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Abstract

Plug-and-Play is an algorithmic framework developed
to solve image recovery problems. Thanks to the empiri-
cal success of convolutional neural network (CNN) denois-
ers, numerous Plug-and-Play algorithms utilizing CNN de-
noisers have been proposed to solve various image recovery
tasks. Unfortunately, those Plug-and-Play algorithms lack
representing the uncertainty on the parameters of CNN de-
noisers because their training procedure yields only a point
estimate for the parameters of the CNN denoiser. In this pa-
per, we present a novel Plug-and-Play model that quantifies
the uncertainty on the parameters of the CNN denoiser. The
proposed model places a probability distribution on the pa-
rameters of the CNN denoiser and carries out approximate

Bayesian inference to obtain the posterior distribution of

the parameters to characterize their uncertainty. The uncer-
tainty information provided by the proposed Plug-and-Play
model allows characterizing how certain the model is for a
given input. The proposed Plug-and-Play model is applica-
ble to a broad set of computational imaging problems, with
the requirement that the data fidelity term is differentiable,
and has a simple implementation in deep learning frame-
works. We evaluate the proposed Plug-and-Play model on
a magnetic resonance imaging reconstruction problem and
demonstrate its uncertainty characterization capability.

1. Introduction

Plug-and-Play (PnP) [35] is a widely used algorithmic
framework to solve image recovery problems. The main
idea is to solve a regularized optimization problem using
a splitting method, such as alternating direction method
of multipliers (ADMM) [4] or proximal gradient descent
(PGD) [25], and replace the subproblem that involves the
regularizer with an off-the-shelf denoiser. Recently, sev-
eral studies [41, 43, 22, 26] have shown that convolu-
tional neural network (CNN) denoisers achieve state-of-

Mujdat Cetin
University of Rochester
Rochester, NY, USA.

mujdat.cetin@rochester.edu

the-art performance for image denoising problems. As a
result, the use of CNN denoisers within the PnP frame-
work has attracted attention, and PnP algorithms leverag-
ing CNN denoisers have been successfully used in multiple
studies [42, 38, 34, 15, 1, 2].

The primary advantage of PnP methods that use CNN
denoisers over end-to-end models [13] is that PnP meth-
ods are highly modular for image recovery problems. Af-
ter training a CNN denoiser for a problem, we can use the
trained CNN denoiser for different variants of the prob-
lem by only modifying the data dependent part of the it-
erative reconstruction algorithm. Because the trained CNN
denoiser is often stored to be reused later, it is crucial to
know what the trained denoiser does not know including,
e.g., features that the denoiser has not encountered at the
training stage. One way to detect cases for which the in-
put of the CNN denoiser contains features that are not well-
represented by the data used at the training stage is to quan-
tify the uncertainty on the parameters of the denoiser, which
is often referred to as the model uncertainty or epistemic un-
certainty [19]. Unfortunately, training a denoiser by mini-
mizing an empirical loss function yields only a point esti-
mate for the parameters of the denoiser; therefore, existing
PnP methods cannot characterize the uncertainty on the pa-
rameters of the denoiser.

In this paper, we propose a novel PnP model that is ca-
pable of quantifying model uncertainty. The proposed PnP
model uses PGD as the splitting strategy and defines a prob-
ability distribution on the parameters of the CNN denoiser.
Then, the proposed PnP model obtains a tractable approxi-
mation of the posterior distribution of the parameters of the
CNN denoiser. The resulting approximation of the poste-
rior distribution would integrate the uncertainty on the pa-
rameters of the denoiser into the predictive distribution of
the PnP algorithm by marginalization. Finally, we use the
mean of the predictive distribution as the reconstructed im-
age and compute the standard deviation of the each entry of
the predictive distribution to obtain the model uncertainty
for each pixel of the reconstructed image.
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We demonstrate the capabilities of the proposed PnP
model on a magnetic resonance imaging reconstruction
problem. Our results show that the proposed PnP model is
able to detect the features that are not well-represented by
the training dataset and that the proposed PnP model can be
utilized to guide the process of building the training dataset.
To the best of the authors’ knowledge, this is the first time
the problem of quantifying model uncertainty is considered
for PnP algorithms.

2. Related Work

Plug-and-Play framework: The idea of Plug-and-Play
(PnP) priors was first presented by Venkatakrishnan et
al. [35] for the ADMM algorithm. Later, the idea was also
used for different splitting methods to obtain variants of
the original PnP-ADMM, such as PnP-half-quadratic split-
ting (PnP-HQS) [42], PnP-proximal gradient descent (PnP-
PGD) [23], PnP-primal-dual splitting (PnP-PDS) [23], and
PnP-FISTA [17]. Another design choice for a PnP al-
gorithm besides the splitting method is the type of de-
noiser used in the update equations. One line of work
on PnP methods used non-learning based denoisers such
as BM3D [9] and NLM [6] and achieved significant em-
pirical success on various image recovery problems such
as Poisson inverse problems [27], electron tomographic re-
construction and sparse image interpolation [31], nonlinear
inverse scattering [17], single photon imaging [7], single
image super-resolution [5], and Fourier ptychographic mi-
croscopy [33].

Recently, multiple studies [41, 43, 22, 26] reported that
CNN denoisers could achieve state-of-the-art performance
on image denoising problems. Hence, utilizing CNN de-
noisers in PnP algorithms elicited increasing attention from
the research community. PnP algorithms that use CNN de-
noisers were successfully applied to several image recovery
problems including image deblurring [42, 34, 15], image in-
painting [34], single image super-resolution [42, 15], mag-
netic resonance imaging [1], radar imaging [2], and com-
puted tomography [38].

Model uncertainty for neural networks: Character-
izing the model uncertainty for a neural network requires
placing a distribution on the parameters of the neural net-
work and computing the posterior distribution of the pa-
rameters. Unfortunately, computing the posterior distribu-
tion of the parameters exactly is not tractable for deep neu-
ral networks due to large number of parameters and com-
plex hierarchical structures. Accordingly, several meth-
ods were proposed to approximate the posterior distribu-
tion of the parameters such as Markov Chain Monte Carlo
methods [24, 36, 8, 21, 44] and variational inference meth-
ods [3, 14, 12]. One particular variational inference method,
Monte Carlo Dropout (MC Dropout) [12], stands out from
the crowd for its simplicity and scalability for deep neural

networks. By using MC Dropout, variational inference can
be carried out by simply applying Dropout [32] after the
parameters of the neural network that we aim to perform
variational inference for. MC Dropout has been success-
fully applied to problems in computer vision such as depth
completion [19] and semantic segmentation [19, 18].

Model uncertainty for image recovery: Parallel to the
work done in the computer vision community, Schlem-
per et al. [30] developed U-Net [28] and DC-CNN [29]
based models that use MC Dropout as the variational in-
ference method to quantify model uncertainty for the mag-
netic resonance imaging problem. Later, Xue et al. [37] pro-
posed a similar U-Net based model, which also utilizes MC
Dropout, to characterize the model uncertainty for the phase
imaging problem. Recently, Ekmekci and Cetin [10] pro-
posed an unfolding based model that leverages MC Dropout
to quantify model uncertainty for linear inverse problems.

The fundamental difference between the models in [30,
37, 10] and the proposed PnP model lies in the difference
between end-to-end models and PnP methods. End-to-end
models must be trained for different variants of the recovery
problem. On the other hand, PnP methods require training
a CNN denoiser, and we can use the CNN denoiser for dif-
ferent variants of the recovery problem.

3. Method

The proposed PnP model uses PGD as the splitting strat-
egy and places a prior distribution on the parameters of a
CNN denoiser. After approximating the posterior distribu-
tion of the parameters given data, the proposed PnP model
integrates the posterior distribution of the parameters into
the predictive distribution by marginalization. The resulting
predictive distribution allows generating the reconstructed
image as well as model uncertainty information.

In this section, we present the details of the proposed PnP
model. First, we define the predictive distribution for the
PnP-PGD algorithm and state our assumptions. Next, we
approximate the predictive distribution by approximating
the posterior distribution of the parameters of the CNN de-
noiser via MC Dropout and applying series of Monte Carlo
integrations. Finally, we approximate the mean of the ap-
proximation to use as the reconstructed image and compute
the standard deviation of the each entry of the approxima-
tion of the predictive distribution to represent the model un-
certainty for each pixel of the reconstructed image. The
overall procedure is illustrated in Figure 1.

3.1. PnP-PGD method

We consider the following unconstrained optimization
problem

X = arg)r{nin {f (%) +v9 (%)}, )
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Figure 1. Overview of the proposed PnP model. We first perform

variational inference to obtain the posterior distribution of the parame-

ters of the denoiser used in the PnP-PGD algorithm. Then, we approximate the distribution of the reconstruction at the K *" iteration given
reconstruction at the 0" iteration and the training dataset containing noisy and clean images. Finally, we compute the mean and standard
deviation of the predictive distribution to obtain the reconstructed image and the uncertainty on the parameters of the denoiser, respectively.

Best viewed in color.

where the vector x € R represents the reconstructed im-
age in vectorized form, the vector x € R is the optimiza-
tion variable, the function f : R® — R is the data fidelity
term, the scalar v > 0 is the regularization constant, and the
function g : RS — R is the regularizer.

After solving the unconstrained optimization problem in
(1) using PGD and replacing the proximal operator of the
regularizer with a denoiser, we obtain the following iterative
reconstruction algorithm.

25D — x®) _ 4y f (Xm)

x* ) — p, (Z(k+1)) ,

(22)
(2b)

where the scalar a > 0 is the step size, and the vectors
z*) and x(*) are the intermediary variable and the recon-
structed image at the k" iteration, respectively. Dy is the
CNN denoiser, where 6 is the set of tunable parameters of
the denoiser.

3.2. Predictive distribution for PnP-PGD

For the PnP-PGD algorithm in (2), we define the predic-
tive distribution by the following integral.

P, D) = [ opplolDran, )

where the integer K is the number of iterations, and the
vectors xiK) and xio) are the reconstructed images at the
K*' and 0" iterations at the inference stage, respectively.
The set D is the training dataset containing noisy and clean
images, and the set 6 contains the parameters of the CNN

denoiser used in the PnP-PGD algorithm. In this definition,

we have used the fact that at the inference stage, the recon-
(K)

struction at the K*" iteration, x,

, is independent of the
dataset, D, given the starting point, xﬁo), and the set of pa-

rameters of the denoiser ¢, and that the parameters of the

denoiser, 0, is independent of the starting point, xfko)
the dataset, D.

In this definition, the posterior distribution of the pa-
rameters of the denoiser, p(6|D), incorporates the uncer-
tainty on the parameters of the denoiser into the predic-
tive distribution. Thus, we can use, e.g., the standard de-
viation of the predictive distribution to quantify the model
uncertainty, and we can compute the mean of the predic-
tive distribution to obtain the reconstructed image. Unfor-
tunately, the integral that defines the predictive distribution
cannot be obtained in closed-form because the distribution
p(xiK) |x,(k0)7 ) and the posterior distribution of the param-
eters, p(0|D), do not have closed-form representations if the
denoiser is a deep neural network. Hence, we have to ap-
proximate the distributions p(xiK) |xi0) ,0) and p(0|D) first,
and then we can approximate the integral in (3) using Monte
Carlo integration.

, given

3.3. Approximating the distribution p(xiK) \xfko) ,0)

To approximate the integral in (3), we start by approxi-
mating the distribution p(xiK) ‘X,(FO), 6). Our main assump-
tion is that the output of the denoiser, given the parameters
of the denoiser and an input to the denoiser, has the follow-

ing multivariate Gaussian form.

p(x®z8) ) = N(x®)|Dp(z™), 771T), (@)
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where we have used the vectors x(*) and z(*) to denote
the output and the input of the denoiser Dy, respectively,
in accordance with the update equation in (2b). The set 6
contains the parameters of the denoiser Dy, and the scalar
7 > 0 is a fixed model parameter. We can justify this as-
sumption by examining the similarity between the empir-
ical loss function that is often used to train denoisers for
PnP applications and the objective function of the maxi-
mum likelihood estimation problem for the parameters of
the denoiser. If we assume that the likelihood function has
the form (4), and the dataset, D, contains i.i.d. examples,
finding the maximum likelihood estimate of the parameters
boils down to minimizing the mean squared error between
the output of the denoiser and clean images, which is one of
the most commonly used empirical loss functions in train-
ing denoisers.

Because the update step in (2a) is a deterministic oper-
ation for a given vector x(*), by the assumption in (4), we
can determine the form of the distribution p(x(*)|x(*=1) )
as follows:

P x D, 6) = N (9| Dy (au(x ), 71T (5)

where zu is the function performing the update step (2a).
Using the fact that the reconstruction at the k*” iteration

depends only on the reconstruction at the (k — 1)*" iteration

and the parameters of the denoiser 6, we can approximate

the distribution p(xiK) |x5<0), 0) recursively as follows

p(x % 6) = / p(x Y 6)

p(xng—l) ‘Xio)’ G)dxﬁK_l),

(6)

where the form of the distribution p(x,(kK)\xinl),O) is
given in (5). We calculate the result of the integral by us-
ing Monte Carlo integration and compute the distribution
p(ng_1)|x£0), 0) by carrying out the recursion. The re-
sulting iterative procedure is given in Algorithm 1 in detail.

3.4. Approximating the posterior distribution of the
parameters

In addition to an approximation of the distribution
p(x&K)|x§<0),9), we have to compute the posterior distri-
bution of the parameters of the denoiser, p(6|D), to ap-
proximate the integral in (3) using Monte Carlo integration.
However, exact computation of the posterior distribution is
not an easy task because the denoiser Dy is a deep neu-
ral network, which has a large number of parameters and a
complex structure.

In this paper, we utilize a commonly used variational in-
ference method called MC Dropout to approximate the pos-
terior distribution of the parameters of the denoiser. The
main advantages of using MC Dropout are (i) the inference

Algorithm 1: Approximation of the distribution
(K150 9
p(x %27, 0)
Input: Dy, 771, K, {Tk}sz_ll, x and zu.
Output: Approximation of p(xSkK) ‘Xio), 0)
1 DZ < Dgyozu
2 fork< 1to K —1do

3 |if k = I then
4 {Xil)[tl]}fll:l < Ty samples from

NP DZ), r11)
5 |else
6 {xik)[t’“]}z}:l < T}, samples from

_ k k=1)[te 1]y

Tk{l Z;ill:l./\f(xi )|DZ(X£ Mt ]),7' 1)
7 |end
8 end

T K=1)[tk 1\ Tk 1

9 {ey o+ (D2 T e

. N(X’('FK) |)u’tK—1 s T_lI)

1
10 approx <— Tr 1 tre_1=1

11 return approx

procedure is fast, (ii) it is scalable for deep neural networks
since it does not introduce any parameters besides the pa-
rameters of the neural network, and (iii) it leads to varia-
tional inference and inference procedures that can be easily
implemented in deep learning frameworks.

The main goal is to approximate the posterior distri-
bution of the parameters of the denoiser, p(6|D), with a
parametrized distribution ¢ (6), where 1) is the set of ad-
justable parameters. The set of optimal parameters of the
parametrized distribution, 1*, is found by minimizing the
Kullback-Leibler (KL) divergence between the two distri-
butions or, equivalently, maximizing the log-evidence lower
bound.

Pt = argqinin {KL(gy (0)[Ip(6]D))}

= argglaX{Eequ(e) [log p(S[Y;, )] — KL(gy(0)[|p(6))},

(7
where the distribution p(6) is the prior distribution of the
parameters of the denoiser, and the sets S = {s;}}V,
and Y £ {y;}¥, contain clean and noisy images in the
dataset, D, respectively. Assuming that the dataset, D, con-
tains i.i.d. examples and defining k(¢)) £ KL(qy,(8)||p(9)),
we can approximate the log-evidence lower bound using
Monte Carlo integration and obtain the following optimiza-
tion problem.

i=1

N
w* ~ arginax { Z logp(sl‘y“ é[z]) — IC(@ZJ) }, (8)

where the set {6[!!} contains i.i.d. samples from the distri-
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bution gy ().

To be able to compute the objective function in (8), we
have to define only the form of the parametric distribution
gy (0) since we have already defined the assumed form of
the distribution p(s;|y;,0!") in (4). MC Dropout defines
the parametric distribution to be a Bernoulli variational dis-
tribution [12, 11]. Assuming that the denoiser has L con-
volutional layers, i.e., § = {W;}L ,, where the rows of
the matrix W, contain the coefficients of the filters in the
it" convolutional layer, the reparametrized version of the
Bernoulli variational distribution is defined as

[B;];.x ~ Bernoulli(p;) %)

where the set {p;}Z , contains the success probabilities,
the operator ® denotes the Hadamard product, and the
set {M;}L | contains the adjustable parameters of the
Bernoulli variational distribution, i.e., 9 = {M;}£ ;.

For the Bernoulli variational distribution in (9), the ob-
jective function of the optimization problem in (8) boils
down to the following problem (see [12] for the details).

L
Dy (yi)ll3 + Y 6l M 7,

i=1

(10)

where the scalar is defined as §; £ (77 'p;)/N and the set

{6 N | contains N i.i.d. samples from the Bernoulli vari-
ational distribution gy (6).

Interestingly, generating a sample 6] from the Bernoulli
variational distribution defined in (9) requires generating
realizations of Bernoulli random variables, see (9a), and
multiplying them with the adjustable parameters of the
Bernoulli variational distribution, see (9b). This process re-
sembles the Dropout operation. If we consider a copy of
the denoiser Dy, with the exception that we add Dropout
after convolutional layers, where the Dropout rate for the
it" convolutional layer is set to be 1 — p;, the parameters of
the Dropout-added copy can be perceived as the adjustable
parameters of the Bernoulli variational distribution. Conse-
quently, generating a sample Al from the Bernoulli varia-
tional distribution defined in (9) and evaluating the denoiser
with the sampled parameters at the point y;, i.e., comput-
ing the term Dy (y;), would be equal to evaluating the
Dropout-added copy at the point y; while the Dropout is
enabled, i.e., computing the term Dd, (yi), where Dw is the
Dropout-added copy. Therefore, solving the optimization
problem in (10) boils down to training the Dropout-added
copy, Dy, using mean squared error loss function with the
weight decay parameter of §; for the i*” convolutional layer.

| N
Pt = argimn N Z IIs: —
i=1

3.5. Approximating the predictive distribution

So far, we have obtained approximations of the distri-
butions p( |x*0), ) and p(0|D). Now, we can approx-

imate the predictive distribution in (3) using Monte Carlo
integration as follows.

p(x|x” D) ~ / p( 1% 0) gy (0)d0 (11a)

1 S )
~ (K) | (0) jltx]
~ o D plx e 6, (11b)
trg=1
Tk-1
[tK] -1
TK Z TK > NE i ), (e

tg=1 tKll

where the first line (11a) results from replacing the true
posterior distribution of the parameters of the denoiser
p(0|D) with its approximation g~ (6), and the second line
(11b) is due to approximating the integral in (1la) us-
ing Monte Carlo integration with T samples, where the
set {é[tK]}tTf(‘:l contains Ty i.i.d. samples from gy- ().
The last line (11c) follows from replacing the distribution
p(xiK) |x§0>7 é[tf(]) with its approximation obtained by Al-
gorithm 1.
Note that of the
p(x (K)|x(O gl'x]), see Algorithm 1, requires the use
of the denoiser with the sampled parameters, Dy .
Based on the discussion in Section 3.4, we can use the
Dropout-added copy, D.;-, which has been trained by using
mean squared error loss function with weight decay, see
(10), in lieu of the denoiser with the sampled parameters,
Djiey1» in Algorithm 1. Hence, at the inference stage,
we simply use the Dropout-added copy, Dy, to obtain
the mean of each mixture component of the mixture of
Gaussians approximation of the predictive distribution.

approximation distribution

3.6. Reconstructed image and model uncertainty
information

The form of the approximation of the predictive distri-
bution in (11c¢) is a mixture of Gaussians distribution with
Tk _1Tk mixture components:

Tk_1
(K) | (0) ZK ZK N lex] 1
p(X* |X* 6 tK 17 I)’

tr=1tx_1=1

12)
where 3 = 1/(TxTx_1). Therefore, we can compute the
mean of the approximation of the predictive distribution as

Tk Tk-1

B Dl~p 3 S ul, a3

tg=1tg_1=1

which would be the reconstructed image by the proposed
PnP model.

To represent the model uncertainty for each pixel in the
reconstructed image, we can compute the standard devia-
tion of the each entry of the predictive distribution. Because
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Figure 2. Uncertainty maps obtained by the proposed PnP model using five training datasets with increasing sizes. At the variational
inference stage, we used five training datasets having the sizes 10, 50, 125, 250, and 530, respectively. At the inference stage, we obtained
the uncertainty maps for a test image. The colormap of each plot is normalized between 0 and 0.5. Best viewed in color.

the approximation of the predictive distribution is a mixture
of Gaussians distribution, its covariance matrix has the fol-
lowing form.

TK TK 1
[t
Crr T8 Y Y i )wie)T
tk=1tg_1=1 (14)

— (E[ng) \xio), D}) (E[xSﬁK) |xi0), D]) '

Hence, the square root of the diagonal elements of the co-
variance matrix in (14) would be the model uncertainty in-
formation provided by the proposed PnP model.

4. Experiments

In this section, we evaluate the proposed PnP model on
simulated MRI experiments and demonstrate the capabili-
ties of the proposed PnP model. For the experiments, we
use publicly available data from the IXI Dataset [16] and
consider the following forward problem:

y =Fox +n, 15)

where y is the measurement vector, the matrix F, denotes
the subsampled Fourier transform operator, the set {2 deter-
mines the subsampling pattern, x is the underlying image,
and the vector n ~ N (0, 02I) represents the noise in the
system. The image recovery problem for the forward prob-
lem in (15) takes the form (1) with the data fidelity term
f(x) = [Fox — y[3

4.1. Experimental Setup

We obtained the training and test datasets by extracting
530 and 15 MR images from the IXI Dataset, respectively.
Training and test images were normalized within a range
between 0 and 1.

For the variational inference procedure described in Sec-
tion 3.4, we implemented the Dropout-added copy by using
the available implementation of DRUNet [40] in [39], re-
placing each transposed convolutional layer with a cascade

of upscaling and a convolutional layer, and adding Dropout
after every convolutional layer with the Dropout rate of
0.1, except the last convolutional layer Unless otherwise
stated, the precision parameter 7! was set to 10~%, and the
Dropout-added denoiser was trained by minimizing the ob-
jective function in (10) with the Adam algorithm [20]. Dur-
ing training, noisy images were obtained by adding Gaus-
sian noise, whose standard deviation was randomly chosen
from [0, 50/255], to training images. The learning rate was
set to 0.001, and size of the mini-batches was fixed to be 16.

At the inference stage, for a given test image, we ob-
tained the test measurement vector y, by using the the for-
ward problem in (15). We set the starting point, xﬁo), to be
Fg ¥+, the step size, a, to be 0.001, and the number of iter-
ations, K, to be 10. We fixed {7}, = 10 and obtained
the uncertainty map by following the procedure described
in Section 3.5 and Section 3.6. For the experiments in Sec-
tion 4.2 and Section 4.3, we used a radial mask choosing
50% of the Fourier coefficients for the undersampling pat-
tern () and set the standard deviation of the noise, o,,, so
that the signal-to-noise ratio (SNR) is 45 dB.

4.2. Model uncertainty and size of the dataset

In this section, we illustrate the effect of the size of the
training dataset on the model uncertainty. For this purpose,
we generated five subsets of the training dataset having the
sizes of 10, 50, 125, 250, and 530. For each subset, we car-
ried out the variational inference step and obtained the un-
certainty map for a test image. The resulting uncertainty
maps are presented in Figure 2.

For the case where we had 10 training images, we ob-
served the highest overall model uncertainty. As we in-
creased the size of the training dataset, the model uncer-
tainty started decreasing gradually. We obtained the lowest
overall model uncertainty for the largest training dataset.
Our results indicate that we can use the proposed PnP model
to visualize the change in the model uncertainty as a func-
tion of changes in the size of the training dataset, and we
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can reduce the model uncertainty by adding more data to the
training dataset. Hence, uncertainty characterization and vi-
sualization by the proposed PnP model can be used to guide
the process of building the training dataset.

4.3. Model uncertainty and abnormal features

A feature that is not well-represented by the training
dataset might occur at the inference stage of a PnP method
that uses a CNN denoiser. We expect our proposed uncer-
tainty characterization approach to detect such features. In
this section, we use the proposed PnP model in a scenario
where the test image contains a feature that is not present
in the training dataset. We refer to these type of features as
abnormal features in the rest of this section.

First, we carried out the variational inference stage using
530 training images. In the inference process, we obtained
the model uncertainty information for the test image illus-
trated in Figure 3d. Figure 3a shows the resulting uncer-
tainty map. Next, to simulate a scenario where the proposed
PnP model encounters a test image containing features that
are not present in the training dataset, we added a 20 x 20
white square on a test image and obtained the uncertainty
map for the square-added test image. The square-added test
image and the uncertainty map are depicted in Figure 3e and
Figure 3b, respectively. As can be seen by comparing the
uncertainty maps in Figure 3a and Figure 3b, the model un-
certainty was increased around the abnormal feature since
the training dataset did not contain such features. Finally,
we inserted 20 x 20 white squares on the training images to
see whether the proposed PnP model gets confident about
this feature once it is represented well in the training dataset.
We carried out the variational inference stage using square-
added training images and obtained the model uncertainty
information for the square-added test image. Figure 3c il-
lustrates the uncertainty map obtained by the proposed PnP
model that had been further trained with test images con-
taining white squares. As can be observed in Figure 3c,
the model uncertainty around the white square was signifi-
cantly decreased because the final proposed PnP model en-
countered images containing squares in the training dataset.
Our results showed that the proposed PnP model is capa-
ble of detecting abnormal features not represented well in
the training data, and producing high uncertainty about such
features in the reconstruction. We have also verified that if
the type of feature considered in this experiment is present
in the training data, the approach does not produce high un-
certainty about it.

4.4. Reconstruction performance

In this section, we compare the reconstruction perfor-
mance of the proposed PnP model with zero-filling (ZF), to-
tal variation (TV) based reconstruction method, and a PnP-
PGD algorithm that uses DRUNet denoiser. The goal of

(a) Uncertainty map 1 (b) Uncertainty map 2 (c) Uncertainty map 3

(d) Test image 1

(e) Test image 2

Figure 3. Output of the proposed PnP model for two test im-
ages, one containing an abnormal feature, and the other not.
At the variational inference stage, we used the training dataset con-
taining MR images from the IXI Dataset. At the inference stage,
we obtained the uncertainty maps (a) and (b) for the test images
(d) and (e), respectively. Next, we added images containing white
squares to the training dataset and repeated the variational infer-
ence stage. At the inference stage, we obtained the uncertainty
map (c) for the test image (e). Best viewed in color.

this analysis is to verify that the image reconstruction per-
formance is not significantly adversely affected by the ad-
dition of uncertainty characterization into the image forma-
tion process. We tested these methods on 15 test images,
for which measurements were generated according to the
procedure described in Section 4.1. Table 1 lists the under-
sampling rates for the radial masks and SNR values used in
the experiments.

For the TV method, the number of iterations was set to
100, and the regularization parameter was chosen from the
set {0.0001,0.001,0.01,0.1,1, 10} to achieve the highest
SSIM. For PnP-PGD method, the denoiser was trained by
minimizing the mean squared error with the Adam algo-
rithm. The noisy images were obtained by adding Gaussian
noise, whose standard deviation was randomly chosen from
[0,50/255], to the clean images. The learning rate was set
to 0.001, and we used a mini-batch size of 16. The step
size of the PnP algorithm and noise level parameter of the
denoiser were chosen from the sets {0.01,0.05,0.1,0.5}
and {0.001,0.005,0.01,0.05,0.1}, respectively, to achieve
the highest SSIM. The number of iterations of the PnP-
PGD algorithm was fixed to 100. For the proposed PnP
method, number of iterations, K, was set to 100, and
we fixed {Tk}é{:l = 10. The step size, «, and noise
level parameter of the denoiser were chosen from the sets
{0.01,0.05,0.1,0.5} and {0.001,0.005,0.01,0.05,0.1},
respectively, to achieve the highest SSIM.
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SSIM: 0.845

SSIM: 0.951

SSIM: 0.982

(a) Test image (b) Undersampling mask

SSIM: 0.96283481 SSIM: 0.96283476

(c) Zero-filling (d TV

SSIM: 0.96283479

(e) PnP-PGD

SSIM: 0.96283475 SSIM: 0.978

(f) Sample 1

(g) Sample 2

(h) Sample 3

(i) Sample 4 (j) Mean

Figure 4. Reconstructed test images using zero-filling (ZF), total variation regularized reconstruction (TV), PnP-PGD algorithm
with DRUNet (PnP-PGD), and the proposed PnP model. (a) is the ground truth test image, and (b) is the undersampling mask. (c), (d),
and (e) are the outputs of ZF, TV and PnP-PGD methods. (f-i) are the samples from the approximation of the predictive distribution, and
(j) is the mean of the predictive distribution, i.e., the reconstructed image provided by the proposed PnP model.

| UR SNRI ZF TV  PnP-PGD Proposed|

200 10 | 0473 0670 03855 0.850
70 | 0711 0832  0.923 0.912
so 10 | 0469 0545 0871 0.862
70 | 0.871 0908  0.977 0.971
70 10 [ 0438 0536 0880 0.856
70 | 0.956 0960  0.990 0.986

Table 1. Comparison of average SSIM between different recon-
struction methods under various undersampling rates (URs)
and signal-to-noise ratios (SNRs). SNR is expressed in decibels,
and the best and the second best results are highlighted by bold
font and underline, respectively.

Figure 4 shows the results of the methods for a test im-
age, and Table 1 compares the reconstruction performance
of the methods under different settings. Our experiments
showed that both PnP-PGD method and the proposed PnP
model outperformed the TV method and that the proposed
PnP model could achieve comparable performance to the
standard PnP-PGD method. However, we observed that the
run time of the proposed PnP model is longer than the stan-
dard PnP-PGD method, mainly due to the Monte Carlo sam-
pling operation in (11b). Luckily, the sampling operation in
(11b) is parallelizable, i.e., each summand in (11b) can be
calculated in parallel, so we can shorten the run time of the

proposed PnP method at the expense of using multiple pro-
cessing units at the inference stage.

5. Conclusion

In this paper, we proposed a novel PnP model combin-
ing the PnP-PGD algorithm and the MC Dropout method to
quantify model uncertainty. The proposed PnP model can
be applied to a diverse set of image recovery problems and
can be implemented in a deep learning framework straight-
forwardly. We tested the proposed PnP model on a mag-
netic resonance imaging problem using real data from the
IXI Dataset. We demonstrated that the proposed PnP model
could provide information about how certain the model is
for a given test sample and training data, and that it could
potentially be used to guide the training dataset construc-
tion process. It may also be of interest to characterize the
aleatoric uncertainty [19] by learning the covariance matrix
of the distribution in (4). Characterization of epistemic and
aleatoric uncertainties together may bridge the performance
gap between the standard PnP-PGD method and the pro-
posed PnP model. We leave this extension for future work.
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