

We demonstrate the capabilities of the proposed PnP

model on a magnetic resonance imaging reconstruction

problem. Our results show that the proposed PnP model is

able to detect the features that are not well-represented by

the training dataset and that the proposed PnP model can be

utilized to guide the process of building the training dataset.

To the best of the authors’ knowledge, this is the first time

the problem of quantifying model uncertainty is considered

for PnP algorithms.

2. Related Work

Plug-and-Play framework: The idea of Plug-and-Play

(PnP) priors was first presented by Venkatakrishnan et

al. [35] for the ADMM algorithm. Later, the idea was also

used for different splitting methods to obtain variants of

the original PnP-ADMM, such as PnP-half-quadratic split-

ting (PnP-HQS) [42], PnP-proximal gradient descent (PnP-

PGD) [23], PnP-primal-dual splitting (PnP-PDS) [23], and

PnP-FISTA [17]. Another design choice for a PnP al-

gorithm besides the splitting method is the type of de-

noiser used in the update equations. One line of work

on PnP methods used non-learning based denoisers such

as BM3D [9] and NLM [6] and achieved significant em-

pirical success on various image recovery problems such

as Poisson inverse problems [27], electron tomographic re-

construction and sparse image interpolation [31], nonlinear

inverse scattering [17], single photon imaging [7], single

image super-resolution [5], and Fourier ptychographic mi-

croscopy [33].

Recently, multiple studies [41, 43, 22, 26] reported that

CNN denoisers could achieve state-of-the-art performance

on image denoising problems. Hence, utilizing CNN de-

noisers in PnP algorithms elicited increasing attention from

the research community. PnP algorithms that use CNN de-

noisers were successfully applied to several image recovery

problems including image deblurring [42, 34, 15], image in-

painting [34], single image super-resolution [42, 15], mag-

netic resonance imaging [1], radar imaging [2], and com-

puted tomography [38].

Model uncertainty for neural networks: Character-

izing the model uncertainty for a neural network requires

placing a distribution on the parameters of the neural net-

work and computing the posterior distribution of the pa-

rameters. Unfortunately, computing the posterior distribu-

tion of the parameters exactly is not tractable for deep neu-

ral networks due to large number of parameters and com-

plex hierarchical structures. Accordingly, several meth-

ods were proposed to approximate the posterior distribu-

tion of the parameters such as Markov Chain Monte Carlo

methods [24, 36, 8, 21, 44] and variational inference meth-

ods [3, 14, 12]. One particular variational inference method,

Monte Carlo Dropout (MC Dropout) [12], stands out from

the crowd for its simplicity and scalability for deep neural

networks. By using MC Dropout, variational inference can

be carried out by simply applying Dropout [32] after the

parameters of the neural network that we aim to perform

variational inference for. MC Dropout has been success-

fully applied to problems in computer vision such as depth

completion [19] and semantic segmentation [19, 18].

Model uncertainty for image recovery: Parallel to the

work done in the computer vision community, Schlem-

per et al. [30] developed U-Net [28] and DC-CNN [29]

based models that use MC Dropout as the variational in-

ference method to quantify model uncertainty for the mag-

netic resonance imaging problem. Later, Xue et al. [37] pro-

posed a similar U-Net based model, which also utilizes MC

Dropout, to characterize the model uncertainty for the phase

imaging problem. Recently, Ekmekci and Cetin [10] pro-

posed an unfolding based model that leverages MC Dropout

to quantify model uncertainty for linear inverse problems.

The fundamental difference between the models in [30,

37, 10] and the proposed PnP model lies in the difference

between end-to-end models and PnP methods. End-to-end

models must be trained for different variants of the recovery

problem. On the other hand, PnP methods require training

a CNN denoiser, and we can use the CNN denoiser for dif-

ferent variants of the recovery problem.

3. Method

The proposed PnP model uses PGD as the splitting strat-

egy and places a prior distribution on the parameters of a

CNN denoiser. After approximating the posterior distribu-

tion of the parameters given data, the proposed PnP model

integrates the posterior distribution of the parameters into

the predictive distribution by marginalization. The resulting

predictive distribution allows generating the reconstructed

image as well as model uncertainty information.

In this section, we present the details of the proposed PnP

model. First, we define the predictive distribution for the

PnP-PGD algorithm and state our assumptions. Next, we

approximate the predictive distribution by approximating

the posterior distribution of the parameters of the CNN de-

noiser via MC Dropout and applying series of Monte Carlo

integrations. Finally, we approximate the mean of the ap-

proximation to use as the reconstructed image and compute

the standard deviation of the each entry of the approxima-

tion of the predictive distribution to represent the model un-

certainty for each pixel of the reconstructed image. The

overall procedure is illustrated in Figure 1.

3.1. PnP-PGD method

We consider the following unconstrained optimization

problem

x̂ = argmin
x

{f (x) + γg (x)} , (1)

4019

where we have used the vectors x(k) and z(k) to denote

the output and the input of the denoiser Dθ, respectively,

in accordance with the update equation in (2b). The set θ
contains the parameters of the denoiser Dθ, and the scalar

τ ≥ 0 is a fixed model parameter. We can justify this as-

sumption by examining the similarity between the empir-

ical loss function that is often used to train denoisers for

PnP applications and the objective function of the maxi-

mum likelihood estimation problem for the parameters of

the denoiser. If we assume that the likelihood function has

the form (4), and the dataset, D, contains i.i.d. examples,

finding the maximum likelihood estimate of the parameters

boils down to minimizing the mean squared error between

the output of the denoiser and clean images, which is one of

the most commonly used empirical loss functions in train-

ing denoisers.

Because the update step in (2a) is a deterministic oper-

ation for a given vector x(k), by the assumption in (4), we

can determine the form of the distribution p(x(k)|x(k−1), θ)
as follows:

p(x(k)|x(k−1), θ) = N (x(k)|Dθ(zu(x
(k−1))), τ−1I) (5)

where zu is the function performing the update step (2a).

Using the fact that the reconstruction at the kth iteration

depends only on the reconstruction at the (k−1)th iteration

and the parameters of the denoiser θ, we can approximate

the distribution p(x
(K)
∗ |x

(0)
∗ , θ) recursively as follows

p(x
(K)
∗ |x

(0)
∗ , θ) =

∫

p(x
(K)
∗ |x

(K−1)
∗ , θ)

p(x
(K−1)
∗ |x

(0)
∗ , θ)dx

(K−1)
∗ ,

(6)

where the form of the distribution p(x
(K)
∗ |x

(K−1)
∗ , θ) is

given in (5). We calculate the result of the integral by us-

ing Monte Carlo integration and compute the distribution

p(x
(K−1)
∗ |x

(0)
∗ , θ) by carrying out the recursion. The re-

sulting iterative procedure is given in Algorithm 1 in detail.

3.4. Approximating the posterior distribution of the
parameters

In addition to an approximation of the distribution

p(x
(K)
∗ |x

(0)
∗ , θ), we have to compute the posterior distri-

bution of the parameters of the denoiser, p(θ|D), to ap-

proximate the integral in (3) using Monte Carlo integration.

However, exact computation of the posterior distribution is

not an easy task because the denoiser Dθ is a deep neu-

ral network, which has a large number of parameters and a

complex structure.

In this paper, we utilize a commonly used variational in-

ference method called MC Dropout to approximate the pos-

terior distribution of the parameters of the denoiser. The

main advantages of using MC Dropout are (i) the inference

Algorithm 1: Approximation of the distribution

p(x
(K)
∗ |x

(0)
∗ , θ)

Input: Dθ, τ−1, K, {Tk}
K−1
k=1 , x

(0)
∗ , and zu.

Output: Approximation of p(x
(K)
∗ |x

(0)
∗ , θ)

1 DZ← Dθ ◦ zu
2 for k ← 1 to K − 1 do

3 if k = 1 then

4 {x
(1)[t1]
∗ }T1

t1=1 ← T1 samples from

N (x
(1)
∗ |DZ(x

(0)
∗), τ−1I)

5 else

6 {x
(k)[tk]
∗ }Tktk=1 ← Tk samples from

1
Tk−1

∑Tk−1

tk−1=1N (x
(k)
∗ |DZ(x

(k−1)[tk−1]
∗), τ−1I)

7 end

8 end

9 {µµµtK−1
}
TK−1

tK−1=1 ← {DZ(x
(K−1)[tK−1]
∗)}

TK−1

tK−1=1

10 approx← 1
TK−1

∑TK−1

tK−1=1N (x
(K)
∗ |µµµtK−1

, τ−1I)

11 return approx

procedure is fast, (ii) it is scalable for deep neural networks

since it does not introduce any parameters besides the pa-

rameters of the neural network, and (iii) it leads to varia-

tional inference and inference procedures that can be easily

implemented in deep learning frameworks.

The main goal is to approximate the posterior distri-

bution of the parameters of the denoiser, p(θ|D), with a

parametrized distribution qψ(θ), where ψ is the set of ad-

justable parameters. The set of optimal parameters of the

parametrized distribution, ψ∗, is found by minimizing the

Kullback-Leibler (KL) divergence between the two distri-

butions or, equivalently, maximizing the log-evidence lower

bound.

ψ∗ = argmin
ψ

{KL(qψ(θ)||p(θ|D))}

= argmax
ψ

{Eθ∼qψ(θ)[log p(S|Y, θ)]−KL(qψ(θ)||p(θ))},

(7)

where the distribution p(θ) is the prior distribution of the

parameters of the denoiser, and the sets S , {si}
N
i=1

and Y , {yi}
N
i=1 contain clean and noisy images in the

dataset, D, respectively. Assuming that the dataset, D, con-

tains i.i.d. examples and defining k(ψ) , KL(qψ(θ)||p(θ)),
we can approximate the log-evidence lower bound using

Monte Carlo integration and obtain the following optimiza-

tion problem.

ψ∗ ≈ argmax
ψ

{

N
∑

i=1

log p(si|yi, θ̃
[i])− k(ψ)

}

, (8)

where the set {θ̃[i]} contains i.i.d. samples from the distri-

4021

bution qψ(θ).
To be able to compute the objective function in (8), we

have to define only the form of the parametric distribution

qψ(θ) since we have already defined the assumed form of

the distribution p(si|yi, θ̃
[i]) in (4). MC Dropout defines

the parametric distribution to be a Bernoulli variational dis-

tribution [12, 11]. Assuming that the denoiser has L con-

volutional layers, i.e., θ = {Wi}
L
i=1, where the rows of

the matrix Wi contain the coefficients of the filters in the

ith convolutional layer, the reparametrized version of the

Bernoulli variational distribution is defined as

[Bi]j,k ∼ Bernoulli(pi) (9a)

Wi = Bi �Mi, (9b)

where the set {pi}
L
i=1 contains the success probabilities,

the operator � denotes the Hadamard product, and the

set {Mi}
L
i=1 contains the adjustable parameters of the

Bernoulli variational distribution, i.e., ψ = {Mi}
L
i=1.

For the Bernoulli variational distribution in (9), the ob-

jective function of the optimization problem in (8) boils

down to the following problem (see [12] for the details).

ψ∗ = argmin
ψ

1

N

N
∑

i=1

‖si −Dθ̃[i](yi)‖
2
2 +

L
∑

i=1

δi‖Mi‖
2
F ,

(10)

where the scalar is defined as δi , (τ−1pi)/N and the set

{θ̃[i]}Ni=1 contains N i.i.d. samples from the Bernoulli vari-

ational distribution qψ(θ).

Interestingly, generating a sample θ̃[i] from the Bernoulli

variational distribution defined in (9) requires generating

realizations of Bernoulli random variables, see (9a), and

multiplying them with the adjustable parameters of the

Bernoulli variational distribution, see (9b). This process re-

sembles the Dropout operation. If we consider a copy of

the denoiser Dθ, with the exception that we add Dropout

after convolutional layers, where the Dropout rate for the

ith convolutional layer is set to be 1− pi, the parameters of

the Dropout-added copy can be perceived as the adjustable

parameters of the Bernoulli variational distribution. Conse-

quently, generating a sample θ̃[i] from the Bernoulli varia-

tional distribution defined in (9) and evaluating the denoiser

with the sampled parameters at the point yi, i.e., comput-

ing the term Dθ̃[i](yi), would be equal to evaluating the

Dropout-added copy at the point yi while the Dropout is

enabled, i.e., computing the term D̄ψ(yi), where D̄ψ is the

Dropout-added copy. Therefore, solving the optimization

problem in (10) boils down to training the Dropout-added

copy, D̄ψ , using mean squared error loss function with the

weight decay parameter of δi for the ith convolutional layer.

3.5. Approximating the predictive distribution

So far, we have obtained approximations of the distri-

butions p(x
(K)
∗ |x

(0)
∗ , θ) and p(θ|D). Now, we can approx-

imate the predictive distribution in (3) using Monte Carlo

integration as follows.

p(x
(K)
∗ |x

(0)
∗ ,D) ≈

∫

p(x
(K)
∗ |x

(0)
∗ , θ)qψ∗(θ)dθ (11a)

≈
1

TK

TK
∑

tK=1

p(x
(K)
∗ |x

(0)
∗ , θ̃[tK]), (11b)

≈
1

TK

TK
∑

tK=1

1

TK−1

TK−1
∑

tK−1=1

N (x
(K)
∗ |µµµ

[tK]
tK−1

, τ−1I), (11c)

where the first line (11a) results from replacing the true

posterior distribution of the parameters of the denoiser

p(θ|D) with its approximation qψ∗(θ), and the second line

(11b) is due to approximating the integral in (11a) us-

ing Monte Carlo integration with TK samples, where the

set {θ̃[tK]}TKtK=1 contains TK i.i.d. samples from qψ∗(θ).
The last line (11c) follows from replacing the distribution

p(x
(K)
∗ |x

(0)
∗ , θ̃[tK]) with its approximation obtained by Al-

gorithm 1.

Note that approximation of the distribution

p(x
(K)
∗ |x

(0)
∗ , θ̃[tK]), see Algorithm 1, requires the use

of the denoiser with the sampled parameters, Dθ̃[tK] .

Based on the discussion in Section 3.4, we can use the

Dropout-added copy, D̄ψ∗ , which has been trained by using

mean squared error loss function with weight decay, see

(10), in lieu of the denoiser with the sampled parameters,

Dθ̃[tK] , in Algorithm 1. Hence, at the inference stage,

we simply use the Dropout-added copy, D̄ψ∗ , to obtain

the mean of each mixture component of the mixture of

Gaussians approximation of the predictive distribution.

3.6. Reconstructed image and model uncertainty
information

The form of the approximation of the predictive distri-

bution in (11c) is a mixture of Gaussians distribution with

TK−1TK mixture components:

p(x
(K)
∗ |x

(0)
∗ ,D) ≈

TK
∑

tK=1

TK−1
∑

tK−1=1

βN (x
(K)
∗ |µµµ

[tK]
tK−1

, τ−1I),

(12)

where β , 1/(TKTK−1). Therefore, we can compute the

mean of the approximation of the predictive distribution as

E[x
(K)
∗ |x

(0)
∗ ,D] ≈ β

TK
∑

tK=1

TK−1
∑

tK−1=1

µµµ
[tK]
tK−1

, (13)

which would be the reconstructed image by the proposed

PnP model.

To represent the model uncertainty for each pixel in the

reconstructed image, we can compute the standard devia-

tion of the each entry of the predictive distribution. Because

4022

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56):1929–1958, 2014.

[33] Yu Sun, Shiqi Xu, Yunzhe Li, Lei Tian, Brendt Wohlberg,

and Ulugbek S. Kamilov. Regularized Fourier ptychography

using an online Plug-and-Play algorithm. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing, 2019.

[34] Tom Tirer and Raja Giryes. Image restoration by iterative

denoising and backward projections. IEEE Transactions on

Image Processing, 28(3):1220–1234, 2019.

[35] Singanallur V. Venkatakrishnan, Charles A. Bouman, and

Brendt Wohlberg. Plug-and-Play priors for model based re-

construction. In IEEE Global Conference on Signal and In-

formation Processing, 2013.

[36] Max Welling and Yee Whye Teh. Bayesian learning via

stochastic gradient Langevin dynamics. In International

Conference on Machine Learning, 2011.

[37] Yujia Xue, Shiyi Cheng, Yunzhe Li, and Lei Tian. Reliable

deep-learning-based phase imaging with uncertainty quan-

tification. Optica, 6(5):618–629, 2019.

[38] Dong Hye Ye, Somesh Srivastava, Jean-Baptiste Thibault,

Ken Sauer, and Charles Bouman. Deep residual learn-

ing for model-based iterative CT reconstruction using Plug-

and-Play framework. In IEEE International Conference on

Acoustics, Speech and Signal Processing, 2018.

[39] Kai Zhang. Deep Plug-and-Play image restoration. https:

//github.com/cszn/DPIR.

[40] Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc

Van Gool, and Radu Timofte. Plug-and-Play image restora-

tion with deep denoiser prior. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2021.

[41] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a Gaussian denoiser: Residual learning

of deep CNN for image denoising. IEEE Transactions on

Image Processing, 26(7):3142–3155, 2017.

[42] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.

Learning deep CNN denoiser prior for image restoration. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2017.

[43] Kai Zhang, Wangmeng Zuo, and Lei Zhang. FFDNet:

Toward a fast and flexible solution for CNN-based im-

age denoising. IEEE Transactions on Image Processing,

27(9):4608–4622, 2018.

[44] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen,

and Andrew Gordon Wilson. Cyclical stochastic gradient

MCMC for Bayesian deep learning. In International Con-

ference on Learning Representations, 2020.

4027

