knowledge of 

the authors. In terms of the database approach, we confined the concept of CT to be explicitly 

expressed as “computational thinking.” First, we searched Educational Research Information 

Center (ERIC) and ACM Digital Library for articles that included “computational thinking,” 

“education,” and any of the following five terms— “STEM,” “science,” “technology,” 

“engineering,” and “mathematics”—in any field of the article. The returned results did not 

provide enough empirical studies. Then we adjusted keywords, and added discipline-specific 

terms such as “physics,” “chemistry,” and “biology” to supplement “science.” We also added 

“game design” and “robotics” to supplement “technology” because they emerged to be two 
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main technological contexts for CT based on our observation of related articles. Given their 

popularity, Google Scholar and ResearchGate were used as supplementary search sources. 

We conducted a total of two rounds of literature search and selection. During the first 

round of search (September 2018 – January 2019), we obtained 87 articles. We also 

examined the citations from the literature we gathered and obtained another 20 articles. 

Having the initial pool of 107 articles, we applied the specified eligibility criteria on each 

article (by reading the whole set of articles) and 40 papers remained after this first round of 

selection. During the second round of search (January 2020 – early February 2020), the same 

keywords were used to search the same data sources, but with an additional constraint on the 

publication year (i.e., after 2018) to gather more recent publications. We also examined the 

articles from a very recent JOST special issue on CT (the papers of which were published 

online between November 2019 and February 2020). The second round resulted in 23 new 

papers for further selection, 15 of which were included into our library. In total, we collected 

55 articles for this review (see Electronic Supplemental Material 1). 

Analysis 

The articles were reviewed one by one. First, the general information of each study 

was documented, including the issued/publication year, subject matter/discipline, grade level 

of the participants, where the study took place, etc. Then, specific notes were taken, and open 

codes were developed to address our research questions related to CT definition, instructional 

strategies, assessment, and equity related issues. The detailed coding book is in Electronic 

Supplemental Material 2 (the results can be found in Electronic Supplementary Material 1). 

Regarding CT definition, we took notes about the definition(s) of CT that were listed 

in the article, and the definition that was used as framework for instruction, assessment, 

and/or data analysis. Additionally, to get an overall idea of how CT is generally defined or 

interpreted in these papers, we collected the theoretical section that is relevant with CT and 
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used the collection of texts to create a word cloud using an online word cloud generator 

WordClouds (https://www.wordclouds.com/). The tool generates both a list of unique words 

with the number of times they appear in the text sample and a visualization of words (with 

the sizes of which proportional to their frequencies). We deleted irrelevant words (e.g., “can,” 

“define”) with high frequencies, and transformed the morphological variants of words into 

the same form (e.g., replacing the plural form of a noun by the singular form).  

When coding the instructional strategies for integrating CT into STEM education, we 

coded the instructional models (e.g., problem-based learning), the topic contexts (e.g., game 

design, science [biology]), ways of scaffolding (e.g., fading), types of CT related activities 

(e.g., programming or unplugged activities), and specific programming language or 

environment used (e.g., Scratch). We also took notes on whether or not explicit instruction on 

CT was incorporated, and if so, how.  

 In terms of assessments, we coded their format (e.g., survey, test, interview) and 

domain target (e.g., CT knowledge, attitudes towards CT, specific STEM content 

knowledge). If a study contained more than one assessment, each assessment was coded. If a 

study only mentioned that they administered an assessment but did not provide specific 

information, this assessment was not coded. When a study reported differentiated results 

among different student groups and populations, we took specific notes on if the study 

investigated equity-related issues such as gender difference in both their instructional 

strategies and assessments. 

Coding Reliability 

Since the reviewed literature is open-ended data, our coding chose the percent 

agreement as reliability index (Syed & Nelson, 2015). The coding reliability was established 

through rounds of discussion between the coders (the first two authors). We initially read and 

coded a set of articles individually to build the first version of the coding book. We carefully 
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discussed our results and drafted an operationalizable coding scheme. Then we independently 

coded a set of three articles (5%) and compared our coding results, which showed 92.1% 

agreement. All coding inconsistencies and disagreements were discussed and resolved. Then, 

the coding scheme was further clarified and modified accordingly. We repeated this process 

for another two rounds (three articles for each round) and had 93.7% and 96.8% before-

discussion agreement, respectively. All inconsistencies and disagreement were resolved 

through discussion. Based on the finalized coding scheme, the first author finished coding the 

remaining articles. The codes for all 55 articles are in Electronic Supplemental Material 1. 

Results 

Basic Descriptive Statistics 

In terms of geographic locations, the majority of the articles came from the USA 

(n=40). Other countries or regions included Canada (5), New Zealand (2), Croatia (1), 

England (1), Greece (1), Israel (1), Spain (1), Switzerland (1), Taiwan (1), and Turkey (1).  In 

terms of growth over the years, there is clearly a rising trend: 2009 – 2011 (3), 2012 – 2014 

(5), 2015 – 2017 (22), 2018 – 2020 (25; note that our search ended early 2020). In terms of 

subject matter (Figure 1), 19 papers were on integrating CT in science education; 17 in 

technology and/or engineering education; 9 in mathematics education; and 10 in some 

combination of STEM disciplines.  

 
Figure 1. Number of papers for each one or combination of the disciplines.  
 

Science
19

Mathematics
9

Technology & 
Engineering

17

5 
4 

1 

0 
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In terms of participants, the middle school level had the most studies (n=18), followed 

by upper elementary level (n=11)1 and high school level (n=9). There were 11 studies 

targeting teachers (5 for pre-service teachers and 6 for in-service teachers). Higher education 

had 3 studies and lower elementary had 4 studies.  

Defining CT in STEM 

Word cloud. Word cloud provides a quick overview of the frequently used 

vocabularies to define or interpret CT in the collection of literature. WordClouds produced 

one as shown in Figure 2. The words could be roughly divided into three levels based on the 

range of frequencies and the meaning of words. 

 
Figure 2. Word cloud of CT theoretical parts from all papers (The sizes of words are 
proportional to their counts, and the colours were randomly assigned by the tool). 
 

The most prominent words at the first glance are the following: “problem” (f=170; 

times appeared in the text sample), “computer” (f=107), “student” (f=107), “solve” (f=102), 

“programming” (f=98), and “skill” (f=95). They represent the most fundamental concepts 

related with CT. Problem-solving skill is considered by many as the driving objective for 

applying or developing CT in STEM. All of the reviewed papers are in educational contexts, 

 
1 Djambong & Freiman (2016) included participants from both upper elementary and middle school 
levels, and it was counted in both categories. 
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therefore, the primary target is student. Programming has been used as the main form of 

activity in learning about CT in STEM and computers are the the primary tool. 

Then we may find words that are displayed slightly smaller because of their lower 

frequencies. Yet, they are more specific in terms of the context and meaning of CT, such as, 

“science” (f=91), “practice” (f=85), “abstraction” (f=77), “Wing” (f=66), “algorithm” (f=61), 

“process” (f=61), “design” (f=59), “data” (f=56), “concept” (f=54), and “representation” 

(f=49). Science is one of the most common domain contexts for integrating CT. Abstraction, 

using algorithm, processing data, and data representation are some of the most common CT 

concepts and practices (Chen, Shen, Barth-Cohen, Jiang, Huang, Eltoukhy, 2017), two of the 

three key dimensions of CT framework brought up by Brennan and Resnick (2012). System 

design (in engineering and technology) and algorithm design are core components of CT in 

the conceptualizations by ISTE and CSTA (2011) and Wing (2006). 

The words that appeared below 49 times constitute the third level. They cover some 

additional contexts and practices for integrating CT in STEM, such as “mathematics” (f=47), 

“system” (f=41), “simulation” (f=38), “STEM” (f=37), “modelling” (f=36), “code” (f=30), 

“formulate” (f=24), “generalization” (f=24), “pattern” (f=24), “robot” (f=22), “game” (f=21), 

“decomposition” (f=19), “engineering” (f=17), “debugging” (f=16). 

Operationalizing CT in STEM education. The word cloud provides an overview 

but is not sufficient to address research question one. Here we further elaborate on our 

observation about how CT was operationalized in these studies (Some key frameworks of CT 

definition or operationalization are summarized in Table 1). These definitions or 

operationalization of CT can be categorized into two major types: generic ones (i.e., not 

attending to specific disciplines) and specific ones (i.e., attending to specific disciplines). 

Table 1. Key Frameworks of CT Definition or Operationalization in the Reviewed Articles 
Authorship Wing, 2006 ISTE & CSTA, 

2011 
Brennan & Resnick, 
2012 

Weintrop et al., 
2016 
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Description 
 

CT involves the 
application of 
foundational 
computer science 
concepts or skills in 
solving problems, 
designing systems, 
and understanding 
human behaviour. 
The concepts/skills 
include reformulating 
problems, reduction, 
transformation, 
abstraction, 
decomposition, etc. 

CT involves two 
dimensions: skills 
(e.g., formulating 
problems 
computationally, 
processing data 
logically, 
representing data 
through abstractions, 
automating solutions 
through algorithmic 
thinking) and 
dispositions (e.g., 
confidence, 
persistence, 
tolerance, the ability 
of dealing with open 
ended problems, the 
ability of 
collaboration).  

CT involves three 
key dimensions: 
computational 
concepts (e.g.,  
sequences, 
loops, conditionals, 
and data), 
computational 
practices (e.g., 
being iterative, 
debugging, remixing, 
and abstracting and 
modularizing) 
, and computational 
perspectives (e.g., 
understandings of 
selves, relationships 
to others, and the 
technological world 
around 
them). 

CT involves four 
categories of 
practices integral 
in math and 
science 
education: data 
practices, 
modelling and 
simulation 
practices, 
computational 
problem-solving 
practices, and 
systems thinking 
practices. 

STEM 
specificity 

No No No Yes 

 

For the generic type, Wing’s (2006, 2008) broad conceptualization was adopted in 10 

papers and referenced by most of our articles. She made CT a popular term and proposed it 

should be treated at the same level as the three Rs: arithmetic, reading, and writing. ISTE and 

CSTA (2011) provided a more specific operational definition, which delineated concrete CT 

skills and CT dispositions in K – 12 education. They framed CT skills as a set of critical 

skills involved in a problem-solving process, such as formulating problems computationally, 

data processing for solving problems, automating solutions, and generalizing and transferring 

the problem-solving process. Closely related to CT skills, CT dispositions were also defined 

as significant components of CT, including confidence in dealing with complexity, 

persistence in working with difficult problems, tolerance for ambiguity, the ability to deal 

with open ended problems, and the ability to communicate and work with others to achieve a 

common goal or solution. This framework was referenced in seven articles in our literature: 

Two of them directly adopted its definition of CT skills for assessing students’ learning of CT 

in the contexts of robotics and game design (i.e., Leonard, Buss, Gamboa, et al., 2016; 
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Leonard, Buss, Unertl et al., 2016); one of them directly used its definition of CT dispositions 

(i.e., Hadad et al., 2020); and the others adapted it to make their own CT definitions. Brennan 

and Resnick (2012) further expanded the interpretation of CT and proposed three key 

dimensions of CT: foundational CS concepts such as sequences and loops; computational 

practices such as testing and debugging; and computational perspectives that a learner applies 

in understanding selves, relationships to others, and the technological world around them. 

This framework was adopted in two studies (i.e., Boticki, Pivalica, & Seow, 2018; Falloon, 

2016) for the learning of students aged 5 – 8 years old in a block-based programming 

environment (e.g., ScrachJr). 

Comparing to the generic CT definitions or interpretations, many articles also 

described specific perspectives of CT pertaining to the STEM fields. Weintrop et al. (2016) 

proposed a taxonomy of four categories of CT practices (i.e., data, modelling and simulation, 

computational problem solving, and systems thinking), which was adopted by nine articles. 

The practices were extracted from the commonalities shared by well-acknowledged CT 

practices and common math and science practices. For example, modelling and simulation 

are essential practices for scientists and mathematicians (NGSS Lead States, 2013), and they 

are also considered as essential CT skills (ISTE & CSTA, 2011; Wing, 2006). The 

framework was adopted by nine articles, eight of which directly used it as the operational 

definition for their curriculum and/or assessment.  

The majority of the remaining studies developed their own operational CT framework 

by integrating some extant definitions. Based on our reading, the studies that shared similar 

learning environments or technological platforms tended to identify the same or similar CT 

components or constructs as their operational CT framework. For example, the CT 

frameworks in the only three studies using maker activities overlapped with each other to a 

great extant: Campbell and Heller (2019) framed CT constructs as decomposition, 
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abstraction, pattern recognition, and algorithmic thinking; Hadad et al. (2020) included 

decomposition, abstraction, pattern recognition, algorithm design, and evaluation; and Yin et 

al. (2020) broke down CT to decomposition, abstraction, algorithmic thinking, and pattern 

generalization. 

Instructional Strategies for Integrating CT in STEM 

Accompanied with the diverse definitions, a variety of instructional strategies have 

been used or explored. Some of them are popular among the reviewed studies, and they are 

summarized as instructional models and topic contexts, programming and non-programming 

activities, and ways of scaffolding student learning. 

Instructional models and topic contexts. A total of 11 studies explicitly used the 

instructional model of Problem-Based or problem-driven Instruction (PBI). These PBI 

strategies centred around certain problems designed by the researchers so that students 

practiced and improved CT or content knowledge and skills while working on those 

problems. Typical problems included programming problems (e.g., programming game 

characters to sort out flags of different colours, Witherspoon, Higashi, Schunn, Baehr, & 

Shoop, 2017), mathematics problems (e.g., calculating areas of polygons, Pei, Weintrop, & 

Wilensky, 2018), and science problems (e.g., delivering medicines to a tribe in a remote area, 

Hutchins et al., 2020). 

Our analysis also shows that, compatible with PBI, the most popular topic contexts 

are game design, robotics, and computational modelling. Game design represents the most 

common topic context for cultivating students’ CT skills in STEM in our pool (12 studies). It 

has the advantage of quickly drawing students’ attention (Bremner, 2013), and providing 

students with opportunities to practice programming and to learn STEM content at the same 

time (Hoover et al., 2016; Leonard, Buss, Gamboa, et al., 2016; Wu, 2018). Among these 

studies, the most popular programming environment for game design was Scratch (a block-
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based programming environment). For example, in the study reported by Hoover et al. 

(2016), students were asked to create games about climate change using Scratch. The games 

created by students reflected rather deep understanding of climate change because they not 

only covered scientific concepts (e.g., greenhouse gases, photosynthesis), but also 

demonstrated the mechanisms of global warming and included measures to prevent it.  

Robotics education becomes increasingly popular because robots can easily motivate 

and engage students in both engineering and technology practices (Bers, Flannery, Kazakoff, 

& Sullivan, 2014; Leonard, Buss, Gamboa, et al., 2016). Among the 12 studies using the 

robotics context, one study used a humanoid robot (Chen et al., 2017) and the rest all used 

non-humanoid robotic kits (e.g., LEGO EV3) that required participants to build their own 

robots from bricks, motors, and sensors first and then program them to accomplish tasks or 

solve problems. For example, Bers et al. (2014) reported that their construction-based 

robotics curriculum toward kindergarteners consisted of an introduction lesson about general 

engineering design, the second lesson to learn to make robots by themselves, then lessons on 

how to program the robots, and that learners showed many positive results on robotics and 

CT (e.g., significant improvement in correspondence, sequencing, and debugging skills). 

Berland and Wilensky (2015) conducted a study comparing student learning with a virtual 

robot and that with a physical robot and found that the two different forms led to students’ 

differentiated perspectives to interpret situations, but similar outcome of students’ CT skills, 

as measured by tests on students’ capability to follow and change a flowchart. 

In addition to robotics and game design, computational modelling was adopted as 

topic context in 16 studies. Scientific modelling is the process of creating representations, 

rules, or reasoning structures for predictions and explanations of science phenomena or 

mechanisms (Schwarz & White, 2005; Namdar & Shen, 2015). Computational modelling 

refers to the use of computational tools to carry out modelling tasks. Aksit and Wiebe (2020) 
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reported a five-day intervention embedded in a seventh-grade science classroom; during the 

intervention, students were asked to build two models with Scratch: one that would simulate 

the motion of a car on a frictionless path and the other that would simulate the free fall of a 

basketball. In another study (Bortz, Gautam, Tatar, & Lipscomb, 2020), middle school 

students carried out computational chemistry tasks using the NetLogo modelling 

environment. An initial model (e.g., the model of the forming and splitting of water 

molecules) was provided before students worked in groups to evaluate it and make changes 

on the code if necessary. 

Programming and non-programming activities. Programming is a common vehicle 

to help cultivate students’ CT since programming involves creating instructions through a set 

of computer readable representations (i.e., programming language) to make computers to 

accomplish certain tasks or solve problems.  

Specific consideration is often given to leverage learners’ age appropriateness and/or 

prior experience with programming. Text-based programming language was used in 7 studies 

that involved students in middle school (n=1), high school (n=1), or higher education (n=2), 

and pre-/in- service teachers (n=3). For example, R was used to involve high school students 

in mathematical modelling (Wiedemann, Chao, Galluzzo, Simoneau, 2020) and Python 

programming tasks were designed to introduce CT to undergraduates who majored in science 

(Hambrusch et al., 2009). Nevertheless, the majority of our papers (n=38) described 

approaches using block-based programming languages, such as Scratch and Lego Mindstorm 

(a block-based programming environment for Lego robotics). These block-based 

programming environments are intuitive to use and are designed mainly for young learners or 

novice programmers. For instance, Benton, Hoyles, Kalas, & Noss (2017) reported a 

ScratchMaths project in which curriculums were designed to integrate Scratch programming 

and mathematics for fifth graders. In one of their activities, students were asked to program 
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the Earth to be surrounded by objects one by one, in the way that petals surround the centre 

of a sunflower. To achieve this goal, they needed to fully understand what a 360° total turn 

means mathematically and create proper Scratch algorithm. 

In spite of the popularity of computer programming, not all studies resorted to 

computers in their instructions. Embodied or unplugged activities were used for younger 

children or discussed by pre-/in- service teachers in seven studies. These activities typically 

involved physical body movements or used certain objects to represent or illustrate abstract 

concepts or principles (Barth-Cohen, Montoya, & Shen, 2019). For instance, Sung, Ahn, and 

Black (2017) investigated the effects of the level of embodiment on kindergarten and first-

grade students’ mathematics and programming learning. The students in full embodiment 

groups were asked to complete the number lines on the floor by either physically performing 

the number or manipulating another student to perform, while students in low embodiment 

groups were asked to solve the problems directly on papers by themselves or by surrogating 

another. The post-assessments showed that students in full embodiment groups demonstrated 

significantly higher basic numeracy abilities than the other groups. To illustrate the concepts 

related to electrical circuits to seventh to ninth graders, Feldhausen, Weese, and Bean (2018) 

also took advantage of unplugged activities, including using marbles flowing in the hula-

hoop to represent electrical current. 

Scaffolding. Scaffolding refers to the process and aids provided to a learner to help 

him/her to learn a topic, solve a problem, or accomplish a goal (Devolder, van Braak, & 

Tondeur, 2012; Bakker, Smit, & Wegerif, 2015).  Given that the studies we examined were 

conducted in the context of STEM education, it is important to see how instruction in these 

studies brought about CT. Explicit explanation of CT concepts in the instruction process was 

emphasized in 13 studies. Cateté et al. (2018) conducted a pilot study with in-service teachers 

to infuse CT into middle school life science classes. They showed that the teachers opposed 
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to the idea of implicitly integrating CT concepts, but proactively sought help from the 

research team to identify CT concepts hidden behind the activities in order to understand 

better. Feldhausen et al. (2018) also reported a study in which teachers illustrated clearly to 

fifth- and sixth-grade students how a programmer would think when they worked on the 

Scratch programming task.  

A total of eight studies provided detailed information about the scaffolding strategy 

with respect to CT, and three of them conducted experiments to investigate the effectiveness 

of their scaffolding. In terms of fading (i.e., gradual removal of instructional support), Jaipal-

Jamani and Angeli (2017) applied the scaffolded process starting from full scaffolding, then 

to partial scaffolding, finally to no scaffolding, and showed positive results in enhancing 

learners’ CT skills. Lamprou and Repenning (2018) and Witherspoon et al. (2017) applied 

similar fading method and also showed positive results. In terms of sources of feedback, 

Sengupta et al. (2013) compared students who received one-on-one guidance with those who 

shared one classroom teacher in a learning environment that integrated CT and science 

learning, and showed that the one-on-one scaffolded group outperformed the comparison 

group. Likewise, Basu, Biswas, and Kinnebrew (2017) developed an adaptive scaffolding 

environment which supported students by recording their performance and then providing 

individualized scaffolds, and conducted a comparative study on sixth-grade students to 

investigate the effectiveness of this environment. The result showed that students who 

received adaptive scaffolding performed better than the other students in terms of modelling 

performance and behaviour, modelling strategy use, and learning of science and CT. 

Assessments in Integrated CT and STEM Education 

The targets of assessments. The targets of the assessments used in these studies can 

be categorized into three types: to assess CT related constructs only (n=18), to assess STEM 

related constructs only (n=1), and to assess both CT and STEM (n=36).  
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CT or CT related constructs included the affective domain and the cognitive domain. 

The former included learners’ self-efficacy, attitudes, or interest in CT. For instance, 

Kalogiannakis and Papadakis (2017) conducted pre- and post- surveys on preservice 

teachers’ self-efficacy in CT (Bean, Weese, Feldhausen, & Bell, 2015). The survey contained 

items like “I feel confident writing simple programs for the computer”, and “I can identify 

how programming concepts relate to NGSS.” Similar to this example, the instruments in most 

of our reviewed articles which claimed to assess affective domain towards CT, actually 

measured that towards programming in their items. In other words, they equated CT to 

programming in their assessment.  

The cognitive domain included CT competency, CT understanding, and the 

integration of CT and STEM. In terms of assessing CT competency, likewise, many 

assessments depended on, or at least were highly related to programming. For instance, Orton 

et al. (2016) conducted a study aiming to incorporate CT into science and math education. In 

this study, apart from assessing students’ attitudes toward STEM fields, they developed an 

instrument to assess CT skills. The pre- and post- assessments for CT skills were computer-

based, and corresponded to the four-category taxonomy of CT in science and mathematics 

(Weintrop et al., 2016). In one sample question, a situation was depicted by both words and 

images and the question was to predict the result of a computer program written for the 

situation.  

To assess CT understanding, Lamprou and Repenning (2018) asked students a 

question “What is CT for you?” in the middle of the course, and analysed their answers by 

categorizing them into seven major types, including thinking like a computer, 

programming/CS/computer work, problem division, thinking with the computer, problem 

solving, CT process (abstraction, automation, analysis), and other. 
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Among the 36 studies that assessed both CT and STEM, it is important to point out 

that only about half of the studies (n=20) assessed CT and STEM content in an integrated 

way. Five of them designed tests to assess the integration of CT and STEM content (i.e., 

Arastoopour Irgens et al., 2020; Bortz et al., 2020; Swanson, Anton, Bain, Horn, & Wilensky, 

2019; Wiedemann et al., 2020; Yin, Hadad, Tang, & Lin, 2020). For instance, with the CT 

Integrated Achievement Test developed by the research team, Yin and colleagues (2020) 

assessed the integration of CT skills and physics and engineering content knowledge that was 

emphasized in the maker activities in their implementation (e.g., learn and build electric 

circuits, design and create e-textiles by sewing electric circuits on materials such as clothes or 

hats).  

The remaining studies assessed the integrated CT and STEM by analysing students’ 

artifacts (e.g., computer game products, Harrison et al., 2018), video records (e.g., classroom 

video, Farris et al., 2016), observation notes and/or reflections by teachers/students (e.g., 

Gadanidis, Clements, & Yiu, 2018), and students’ log data collected by the CT tool (e.g., 

Boticki et al., 2018). In these data sources, students’ performances on CT and STEM were 

integrated, so the assessments generally took the approach of applying a coding framework to 

identify the measures of CT and STEM components and then to further analyse them 

quantitatively and/or qualitatively. For example, Gadanidis, Cendros, Floyd, and Namukasa 

(2017) reported a study on integrating CT into mathematics teacher education. The 

participants’ CT and math learning, as well as attitudes toward the integration of CT and 

math, were assessed through their reflection assignments and mind-map products. CT and 

math learning was framed as four themes (i.e., integration of CT and math, and Scratch for 

math learning, CT in other subjects, and CT in society). Attitudes toward the integration of 

CT and math fell into two categories: concern and anxiety, and a growth mindset.  
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Assessment formats. There were a variety of assessment formats used in the studies, 

including typical classroom assessment methods (e.g., tests, student artifacts) and research 

data collection methods (e.g., surveys, classroom observation, interviews, field notes, video 

records, activity logs). 

Survey was the most popular form of assessment in these studies (n=26). The 

majority of the surveys focused on students’ self-efficacy, attitude, experience, or interest 

toward CT or STEM contents. Some surveys also investigated participants’ understanding of 

CT (e.g., the question of “what is CT for you”; Lamprou & Repenning, 2018) and their prior 

programming experience or knowledge (e.g., Feldhausen et al., 2018). 

A total of 21 studies included knowledge and/or skill tests as their assessments. 

Among these, 2 focused on assessing STEM only, 10 focused on assessing CT only, and 9 on 

CT and STEM simultaneously (5 on integrated CT and STEM, and 4 assessed them 

independently).  

Some studies adopted existing test instruments, including the Computational Thinking 

Test developed by Román-González et al. (2017), and the widely acclaimed tool Bebras 

(https://www.bebras.org/?q=examples). Since there are very limited number of CT tests 

available, most of the instruments used in these studies were developed by the researchers 

themselves and differ significantly. For example, Shen and co-authors (Chen et al., 2017; 

Shen et all, 2020) developed a CT assessment instrument based on the idea that CT is a broad 

construct applicable to many everyday contexts. The rubrics included five CT components: 

using established syntax, processing data, applying algorithm, representing solutions in 

multiple ways, and solving problems in an efficient manner. 

A total of 15 studies used learners’ artifacts as a major source of CT assessment, 

including robotic programs, learner-designed games, computer models, and written 

reflections. Different rubrics were developed and applied in these studies.  For example, Bers 
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et al. (2014) assessed children’s CT development by scoring the following four elements on 

their robotic programs: debugging (trouble-shooting), correspondence (choosing the right 

programming commands), sequencing (putting the commands in the right sequence), and 

control flow (realizing the same result by alternative ways of programming). As another 

example, to examine students’ CT ability, Sung et al. (2017) assessed their ScratchJr 

programming products based on the number of errors they made and the number of skills 

they demonstrated. 

Equity Issues when Integrating CT in STEM  

Although many articles did report their participants’ demographic information, only 

about a quarter of the total articles (n=14) investigated equity related issues in their studies. 

Gender difference. Eleven studies analysed gender difference in various measures 

related to CT. With respect to CT competency, five studies found no statistically significant 

gender difference in CT competency among their participants (Duncan & Bell, 2015; Jenson 

& Droumeva, 2016; Mouza, Marzocchi, Pan, & Pollock, 2016; Orton et al., 2016; 

Witherspoon et al., 2017). These studies all involved a sample size greater than 40. Two other 

studies did show that female students performed better than male students, but with much 

smaller sample sizes: one was based on the observation of two iterations with less than 30 

middle school students (less than 10 females) in each iteration (Grover, Pea, & Cooper, 

2015); the other was based on the comparison of the CT scores of four focal students (two 

females and two males) (Leonard, Buss, Unertl et al., 2016). 

In terms of affective domain related to CT, three studies found that females 

demonstrated lower interest, confidence, or self-efficacy than males. Among them, two 

studies drew the conclusion according to the t-test results of survey data collected from over 

200 secondary school students (Duncan & Bell, 2015; Orton et al., 2016); one study reported 

that female pre-service elementary teachers were more confident in teaching science or 
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engineering under the context of integrated CT and STEM education than males, but without 

statistical analysis due to the small sample size (5 males and 26 females in total) (Campbell 

& Heller, 2019). Three other studies showed that, there was no statistically significant gender 

difference in the overall score of affective measurements, yet gender difference existed in 

some aspects of the measurements (Feldhausen et al., 2018; Jenson & Droumeva, 2016; 

Mouza et al., 2016). For example, Mouza et al. (2016) found that although boys and girls 

presented similar levels in many aspects (e.g., enjoying using computer, feeling motivated to 

succeed in computing, and intention to persist), boys scored statistically significantly higher 

than girls in computing confidence and, quite interestingly, lower than girls in the statement 

that “girls can do just as well as boys in computing” (p. 88).  

Other than outcome measures, gender difference in the learning processes was also 

revealed based on observation. Wu (2018) reported that male and female students preferred 

different types of games in the game design activities: Boys preferred games of sports, 

shooting, and action, while girls liked role-playing and puzzle games more. Leonard, Buss, 

Gamboa, et al. (2016) found that girls were more likely to lose interest than boys after 

working on a single form of game programming with only tutorial but no teacher scaffolding 

for ten weeks. 

Other equity-related issues. Four studies paid attention to equity-related issues other 

than gender. Feldhausen et al. (2018) investigated the effect of socioeconomic status on 

students’ self-efficacy in CT, and found no significant difference between students from 

different socioeconomic backgrounds. Duncan and Bell (2015) reported that students from 

different ethnic groups demonstrated similar levels of interest and engagement in the CT-

integrated course, according to teachers’ observation.  

With a total of 76 middle school participants from rural communities (6 were Native 

Americans), Leonard, Buss, Gamboa, et al. (2016) reported that students’ game products 
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reflected their cultural tradition (e.g., a Native American student named a game character as 

Nighthawk) and elements of their living environments (e.g., locally common pickup truck, 

and local foothills). In addition, they mentioned the relatively high attrition rate of American 

Indian students compared with that of all participants. In the same context of a larger study, 

Leonard et al. (2018) presented three focal teachers’ case studies. One focal teacher, an 

African American male, reflected in his teaching journal that he might have made his Native 

American students uncomfortable by asking them to incorporate their cultural imagery in 

their game products because it was against their culture; he realized that they avoided more 

communication about it, a typical Native American reaction when they did not want to 

further offend the teacher.  

Prior experience is typically tied to opportunities and access, and five studies in our 

collection involved research on prior programming experience. Feldhausen et al. (2018) 

found that middle school students who had previously attended a STEM event (possibly with 

more exposure to various programming environments) were more likely to demonstrate 

higher self-efficacy in CT than those who had not. Similarly, Grover et al. (2015) reported 

that prior programming experience was positively related with performance in the tests of 

computational knowledge and programming administered at the end of course. In contrast, 

Kalogiannakis and Papadakis (2017) compared the survey results of the acceptance of using 

ScratchJr to learn CT and to incorporate CT in their future science classroom between pre-

service teachers who had prior programming experience and those who did not, and there was 

no significant difference between them.  

Although the aforementioned studies reported differences in terms of measured 

outcomes or observed processes between different student groups, most of them didn’t 

provide or research specific instructional strategies on promoting equity. The study by 

Mouza et al. (2016) was one exception. They set gender role models for middle school 
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participants: a combination of one female and one male undergraduate student majoring in 

computer science, was assigned to each group of students as main instructors, despite that 

there were fewer female undergraduates in computer science.  

Discussion 

Operationalizing and Assessing CT in STEM Contexts 

The findings on defining CT in STEM education reflect some consensus on the broad 

conceptualization of CT, the trend of redefining CT in STEM contexts, and implications for 

future research. First, most of the reviewed studies acknowledge the broad conceptualization 

of CT as a set of skills or practices for problem solving and its essential components 

including abstraction, decomposition, generalization, algorithm, and so forth. 

Second, various definitions or frameworks of CT have been created based on its 

widely acknowledged broad conceptualization to serve the research and practical demands 

under different disciplinary contexts. For example, scientific practices play an important role 

in science learning because they provide learners with the opportunities to experience the 

process of developing scientific knowledge and improving relevant skills simultaneously. 

Consistent with this perspective, framing CT as component practices (Weintrop et al., 2016) 

has become popular in the context of science education. Yet, the operationalization of CT in 

other STEM disciplines (e.g., How is CT connected with design thinking in engineering 

education?) requires further research, echoing what Li et al. (2020) proposed that CT should 

be treated as discipline-specific thinking practice. 

Third, besides various STEM disciplines, our finding suggests that researchers and 

practitioners need to attend to more factors in order to operationalize CT in STEM, including 

the specific learning environments and characteristics of learners. For instance, for 

participants at different grade levels, CT should be operationalized differently by considering 

age appropriateness. One strategy is to employ different programming environments (e.g., 
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block-based vs text-based), but considerations should be given to transform CT in different 

formats according to the features of these environments. 

In addition, developing operational definitions of CT is necessary for the purpose of 

assessment in both research and practice. From the reviewed studies, we observed the 

vagueness and uncertainty about what and how to assess learning in the integrated CT and 

STEM educational environment. With a generic definition, researchers and instructors found 

it difficult to connect CT with STEM and therefore, could not tap into the deep meaning and 

significance of CT in STEM contexts. As a result, their common solutions were to assess the 

affective domain (Rubinstein & Chor, 2014) or assess CT and STEM contents separately. 

Connected with STEM, an operational definition of CT in STEM will provide specific 

directions when it comes to CT assessment (e.g., using CT to solve specific STEM 

problems). Our review suggests that more efforts should be devoted to developing assessment 

tools that target directly integrated CT and STEM learning.  

Finally, more solid operational definitions and their accompanying assessments will 

allow more systematic comparison and contrast of results across studies, moving the field 

toward a more coordinated direction.  

Instructional Strategies for Integrating CT in STEM Education 

Our review finds that multiple topic contexts have been used to integrate CT in STEM 

education and the most popular ones include robotics, game design, and computational 

modelling. Robotics and game design are more often used in technology education, whereas 

computational modelling occurs more often in science classrooms. These application contexts 

also naturally fit the pedagogy of PBI. In contrast, there is a relatively smaller number of 

studies that use mathematics as contexts to integrate CT. As an important school subject, 

mathematics provides considerable opportunities and depth for students to develop CT, 

considering the close connection between computation and mathematics (Wiedemann et al., 
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2020). Therefore, we suggest more exploration of integrating CT and math as a future 

research direction. 

While most of the CT activities described in our reviewed studies are computer-based, 

there have been attempts to incorporate embodied or unplugged activities when integrating 

CT and STEM instruction. This is especially so for young students (Cateté et al., 2018; Farris 

et al., 2016; Feldhausen et al., 2018; Mouza et al., 2016; Sung et al., 2017). This line of work 

attends to the needs of learners at their early stage of CT development, contributing to an 

evidence-based learning progression of CT. The learning progression of CT has been studied 

under the contexts of robotic programming (Sullivan & Heffernan, 2016) and Scratch 

programming (Seiter & Foreman, 2013), as well as by analysing the potential connections 

among multiple types of CT-integrated activities (Lee & Malyn-Smith, 2020); yet, it is an 

underdeveloped, albeit important, research area. We call for more empirical research to map 

out the learning progression for integrating CT in STEM education, paying particular 

attention to the connections between different phases (e.g., how would unplugged activities 

contribute to development of CT using a computer-based tool?).   

In terms of scaffolding strategy, very few studies among our reviewed articles have 

investigated the effectiveness of scaffolding through controlled experiments. With limited 

empirical evidence, the effectiveness of faded scaffolding, one-on-one guidance, and adaptive 

scaffolding needs further investigation. Besides, researchers may be recognizing the potential 

of explicitly teaching CT concepts to learners, as about a quarter of the studies included 

explicit instruction of CT concepts in their curriculum. Yet, no direct research evidence was 

presented in these studies to suggest that explicit explanation and direct instruction would 

lead to improved CT learning. We deem explicit instruction as an important aspect of 

integrating CT in STEM education and call for more research to understand its effect. 
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The success of any effective instructional innovation depends on teachers’ successful 

implementation in classrooms. Therefore, teachers should be prepared for integrating CT into 

STEM classrooms. Eleven articles in our review pool focused on pre-service teacher 

education or in-service teacher professional development of integrating CT in STEM 

education. The general observation is that the majority of these studies focused on improving 

teachers’ fundamental understanding of CT and/or their affect related to CT, whereas very 

few studies paid attention to enhancing teachers’ CT competency and their ability to integrate 

CT into their teaching in real classrooms. Borrowing the idea of PCK (Shulman, 1986), we 

suggest that teacher preparation programs should take one step further to equip pre-/in-

service teachers with pedagogical CT-STEM knowledge. 

Research for Broadening Participation in Integrated CT and STEM 

Our review shows that early attempts have been made to study equity issues in the 

field of integrating CT in STEM education. Research started to pay attention to the 

performance or process differences among different student groups, including groups related 

to gender, race, ethnicity, geographic location, and socioeconomic status. Among these, 

gender difference has gained the most attention. A common theme among the studies was 

that while no statistically significant gender difference was found in CT competency, females 

often had significantly lower confidence or self-efficacy in CT than males.  

As one can see, the research on broadening participation in integrating CT in STEM 

education is far from adequate. One area that needs immediate action is to design and 

research different instructional strategies, among other means, that promote equitable 

learning when integrating CT in STEM fields. Some pedagogies have been proposed and 

investigated, such as setting up role models, grouping students with different levels of prior 

programming experience. Yet, the effectiveness and efficacy of these strategies need 

investigation with more carefully designed research.  
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Limitation 

Due to the broad conceptualizations of CT and a wide range of application field, our 

literature collection may have missed some relevant studies. The reader should keep in mind 

that our literature search should be taken as a sampling process as opposed to an exhaustive 

one. Besides, in the process of completing this review, more studies have been published. 

Therefore, this review, as any review study, has a time limitation. 

Conclusion 

We reviewed 55 papers with empirical studies on the topic of integrating CT into 

STEM education. Our major findings from these papers include: (a) attempts have been made 

to create domain-specific CT definitions in STEM education; (b) problem-based instruction, 

including application contexts such as game design, robotics, and computational modelling, 

has been the most popular model in integrating CT in STEM; (c) the assessments of student 

learning in integrated CT and STEM education targeted different objectives with different 

formats, but assessment of integrated CT and STEM is limited; (d) learning performance and 

processes between different groups were studied, but pedagogical design and efficacy on 

enhancing equity was much less researched. Although our review indicates that this area is 

still in its early stage, our review provides a useful resource to future research and practices, 

especially in areas such as operationalizing CT in STEM contexts, assessing integrated CT 

and STEM learning, and research for broadening participation in CT-integrated STEM 

education. 
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