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Abstract

Research focusing on the integration of computational thinking (CT) into science,
technology, engineering, and mathematics (STEM) education started to emerge. We
conducted a semi-systematic literature review on 55 empirical studies on this topic. Our
findings include: (a) the majority of the studies adopted domain-general definitions of CT and
a few proposed domain-specific CT definitions in STEM education; (b) the most popular
instructional model was problem-based instruction and the most popular topic contexts
included game design, robotics, and computational modelling; (c) while the assessments of
student learning in integrated CT and STEM education targeted different objectives with
different formats, about a third of them assessed integrated CT and STEM; (d) about a
quarter of the studies reported differential learning processes and outcomes between groups,
but very few of them investigated how pedagogical design could improve equity. Based on
the findings, suggestions for future research and practice in this field are discussed in terms
of operationalizing and assessing CT in STEM contexts, instructional strategies for
integrating CT in STEM, and research for broadening participation in integrated CT and
STEM education.

Keywords: Computational Thinking, STEM Education, Instructional Strategies,

Assessment, Equity
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Introduction

Computational thinking (CT) is considered necessary for everyone and everyday life
in the new century (Wing, 2006, 2008). It is the practice or thought process of applying
fundamental computer science concepts to solve problems (Aho, 2012; Wing, 2006, 2008).
More specifically, it includes extracting key information from the concrete details of a
problem (abstraction), reformulating a larger problem into a set of smaller ones
(decomposition), detecting the patterns embedded in data, developing and applying
algorithms, and so forth (College Board, 2020; Wing, 2006, 2008).

In recent years, there is an emerging trend of integrating computing (hence CT) into
disciplinary education, especially in the Science, Technology, Engineering, and Mathematics
(STEM) fields (Lee et al., 2020; Li et al., 2020). Research has shown that the STEM contents
and contexts can benefit CT learning (Weintrop et al., 2014; Orton et al., 2016). Likewise,
incorporating CT into STEM education will also enhance students’ learning of STEM
contents (Repenning, Webb, & loannidou, 2010; Sengupta, Kinnebrew, Basu, Biswas, &
Clark, 2013; Wilensky & Reisman, 2006; Lewis & Shah, 2012), because of the integral role
of computation in modern STEM disciplines (Martin, 2018). For instance, the Next
Generation Science Standards (NGSS) framework (National Research Council [NRC], 2012)
lists “using mathematics and computational thinking” as one of the eight core practices in K—
12 science classrooms.

More importantly, integrating CT into STEM education has the potential of reducing
inequity in terms of CT learning (Weintrop et al., 2014). Traditional CT education (i.e., when
not embedded in STEM education) is often based on computers and programming courses

(Grover & Pea, 2013). However, computer science or programming courses are still limited,
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especially in lower grades in K—12 settings; even if the courses are accessible to all students,
many will not take them because of lacking interest or performing badly in programming,
since computer science courses are usually not mandatory (Code.org, CSTA, & ECEP
Alliance, 2020). More students would have the opportunity to learn CT when it is taught in
STEM classrooms, as STEM courses are more widely offered and are more likely to be

compulsory than computer science courses (Weintrop et al., 2014).

With the ongoing discussions about what CT means, there has been little consensus
on how it should be operationalized in education (Barr & Stephenson, 2011; Grover & Pea,
2013; Roman-Gonzalez, Pérez-Gonzalez, & Jiménez-Fernandez, 2017). For example, the
International Society for Technology in Education (ISTE) and Computer Science Teachers
Association (CSTA) in 2011 defined CT in K—12 education as a problem-solving process that
includes formulating problems, using a computer or other tools, logically organizing,
analyzing, and representing data, automating solutions through algorithmic thinking,
achieving efficient and effective solutions, and generalizing and transferring to other
problems. Brennan and Resnick (2012) developed a CT framework specifically for learning
in the programming environment. Thus, they identified seven programming concepts—
sequences, loops, parallelism, events, conditionals, operators, and data—as CT concepts.

Crosscutting with other disciplinary fields further contributes to the wide diversity of
CT definitions. For example, Weintrop et al. (2016) framed CT in math and science
education as four categories of practices, including data practices, modeling and simulation
practices, computational problem-solving practices, and systems thinking practices. This is in
accordance with the rise of the focus on practices in STEM education (NRC, 2012). More
recently, based on their analyses of the activities collected from researchers and practitioners

that integrated CT into K—12 STEM classrooms, Lee and Malyn-Smith (2020) defined CT
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from a disciplinary perspective that included five CT integration elements—understanding
complex systems, innovating with computational representations, designing solutions that
leverage computational power and resources, engaging in collective sense-making around
data, and understanding potential consequences of actions.

Besides its diverse theoretical interpretations, integrating CT in STEM education
remains challenging as many practical issues are still under exploration, such as what
activities and approaches are effective for integrating CT in various STEM contexts, and how
CT should be assessed in the new context (Grover & Pea, 2013; Li et al., 2020; Shute, Sun, &
Asbell-Clarke, 2017; Tang et al., 2020). These aspects need to be sorted out so that educators
could deliver effective integrated CT and STEM instruction.

For further contributing to the research and practice of this important field, it is
necessary to probe the current state of how these issues have been addressed. Therefore, we
conducted a literature review of empirical studies on this topic with the following guiding
questions: (to address the diverse theoretical interpretations) (1) How is CT defined in STEM
education? (to address the practical concerns of integrating CT in STEM education) (2) What
instructional strategies are used to incorporate CT into STEM education? (3) How are CT and
STEM contents assessed in integrated CT and STEM education? (to see if sufficient work has
been done as one of the major reasons of integrating CT into STEM education is to improve
equity) (4) What aspects of equity-related issues are investigated and reported in the literature
on integrating CT in STEM?

Method

The current study is a semi-systematic literature review (Snyder, 2019) as we
conducted content analysis on both qualitative and quantitative studies to identify general
trends in the field (Calik & Sozbilir, 2014). A semi-systematic approach is appropriate for

topics that are “conceptualized differently and studied by various groups of researchers
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within diverse disciplines and that hinder a full systematic review process” (Snyder, 2019, p.
335). Many relevant studies termed CT differently and focused a wide range of integration
disciplines, making an exhaustive literature search impossible. Yet, we followed a rigorous
process (see below) to collect and analyze the literature.

Literature Search and Selection

We first determined a set of inclusion/exclusion criteria: (a) The paper to be included
covers both CT and STEM education and stresses integrating CT in STEM subjects. STEM
refers to one or more (sub)disciplinary contexts—being isolated (e.g., physics) or integrated
(e.g., biomechanical engineering) in nature—within the broadly defined STEM field where
CT is applied. (b) The paper to be included reports at least one empirical research study that
engages participants in CT activities. We excluded studies that mainly focused on describing
a curriculum that integrated CT with STEM but did not report research or assessment data on
participants’ learning. (¢) We only included literature published in English. (d) We excluded
works published in book chapters or conference proceedings of the same study that was
published in a journal.

We collected literature through three means: searching databases and popular search
engines, examining citations in collected articles, and including articles to the knowledge of
the authors. In terms of the database approach, we confined the concept of CT to be explicitly
expressed as “computational thinking.” First, we searched Educational Research Information
Center (ERIC) and ACM Digital Library for articles that included “computational thinking,”
“education,” and any of the following five terms— “STEM,” “science,” “technology,”
“engineering,” and “mathematics”—in any field of the article. The returned results did not
provide enough empirical studies. Then we adjusted keywords, and added discipline-specific

29 ¢¢

terms such as “physics,” “chemistry,” and “biology” to supplement “science.” We also added

“game design” and “robotics” to supplement “technology” because they emerged to be two
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main technological contexts for CT based on our observation of related articles. Given their
popularity, Google Scholar and ResearchGate were used as supplementary search sources.

We conducted a total of two rounds of literature search and selection. During the first
round of search (September 2018 — January 2019), we obtained 87 articles. We also
examined the citations from the literature we gathered and obtained another 20 articles.
Having the initial pool of 107 articles, we applied the specified eligibility criteria on each
article (by reading the whole set of articles) and 40 papers remained after this first round of
selection. During the second round of search (January 2020 — early February 2020), the same
keywords were used to search the same data sources, but with an additional constraint on the
publication year (i.e., after 2018) to gather more recent publications. We also examined the
articles from a very recent JOST special issue on CT (the papers of which were published
online between November 2019 and February 2020). The second round resulted in 23 new
papers for further selection, 15 of which were included into our library. In total, we collected
55 articles for this review (see Electronic Supplemental Material 1).
Analysis

The articles were reviewed one by one. First, the general information of each study
was documented, including the issued/publication year, subject matter/discipline, grade level
of the participants, where the study took place, etc. Then, specific notes were taken, and open
codes were developed to address our research questions related to CT definition, instructional
strategies, assessment, and equity related issues. The detailed coding book is in Electronic
Supplemental Material 2 (the results can be found in Electronic Supplementary Material 1).

Regarding CT definition, we took notes about the definition(s) of CT that were listed
in the article, and the definition that was used as framework for instruction, assessment,
and/or data analysis. Additionally, to get an overall idea of how CT is generally defined or

interpreted in these papers, we collected the theoretical section that is relevant with CT and
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used the collection of texts to create a word cloud using an online word cloud generator
WordClouds (https://www.wordclouds.com/). The tool generates both a list of unique words
with the number of times they appear in the text sample and a visualization of words (with
the sizes of which proportional to their frequencies). We deleted irrelevant words (e.g., “can,”
“define”) with high frequencies, and transformed the morphological variants of words into
the same form (e.g., replacing the plural form of a noun by the singular form).

When coding the instructional strategies for integrating CT into STEM education, we
coded the instructional models (e.g., problem-based learning), the topic contexts (e.g., game
design, science [biology]), ways of scaffolding (e.g., fading), types of CT related activities
(e.g., programming or unplugged activities), and specific programming language or
environment used (e.g., Scratch). We also took notes on whether or not explicit instruction on
CT was incorporated, and if so, how.

In terms of assessments, we coded their format (e.g., survey, test, interview) and
domain target (e.g., CT knowledge, attitudes towards CT, specific STEM content
knowledge). If a study contained more than one assessment, each assessment was coded. If a
study only mentioned that they administered an assessment but did not provide specific
information, this assessment was not coded. When a study reported differentiated results
among different student groups and populations, we took specific notes on if the study
investigated equity-related issues such as gender difference in both their instructional
strategies and assessments.

Coding Reliability

Since the reviewed literature is open-ended data, our coding chose the percent
agreement as reliability index (Syed & Nelson, 2015). The coding reliability was established
through rounds of discussion between the coders (the first two authors). We initially read and

coded a set of articles individually to build the first version of the coding book. We carefully
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discussed our results and drafted an operationalizable coding scheme. Then we independently
coded a set of three articles (5%) and compared our coding results, which showed 92.1%
agreement. All coding inconsistencies and disagreements were discussed and resolved. Then,
the coding scheme was further clarified and modified accordingly. We repeated this process
for another two rounds (three articles for each round) and had 93.7% and 96.8% before-
discussion agreement, respectively. All inconsistencies and disagreement were resolved
through discussion. Based on the finalized coding scheme, the first author finished coding the
remaining articles. The codes for all 55 articles are in Electronic Supplemental Material 1.
Results

Basic Descriptive Statistics

In terms of geographic locations, the majority of the articles came from the USA
(n=40). Other countries or regions included Canada (5), New Zealand (2), Croatia (1),
England (1), Greece (1), Israel (1), Spain (1), Switzerland (1), Taiwan (1), and Turkey (1). In
terms of growth over the years, there is clearly a rising trend: 2009 — 2011 (3), 2012 — 2014
(5),2015-2017 (22), 2018 — 2020 (25; note that our search ended early 2020). In terms of
subject matter (Figure 1), 19 papers were on integrating CT in science education; 17 in
technology and/or engineering education; 9 in mathematics education; and 10 in some

combination of STEM disciplines.
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Figure 1. Number of papers for each one or combination of the disciplines.
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In terms of participants, the middle school level had the most studies (n=18), followed
by upper elementary level (n=11)! and high school level (n=9). There were 11 studies
targeting teachers (5 for pre-service teachers and 6 for in-service teachers). Higher education
had 3 studies and lower elementary had 4 studies.

Defining CT in STEM

Word cloud. Word cloud provides a quick overview of the frequently used
vocabularies to define or interpret CT in the collection of literature. WordClouds produced
one as shown in Figure 2. The words could be roughly divided into three levels based on the

range of frequencies and the meaning of words.
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Figure 2. Word cloud of CT theoretical parts from all papers (The sizes of words are
proportional to their counts, and the colours were randomly assigned by the tool).
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The most prominent words at the first glance are the following: “problem” (f=170;
times appeared in the text sample), “computer” (f=107), “student” (f=107), “solve” (f=102),
“programming” (f=98), and “skill” (f=95). They represent the most fundamental concepts
related with CT. Problem-solving skill is considered by many as the driving objective for

applying or developing CT in STEM. All of the reviewed papers are in educational contexts,

! Djambong & Freiman (2016) included participants from both upper elementary and middle school
levels, and it was counted in both categories.



CT IN STEM 11

therefore, the primary target is student. Programming has been used as the main form of
activity in learning about CT in STEM and computers are the the primary tool.

Then we may find words that are displayed slightly smaller because of their lower
frequencies. Yet, they are more specific in terms of the context and meaning of CT, such as,
“science” (f=91), “practice” (f=85), “abstraction” (f=77), “Wing” (f=66), “algorithm” (f=61),
“process” (f=61), “design” (f=59), “data” (f=56), “concept” (f=54), and “representation”
(f=49). Science is one of the most common domain contexts for integrating CT. Abstraction,
using algorithm, processing data, and data representation are some of the most common CT
concepts and practices (Chen, Shen, Barth-Cohen, Jiang, Huang, Eltoukhy, 2017), two of the
three key dimensions of CT framework brought up by Brennan and Resnick (2012). System
design (in engineering and technology) and algorithm design are core components of CT in
the conceptualizations by ISTE and CSTA (2011) and Wing (2006).

The words that appeared below 49 times constitute the third level. They cover some
additional contexts and practices for integrating CT in STEM, such as “mathematics” (f=47),
“system” (f=41), “simulation” (f=38), “STEM” (f=37), “modelling” (f=36), “code” (f=30),
“formulate” (f=24), “generalization” (f=24), “pattern” (f=24), “robot” (f=22), “game” (f=21),
“decomposition” (f=19), “engineering” (f=17), “debugging” (f=16).

Operationalizing CT in STEM education. The word cloud provides an overview
but is not sufficient to address research question one. Here we further elaborate on our
observation about how CT was operationalized in these studies (Some key frameworks of CT
definition or operationalization are summarized in Table 1). These definitions or
operationalization of CT can be categorized into two major types: generic ones (i.e., not
attending to specific disciplines) and specific ones (i.e., attending to specific disciplines).

Table 1. Key Frameworks of CT Definition or Operationalization in the Reviewed Articles

Authorship  Wing, 2006 ISTE & CSTA, Brennan & Resnick, Weintrop et al.,
2011 2012 2016
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Description  CT involves the CT involves two CT involves three CT involves four
application of dimensions: skills key dimensions: categories of
foundational (e.g., formulating computational practices integral
computer science problems concepts (e.g., in math and
concepts or skillsin ~ computationally, sequences, science
solving problems, processing data loops, conditionals, education: data
designing systems, logically, and data), practices,
and understanding representing data computational modelling and
human behaviour. through abstractions, practices (e.g., simulation
The concepts/skills automating solutions being iterative, practices,
include reformulating through algorithmic  debugging, remixing, computational
problems, reduction,  thinking) and and abstracting and problem-solving
transformation, dispositions (e.g., modularizing) practices, and
abstraction, confidence, , and computational systems thinking
decomposition, etc. persistence, perspectives (e.g., practices.
tolerance, the ability understandings of
of dealing with open  selves, relationships
ended problems, the to others, and the
ability of technological world
collaboration). around
them).
STEM No No No Yes
specificity

For the generic type, Wing’s (2006, 2008) broad conceptualization was adopted in 10

papers and referenced by most of our articles. She made CT a popular term and proposed it

should be treated at the same level as the three Rs: arithmetic, reading, and writing. ISTE and

CSTA (2011) provided a more specific operational definition, which delineated concrete CT

skills and CT dispositions in K — 12 education. They framed CT skills as a set of critical

skills involved in a problem-solving process, such as formulating problems computationally,

data processing for solving problems, automating solutions, and generalizing and transferring

the problem-solving process. Closely related to CT skills, CT dispositions were also defined

as significant components of CT, including confidence in dealing with complexity,

persistence in working with difficult problems, tolerance for ambiguity, the ability to deal

with open ended problems, and the ability to communicate and work with others to achieve a

common goal or solution. This framework was referenced in seven articles in our literature:

Two of them directly adopted its definition of CT skills for assessing students’ learning of CT

in the contexts of robotics and game design (i.e., Leonard, Buss, Gamboa, et al., 2016;
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Leonard, Buss, Unertl et al., 2016); one of them directly used its definition of CT dispositions
(i.e., Hadad et al., 2020); and the others adapted it to make their own CT definitions. Brennan
and Resnick (2012) further expanded the interpretation of CT and proposed three key
dimensions of CT: foundational CS concepts such as sequences and loops; computational
practices such as testing and debugging; and computational perspectives that a learner applies
in understanding selves, relationships to others, and the technological world around them.
This framework was adopted in two studies (i.e., Boticki, Pivalica, & Seow, 2018; Falloon,
2016) for the learning of students aged 5 — 8 years old in a block-based programming
environment (e.g., Scrachlr).

Comparing to the generic CT definitions or interpretations, many articles also
described specific perspectives of CT pertaining to the STEM fields. Weintrop et al. (2016)
proposed a taxonomy of four categories of CT practices (i.e., data, modelling and simulation,
computational problem solving, and systems thinking), which was adopted by nine articles.
The practices were extracted from the commonalities shared by well-acknowledged CT
practices and common math and science practices. For example, modelling and simulation
are essential practices for scientists and mathematicians (NGSS Lead States, 2013), and they
are also considered as essential CT skills (ISTE & CSTA, 2011; Wing, 2006). The
framework was adopted by nine articles, eight of which directly used it as the operational
definition for their curriculum and/or assessment.

The majority of the remaining studies developed their own operational CT framework
by integrating some extant definitions. Based on our reading, the studies that shared similar
learning environments or technological platforms tended to identify the same or similar CT
components or constructs as their operational CT framework. For example, the CT
frameworks in the only three studies using maker activities overlapped with each other to a

great extant: Campbell and Heller (2019) framed CT constructs as decomposition,
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abstraction, pattern recognition, and algorithmic thinking; Hadad et al. (2020) included
decomposition, abstraction, pattern recognition, algorithm design, and evaluation; and Yin et
al. (2020) broke down CT to decomposition, abstraction, algorithmic thinking, and pattern
generalization.

Instructional Strategies for Integrating CT in STEM

Accompanied with the diverse definitions, a variety of instructional strategies have
been used or explored. Some of them are popular among the reviewed studies, and they are
summarized as instructional models and topic contexts, programming and non-programming
activities, and ways of scaffolding student learning.

Instructional models and topic contexts. A total of 11 studies explicitly used the
instructional model of Problem-Based or problem-driven Instruction (PBI). These PBI
strategies centred around certain problems designed by the researchers so that students
practiced and improved CT or content knowledge and skills while working on those
problems. Typical problems included programming problems (e.g., programming game
characters to sort out flags of different colours, Witherspoon, Higashi, Schunn, Baehr, &
Shoop, 2017), mathematics problems (e.g., calculating areas of polygons, Pei, Weintrop, &
Wilensky, 2018), and science problems (e.g., delivering medicines to a tribe in a remote area,
Hutchins et al., 2020).

Our analysis also shows that, compatible with PBI, the most popular topic contexts
are game design, robotics, and computational modelling. Game design represents the most
common topic context for cultivating students’ CT skills in STEM in our pool (12 studies). It
has the advantage of quickly drawing students’ attention (Bremner, 2013), and providing
students with opportunities to practice programming and to learn STEM content at the same
time (Hoover et al., 2016; Leonard, Buss, Gamboa, et al., 2016; Wu, 2018). Among these

studies, the most popular programming environment for game design was Scratch (a block-
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based programming environment). For example, in the study reported by Hoover et al.
(2016), students were asked to create games about climate change using Scratch. The games
created by students reflected rather deep understanding of climate change because they not
only covered scientific concepts (e.g., greenhouse gases, photosynthesis), but also
demonstrated the mechanisms of global warming and included measures to prevent it.

Robotics education becomes increasingly popular because robots can easily motivate
and engage students in both engineering and technology practices (Bers, Flannery, Kazakoff,
& Sullivan, 2014; Leonard, Buss, Gamboa, et al., 2016). Among the 12 studies using the
robotics context, one study used a humanoid robot (Chen et al., 2017) and the rest all used
non-humanoid robotic kits (e.g., LEGO EV3) that required participants to build their own
robots from bricks, motors, and sensors first and then program them to accomplish tasks or
solve problems. For example, Bers et al. (2014) reported that their construction-based
robotics curriculum toward kindergarteners consisted of an introduction lesson about general
engineering design, the second lesson to learn to make robots by themselves, then lessons on
how to program the robots, and that learners showed many positive results on robotics and
CT (e.g., significant improvement in correspondence, sequencing, and debugging skills).
Berland and Wilensky (2015) conducted a study comparing student learning with a virtual
robot and that with a physical robot and found that the two different forms led to students’
differentiated perspectives to interpret situations, but similar outcome of students’ CT skills,
as measured by tests on students’ capability to follow and change a flowchart.

In addition to robotics and game design, computational modelling was adopted as
topic context in 16 studies. Scientific modelling is the process of creating representations,
rules, or reasoning structures for predictions and explanations of science phenomena or
mechanisms (Schwarz & White, 2005; Namdar & Shen, 2015). Computational modelling

refers to the use of computational tools to carry out modelling tasks. Aksit and Wiebe (2020)
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reported a five-day intervention embedded in a seventh-grade science classroom; during the
intervention, students were asked to build two models with Scratch: one that would simulate
the motion of a car on a frictionless path and the other that would simulate the free fall of a
basketball. In another study (Bortz, Gautam, Tatar, & Lipscomb, 2020), middle school
students carried out computational chemistry tasks using the NetLogo modelling
environment. An initial model (e.g., the model of the forming and splitting of water
molecules) was provided before students worked in groups to evaluate it and make changes
on the code if necessary.

Programming and non-programming activities. Programming is a common vehicle
to help cultivate students’ CT since programming involves creating instructions through a set
of computer readable representations (i.e., programming language) to make computers to
accomplish certain tasks or solve problems.

Specific consideration is often given to leverage learners’ age appropriateness and/or
prior experience with programming. Text-based programming language was used in 7 studies
that involved students in middle school (n=1), high school (n=1), or higher education (n=2),
and pre-/in- service teachers (n=3). For example, R was used to involve high school students
in mathematical modelling (Wiedemann, Chao, Galluzzo, Simoneau, 2020) and Python
programming tasks were designed to introduce CT to undergraduates who majored in science
(Hambrusch et al., 2009). Nevertheless, the majority of our papers (n=38) described
approaches using block-based programming languages, such as Scratch and Lego Mindstorm
(a block-based programming environment for Lego robotics). These block-based
programming environments are intuitive to use and are designed mainly for young learners or
novice programmers. For instance, Benton, Hoyles, Kalas, & Noss (2017) reported a
ScratchMaths project in which curriculums were designed to integrate Scratch programming

and mathematics for fifth graders. In one of their activities, students were asked to program
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the Earth to be surrounded by objects one by one, in the way that petals surround the centre
of a sunflower. To achieve this goal, they needed to fully understand what a 360° total turn
means mathematically and create proper Scratch algorithm.

In spite of the popularity of computer programming, not all studies resorted to
computers in their instructions. Embodied or unplugged activities were used for younger
children or discussed by pre-/in- service teachers in seven studies. These activities typically
involved physical body movements or used certain objects to represent or illustrate abstract
concepts or principles (Barth-Cohen, Montoya, & Shen, 2019). For instance, Sung, Ahn, and
Black (2017) investigated the effects of the level of embodiment on kindergarten and first-
grade students’ mathematics and programming learning. The students in full embodiment
groups were asked to complete the number lines on the floor by either physically performing
the number or manipulating another student to perform, while students in low embodiment
groups were asked to solve the problems directly on papers by themselves or by surrogating
another. The post-assessments showed that students in full embodiment groups demonstrated
significantly higher basic numeracy abilities than the other groups. To illustrate the concepts
related to electrical circuits to seventh to ninth graders, Feldhausen, Weese, and Bean (2018)
also took advantage of unplugged activities, including using marbles flowing in the hula-
hoop to represent electrical current.

Scaffolding. Scaffolding refers to the process and aids provided to a learner to help
him/her to learn a topic, solve a problem, or accomplish a goal (Devolder, van Braak, &
Tondeur, 2012; Bakker, Smit, & Wegerif, 2015). Given that the studies we examined were
conducted in the context of STEM education, it is important to see how instruction in these
studies brought about CT. Explicit explanation of CT concepts in the instruction process was
emphasized in 13 studies. Cateté et al. (2018) conducted a pilot study with in-service teachers

to infuse CT into middle school life science classes. They showed that the teachers opposed
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to the idea of implicitly integrating CT concepts, but proactively sought help from the
research team to identify CT concepts hidden behind the activities in order to understand
better. Feldhausen et al. (2018) also reported a study in which teachers illustrated clearly to
fifth- and sixth-grade students how a programmer would think when they worked on the
Scratch programming task.

A total of eight studies provided detailed information about the scaffolding strategy
with respect to CT, and three of them conducted experiments to investigate the effectiveness
of their scaffolding. In terms of fading (i.e., gradual removal of instructional support), Jaipal-
Jamani and Angeli (2017) applied the scaffolded process starting from full scaffolding, then
to partial scaffolding, finally to no scaffolding, and showed positive results in enhancing
learners’ CT skills. Lamprou and Repenning (2018) and Witherspoon et al. (2017) applied
similar fading method and also showed positive results. In terms of sources of feedback,
Sengupta et al. (2013) compared students who received one-on-one guidance with those who
shared one classroom teacher in a learning environment that integrated CT and science
learning, and showed that the one-on-one scaffolded group outperformed the comparison
group. Likewise, Basu, Biswas, and Kinnebrew (2017) developed an adaptive scaffolding
environment which supported students by recording their performance and then providing
individualized scaffolds, and conducted a comparative study on sixth-grade students to
investigate the effectiveness of this environment. The result showed that students who
received adaptive scaffolding performed better than the other students in terms of modelling
performance and behaviour, modelling strategy use, and learning of science and CT.
Assessments in Integrated CT and STEM Education

The targets of assessments. The targets of the assessments used in these studies can
be categorized into three types: to assess CT related constructs only (n=18), to assess STEM

related constructs only (n=1), and to assess both CT and STEM (n=36).
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CT or CT related constructs included the affective domain and the cognitive domain.
The former included learners’ self-efficacy, attitudes, or interest in CT. For instance,
Kalogiannakis and Papadakis (2017) conducted pre- and post- surveys on preservice
teachers’ self-efficacy in CT (Bean, Weese, Feldhausen, & Bell, 2015). The survey contained
items like “I feel confident writing simple programs for the computer”, and “I can identify
how programming concepts relate to NGSS.” Similar to this example, the instruments in most
of our reviewed articles which claimed to assess affective domain towards CT, actually
measured that towards programming in their items. In other words, they equated CT to
programming in their assessment.

The cognitive domain included CT competency, CT understanding, and the
integration of CT and STEM. In terms of assessing CT competency, likewise, many
assessments depended on, or at least were highly related to programming. For instance, Orton
et al. (2016) conducted a study aiming to incorporate CT into science and math education. In
this study, apart from assessing students’ attitudes toward STEM fields, they developed an
instrument to assess CT skills. The pre- and post- assessments for CT skills were computer-
based, and corresponded to the four-category taxonomy of CT in science and mathematics
(Weintrop et al., 2016). In one sample question, a situation was depicted by both words and
images and the question was to predict the result of a computer program written for the
situation.

To assess CT understanding, Lamprou and Repenning (2018) asked students a
question “What is CT for you?” in the middle of the course, and analysed their answers by
categorizing them into seven major types, including thinking like a computer,
programming/CS/computer work, problem division, thinking with the computer, problem

solving, CT process (abstraction, automation, analysis), and other.
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Among the 36 studies that assessed both CT and STEM, it is important to point out
that only about half of the studies (n=20) assessed CT and STEM content in an integrated
way. Five of them designed tests to assess the integration of CT and STEM content (i.e.,
Arastoopour Irgens et al., 2020; Bortz et al., 2020; Swanson, Anton, Bain, Horn, & Wilensky,
2019; Wiedemann et al., 2020; Yin, Hadad, Tang, & Lin, 2020). For instance, with the CT
Integrated Achievement Test developed by the research team, Yin and colleagues (2020)
assessed the integration of CT skills and physics and engineering content knowledge that was
emphasized in the maker activities in their implementation (e.g., learn and build electric
circuits, design and create e-textiles by sewing electric circuits on materials such as clothes or
hats).

The remaining studies assessed the integrated CT and STEM by analysing students’
artifacts (e.g., computer game products, Harrison et al., 2018), video records (e.g., classroom
video, Farris et al., 2016), observation notes and/or reflections by teachers/students (e.g.,
Gadanidis, Clements, & Yiu, 2018), and students’ log data collected by the CT tool (e.g.,
Boticki et al., 2018). In these data sources, students’ performances on CT and STEM were
integrated, so the assessments generally took the approach of applying a coding framework to
identify the measures of CT and STEM components and then to further analyse them
quantitatively and/or qualitatively. For example, Gadanidis, Cendros, Floyd, and Namukasa
(2017) reported a study on integrating CT into mathematics teacher education. The
participants’ CT and math learning, as well as attitudes toward the integration of CT and
math, were assessed through their reflection assignments and mind-map products. CT and
math learning was framed as four themes (i.e., integration of CT and math, and Scratch for
math learning, CT in other subjects, and CT in society). Attitudes toward the integration of

CT and math fell into two categories: concern and anxiety, and a growth mindset.
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Assessment formats. There were a variety of assessment formats used in the studies,
including typical classroom assessment methods (e.g., tests, student artifacts) and research
data collection methods (e.g., surveys, classroom observation, interviews, field notes, video
records, activity logs).

Survey was the most popular form of assessment in these studies (n=26). The
majority of the surveys focused on students’ self-efficacy, attitude, experience, or interest
toward CT or STEM contents. Some surveys also investigated participants’ understanding of
CT (e.g., the question of “what is CT for you”; Lamprou & Repenning, 2018) and their prior
programming experience or knowledge (e.g., Feldhausen et al., 2018).

A total of 21 studies included knowledge and/or skill tests as their assessments.
Among these, 2 focused on assessing STEM only, 10 focused on assessing CT only, and 9 on
CT and STEM simultaneously (5 on integrated CT and STEM, and 4 assessed them
independently).

Some studies adopted existing test instruments, including the Computational Thinking
Test developed by Roman-Gonzalez et al. (2017), and the widely acclaimed tool Bebras

(https://www.bebras.org/?q=examples). Since there are very limited number of CT tests

available, most of the instruments used in these studies were developed by the researchers
themselves and differ significantly. For example, Shen and co-authors (Chen et al., 2017;
Shen et all, 2020) developed a CT assessment instrument based on the idea that CT is a broad
construct applicable to many everyday contexts. The rubrics included five CT components:
using established syntax, processing data, applying algorithm, representing solutions in
multiple ways, and solving problems in an efficient manner.

A total of 15 studies used learners’ artifacts as a major source of CT assessment,
including robotic programs, learner-designed games, computer models, and written

reflections. Different rubrics were developed and applied in these studies. For example, Bers
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et al. (2014) assessed children’s CT development by scoring the following four elements on
their robotic programs: debugging (trouble-shooting), correspondence (choosing the right
programming commands), sequencing (putting the commands in the right sequence), and
control flow (realizing the same result by alternative ways of programming). As another
example, to examine students’ CT ability, Sung et al. (2017) assessed their ScratchJr
programming products based on the number of errors they made and the number of skills
they demonstrated.

Equity Issues when Integrating CT in STEM

Although many articles did report their participants’ demographic information, only
about a quarter of the total articles (n=14) investigated equity related issues in their studies.

Gender difference. Eleven studies analysed gender difference in various measures
related to CT. With respect to CT competency, five studies found no statistically significant
gender difference in CT competency among their participants (Duncan & Bell, 2015; Jenson
& Droumeva, 2016; Mouza, Marzocchi, Pan, & Pollock, 2016; Orton et al., 2016;
Witherspoon et al., 2017). These studies all involved a sample size greater than 40. Two other
studies did show that female students performed better than male students, but with much
smaller sample sizes: one was based on the observation of two iterations with less than 30
middle school students (less than 10 females) in each iteration (Grover, Pea, & Cooper,
2015); the other was based on the comparison of the CT scores of four focal students (two
females and two males) (Leonard, Buss, Unertl et al., 2016).

In terms of affective domain related to CT, three studies found that females
demonstrated lower interest, confidence, or self-efficacy than males. Among them, two
studies drew the conclusion according to the #-test results of survey data collected from over
200 secondary school students (Duncan & Bell, 2015; Orton et al., 2016); one study reported

that female pre-service elementary teachers were more confident in teaching science or
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engineering under the context of integrated CT and STEM education than males, but without
statistical analysis due to the small sample size (5 males and 26 females in total) (Campbell
& Heller, 2019). Three other studies showed that, there was no statistically significant gender
difference in the overall score of affective measurements, yet gender difference existed in
some aspects of the measurements (Feldhausen et al., 2018; Jenson & Droumeva, 2016;
Mouza et al., 2016). For example, Mouza et al. (2016) found that although boys and girls
presented similar levels in many aspects (e.g., enjoying using computer, feeling motivated to
succeed in computing, and intention to persist), boys scored statistically significantly higher
than girls in computing confidence and, quite interestingly, lower than girls in the statement
that “girls can do just as well as boys in computing” (p. 88).

Other than outcome measures, gender difference in the learning processes was also
revealed based on observation. Wu (2018) reported that male and female students preferred
different types of games in the game design activities: Boys preferred games of sports,
shooting, and action, while girls liked role-playing and puzzle games more. Leonard, Buss,
Gamboa, et al. (2016) found that girls were more likely to lose interest than boys after
working on a single form of game programming with only tutorial but no teacher scaffolding
for ten weeks.

Other equity-related issues. Four studies paid attention to equity-related issues other
than gender. Feldhausen et al. (2018) investigated the effect of socioeconomic status on
students’ self-efficacy in CT, and found no significant difference between students from
different socioeconomic backgrounds. Duncan and Bell (2015) reported that students from
different ethnic groups demonstrated similar levels of interest and engagement in the CT-
integrated course, according to teachers’ observation.

With a total of 76 middle school participants from rural communities (6 were Native

Americans), Leonard, Buss, Gamboa, et al. (2016) reported that students’ game products
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reflected their cultural tradition (e.g., a Native American student named a game character as
Nighthawk) and elements of their living environments (e.g., locally common pickup truck,
and local foothills). In addition, they mentioned the relatively high attrition rate of American
Indian students compared with that of all participants. In the same context of a larger study,
Leonard et al. (2018) presented three focal teachers’ case studies. One focal teacher, an
African American male, reflected in his teaching journal that he might have made his Native
American students uncomfortable by asking them to incorporate their cultural imagery in
their game products because it was against their culture; he realized that they avoided more
communication about it, a typical Native American reaction when they did not want to
further offend the teacher.

Prior experience is typically tied to opportunities and access, and five studies in our
collection involved research on prior programming experience. Feldhausen et al. (2018)
found that middle school students who had previously attended a STEM event (possibly with
more exposure to various programming environments) were more likely to demonstrate
higher self-efficacy in CT than those who had not. Similarly, Grover et al. (2015) reported
that prior programming experience was positively related with performance in the tests of
computational knowledge and programming administered at the end of course. In contrast,
Kalogiannakis and Papadakis (2017) compared the survey results of the acceptance of using
Scratchlr to learn CT and to incorporate CT in their future science classroom between pre-
service teachers who had prior programming experience and those who did not, and there was
no significant difference between them.

Although the aforementioned studies reported differences in terms of measured
outcomes or observed processes between different student groups, most of them didn’t
provide or research specific instructional strategies on promoting equity. The study by

Mouza et al. (2016) was one exception. They set gender role models for middle school



CT IN STEM 25

participants: a combination of one female and one male undergraduate student majoring in
computer science, was assigned to each group of students as main instructors, despite that
there were fewer female undergraduates in computer science.

Discussion
Operationalizing and Assessing CT in STEM Contexts

The findings on defining CT in STEM education reflect some consensus on the broad
conceptualization of CT, the trend of redefining CT in STEM contexts, and implications for
future research. First, most of the reviewed studies acknowledge the broad conceptualization
of CT as a set of skills or practices for problem solving and its essential components
including abstraction, decomposition, generalization, algorithm, and so forth.

Second, various definitions or frameworks of CT have been created based on its
widely acknowledged broad conceptualization to serve the research and practical demands
under different disciplinary contexts. For example, scientific practices play an important role
in science learning because they provide learners with the opportunities to experience the
process of developing scientific knowledge and improving relevant skills simultaneously.
Consistent with this perspective, framing CT as component practices (Weintrop et al., 2016)
has become popular in the context of science education. Yet, the operationalization of CT in
other STEM disciplines (e.g., How is CT connected with design thinking in engineering
education?) requires further research, echoing what Li et al. (2020) proposed that CT should
be treated as discipline-specific thinking practice.

Third, besides various STEM disciplines, our finding suggests that researchers and
practitioners need to attend to more factors in order to operationalize CT in STEM, including
the specific learning environments and characteristics of learners. For instance, for
participants at different grade levels, CT should be operationalized differently by considering

age appropriateness. One strategy is to employ different programming environments (e.g.,
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block-based vs text-based), but considerations should be given to transform CT in different
formats according to the features of these environments.

In addition, developing operational definitions of CT is necessary for the purpose of
assessment in both research and practice. From the reviewed studies, we observed the
vagueness and uncertainty about what and how to assess learning in the integrated CT and
STEM educational environment. With a generic definition, researchers and instructors found
it difficult to connect CT with STEM and therefore, could not tap into the deep meaning and
significance of CT in STEM contexts. As a result, their common solutions were to assess the
affective domain (Rubinstein & Chor, 2014) or assess CT and STEM contents separately.
Connected with STEM, an operational definition of CT in STEM will provide specific
directions when it comes to CT assessment (e.g., using CT to solve specific STEM
problems). Our review suggests that more efforts should be devoted to developing assessment
tools that target directly integrated CT and STEM learning.

Finally, more solid operational definitions and their accompanying assessments will
allow more systematic comparison and contrast of results across studies, moving the field
toward a more coordinated direction.

Instructional Strategies for Integrating CT in STEM Education

Our review finds that multiple topic contexts have been used to integrate CT in STEM
education and the most popular ones include robotics, game design, and computational
modelling. Robotics and game design are more often used in technology education, whereas
computational modelling occurs more often in science classrooms. These application contexts
also naturally fit the pedagogy of PBI. In contrast, there is a relatively smaller number of
studies that use mathematics as contexts to integrate CT. As an important school subject,
mathematics provides considerable opportunities and depth for students to develop CT,

considering the close connection between computation and mathematics (Wiedemann et al.,
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2020). Therefore, we suggest more exploration of integrating CT and math as a future
research direction.

While most of the CT activities described in our reviewed studies are computer-based,
there have been attempts to incorporate embodied or unplugged activities when integrating
CT and STEM instruction. This is especially so for young students (Cateté et al., 2018; Farris
et al., 2016; Feldhausen et al., 2018; Mouza et al., 2016; Sung et al., 2017). This line of work
attends to the needs of learners at their early stage of CT development, contributing to an
evidence-based learning progression of CT. The learning progression of CT has been studied
under the contexts of robotic programming (Sullivan & Heffernan, 2016) and Scratch
programming (Seiter & Foreman, 2013), as well as by analysing the potential connections
among multiple types of CT-integrated activities (Lee & Malyn-Smith, 2020); yet, it is an
underdeveloped, albeit important, research area. We call for more empirical research to map
out the learning progression for integrating CT in STEM education, paying particular
attention to the connections between different phases (e.g., how would unplugged activities
contribute to development of CT using a computer-based tool?).

In terms of scaffolding strategy, very few studies among our reviewed articles have
investigated the effectiveness of scaffolding through controlled experiments. With limited
empirical evidence, the effectiveness of faded scaffolding, one-on-one guidance, and adaptive
scaffolding needs further investigation. Besides, researchers may be recognizing the potential
of explicitly teaching CT concepts to learners, as about a quarter of the studies included
explicit instruction of CT concepts in their curriculum. Yet, no direct research evidence was
presented in these studies to suggest that explicit explanation and direct instruction would
lead to improved CT learning. We deem explicit instruction as an important aspect of

integrating CT in STEM education and call for more research to understand its effect.
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The success of any effective instructional innovation depends on teachers’ successful
implementation in classrooms. Therefore, teachers should be prepared for integrating CT into
STEM classrooms. Eleven articles in our review pool focused on pre-service teacher
education or in-service teacher professional development of integrating CT in STEM
education. The general observation is that the majority of these studies focused on improving
teachers’ fundamental understanding of CT and/or their affect related to CT, whereas very
few studies paid attention to enhancing teachers’ CT competency and their ability to integrate
CT into their teaching in real classrooms. Borrowing the idea of PCK (Shulman, 1986), we
suggest that teacher preparation programs should take one step further to equip pre-/in-
service teachers with pedagogical CT-STEM knowledge.

Research for Broadening Participation in Integrated CT and STEM

Our review shows that early attempts have been made to study equity issues in the
field of integrating CT in STEM education. Research started to pay attention to the
performance or process differences among different student groups, including groups related
to gender, race, ethnicity, geographic location, and socioeconomic status. Among these,
gender difference has gained the most attention. A common theme among the studies was
that while no statistically significant gender difference was found in CT competency, females
often had significantly lower confidence or self-efficacy in CT than males.

As one can see, the research on broadening participation in integrating CT in STEM
education is far from adequate. One area that needs immediate action is to design and
research different instructional strategies, among other means, that promote equitable
learning when integrating CT in STEM fields. Some pedagogies have been proposed and
investigated, such as setting up role models, grouping students with different levels of prior
programming experience. Yet, the effectiveness and efficacy of these strategies need

investigation with more carefully designed research.
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Limitation

Due to the broad conceptualizations of CT and a wide range of application field, our
literature collection may have missed some relevant studies. The reader should keep in mind
that our literature search should be taken as a sampling process as opposed to an exhaustive
one. Besides, in the process of completing this review, more studies have been published.
Therefore, this review, as any review study, has a time limitation.

Conclusion

We reviewed 55 papers with empirical studies on the topic of integrating CT into
STEM education. Our major findings from these papers include: (a) attempts have been made
to create domain-specific CT definitions in STEM education; (b) problem-based instruction,
including application contexts such as game design, robotics, and computational modelling,
has been the most popular model in integrating CT in STEM; (c) the assessments of student
learning in integrated CT and STEM education targeted different objectives with different
formats, but assessment of integrated CT and STEM is limited; (d) learning performance and
processes between different groups were studied, but pedagogical design and efficacy on
enhancing equity was much less researched. Although our review indicates that this area is
still in its early stage, our review provides a useful resource to future research and practices,
especially in areas such as operationalizing CT in STEM contexts, assessing integrated CT
and STEM learning, and research for broadening participation in CT-integrated STEM
education.
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