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Abstract— Emotion recognition based on electroencephalog-
raphy (EEG) signals has been receiving significant attention
in the domains of affective computing and brain-computer
interfaces (BCI). Although several deep learning methods have
been proposed dealing with the emotion recognition task, de-
veloping methods that effectively extract and use discriminative
features is still a challenge. In this work, we propose the novel
spatio-temporal attention neural network (STANN) to extract
discriminative spatial and temporal features of EEG signals
by a parallel structure of multi-column convolutional neu-
ral network and attention-based bidirectional long-short term
memory. Moreover, we explore the inter-channel relationships
of EEG signals via graph signal processing (GSP) tools. Our
experimental analysis demonstrates that the proposed network
improves the state-of-the-art results in subject-wise, binary
classification of valence and arousal levels as well as four-class
classification in the valence-arousal emotion space when raw
EEG signals or their graph representations, in an architecture
coined as GFT-STANN, are used as model inputs.

I. INTRODUCTION

Emotions and their corresponding affective states play an

important role in human life and behavior [1]. Automatically

extracting information about emotions could enhance human-

machine interactions and assist healthcare workers and care-

givers to communicate with patients suffering from expres-

sion and speech problems. Therefore, emotion recognition

using physiological signals, with the potential to improve

the performance of brain-computer interface (BCI) systems,

has received significant amount of attention lately. Multi-

channel electroencephalography (EEG) carries spectral and

rhythmic brain signals that provide information about neural

activity in specific cortical regions [2]. Ease of use and high

temporal resolution - in comparison with other non-invasive

recording techniques - make EEG a desirable modality to

study emotions.

EEG-based emotion recognition consists of two main

stages: extracting discriminative features and performing

classification. The commonly used features in these tasks are

Hjorth parameters, fractal dimension, high order statistics,

differential entropy, power spectral density, rational and

differential asymmetry, and differential causality [3], [4], [5].
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Deep learning methods have been shown to outperform

traditional methods in different fields, including computer vi-

sion [6] and biomedical signal processing [7]. Several archi-

tectures and methodologies have been proposed to deal with

EEG emotion recognition based on deep learning methods

[8], [9]. For instance, in [8], authors assign different weights

to the EEG channels by applying a channel-wise attention

mechanism. They then use a convolutional neural network

(CNN) and a recurrent neural network (RNN) to extract the

spatio-temporal features. Authors in [10] have applied a CNN

on the frequency and time domain features and have shown

that the combination of the raw EEG data with temporal

and frequency-based features outperforms shallow networks.

Authors of [11] have introduced the multi-column convo-

lutional neural network (MCNN) for emotion classification.

They evaluate their method in a subject-independent scheme

by considering five participants as the test data. Separable

EEGNet based on the Hilbert-Huang transform has been

proposed in [9]. The data are transformed into the time-

frequency domain, and feature extraction is performed by the

combination of point-wise and depth-wise network elements.

It has been shown that CNNs are effective in extracting

spatial information while RNNs capture the time dependen-

cies well. EEG data are recorded from multiple electrodes

that form a spatial structure. In order to process these

structured time series effectively, both spatial and temporal

information need to be accounted for. We propose the parallel

spatio-temporal attention neural network (STANN) that takes

into account these two aspects of the data within a uni-

fied architecture. This new architecture constitutes the main

technical contribution of our paper. STANN also utilizes the

advantage of time scaling as offered by bidirectional attention

networks. Focus of the attention mechanism on specific time

scales - by multiplication of hidden state outputs by trainable

weights - can be physiologically interpreted by language-

related components of event-related potentials (ERPs) and

the time it takes for the brain to perceive and react to

emotionally-loaded stimuli. Due to the complex structure of

brain signals and their time-varying nature, besides using

raw EEG signals as the input, we also propose the idea

of using the graph Fourier transform (GFT) [12] of those

signals as the input to the proposed network. To that end, we

consider EEG electrodes as graph nodes and form the graph

based on the Euclidean distances among them. Unlike the

traditional common spatial pattern (CSP) filtering approach

that is dependent on individual participants or tasks, in

this work, we only benefit from the positions of the scalp

EEG electrodes that are constant across all participants.



Fig. 1. Illustration of (left) the adjacency matrix, and (right) corresponding
graph from a sample montage of the 10-20 electrode placement system.

In this way, our graph Fourier transform spatio-temporal

attention neural network (GFT-STANN) captures the spatial

information along with discriminative time dependencies.

The proposed method is evaluated on the publicly available

DEAP dataset [13]. We provide comprehensive experimental

results to show the benefits of STANN with raw and graph-

based representations of EEG data.

II. GRAPH-BASED EEG DATA REPRESENTATION

EEG data are recorded from multiple electrodes over the

scalp which results in a two-dimensional (2D) graph signal

Xtr ∈ R
N×T , where N is the number of electrodes and T

is the number of time points. Due to the structural and func-

tional connectivity of the brain [14], exploring relative spatial

locations of these electrodes helps with decoding responses

elicited from sensory stimuli [15]. Here, we model the scalp

structure as an undirected weighted graph G(V, E ,A), where

V = {1, 2, ..., N} is the set of nodes or channels, E ⊆ V×V
is the set of edges, and A ∈ R

N×N is the adjacency

matrix. The weight value, Aij , between two nodes i and

j is calculated based on the inverse Euclidean distance dij
as follows:

Aij = d−1

ij , Aii = 0, for i, j = 1, 2, ..., N. (1)

K nearest neighbors (KNN) are computed for each node to

construct the symmetric adjacency matrix [16]. Here, K is

set to 2. Fig 1 illustrates the 2-NN scalp topology for a 10-20
electrode placement system.

Besides this graph layout, the spectral representation of

spatial EEG signals could provide information regarding their

characteristics. GFT is used to perform spatial frequency

analysis of the signals over the graph. Let D be the diagonal

matrix of the node degrees, Dii =
∑

k Aik, and the combi-

natorial graph Laplacian be L = D −A [12]. The GFT of

signal Xtr with respect to L is calculated as follows:

X̃tr = V
T
Xtr (2)

where V is the the orthonormal matrix of eigenvectors of

the matrix L.

III. SPATIO-TEMPORAL ATTENTION NEURAL NETWORK

In this section, details of the proposed STANN shown in

Fig. 2 are presented. The MCNN, recurrent attention net-

work, and the proposed STANN architecture that combines

these components are described in this section.

MCNN. The MCNN architecture follows the structure in-

troduced in [17]. In this framework, there are several inde-

pendently acting columns that are essentially functioning as
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Fig. 2. Proposed parallel spatio-temporal attention neural network
(STANN) architecture.

deep networks. The weights of all columns are initialized

randomly and all columns start to train on the same input.

The model output is the average of all the columns’ outputs.

In the present study, each column consists of a network with

2D CNN, batch normalization, and pooling layers.

Recurrent Attention Network. RNNs capture the depen-

dencies across time steps from time-series data. These

networks exploit the temporal information by establishing

connections between subsequent layers [18]. This property

makes RNNs perfect for learning short-term dependencies.

Furthermore, Long Short-Term Memory (LSTM) resolves

the vanishing gradient problem by maintaining the gradient

back-propagation to earlier time steps and keeping long-term

temporal dependencies.

Let xt and ht denote the input data and the hidden

state at time t, respectively. Three gates control the LSTM

performance. The input gate (it) controls the flow of the

input, the forget gate (ft) selects which information should

be kept or forgotten, and the output gate (ot) computes the

output of the given updated cell. More details regarding the

operations within LSTM cells can be found in [18].

Bidirectional LSTM (BiLSTM) entails two LSTM blocks

in a single layer, which simultaneously process the informa-

tion in two opposite directions. The output of each layer is

the concatenation of the outputs of two LSTM blocks, i.e,

hi = [
−→
hf ,
←−
hb] where

−→
hf and

←−
hb correspond to the forward

and backward hidden states, respectively [18].

Certain time steps might carry the most discriminative

information, and attention mechanism serves the purpose of

emphasizing those steps [19]. The output of the attention

mechanism is the multiplication of outputs of hidden states

by trainable weights. Given hi as the output of the ith LSTM
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Fig. 3. Details of the MCNN model implemented in this paper. Each
column has a 2D CNN structure.

cell and letting W and b be the trainable parameters, the

output of the attention layer, v, is found as follows:

v =
∑

i

αihi, αi =
exp(Whi + b)∑
j exp(Whj + b)

. (3)

Proposed STANN architecture. STANN involves paral-

lel operation of MCNN and attention-based BiLSTM. The

network consists of two parts: MCNN for encoding the

spatio-temporal information within a temporal slice and

the recurrent attention network for exploiting the attentive

temporal dependencies across different time steps. As shown

in Fig. 2, spatial and temporal features are computed in

parallel and concatenated at the outputs of MCNN and

BiLSTM networks. The MCNN part of the model consists of

three columns. The same network structure is used for each

column except kernel sizes and number of filters. Different

kernel sizes explore a variety of short and long range

dependencies across nearby EEG channels. In the context of

EEG signals, the input of MCNN has the shape of number

of EEG channels×number of time steps×1. Fig. 3 shows

details of the proposed MCNN. Each column consists of four

convolution (conv) layers followed by batch normalization.

An average-pooling layer followed by a dropout layer is

applied after the first and second conv layers. The dropout

probability rates are set to 0.5 and 0.4, respectively. In every

conv operation, the same zero-padding technique is used to

prevent losing the edge information of the input data. The

widely used activation function in CNNs, rectified linear

unit (ReLU), is adopted in this network. After merging the

outputs of all columns, a 1 × 1 conv filter is applied to

calculate the spatial feature maps.

The LSTM part of the network entails two BiLSTM

layers with the same hidden layer size, 80, and 128 time

steps. The forward and backward LSTM layers are each

followed by a dropout layer with probability rates of 0.2 and

0.1, respectively. BiLSTM outputs are fed to the attention

mechanism. The hyperbolic tangent (tanh) activation function

is used for both BiLSTM layers.

As shown in Fig. 2, the extracted spatial and temporal

features are flattened and concatenated. Finally, the feature

vector is passed through the fully connected layer with 128
hidden units before going through a SoftMax operation. The

model is implemented in Python with Tensorflow and Keras

libraries.

IV. EXPERIMENTS AND RESULTS

DEAP Dataset. The proposed architecture is evaluated using

the DEAP dataset [13] recorded from 32 individuals each

TABLE I

AVERAGE CLASSIFICATION ACCURACIES (%) FOR DIFFERENT

SCENARIOS.

Method Theta Alpha Beta Gamma Wide-band

Binary valence classification1

BiLSTM 84.6 85.5 87.0 83.5 89.0

MCNN 86.1 86.0 91.4 83.2 93.3

STANN 88.1 88.5 91.2 86.6 94.4

GFT-STANN 89.8 89.0 91.3 85.2 94.8

±4.7 ±6.0 ±5.0 ±6.9 ±2.9

Binary arousal classification2

BiLSTM 87.0 87.2 88.1 85.0 90.3

MCNN 88.5 87.0 91.6 84.2 93.9

STANN 90.2 89.7 92.5 86.7 94.9

GFT-STANN 91.7 90.5 92.3 86.2 96.1

±4.1 ±5.1 ±4.7 ±6.7 ±2.2

Four-class valence-arousal classification

BiLSTM 80.9 81.2 84.2 85.0 77.7

MCNN 81.7 81.3 87.5 73.0 89.7

STANN 84.1 84.1 86.5 77.6 90.9

GFT-STANN 87.6 86.7 88.6 78.2 92.7

±5.3 ±7.0 ±5.5 ±7.7 ±4.2

Average number of positive and negative samples per participant:
1(1327,1073) and 2(1382,1018).

having rated 40 one-minute long music videos. The physi-

ological recordings consist of 32 and 8 channels related to

EEG and peripheral physiological signals, respectively. In

this paper, we only use the EEG signals and refer to each

one-minute EEG recording as a trial. Participants were asked

to rate the level of valence, arousal, liking, and dominance

in each video from 1 to 9. The recorded signals were down-

sampled from 512 Hz to 128 Hz, ocular artifacts were

removed, and a bandpass filter from 4.0 to 47.0 Hz was

applied. Each EEG recording thus contains 60 s trial data,

in addition to the 3 s baseline data.

Classification Results. In this study, we segment the 60-s

long trials into 1 s data samples. The size of data samples is

equal to 32× 128 where 32 is the number of the EEG chan-

nels and 128 is the number of time samples. The trial data

are baseline corrected. Thus, the data for each participant

consist of 40 × 60 = 2400 data samples. Each data sample

is filtered into four subbands as theta (4-8 Hz), alpha (8-12
Hz), beta (12-29 Hz), and gamma (30-47 Hz). We validate

the performance of our proposed framework by considering

two classification schemes. The first scenario involves binary

classifications of high-versus-low valence and high-versus-

low arousal. To obtain a binary problem, the 9-level ratings

of valence and arousal are quantized into two levels using

a threshold of 5. In the second scenario, the valence-arousal

(VA) space [20] is divided into four sub-spaces, i.e., low

valence-low arousal, low valence-high arousal, high valence-

high arousal, and high valence-low arousal [15]. For each

scenario, the subject-wise 10-fold cross-validation (CV) is

repeated 10 times, and the average classification accuracy

is reported. The model is trained by the Adam optimizer

[21] to minimize the cross-entropy between the predicted and

true labels. The batch size and epochs are selected as 300
and 35, respectively. All the parameters are selected using a

grid search paradigm until the highest average classification

accuracy is achieved.

For comparison, we consider MCNN and BiLSTM ar-



TABLE II

COMPARISON OF THE PROPOSED GFT-STANN WITH

STATE-OF-THE-ART METHODS FROM RECENT LITERATURE.

Method Valence (%) Arousal (%) Four-class (%)

Proposed method 94.8 96.1 92.7

Tao et al. [8] 93.7 93.4 -

Huang et al. [9] 89.9 88.3 -

Chen et al. [10] 88.8 86.9 -

Soroush et al. [24] - - 89.8

Li et al. [15] - - 62.0

chitectures with raw data as baseline models and evaluate

their performance separately using the aforementioned pa-

rameters. This evaluation demonstrates how the proposed

parallelization is beneficial in improving the classification

accuracy. In order to assess the effect of the graph-based

EEG data representation, we calculate the GFT coefficients

of frequency subbands and compare results of the proposed

model with two different input modalities, i.e. raw EEG

and EEG-based GFT coefficients. Since computation of GFT

is independent from subjects and tasks, it would not hurt

the automated operation of our model. Table I depicts the

binary valence, binary arousal, and four-class classification

accuracies for the baseline methods and proposed approach

based on features from various frequency bands. The average

classification accuracies for binary valence and arousal and

four class classification problems based on GFT-STANN

are 94.8%, 96.1%, and 92.7%, respectively. These results

show that not only the proposed network outperforms the

baseline methods, but also the GFT improves the overall

performance. Furthermore, results in Table I demonstrate that

wide-band EEG and beta band features outperform other

spectral features in binary classifications of high-versus-

low valence and arousal states. These results are in line

with the role of frequency bands in characterizing emotional

processes [22], [23].

Table II presents a comparison of the proposed method

with several methods from the recent literature and demon-

strates the superiority of our proposed approach. All the

results reported here are subject-dependent with a 10-fold

CV except for [9] which involves a 4-fold CV.

V. CONCLUSION

We have proposed an end-to-end deep learning framework

for EEG emotion recognition. The presented GFT-STANN

approach captures the spatial and temporal information over

the graph-based input data in a parallel format. Graph-based

representation of EEG signals provides a concise set of

structural and graph-spectral domain information without

being dependent on individual differences or conducted ex-

periments. Moreover, the attention mechanism helps to find

the most discriminative time steps. The fused spatio-temporal

features achieve higher accuracy compared to state-of-the-art

methods in valence and arousal classification on the DEAP

dataset.
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